
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1988

Generating Multiple User Interfaces for Multiple Application Generating Multiple User Interfaces for Multiple Application

Domains Domains

Mahesh Hassomal Dodani
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Dodani, Mahesh Hassomal, "Generating Multiple User Interfaces for Multiple Application Domains"
(1988). Retrospective Theses and Dissertations. 4275.
https://stars.library.ucf.edu/rtd/4275

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Frtd%2F4275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4275?utm_source=stars.library.ucf.edu%2Frtd%2F4275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

GENERATING MULTIPLE USER INTERFACES
FOR MULTIPLE APPLICATION DOMAINS

by

Mahesh Hassomal Dodani

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
the Department of Computer Science at

the University of Central Florida
Orlando, Florida

December 1988

Major Professor: David A. Workman

ABSTRACT

This Ph.D. dissertation presents a classification scheme for User Interface Development

Environments (UIDEs) based on the multiplicity of user interfaces and application domains that

can be supported. The SISD, SIMD and MISD [S= Single, I= user lnterface(s), M= Multiple,

D= appllcatlon Domaln(s)] generator classes encompass most of the UIDEs described in the

literature. A major goal of this research is to allow any user to develop a personalized interface

for any interactive application, that is, the development of an MIMD UIDE.

Fundamental to the development of such a UIDE is the complete separation of the user

interface component from the application component. This separation necessitates devising less

tightly coupled models of the application and user interface than have been reported to date.

The main features of the MIMD UIDE model are as follows.

[1] Interactive applications are modeled as editors providing a set of functions that manipulate

2-dimensional graphical objects.

[2] Interactive data structures are introduced for maintaining and manipulating both the

internal and external representation(s) of application information as a single unit. These

external representations form the basis for presenting internal information to the user.

[3] Since interaction with the user must be the sole responsibility of the user interface com

ponent, function interaction is modeled as follows. Application functions are modeled as a

set of services. Each service processes a (set of) parameter(s) independently. For each

service in the application, a corresponding service Interface object is defined in the user

interface component. The service interface object interacts with the user to specify the

required (set of) parameter(s), calls the associated service within the application, and

displays the result of the service to the user.

Ii

Using the above model, the user interface component is modeled to allow personalized

specifications at all levels; including the internal entities of the interactive system, the charac

teristics of the display of information, and the interaction tasks, techniques and devices used for

parameter specification.

Ill

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Graphical Interactive Software Systems 5

1.1.1 Formal Interactive System Models 1 O

1.1.2 Practical Interactive System Models 30
1.2 Developing Graphical User Interfaces ... 34

1.2.1 The SISD Framework 40
1.2.2 The SIMD Framework ... 42
1.2.3 The MISD Framework ... 44
1.2.4 The MIMD Framework .. 46

1.3 The Aim of this Research 48
1.4 Organization of the Dissertation 49

2 USER INTEFACE DEVELOPMENT ENVIRONMENTS 50
2.1 SISD Framework: Language-Based Development Environments 51

2.1.1 User Interface Specification (Dialogue) Models 55
2.1.1.1 Grammar-Based Models .. 56
2.1.1.2 Finite-State Models 66
2.1.1.3 Event Models ... 74
2.1.1 .4 Discussion on Dialogue Models 77

2.1.2 User Interface Management Systems 80
2.1.2.1 The SYNGRAPH System .. 81
2.1.2.2 The Abstract Interaction Handler 83
2.1.2.3 The University of Alberta UIMS ... 91

2.2 SIMD Framework: User Interface Construction Kits 93
2.2.1 The MacApp Framework 97
2.2.2 Smalltalk's Model-View-Controller Framework 101
2.2.3 The FLAIR System .. 104
2.2.4 The MIKE System 105

2.3 MISD Framework: End-User Customizable Interfaces 113
2.3.1 The GIGL System ... 113

Iv

3 MODELING THE MIMD USER INTERFACE DEVELOPMENT EN-
VIRONMENT 117

3.1 A Model For Interactive Applications 118
3.1.1 Modeling Interactive Data Structures .. 120

3.1 .1.1 The Internal Representation 122
3.1 .1 .2 The External Representation 126
3.1 .1 .3 A Comprehensive Model 131
3.1.1.4 Example of Interactive Data Structures 133

3.1.2 Modeling Application Functions .. 139
3.2 A Model For Customizable User Interfaces 140

3.2.1 Presenting Information to the User ... 141
3.2.2 Function Invocation and Parameter Specification 144
3.2.3 The Overall User Interface Model 149

4 THE DESIGN OF THE MIMD USER INTERFACE DEVELOPMENT
ENVIRONMENT ... 155

4.1 The User Interface Generation Process 155
4.1.1 Application Information For The Specification Mechanism 157

4.2 The Object-Oriented Paradigm 160
4.3 Presenting Information To The User 162

4.3.1 Interactive Data Structure Objects 162
4.3.1 .1 Data Objects 162

4.3.1 .1 .1 Internal Data 163
4.3.1 .1 .2 External Data 165
4.3.1.1.3 Interactive Data 167

4.3.1.2 Structure Objects 168
4.3.1.2.1 Internal Structures 168
4.3.1.2.2 Interactive Structures 175

4.3.1.3 Supporting Multiple External Representations 178
4.3.1.4 Using Interactive Data Structure Objects 181

4.3.2 Display Objects 183
4.3.2.1 Display Buffer Objects 184
4.3.2.2 Display Device Objects 184
4.3.2.3 View Objects 190

4.4 Function Invocation and Parameter Specification 193
4.4.1 Input Device Objects 194
4.4.2 Action Table Objects 195

V

4.4.3 Input Technique Objects 197
4.4.4 Mapper Objects 201
4.4.5 Interaction Task Objects 203
4.4.6 Service Interface Objects 205
4.4.7 Function Interaction Objects ... 206

5 IMPLEMENTING A PROTOTYPE MIMD USER INTERFACE
DEVELOPMENT ENVIRONMENT 209

5.1 Contrasting Smalltalk vs C++ ... 21 O

5.1.1 The Smalltalk Object-Oriented Development Environment 215
5.1.2 The C++ Object-Oriented Language 221
5.1.3 Discussion 225

5.2 The Interactive Data Structures Prototype ... 227
5.3 The User Interface Prototype 237

5.3.1 Smalltalk's Graphics Kernel .. 237
5.3.2 Smalltalk's Model-View-Controller Interface Framework 240

5.3.2.1 The Model, View and Controller Abstract Classes 241
5.3.2.2 Smalltalk User lnteriace Components 247
5.3.2.3 MVC Examples 256
5.3.2.4 Weaknesses of the MVC Framework 263

5.4 Generalizing the MVC Framework 267
5.4.1 A General MVC Framework 269
5.4.2 Remarks on Generalizing the MVC Framework 272

6 CONCLUSIONS AND FUTURE RESEARCH .. 274
6.1 Research Summary and Contributions 276
6.2 Further Research in MIMD UIDEs ... 278
6.3 Tool and Environment Generators 288

APPENDIX A: FORMAL DESIGN METHODOLOGIES FOR USER IN-
TERFACE DEVELOPMENT .. 294

APPENDIX 8: AXIOMATIC MODELS FOR USER INTERFACE
SPECIFICATION .. 319

APPENDIX C: THE MVC TRIAD - LISTHOLDER, LISTHOLDERVIEW,
LISTHOLDERCONTROLLER 326

vi

APPENDIX D: NOTEBOOK - USING SELECTIONINLIST 335

BIBLIOGRAPHY 347

vii

CHAPTER 1

INTRODUCTION

Since the dawn of computing, scientists have directed their research at the core of com

puter systems, in such topics as hardware and software. Research interest diminishes as we

move outward from the core of the system to its boundary. Historically, the terminal was con

sidered as the boundary of the system. However, it is now widely recognized that the user forms

the critical component of the computer system and determines whether the system as a whole -

the man-machine system - works or not.

The evolution of computer science has followed a system-oriented trend. That is, scien

tists have always been concerned with making the system work, considering user-specific issues

only when research on system issues has been completed. This system-oriented approach is

typified by the history of editing systems in support of programming. Until recently, program edit

ing was supported by text editors, which consider programs as text or a sequence of characters.

Text editors themselves have evolved from batch-oriented to interactive, from line-oriented to

screen-oriented, and most importantly from providing no on-line assistance to providing sophisti

cated help features. However, from the programmer's viewpoint, text editors are a limited pro

gramming tool - they provide no support for the programming process itself. In fact, in conven

tional systems, the compiler is the first productive tool in support of the programming process -

the text editor is merely a tool for creating the input for the compiler. Once the technology of

compilers was fully developed, concerns for the programming process shifted to the program

mer. This concern resulted in syntax-directed editors, a true program editor. A syntax-directed

editor has knowledge of the programming language, and editing is done in terms of program

constructs. Thus, a syntax-directed editor can always ensure syntactic correctness and is

2

capable of providing programming support to the user. Technology in syntax-directed editing has

reached a point where facilities are provided in support of all aspects of programming (including

semantic analysis, execution and debugging) as typified by the Cornell Program Synthesizer [1].

The design of such Interactive systems does not, however, consider user behavior. The

approach has not been one of first understanding the user's model and then designing systems

to suit this model. To take the editing example further, the design of a program editor was not

carried out after a careful evaluation of the user's model of programming. Rather, an ad-hoc

approach is employed - it would obviously be more productive if the editing and compilation

phases were merged. This ad-hoc approach to the design of the user aspects can be attributed

to the attitudes of the technologist and the designer.

The attitude of the technologist is that the user is made more productive by massive tech

nological advances, such as bigger and faster machines. As an example, the advent of high

resolution graphical devices have improved the interface for the user as opposed to the teletype

writer interface. However, as is currently being discovered, new technologies introduce their own

problems. Currently there exists a new set of display problems with graphical devices that did

not exist with teletypewrtters, e.g., what information should be displayed, how should it be

displayed, how much should be displayed, how do we ensure that the user's attention is drawn

to specific information, etc.

The attitude of the systems designer is that, being human, he/she can rely on common

sense and intuition to predict what will be easy for the user. However, the problems with this

ad-hoc approach are twofold: designers cannot evaluate their intuition and the designer's intui

tion do not necessarily match the user's.

Moran [2] describes the resulting state of affairs in harsh terms:

The computer systems commonly available today are Indeed wonderful. Yet, except
for occasional examples of Inspired design, users find most of the systems they use to
be arcane, Idiosyncratic, Inconsistent, and seemingly more difficult to learn and to use
than necessary.

3

A common sight throughout the computer science community is that of a frustrated user pouring

over a thick manual or in deep consultation with the local guru.

In the last decade, the emphasis in computer systems has shifted from a systems-oriented

view to a user-oriented view. The user is now accepted as being the most crucial component

of the system and a large percentage of system design is based around the user. This dramatic

shift in emphasis can be attributed to the following reasons.

[1] Computer systems are ultimately employed by computer-naive users. To be productive,

naive users require an effective user intertace. Initially, two major application areas brought

the problems of designing effective user intertaces to the limelight. In database manage

ment systems, the primary concerns were in providing an effective dialogue intertace. The

primary goal was to provide a dialogue system in which a user could converse naturally

with the system. On the other hand, data-entry systems require an intertace that minimizes

errors and guides the user for the entry of data through prompts and menus. More

recently, and most importantly, personal computer users demand an effective user inter

face in general, covering every aspect of the computer system.

[2] The tremendous advances made in the field of computer graphics in both hardware and

software have provided the necessary technology for the production of sophisticated user

intertaces. Current graphics technology is characterized by the following:

[a] a wide range of input/output devices, e.g., joysticks, light pens, mouse, etc. as input

devices; and a variety of high resolution graphical monitors as output devices;

[b] support for a range of graphical attributes, e.g., color, intensity, highlighting, etc.;

[c] routines for creating graphical images, e.g., lines, circles, boxes, etc.;

[d] fast and efficient algorithms for graphics display; and

[e] the ability to subdivide a screen into logical windows (or virtual output devices) and

the associated screen management routines.

4

[3] The acceptance that interactive computer systems are more productive and effective for

the user. Interactive systems are typified by

[a] the screen always displays the current state of the information that the user is mani

pulating, e.g., the files available on a particular disk, a document being edited, the

relations in a database, etc.;

[b] the screen can also display the options available in the current context to the user,

e.g., in the form of menus;

[c] the screen is divided into logical areas or windows, each containing related informa

tion, e.g., an editing window; and

[d] user interaction is typically as follows - the user selects a function from a menu and

identifies parameters if necessary; the system processes the function and updates

the information on the screen according to the result of the function.

Current research is therefore concerned with graphical interactive user interfaces. The

research has been mainly concerned with understanding the nature of interactive systems as a

whole with the aim of aiding the interface designer. To depict the diversity of the area, the fol

lowing (reproduced from [3]) enumerates the keywords and phrases which describe the areas of

concern:

[a] Human Factors: comfort of the workstation, orientation of the display, continutty of
conversation, correct pacing, user vs. machine control of flow, understanding the
user's model of the process, semantics in terms of the user's domain, provision of
feedback at appropriate times and in the user's terms, benefits of modeless com
mands, provision of friendly and forgiving systems, ability to recover from mistakes,
confirmation of dangerous actions, choice of expression, extensible command
languages, use of hierarchical languages, use of novice and expert modes for
prompts;

[b] Devices: terminal/satellite/stand-alone configurations of processors, buttons, tablets,
light pens, joysticks, shaft encoders, virtual devices, locators, valuators; and

[c] Techniques: use of menus, windows, dragging, motion, depth cuing, stereo pairs,
color, feedback of input actions.

5

In the remainder of this introduction we attempt to clarify how human factors, devices and

techniques relate in the design of modern interactive systems and in particular, the design of

their user interfaces. The next section describes graphical interactive systems with the aim of

developing appropriate models and methodologies for their development. The following section

concentrates on the user interface component of graphical interactive systems. In particular, it

focuses on the issues of developing user interfaces. A simple classification framework is

developed in this section to differentiate between the various approaches to developing user

interfaces. The final sections describe the goals of this research and the organization of this

dissertation.

1.1 Graphical Interactive Software Systems

The advent of sophisticated graphical input and output devices has led to a proliferation of

interactive graphical software systems as the medium of communication with a digital computer.

The principal problem underlying the research in interactive systems is how can better interac

tive systems be built. The aim is to identify concrete guidelines (preferably as a formalism and

its associated methodologies) that can aid the designer in building better interactive systems.

The term better is interpreted by researchers in different ways, but the principal implication is

better human factors. The above problem is in the domain of software engineering, the study

of methodologies for building software systems. To date, software engineering has also adopted

the system-oriented perspective. The formulation of the software life cycle has been one of its

primary contributions. The software life cycle identifies individual manageable phases of the

software, including but not restricted to requirements specification and analysis, high-level

design, coding, testing and debugging, and maintenance. These phases are tied together

through management and communication aspects, including documentation, budgeting, person

nel deployment, project review, scheduling and configuration management. Software engineering

research has concentrated on developing software development methodologies to support the

life cycle, and the implementation of automated systems to support the development methodolo-

6

gies.

Researchers are currently trying to shift the emphasis of software engineering to a user

oriented perspective. In this perspective the additional requirements and constraints imposed by

highly interactive systems are considered. The main goal of the research is to develop suitable

user-oriented technologies for effective and efficient interactive software engineering. Jurg

Nievergelt [4] identifies the following three phases of any emerging technology for system

development.

[1] The Ad-hoc Phase: In this phase, researchers use ad-hoc approaches to build effective

and efficient systems. The main emphasis of this phase is to understand the complexity of

the system with the aim of identifying their desirable characteristics as well as defining

their properties.

[2} The Model Phase: This phase concerns itself with the development of suitable models of

the system which form the basis for methodologies for building effective and efficient sys

tems. We can identify two radically different approaches to system modeling. The formal

approach applies existing formalisms and theories to develop models and their associated

methodologies. On the opposite end of the spectrum of possible approaches, the practical

approach relies on the best engineering principles and techniques that have been proven

in practice to develop suitable models and their associated methodologies.

[3] The Theory Phase: The final phase is concerned with identifying ideal models and

developing a solid theoretical foundation for these models and their associated methodolo

gies. The main focus of this theoretical foundation is to provide the necessary base for

[a] proving the correctness of the model and its methodologies,

[b] developing suitable formalisms to define system properties,

[c] developing suitable formal frameworks for system development methodologies, and

7

[d] determining the complexity of the model, its methodologies and the system.

The model and theory phases are dependent on each other as formalisms necessitate ideal

models and models can only be ideal if they are supported by a solid theoretical foundation. The

technology becomes mature when there exist abstract general models that are supported by

effective and efficient formal development methodologies.

The first step towards a mature technology for developing interactive systems is the

definition of interactive systems with the aim of identifying their properties. A survey of the vast

literature on interactive systems shows that no widely accepted definitions exist. One of the

problems is that graphical interactive systems are complex creatures and their complexity is not

very well understood yet. To understand the complexity of graphical systems, consider the

Dynabook: Alan Kay's dream of a dynamic medium for creative thought [5]. The Dynabook

can be considered as a technically sound vision of the ultimate potentialities of interactive com

puter graphics:

Imagine having your own self-contained knowledge manipulator in a portable package the
size and shape of an ordinary notebook. Suppose it had enough power to outrace your
senses of sight and hearing, enough capacity to store for later retrieval thousands of
page-equivalents of reference materials, poems, letters, recipes, records, drawings, ani
mations, musical scores, waveforms, dynamic simulations, and anything else you would
like to remember and change.

We envision a device as small and portable as possible which could both take In and give
out Information In quantities approaching that of human sensory systems. Visual output
should be, at the least, of higher quality than what can be obtained from newsprint. Audio
output should adhere to similar high-fidelity standards.

There should be no discernible pause between cause and effect. One of the metaphors
we used when designing such a system was that of a musical Instrument, such as a flute,
which Is owned by Its user and responds Instantly and consistently to the owner's
wishes. Imagine the absurdity of a one-second delay between blowing a note and hearing
It!

We can look at our own world which is filled with interactive systems and interactive com

munication for some metaphors that illuminate the desirable properties of interactive graphical

systems. Some of the more useful metaphors are described below.

8

[1] Instruments: As is noted by Kay, good instruments provide Immediate feedback to the

user. They must be crafted with care and precision and must be redesigned as com

ponents and techniques evolve and change. Consider the relationship of the harpsichord to

the clavicord to the piano; a progression which is characterized by changes in the striking

or plucking mechanism.

[2] Tools: Kay has also noted the importance of power, flexibility and generality in tools.

Tools should also be as adaptable as possible; consider the Swiss Army knife. They must

also be robust, i.e. be able to handle user errors.

[3] Vehicles: Vehicles must respond sensitively and repeatably; consider steering an auto

mobile and landing a plane. They must be engineered to provide adequate feedback;

consider the design of the airplane cockpit display. Most importantly, vehicles must be

suitable for the purpose; consider bicycling up Mt. Everest.

[4] Games: Computer and video games provide examples of some of the best interactive

graphical systems available today. Games must continuously captivate the Interest of the

players. Therefore they must be engrossing and fun. Games must never allow the

player to lose confidence or patience; thus they must be based on rules or structure.

Finally, games must challenge the player, thereby encouraging mastery and growth.

[5] Human-to-human dialogues: Many researchers (e.g., [6]) have attempted to define the

characteristics of user-computer dialogues through a careful examination of human-human

conversation. The attributes of human-human conversations that need to be emulated are

[a] human responses are appropriate and sensitive to the current context of the

conversation and are based on intelligent processing and interpretation of the other

person's messages and behavior, and

[b] human dialogue is multi-dimensional and multi-level allowing the communication to

proceed along a number of paths and a conversational context to be started and re-

started at will.

Thus, as summarized in [7]

Interactive graphics systems can be Instruments for expression or measurement, tools to
cause effects, vehicles for exploration, games for challenge or amusement, and media for
communication.

9

In the search for a more formal definition and models of interactive systems, a workshop

on the methodology of interaction was set up in 1979 (8]. This workshop comprised the principal

researchers in the area of interactive graphical systems. As far as defining interactive systems,

the workshop indicates that

The search for a formal definition of the term 'Interactive system' was given up at a very
early stage.

However, a list of desirable properties of an interactive system were enumerated, and is repro

duced below.

[1] There must be a priori general understanding of the application domain common to both

man and machine.

[2] There must be a closure in the common understanding of the current context and goal.

[3] This closure must be maintained as the discourse proceeds.

(4] The responsibility for achieving goals must be shared between man and machine.

[5] Initiative should be balanced between man and machine.

[6] The system should be adaptive in a variety of senses to the user, the current context, the

available inpuUoutput devices and communications, and the application domain.

[7] The system must have the capability to explain its assertions.

[8] The system should have the ability to transfer gracefully between query, explanation and

knowledge acquisition modes.

10

The next step in the process of developing a mature technology for interactive systems is

the search for ideal models. The important characteristics of an ideal model for interactive

software systems are the following.

[1] The model must be user-oriented, that is, it must allow end users to be intimately involved

with the process of interactive software engineering.

[2] The model must be general enough to describe any interactive software system.

[3] The model must allow for efficient and effective development methodologies for interactive

systems.

Many approaches to the modeling of interactive systems have been proposed. The aim of

an interaction model is to be able to develop guidelines for a design methodology of interactive

systems. We have identified two approaches to system modeling; the formal and practical

approaches. The next two subsections discuss these approaches to interactive system model

ing.

1.1.1. Formal Interactive System Models

The formal approach applies known formalisms and theories to model interactive systems.

Specifically, it draws on the formalisms and methodologies of conventional system-oriented

software engineering as the basis for developing interactive systems. This formal approach is

characterized by the following

[a] a division of the development process into a number of independent phases,

[b] the use of formal notations as specification mechanisms within each phase, and

[c] the use of formal verification procedures to validate the development of the system

between phases.

Some of the major formal models are surveyed briefly below.

11

[1] NETWORK MODELS. The network models treat user and system as equivalent elements

in the overall process. The individual tasks performed by both the user and the system are

described in terms of expected performance and logical relationships. The relationships

define a network of tasks which is used as a performance model of the user-computer sys

tem. Thus, network models allow performance data about user and computer system to be

integrated in a single model. However, performance data must be provided for each task,

as must rules for combining performance data from individual tasks to obtain aggregated

performance predictions. This is often difficult because of questionable or lacking empirical

data, and because interactions between tasks (especially cognitive tasks or tasks per

formed in parallel) may be very complex. Therefore, network models are usually used to

predict either the probability of failure or success, or the completion time of an aggregated

set of tasks.

[2] CONTROL-THEORY MODELS. These models are based on control theory, statistical

estimation and decision theory; and are usually used to predict overall performance of the

user-computer system in continuous control and monitoring tasks. In a dialogue system,

this is a model of the control feedback between man and machine. The main factors to be

considered are task difficulties, the constraints and facilities· of the environment, the dispo

sition and interest of the operator in the task being executed, the response time of the sys

tem and the way information is presented [9]. Figure 1.1 illustrates the relation of these

factors. Control theory is used to describe the human response to external stimuli using

models based on open-loop, closed-loop structures or a combination of these. As an

example, compensatory control is a closed-loop structure as illustrated in Figure 1.2.

Control-theoretic models are more quantitative than other performance models. They may

address user-computer communication broadly, but they ordinarily do not deal with details

of the interface, such as display design. Therefore, their utility as an aid to the interactive

system designer may be limited.

12

TASI<

EN V l RON i'-.·1 ENT

IN TC:RNAL STt~ T:;:

,1

IMFOR~.1ATION -· TYPE OF DISPLAY
MAN

:;;>SUBJ::CTIVE EVALUATIOf'J

Figure 1.1: The Control Theory Model of Interaction

Disturbance Command

~
Controlled

Element

--------- ~-_J_',___ HUMAf\1 OPERATOR

Equc!ization
and

'-..J~======~ Computation
Operations

G============1 Pe rcep tua l
Pathw'.Jys

Figure 1.2: An Example of Compensatory Control

13

I
14

[3] HUMAN INFORMATION PROCESS MODELS. In general, these models involve a char

acterization of

[a] the task environment, including the problem and solutions available;

[b] the problem space employed by the user to represent a problem and its evolving

solution; and

[c] the procedures developed to achieve a solution.

The method used to develop such models involves intensive analysis of the problem to be

solved and of protocols obtained from problem solvers during solution. As a particular

example, the knowledge model [1 O] describes a system to support the user's problem

solving task. The system includes a knowledge base, a database and a procedure base

as basic information and a set of high-level procedures that manipulate these information

bases. The procedures include algorithms to translate the external form of information to a

suitable internal form, and to generate programs. The basic configuration of the system is

illustrated in Figure 1.3.

[4] COGNITIVE MODEL. The cognitive model [11] is a concept to organize flexible man

computer dialogues. This model achieves the interactive system design goals of ade

quate usability and ease of learning by applying two major principles

[a] decomposition of user tasks as a tree structure, and

[b] the separation of planning a task and performing it.

The cognitive executive system is therefore divided into two parts, the superordinate sys

tem which is concerned with making a plan and a subordinate system which automatically

performs the plan. This distinction between knowing and doing is incorporated into the

dialogue model which allows for three kinds of tours: the direct way (i.e., the user's task is

immediately performed), deviation (i.e., the user requests information and then his task is

performed) and excursion (i.e., the user learns more about the system information). The

,t

15

In fe ?:'e r.c •:.:

;:·:...:. t~-.rn-L~ ~·corni tic,n

Retrieval~-----~
:i10·,·i le Jc:_;,.:: I l: 1· '.:' ::~·:-c::1

i ~ - -

Figure 1.3: The Knowledge Model of Interaction

16

dialogue model is illustrated in Figure 1.4.

[5] LANGUAGE MODEL. Interaction with a computer is typically described as a conversation

between man and machine, implying that a language is used in the conversation. The

language model [12, 13, 14] is therefore aimed at describing the structure of the conversa

tional language with the aim of understanding the interaction itself. This language consists

of two components as depicted in Figure 1.5: the Input language LI and the output

language LO. These languages are closely interrelated by a single conceptual model of

the processes being performed by the system. The user communicates to the computer

through the input language, which operates on the conceptual model. The machine com

municates to the user with the output language, which depicts the state of the conceptual

model. Each language in turn has an associated semantic, syntactic and lexical com

ponent, all integrated together by the conceptual model of the system. Semantics is the

set of meanings associated with the atomic units (i.e., words) and combination of units

(i.e., sentences) of the language. The syntactic rules define the grammar that describes

how words are combined into sentences, while the lexical rules determine how the

system's basic primitives are combined into words. In the output language, the semantics

is the displayed image, the syntax determines the organization of the image, and the lexi

cal rules determine the details of the image's appearance. For the input language, the

semantics are the commands, the syntax are the words that form the commands and the

lexical rules are the interaction techniques and devices that allow specification of the

words. There is also an implied communication protocol defining the interconnection and

sequencing of the user to computer and computer to user conversations at the lexical, syn

tactic and semantic levels. For example, lexical inputs are typically echoed; syntactic

inputs lead to prompts and semantic inputs cause the displayed image to change.

A synthesis of the most important features and capabilities of all the above models into

one single comprehensive model was proposed at the methodology of interaction workshop [8].

DIRECT
WAY

DEVIATION

CO/V1MAND

Information
request

stepwise
(re -) st r u ct u r i n g

MENU

Return

Figure 1.4: The Cognitive Model of Interaction

17

EXCURSION

18

...

USER SYSTEf'-1

.,,' _,,--------~

Figure 1.5: The Language Model of Interaction

19

The model that was formulated was largely based on the language model. The input and output

languages were elaborated on further as depicted in Figure 1.6 to arrive at a basic interaction

model as illustrated in Figure 1.7. The interaction model was described from the viewpoint of the

interaction process as follows.

[1] A user interacting with the system (say via a display) inputs a command(s).

[2] The command is processed lexically, syntactically and semantically and then appropriately

routed to the inference processor, task performer or the filter.

[3] With input from the command processor and using the structure of the task, the inference

processor essentially builds up the knowledge bases.

[4] The task performer analyzes the input commands, decides on the structure and the task to

be performed, updates the application data base, supplies information for inference pur

poses and also for the filter process which does the feedback generation.

[5] The filter essentially provides the feedback in the context of the command, application

database, the user's knowledge database and the task to be performed.

[6] The knowledge database models the user's behavior, is maintained by the inference pro

cessor and feeds into the feedback mechanisms.

[7] The application database is updated when tasks are performed.

[8] The feedback generation again goes through semantic, syntactic and lexical phases.

To summarize, the interaction model consists of the following four components.

[1] A user's model, i.e., the conceptual model of the information the user manipulates and of

the processes applied to this information.

[2] A command language with which the user expresses commands.

[3] Feedback provided by the system in response to user actions.

20

u u

LI
·;::; ·;::;

ro U C
-~ .S ro
X C E
Q.) >- Q.)

....J (/) (/)

.... __ _
---..

'

-..,, Syntactic

" Lexical \ feedback
} feedback /

I
u

·;::;
/

/ .,
C .,,

LO ro
E

____ .,,

CJ
(/)

Figure 1.6: The Input and Output Languages

INTERFACE
I
I

Figure 1.7: The Basic Interaction Model

21

22

[4] Information display which shows the user the state of the information that is being mani

pulated.

Using the above model, the design of an interactive graphics system must cover every

aspect of the user-computer interface. This ranges from the concepts (i.e., the conceptual

model) that the user must deal with to the finer details of screen formats, interaction techniques

and device characteristics (i.e., the lexical design of the input language). Most researchers (e.g.,

[13, 15, 16, 17, 18, 19]) have adopted a top-down approach to the design of interactive systems.

As with the software life cycle, the first phase of the design is concerned with requirements

definition with the aim of understanding the application area and prospective users. Since the

approach is user-oriented, this phase is mainly concerned in defining the user's requirements.

As is suggested in [20],

Observing what man does normally during his creative efforts can provide a starting point
for the ... designer. In particular, a mathematician does not manipulate equations at a
typewriter, nor does a circuit designer prefer a keypunch.

The advice given in [21] is even more direct:

Know the User. Watch him, study him, Interact with him, learn to understand how he
thinks, and why he does what he does.

The requirements definition process results in the following

[a] A set of functional requirements, or capabilities, which are to be made available by the

interactive system. Other design objectives such as learning time, speed of use, error

rates, user satisfaction and market appeal are also necessary.

[b] Design constraints imposed by the existing equipment, compatibility with other computer

systems, implementation time and available resources.

[c] Identifying the types of users for which the system is to be designed. The main concern

here is defining user characteristics such as personality (i.e., secure/insecure, bold/timid,

adaptable/rigid), knowledge (both in skill (novice, intermediate or expert) and in intelligence

(low, average or high)), work environment (i.e., defining the levels of stress and motivation)

23

and the adaptability to change.

The results of the requirements definition phase is used as the basis for defining the input

and output languages as defined by the interaction model. For example, defining the input

language is also a top-down process, starting with the conceptual model, then the command

structure, the syntax and finally the binding of physical devices and interaction techniques. Thus

the ideal process of designing interactive systems is described as a top-down process consisting

of five phases: requirements definition, conceptual model design, semantic design, syntactic

design and lexical design. Each phase is dependent on the previous phase. Implicit in the pro

cess is the design of the dialogue between man and machine, as is verification, testing and

debugging across all phases.

Green [22] suggests three basic goals of an effective formal design methodology for

interactive systems.

[1] A formal notation for describing the user interface should be provided by the design

methodology. A formal notation is important for two major reasons. It ensures that a

description of a user interface is interpreted in a uniform manner by the users of the nota

tion, i.e., the personnel involved in the development of the user interface. More importantly,

a formal notation serves as the basis for the implementation of the user interface from its

description.

[2] The methodology should provide mechanisms for validating the man-machine interface

design. Here we are interested in determining the correctness of the design before its

implementation. The experiences of the research on software engineering has shown that

it is hard, if not impossible, to show that a design is error free. The major concern is there

fore the elimination of major bugs from the design before its implementation.

[3] The methodology should provide an effective framework for evaluating the quality of the

interactive system, that is, its effectiveness. However, very little is known about the factors

that affect the quality of the interactive system. The methodology should at least provide a

24

• framework for measuring the human factors principles in the design.

We present below two impressive formal design methodologies.

The design methodology proposed by Green [22] is divided into two components, a formal

description of the user's model and a formal specification of the user interface based on the

user's model. The design methodology builds a separate user's model for every type of user

that will be involved.

The description of the user's model comprises two components:

[1] a task model, which formally describes the user's view of the problem in terms of atomic

tasks. The task model is obtained through an informal task analysis, i.e., the decomposi

tion of the problem into a number of tasks which are atomic from the user's point of view.

[2] a control model, which describes the actions that the user can perform.

Thus, the task model describes the tasks to be performed and the control model describes the

commands that are provided to perform them, both from the user's viewpoint. Note that the con

trol model must be consistent with the task model.

The notation employed for describing the task and control models is comprised of three

components, object definitions, operator definitions, and invariants. Object definitions declare

the properties (attributes) of the objects, similar to data structure definitions. Operator definitions

describe the conditions for the application of an operator and the effects on the objects. Invari

ants describe the relations between the operators and objects in the model, and may vary

greatly from user to user.

As an example, consider the design of a user interface based on the screen layout dep

icted in Figure 1.8. The screen is divided into a menu area which depicts the geometrical

shapes available to the user, and a work area, where the user creates pictures by arbitrary

placement of the available geometric shapes. Three commands are supported: the place com

mand allows the user to use a digitizing tablet to select a geometric shape from the menu and

25

/\.
/ \

/ "\ I -._
I \ I ,,

('\
)

/
,./

Figure 1.8: A Simple Graphical Editor

26

drag it into the work area; the move command which allows the user to move geometric shapes

around the work area; and the remove command which allows any geometric shape to be

removed from the work area. The corresponding task and control models describing this user

interface using the notation described above is presented in Appendix A.1.

The next step in the design is the specification of the user interface from the high-level

description provided by the control model. The specification language is based on state

transition diagrams and is influenced by SAi's SPECIAL language [23]. The specification

comprises several state machines (called modules), where each machine is a collection of V

and O functions. The V functions represent the machine state while the O functions describe

transitions that change the machine's state. The specification of the example user interface is

provided in Appendix A.1.

The following three tests are used to evaluate the user interface specification to determine

its correctness.

[1] The specification is consistent if each operator in the control model is implemented by the

functions in the specification.

[2] All the invariants in the task and control models must hold for the specification.

[3] The behavior of the specification is tested under designer determined conditions.

Probably the most impressive design methodology developed to date is Moran's Command

Language Grammar (CLG) [24]. The basic premise of Moran's proposal is that

to design the user Interface of a system Is to design the user's model.

Thus a CLG representation of a system describes the user's conceptual model of the system.

The description of a user interface follows a top-down design methodology. The user's

conceptual model is described, then a command language that implements the conceptual

model is designed, and finally a display layout is designed to support the command language.

The CLG representation is structured as a number of levels with the aim of separating the con-

27

ceptual model of the system from its command language and to show the relationships between

them. The six levels, each being a refinement of the previous level, are organized into three

components which describe the CLG structure.

[1] The Conceptual Component: describes the organization of the system as abstract con

cepts. This component is comprised of the task level and the semantic level. The task

level analyzes the user's requirements to specify the structure of the tasks which describes

the system from the user's viewpoint. The semantic level defines the methods for accom

plishing task structures in terms of the objects and operations (that manipulate these

objects) around which the system is built. The semantic level serves both the user and the

system; it describes the conceptual entities and operations for the user, and correspond

ingly the data structures and procedures for the system.

[2] The Communication Component: describes the command language and the dialogue of

the user interface. The syntactic level and interaction level make up the communication

component. The syntactic level is a further refinement of the semantic level, describing the

command language with which the user communicates to the system. The methods of the

semantic level are described in terms of the commands developed at the syntactic level.

The meaning of the commands are defined in terms of the operations described at the

semantic level. The command languages are described in terms of basic syntactic ele

ments: commands, arguments, contexts, and state variables. The interaction level

specifies the syntactic level elements in terms of physical actions, i.e., primitive device

techniques for input (e.g., keypresses) and display actions for output. The rules describing

dialogue structure are also described at the interaction level.

[3] The Physical Component: describes the physical devices of the user interface. The spa

tial layout level describes the nature of the system's display at each point of interaction.

It therefore is concerned with the arrangement of input/output devices and the graphics

facilities for displays. The device level describes the physical properties of input/output

28

devices and the underlying graphics primitives. These levels make up the physical com

ponent.

The command language grammar is the specification mechanism used in describing the

first four levels that make up the conceptual and communication components. The levels

comprising the physical component have not been developed yet. The CLG notation, informally

described in Figure 1.9, is based on the concepts of frames [25, 26], schemata [27], semantic

nets [28], and production rules [29].

To depict the complexity of defining the user interface using the CLG framework, the

description of a user interface for a mail system is presented in Appendix A.2.

It is important to reiterate at this point that the above merely represents proposals of for

mal design methodologies for interactive system development. The formal interactive system

model and its associated methodologies have the following serious drawbacks.

[1] The models and more importantly the design methodologies have not been completely

developed nor have their effectiveness been tested.

[2] The formal model is as general as the expressive power of the underlying formalism used

for the specification mechanisms. Most of the formalisms that have been used to specify

user interfaces have not been very effective. Their use has either been applied to a res

tricted (textually based) set of user interfaces, or to only specifying the dialogue com

ponent of the user interface. Researchers have yet to develop a suitable formalism that

can not only describe the complex behavior of user interfaces, but can also capture the

inherently 2-dimensional nature of user interfaces. This lack of a suitable formalism may

prove to be a serious drawback in describing the diverse nature of interactive systems, in

general.

[3] Formal descriptions of systems are inherently complex. It is usually difficult for human fac

tors experts, who are not computer scientists, to understand and effectively use these for-

CLG is a symbolic notation for dc~ribina s~tems £:3 conceptual structure:; The bJ.sic ob}cc:.J ct
CLG notation nrc $ymbo!:, end s~,rnbolic cxprcssio;-13_ An cxprejsion, which is n structuro cf

symbols, rcp~escnts a concept by dc~ribino it, th;:lt is, by h.J•,ing its constitt..;ent syr;;~olJ rcprc:.::n~

consl1tucnt 8Spect3 o1 the ccnccµt. An express.ion c.:in be c.::;soc1Jtcd \·,;,h n ~~ cs i:3

definition The sy,r,:..c;I can th::n stand for the cxpres:::.,on and h:::;~cc for it, ccncc~t

symbol -> expro:,:;ion -+ conccp,'

Notnt,onc1lly, symbol3 nrc .!rbitrary strings or ch,:m::ctcrs, indicated by being in o 5.3n:, s.cr;1 t)-PC~~-.!.

like THIS. An cxpres.s:on 1::; n !1st of syrnbof3 or subexprc----~ions 1n parcnthcxs For c: 7",;::L3, O =
(X Y (W Z)) defines the ~Jmbol Q by nn cxprcs:.ion with three element::r--tv10 sym~o!s, X c.n::1 '.',

and a subexprcs.s,:in, (W Z), witr· tv,o symbols. Th-~ ~,,nt.:i.x of cxp~c~ion5 is r.ot art:)l:ra:y. n-.~.c

u:e three forms of e:xprc~:cn in CLG.

Tt-.2 first form i:. th::! bi!si: CLG expre:,sion, c1 h1erarch:c d~scrip'.ion. II desc.r:~s a ccn:::c;:! l:;y

declaring tf1Jt ,r is .:in 1nst2.ncc o: ancthcr concept, p!us some moJifica,ior..s. Fer example, CMA R

= (AN ENTITY CODE : (A NUMBER)) defines CHA A to bo an instance cf ENTITY wi:..'1 :

component called ,ts CODE, which is a NUMBER A de::criptivc expre:sion thus ccn'.:.!s:.J c1 a

prefix symbol, a type symbol, and a list of component.:; A component of an expression m~y oo
thought of a~ ~ symbol definition w1th1n the locaf1zed context of the expression. Tho symt.r..,J

nJm:n'] a com;Joncnt rnny also be u::.ed in other exprc~1on:; A compc·nent CODE of :::,

expression CHAR can be unambiguol.!sly referred to by the expression (THE COO~ OF CHA r.)
The prefix !:ymbols A or AN ind,c.::ite th.:it an cxprcS.:.ion is a pattern descrrb,ng o c!.i~ concept.

The preli"(THE indic.1tc3 th.Jt the expression describes c1 unique referent.

There are some minor voriat,ons to the synt.:ix of this term of cxpre~ion: The prcfi:i:c:; A or AN

may be dropped The symbol "=" ,s everywhere opt,onal A component n-i.3y cc unnamed. Thc:-e
1s n spcci[?I component, n~mcd OBJECT, thJI implicitly folloY-13 t:ie type s:_;;r.bol Fe, ex::,-:;::!0.

(MOVE X FROM Y TO Z) h~s thrc-c components, tho first cf which, X, is the 08-JECT cf lh3

MOVc.

The ~ccor.d form of er.prcs.:.ion is for reprc~ntina col!cct,on:J of c!~mcnt3. II i~ ir.j:c:=cd b:; n

colon after the f1~t sym:::01, which ind,cntc the typo cf collcc:,on. For exnrr.ple (SET: ~ Y Z) .:rd
(SEO: X Y Z) rcpre--~nt, respectively. n set end n sequence of three c!emen!..J. ~YZ = (ONE-C:=:

X Y Z) dc!1nc3 XV Z to be th.'.:! disjunction of tho ll1rcc itcIT"..s.

The third form of cxprc~sion, (• ...). contains ~ny English stc1tcmcnt It is usual:y u~~d n!l a
subcxprc~ion, ol!owing inform:11 dC$Cr1::,tions to be inserted ::1nywhcrc wit,".in er, e:r;)~c~:cn

structure

An expre::.sion represent:; o concept, nr.d it:; componc:,!s rcprcscnr the p,FtJ er ~s;:c:t:; cf t:--..::
concept Comp(mcnts c.Jn n:so rcpr~~n! the relJt:ons between e,cpres!:.!o;-:3 For cx~:n;::!c, if T =
(A TA S 10 P ~ (A PrlOCEDURE), ond M : (A t.1ETHOD FOO T DO P), then M shows tho

rel.:1t1on octw(!Cn T nnd P Tr,crc arc 1mpticit retJ!1c-n:1 between J'l cxp'es.sion ::ind i!.9 cor.i;:,cne?r.t

exprc~s,ons. For cxnm;,:,<:. the dcfin1t,on of P .Jbovc should be (A PROCEDURE OF r.1), but 1:10

OF component doi:>:. '10t need to be stated, since ii is 1mp!1c1t ,he other 1mpllcit rcla'.ion is IN.
For ex.!lmp!e, i1 S :: (S::T: X Y Z), then X, Y, and Z imr,lic,tly hnvc the com;,onent IN S.

Figure 1.9: The Command Language Grammar Notation

29

30

malisms. The example user interface specification presented in Appendix A.2 attests to the

seriousness of this drawback.

[4] A working system is usually available only after a very complete specification of the

interactive system. Therefore, it is difficult to involve the end users and human factors

experts throughout the development process.

However, interactive systems are extremely complex and still not very well understood. There is

need for more research to develop formalisms and methodologies suitable for interactive

software engineering.

1.1.2. Practical Interactive System Models

Many researchers feel that the inherent properties of interactive systems - their complexity,

their need to conform to many differing interfaces, and their frequent changes during their life

time - necessitate a radical departure from the rigid formal approach. Thus, the practical

approach adopted by many researchers is based on software engineering principles and tech

niques that have been proven, in practice, to be efficient and effective for the development of

interactive systems. This has led to informal and more flexible models and methodologies for

interactive software engineering.

What modern software engineering principles should be employed In building

graphical Interactive software systems?

As Brooks [30] points out, after almost two decades of software engineering research, the

following principles have emerged as the most promising for interactive software development.

[1] Rapid prototyping of software, that is, the development of methodologies and tools that

simulate the major interfaces and functionality of the intended software system. Brooks

describes this principle as

the most promising of the current technological efforts, and one that attacks the
essence, not the accidents, of the software problem.

31

[2] Incremental development, that is, software should be grown, not built. Note that incre-

mental development is tightly coupled with rapid prototyping.

The underlying principle of this prototyping methodology is to rapidly prototype a skeleton of

the interactive system with an emphasis on the interaction aspects, and then Iteratively

develop or fine tune the interactive system. Such an approach has the following advantages

over the more formal and rigid methodologies.

[a] The end users can be involved throughout the development process as a prototype of the

system is immediately available.

[b] The prototype concept provides an appropriate framework to test out various approaches

for the interaction aspect of the system quickly and efficiently.

[c] Iterative development ensures a working system at an early stage of the engineering pro

cess, thereby making it possible for the designers to always deliver the interactive system.

Modern software design techniques have provided the basis for the prototyping methodol

ogy. These design techniques can be summed up in two words: encapsulation and reusabil

lty. Encapsulation is a technique that minimizes the interdependencies between the modules

that comprise the software system. Each encapsulated module. defines an external interface

which serves as a contract between the module and its users. This external interface defines the

set of operations that provide the modules' functionality. All users can access the services of

modules only through their external interface. To maximize encapsulation, implementation details

of the module are suppressed in its interface. This allows modules to be reimplemented without

affecting any of its users. Reusability is a technique that allows components that have been

built and tested to be reused in the development of software systems. This technique is the

main factor in the tremendous progress that has been achieved in computer hardware engineer

ing.

32

One possible approach that combines the powers of encapsulation and reusability is the

notion of abstraction. The behavior of an abstract object is described completely by a set of

abstract operations defined on the object. Users of such abstract objects need not be concerned

about how these abstract operations are implemented or on how the object is represented.

Once these abstract objects have been defined, they can be implemented and integrated as part

of the language (or more precisely the specification mechanism) that is used to design and

develop software systems. Thus abstraction promotes both encapsulation as well as reusability.

The base data types provided by high-level programming languages are the best examples of

abstract objects. Programmers (re)use integers, reals, characters, strings, etc. solely on the

basis of the operations define on them, with no concern for their implementation or representa

tion. The provision of data types as the only abstract objects is precisely the factor that limits

conventional high-level programming languages as an effective specification mechanism for the

design and development of software systems.

The current emphasis of research in interactive software engineering is to identify, imple

ment and integrate a large set of abstract objects in the specification mechanism, thereby pro

viding software engineers with the necessary tools to effectively design interactive systems.

A popular model for interactive software systems that supports the prototyping methodol

ogy is presented in Figure 1.10 (adapted from [31]). In this model, an interactive system is built

as three separate layers:

[1] the application layer implements the system's functionality,

[2] the user interface layer implements the user interface to the application layer allowing for

interchangeable interfaces, and

[3] the virtual terminal layer implements the device-independent graphical primitives to facili

tate the presentation of information to the user on any physical output device.

33

APPLICATION ~EVEL

USER INTERFACE LEVEL

V'IRTUAL TERMINAL LEVEL

Figure 1.10: The Components of an Interactive System

34

The. relationships between the components of the interactive system model is presented in Fig

ure 1.11 (adapted from [31]). The important issues of this relationship are the following.

[a] The application holds all the information to be interfaced to the user.

[b] The interaction is controlled by the user through the user interface layer, that is the appli

cation is passive and the slave of the user interface. This allows the user interface to be

detached and replaced as needed.

Research in computer graphics has resulted in powerful techniques, tools and standards

that facilitate the efficient development of the virtual terminal layer. The design and development

of the application layer has been the major concern of software engineering for over two

decades, and is not only better understood but more importantly supported by a host of design

methodologies and tools. The user interface layer is the least understood component of interac

tive software systems. It is, however, the most crucial component, as the user interface of

interactive systems is the main factor in determining the effectiveness of the system.

It is important to point out that the interactive system model presented in Figure 1.10 sup

ported by the prototyping methodology satisfies all the requirements of the ideal model

presented above. Note that the concept of interchangeable interfaces facilitates total end user

involvement in determining the behavior of the interactive system. Therefore, this ideal user

oriented interactive system model and its associated prototyping methodology will be used as a

blueprint for the rest of this dissertation.

1.2. Developing Graphical User Interfaces

Current research in user interfaces is directed at two major issues:

[a] what properties constitute the best user interface, and

[b] how can user interfaces be effectively designed and developed efficiently.

The former issue falls in the realm of user psychology and human factors research. The latter

issue is the current focus of software engineering, and is the main concern of this dissertation.

35

user interfac

\

a \nlica t ion

!_ _________ _

Figure 1.11: The Relationships between Interactive System Components

36

Following the model of interactive systems as presented in Figure 1.10, the functionality of

the user interface component is defined by the following:

(1] accepting user input, that is, function invocation and parameter specification,

[2] communicating user requests to the application, and

[3] displaying the application's internal information base to the user.

Fundamental to the interactive system model is the complete separation of the user inter

face component from the application component. This separation not only facilitates the develop

ment of effective user interfaces, but more importantly provides the necessary basis for inter

changeable user interfaces.

Why Is It necessary to facilitate Interchangeable user Interfaces? There exists two

opposing models in any interactive software system.

[a] The System's User Interface Model: This is the model that defines the underlying princi

ples on which the system's user interface is built from the perspective of the system (appli

cation) designer.

[b] The User's System Model: This models the user's perception of how the system works.

The effectiveness of an interactive system can be measured in terms of the distance between

these models. For novice users, most interactive systems have a distance much greater than

zero; that is, the tool does not behave as the user expects. Obviously, an effective interactive

system achieves a distance that is much less than or equal to zero; that is, the system behaves

exactly as the user expects, or better.

There are two approaches to minimize this distance.

[1] Force the user's model to move towards the system's model. That is, force the user to

learn the particular user interface developed for the interactive system. This system

oriented approach is adopted by most of the currently available interactive systems.

37

[2] Allow the system's model to move towards the user's model. This user-oriented approach

allows the user to define the behavior of the system.

The above two approaches identify the extreme ends of the spectrum of possible

approaches for developing user interfaces. The system-oriented approach provides facilities to

the designer to develop the best interface for a given application. The user-oriented approach

provides facilities to the end user to develop interfaces for a given application that are custom

ized according to the end user's working habits and experience. Note that interfaces developed

with the system-oriented approach can be pushed towards the user-oriented approach through

mechanisms that allow the interface to be altered. However, such flexibility is usually restricted

to particular aspects of the user interface, and more importantly the choices for altering the inter

faces must usually be hard-wired into the interface. Most of the current interactive systems pro

vide flexibilrty in their interfaces at the level of color, key settings and user defined representa

tions of internal (application) objects.

Since it is very difficult to generalize the peculiarities of a diverse user population to arrive

at the best possible user interface, the user-oriented approach is better suited in building

effective user interfaces. It is also important to note that the user's model of the system changes

tremendously with experience, that is, as the user becomes an expert with the system. Thus, to

maximize user productivity, it is very desirable to allow the user interface to evolve with the

user's experience. The above has identified the ultimate goal of user interface research: allowing

any user to develop a personalized interface for any interactive software system, thereby max

imizing both the effectiveness of the interactive system as well as the productivity of the user.

A large percentage of user interface research is therefore aimed at building User Interface

Development Environments (UIDE). UIDEs have the following characteristics.

[1] They automate the development of a large portion of the interactive software.

[2] They (usually) allow a declarative specification of the interactive system.

38

[3] They provide the necessary basis for rapid prototyping and incremental development of the

system.

[4] They provide a test-bed for comparing possible approaches to the development of the sys-

tem.

Most of the UIDEs available today have been built to support the system-oriented approach, that

is, the provision of facilities to allow the user interface (interactive system) designer to develop

the best user interface for a given application. Minimal research has been directed at building

UIDEs in support of the user-oriented approach. The major aim of the research presented in this

dissertation is to develop a general-purpose user-oriented UIDE.

There are several important differences between system-oriented and user-oriented

UIDEs.

[1] Single vs. Multiple Interfaces: The system-oriented UIDE provides facilities for the

development of a single user interface for a given application. In contrast, the user

oriented UIDE must provide for the development of multiple interfaces for a given applica

tion. This results from the requirement of allowing end users to define the behavior of the

interactive system.

[2] Designer vs. End User Interface Definition: Interface definition in a system-oriented

UIDE is performed exclusively by the interface designer. End users may be allowed to

alter interfaces if the designer hardwires the possible alternatives in the user interface. The

main goal of the user-oriented UIDE, on the other hand, is to provide to the end user, facil

ities similar to those provided to the designer by system-oriented UIDEs.

[3] Static vs. Dynamic Binding: The user interface that is developed within a system

oriented UIDE is bound to the application to form the interactive system. This early binding

of the interface to the application does not allow for interchangeable interfaces within the

ideal interactive system model presented in Figure 1.10. However, a user-oriented UIDE

39

must provide for dynamic binding of the user interface to the application to facilitate

definition and/or modifications by the end user.

[4] Coupling vs. Complete Separation of Interface and Application: A system-oriented

UIDE need not be concerned with the complete separation of the user interface from the

application, since the major focus is to package these components into an interactive sys

tem. Such a complete separation, however, forms the basis for user-oriented UIDEs to

facilitate interchangeable interfaces.

The many user interface generators that have been developed to date employ radically

different philosophies to user interface development. There exists, however, no general

classification frameworks for UIDEs. Classification frameworks are an important vehicle in deter

mining the common characteristics of UIDEs as well as differentiating between UIDEs. The

classification scheme that is proposed below draws an analogy from Flynn's classification of

computer architectures [32]. Since the essential computer process is the execution of a

sequence of instructions on a set of data, computer architectures can be classified into the fol

lowing four frameworks according to the multiplicity of instruction and data streams that can be

handled:

+ Single Instruction stream - Single Data stream (SISD)
+ Single Instruction stream - Multiple Data stream (SIMD)
+ Multiple Instruction stream - Single Data stream (MISD)
+ Multiple Instruction stream - Multiple Data stream (MIMD)

In the case of UIDEs, the essential process is the development of a user interface for an

application domain. Thus, UIDEs can also be classified into the following four frameworks

according to the multiplicity of user interfaces and application domains that can be handled:

+ Single user Interface - Single application Domain (SISD)
+ Single user Interface - Multiple application Domains (SIMD)
+ Multiple user Interfaces - Single application Domain (MISD)
+ Multiple user Interfaces - Multiple application Domains (MIMD)

40

It is important to note that the first two frameworks support the system-oriented approach while

the latter two frameworks support the user-oriented approach to developing user interfaces. The

following four subsections provide a discussion of each of the four frameworks for UIDEs.

1.2.1. The SISD Framework

The major emphasis of UIDEs within the SISD framework is the development of a single

interactive system with its user interface and application components. All users interact with the

system through the single user interface as depicted in Figure 1.12. This approach is currently

popular as it allows good user interfaces to be built for existing applications to form interactive

systems which can be immediately incorporated into the host operating environment. If, how

ever, the entire interactive system is built using the traditional approach of software engineering,

then this approach is also the most costly. As pointed out in the introduction, such an approach

is precisely what modern software engineering research is trying to avoid.

Since the major concern of this class is the development of a particular user interface for a

particular application, the role of a UIDE must be expanded to include facilities for the develop

ment of the interactive system as a whole. The major concern of SISD UIDEs is to extend clas

sical software engineering to provide mechanisms for the user interface component that are con

sistent with, and as powerful as, those provided for the application component.

Since a large percentage of traditional software engineering is based on formal

specification mechanisms for each phase of the life cycle, SISD UIDEs benefit most from the

formal approach to interactive software engineering. The main focus of research in SISD UIDEs

is therefore the development of suitable formalisms for the specification of the user interface

component. Furthermore, to be cost effective, SISD UIDEs must also provide mechanisms that

automate the generation of the user interface from the formal specification, as well as managing

the user interface throughout the development process.

USER 2

USER
1

User
Interface

INTERACTIUE
SYSTEM

I ◄ .. , Rppl icat ion I .___ ___ _

USER_
I

Figure 1.12: Interacting with a Single User Interface

41

42

1.2.2. The SIMD Framework

The major effort in the class of SIMD UIDEs is to provide a consistent user interface

development framework for a variety of application domains. The effectiveness of the SIMD

approach is due to the fact that users need only familiarize themselves with the user interface

framework once. Thereafter, users can easily use all other interactive systems that present a

similar user interface framework. This approach is currently the most cost effective as it makes

an entire interactive operating environment immediately accessible to a large user population.

The users' perspective of the SIMD environment is depicted pictorially in Figure 1.13.

The SIMD approach has been popularized initially by the introduction of personal comput

ers and more recently by high powered graphical workstations. These personal environments

necessitate consistent user interface frameworks to be cost effective. The standardized user

interfaces provided by such environments are characterized by the following.

[a] A bitmapped display screen contains one or more overlapping rectangular areas called

views (windows) which presents information to the user.

[b] Function invocation and parameter specification is performed exclusively by selection

either through keys or a mouse, and extensive use of menus.

[c] The keyboard is used to input textual information to the interactive system.

The specification of the user interface usually consists of the description of the information that

is displayed to the user and the function and parameter names that form user requests to the

interactive system. The way in which the information is displayed and the manner in which user

requests are input is usually predetermined and standardized. Therefore, the major emphasis of

SIMD UIDEs is to provide the necessary environment and tools to rapidly prototype and itera

tively develop the user interface of an application. The practical approach to interactive software

engineering is most appropriate to SIMD UIDEs.

OPERRTIHG EHUIROHMEHT

APPLICATION 1 APPLICRTIOH 2 APPLICATION n
• • • •

\

COHSISTEHT USER INTERFACE

USER
1

• • • • • • •

USER
2

Figure 1.12: Interacting in a SIMD System

USER.
I

43

44

Even though standardized consistent user interfaces give cost effective access to an entire

interactive environment, they can also seriously hamper user productivtty and the effectiveness

of the interactive systems as users become experts. Another major problem with the SIMD

approach is that any major technological advances in user interface techniques would necessi

tate a redefinition of the entire interactive environment. In other words, what is considered as the

best user interface today could very well be technologically obsolescent in a few years. Thus,

some of the major concerns of SIMD UIDE research is to provide flexible mechanisms that allow

[a] the user interfaces to evolve with the user's experience, and

[b] newer techniques to be incorporated into the environment.

1.2.3. The MISD Framework

The main concerns of MISD UIDEs is to allow the generation of personalized user inter

faces for users interacting with a single application. The main advantage of MISD UIDEs is that

they increase the effectiveness of the tool by (potentially) allowing each user to develop a user

interface to suit his/her personal working habits thereby maximizing user productivity. The

environment presented to the end users by the MISD approach is depicted pictorially in Figure

1.14.

The main difference between the SISD and MISD frameworks is that user interface

development facilities are provided to the interface designer by the former and to the end users

by the latter. Since both frameworks are concerned with a single interactive application, the

MISD framework is also suited for the formal approach to interactive software engineering. That

is, user interfaces are generated through formal specification mechanisms. However, the central

theme of the user-oriented approach dictates that MISD UIDEs allow computer science naive

users to specify user interfaces. This is the major drawback to the effectiveness of using formal

specification mechanisms at the end user level.

•

•

•

•

•

•

U5er
Interface i

USERJ

User
Interface

App I i cation

•

User
Interface J

IIlTIDOCTJVI:
SY!:iTEm

USERJ

Figure 1.14: Interacting in a MISD System

45

46

The major problem with the MISD approach is cost, as it necessitates the development of

an entire user interface generator system for every interactive application. The MISD approach

could be cost effective only if user interface research progresses to a point that facilitates the

development of a system that could generate MISD UIDEs. Such a system would accept a

specification of the interactive application and generate a MISD UIDE for the particular applica

tion! However, such an approach is a special case of the MIMD approach presented below.

1.2.4. The MIMD Framework

The basic premise of the class of MIMD UIDEs is that both user productivity and the

effectiveness of interactive operating environments can be maximized if users are able to

develop personalized interfaces for any interactive system. The MIMD approach not only facili

tates the development of interfaces to suit the peculiarities of each user, but more importantly

allows the user interface to evolve with the user's experience. The user environment resulting

from the MIMD approach is depicted pictorially in Figure 1.15.

It is obvious that the development of MIMD UIDEs is the ultimate goal of user interface

research. However, the reality is that no MIMD UIDEs have been developed to date, attesting to

the relative infancy of user interface research. The major problem in developing MIMD UIDEs is

that it necessitates a complete separation of the user interface component from the application

component. Note that UIDEs under the previous three frameworks tightly couple the two com

ponents.

What are the main problems In facilitating this complete separation of the user

Interface from the application?

(1] Developing a model that generalizes interactive applications to allow the UIDE to handle

multiple application domains.

[2] Developing a model that generalizes function invocation and parameter specification within

the application so that the user interface can communicate user requests to the application

47

OPERATIHG EHUIROHMEHT

I RPPLI CRT I OH 1

USER
1

USER
2

• • • •

• • • • • • •

Figure 1.15: The MIMD User Environment

APPLICATIOH n

/. . '"\
~)

USER.
I

48

in a consistent manner.

[3] Developing a model that generalizes the flow of information (that is to be presented to the

user) from the application to the user interface.

Thus, the MIMD approach necessitates a radically different approach to the design of the

entire interactive system, both the application component as well as the user interface com

ponent. This is the main reason why the MIMD approach has not occurred in practice. This

dissertation develops a design framework that demonstrates the feasibil~y of MIMD UIDEs.

1.3 The Alm of This Research

A major goal of this research is to allow any user to develop a personalized interface for

any interactive application, that is, the development of an MIMD user Interface development

environment. Fundamental to the development of such a UIDE is the complete separation of

the user interface component from the application component. This separation necessitates

devising less tightly coupled models of the application and user interface than has been reported

to date. The main features of the MIMD model developed in this dissertation to achieve the

desired degree of separation are as follows.

[1] Interactive applications are modeled as editors providing a set of functions that manipulate

2-dimensional graphical objects.

[2] Interactive data structures are introduced for maintaining and manipulating both the

internal and external representation(s) of application information as a single unit. These

external representations form the basis for presenting internal information to the user.

[3] Since interaction with the user must be the sole responsibility of the user interface com

ponent, function interaction is modeled as follows. Application functions are modeled as a

set of services. Each service processes a (set of) parameter(s) independently. For each

service in the application, a corresponding service Interface object is defined in the user

interface component. The service interface object interacts with the user to specify the

49

required (set of) parameter(s), calls the associated service within the application, and

displays the result of the service to the user.

Using the above model, the user interface component is modeled to allow personalized

specifications at all levels; including the internal entities of the interactive system, the charac

teristics of the display of information, and the interaction tasks, techniques and devices used for

parameter specification.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents a survey of the

literature on user interface software systems. This survey concentrates on user interface

development environments under the SISD, SIMD and MISD frameworks. Chapter 3 develops

an appropriate model for a user interface development environment under the MIMD framework.

The main concern of this model is the complete separation of the application from the user inter

face. Appropriate models for both the application and user interface components to support such

a complete separation are developed. The design of the MIMD UIDE is developed in Chapter 4.

The design is carried out using the object-oriented paradigm, as this is currently the best avail

able paradigm that supports the methodology of rapid prototyping. The main focus is the design

of objects involved in presenting information to the user as well as function invocation and

parameter specification. A prototype implementation of the MIMD UIDE based on the design

developed in the previous chapter is presented in Chapter 5. This implementation is carried out

in the Smalltalk object-oriented environment. Finally, Chapter 6 concludes this dissertation and

suggests possible further research. After presenting the major contributions of this research, it is

shown how the framework that has been developed can be used as the basis for generating

interactive tools which will ultimately lead to the automatic generation of interactive environ

ments.

CHAPTER 2

USER INTERFACE DEVELOPMENT ENVIRONMENTS

The computing breakthroughs of the past such as high-level languages, time-sharing, and

programming environments (e.g., Unix and Interlisp), and the current research efforts in Ada,

object-oriented programming, artificial intelligence, expert systems, automatic programming and

visual programming, attest to the continuing desire of researchers to find the sllver bullet that

will defeat the software engineering monster [30]. In their quest for the silver bullet, researchers

have directed their efforts in building Software Development Environments (SDEs), which

provide an Integrated set of tools/facilities dedicated to the development of software systems.

This chapter presents a survey of the research in building environments to develop user

interfaces, that is, User Interface Development Environments (UIDEs). In the previous

chapter, UIDEs were classified into four distinct categories based on two broad criteria. The first

criterion distinguishes between the underlying approach for software development. The two

extremes of possible approaches were identified as formal and practical. To reiterate, the for

mal approach relies on a (formal) specification language as the basis for software development.

The intended software is described using this specification language. This description is vali

dated to ensure correctness and consistency, and then translated into a working prototype of the

system. The environment provides the facilities to test, validate and fine tune the prototype into

a working system. The practical approach relies on a set of tools that provide facilities to

develop, test and validate separate modules of the intended software. These individual modules

are then integrated into a comprehensive system. Additional facilities allow the system to be

tested and modified as a whole.

50

51

Due to the inherent interactive nature of user interfaces, the second major criterion distin

guishes among the intended users of the development environment. If the environment is

designed for the interactive system developer, then the UIDE is system-oriented. On the other

hand, a user-oriented UIDE is concerned with providing development facilities to both the sys

tem developer and the end user of the interactive system.

The UIDEs that have been developed to date fall into the first three categories; that is, the

SISD, SIMD and MISD frameworks. The next three subsections present a detailed survey of the

UIDEs that have been developed within each framework.

2.1. SISD Framework: Language-Based Development Environments

UIDEs within the SISD framework support the development of a single interactive system

with its user interface and application components. The discussion that follows will, however,

concentrate exclusively on the support that is provided for the user interface component.

The major premise of UIDEs within the SISD framework is the provision of an appropriate

formal specification mechanism to precisely describe the user interface: To be effective, the for

mal specification mechanism must have the following desirable characteristics:

[1] The specification mechanism should be mainly concerned with describing the user's model

of the system. Thus, its constructs should represent concepts meaningful to the user, e.g.,

replying to a message, editing a file, etc.

[2] The specification must be precise, describing the exact behavior of the system for each

user input.

[3] The specification must be concise and easy to understand; that is, it must be a productive

tool for the designer.

[4] The specification must allow for verification of the user interface and also allow checking

for consistency.

52

[5] The specification mechanism must be powerful enough to describe non-trivial user inter

faces with minimum complexity.

(6] The specification should allow for automatic evaluation of user interfaces according to

specified human factors.

[7] The specification mechanism should allow for experimentation and verification of human

factors principles to test different design alternatives.

[8] The specification mechanism must separate the functionality of the system from its imple

mentation. It should describe the behavior of the user interface without containing the

method of implementation.

(9] The specification mechanism must allow a prototype system to be generated directly from

the specif.ication.

From the inception of user interface research in the late 60's, scientists have yet to

develop a suitable formalism that can not only handle the complexity of describing user inter

faces but also have the desirable properties listed above. The formalisms that have been

developed to date have been used either to describe textual interfaces or to describe a particu

lar component (usually the dialogue component) of the user int~rf ace. To get a good under

standing of the complexity of the problem, it is instructive to trace the progress that has been

made in the quest for a suitable formalism.

In the early 70's, the language model of interaction (presented in section 1.1.1) was popu

lar. To reiterate, the language model views interaction as a conversation between man and

machine. This conversational language consists of two components, the input and output

language. Each component has an associated semantic, syntactic and lexical component. These

are integrated together by the conceptual model of the system. The popularity of the language

model can be attributed to the vast knowledge that had been accumulated on formalisms (such

as context-free grammars and finite-state diagrams) that were developed in support of language

53

and automata theory. The strategy was to extend these existing formalisms to make them suit

able for describing the input and output languages of interaction.

In the next decade, it became obvious that these formalisms were not capable of handling

the complexity of describing interaction. However, experience showed that they could be

appropriately extended to describe the input language (that is, the dialogue) of interaction. By

the mid SO's, it was realized that the language model needed modification to accommodate

separate formalisms for each of the components of interaction. This effort resulted in the

Seeheim model [33] of user interfaces, as presented in Figure 2.1.

The Seeheim user interface model comprises the following three components.

[1] The presentation component is the lexical level of the user interface and is therefore

concerned with the physical representation. This includes input and output devices, screen

layout, interaction techniques, and display techniques.

[2] The dialogue control component is the syntactic level of the user interface, and is

responsible for the structure of the commands and dialogue used by the user.

[3] The application Interface model component is the semantic level of the user interface,

which defines the interface between the user interface and the application.

Within the context of the Seeheim model, the basic premise of UIDEs is to provide suitable

formalisms to describe each component of the user interface. All of the formalisms that have

been developed to date have been applied only to the dialogue control component.

The next subsection provides an in depth discussion of the formalisms that have been

developed for the dialogue component. The following subsection describes the UIDEs that have

been developed based on these formalisms. These UIDEs are commonly known as User Inter

face Management Systems (UIMSs) in the literature.

USER
Presentation

Component

Dialogue

Control

Application

.,__ __ ,..;a lnterf ace

Model

Figure 2.1: The Seeheim Model of User Interfaces

54

55

2.1.1. User Interface Specification (Dialogue) Models

The dialogue specification models that have formed the basis of most of the currently

available UIMSs can be categorized into the following:

[1) Grammar-based Models: These models are based on formalisms that were developed for

the specification of textual programming languages. Most grammar-based UIMSs use

modified context-free grammars that are appropriately augmented to facilitate interaction

specification.

[2] Finite-state Models: These models are based on state transition diagrams, and include

simple, recursive and augmented transition networks.

[3] Event Models: These models are based on the concept of events that have been formu

lated as a generalized facility to handle input processing within graphics packages. Input

devices are viewed within such packages as event generators. These events are placed in

a queue, and can be processed by the application. For example, a tablet generates an

event every time it is moved and when its buttons are pressed or released. The event

dialogue model extends the above basic idea to an arbitrary number of event types and an

event handler for each type. When an event is generated, it is sent for processing to the

appropriate event handler.

The next three subsections present a detailed discussion of the above three dialogue

models. The following subsection presents an analysis of the three models in an attempt to

determine the best model, where best is measured in terms of descriptive power as well as usa

bility.

To complete the discussion of dialogue models, it is important to point out another popular

model that is based on the notion of data abstractions, which

comprises a group of related functions or operations that act upon a particular

class of objects, with the constraint that the behavior of the objects can be

56

observed only by the appllcatlon of operations. [34]

Data abstractions are exemplified by the types provided by general purpose programming

languages, e.g., integer, real, character, string, record, etc. Such data types are described pre

cisely by a well defined set of operations for manipulating objects of the type. This concept has

also been applied to describe other data structures, such as lists, trees, tables, etc. Many

specification techniques have been used for data abstractions [35]. A popular technique is the

algebraic specification technique [36] that specifies the relationships between operations using

algebraic equations. Algebraic specifications have two major advantages, their numerical appli

cability and the existence of heuristics for writing consistent and complete axiomatizations. The

concept here is to specify the types of data needed to support user interfaces and describe pre

cisely the operations to manipulate the data. Examples of data that is relevant to user interfaces

might be screens, windows, menus, message, etc. The designer is presented with a program

ming language or system that supports the user interface data types and their associated opera

tions. The designer creates instances of these data types and employs the operations provided

to describe a user interface.

However, axiomatic specification techniques have only been used for the paper

specification of user interfaces to prove their completeness, and more importantly as the basis

for precisely describing graphical programming languages [37]. Appendix B presents the relevant

research on axiomatic models as concerns user interface specification.

2.1.1.1. Grammar-Based Models

The language model of interaction provides the motivation for using grammars to describe

human-computer dialogues. The classical context-free grammar is augmented to allow for the

specification of actions performed by the computer (that is, the application). Formally, a context

free grammar model, G, for dialogue specification, is a 5-tuple G = (N,T,R,P,S) where

[1] N is a finite set of symbols called nonterminals;

57

[2] T is a finite set of symbols called terminals, and there is one symbol in T for each of the

Input tokens produced by the presentation component;

[3] R is a finite set of symbols that correspond to the actions attached to the productions;

[4] P is a finite set of productions of the form

n •·> x, r,

where n is a member of N, x is a member of (N U T)*, and r is a member of R; and

[5] S, a member of N, is the start symbol for the grammar.

If G describes the dialogue control component of a user interface, then the language L(G) con

tains the legal sequences of user actions. A context-free grammar G can be used to produce a

parser, which recognizes the user actions in L(G).

In practice, UIMSs have used context-free grammars to describe only the input language,

that is, the language used by the user to communicate with the computer. The output language,

that is, the language used by the computer to present information to the user, is difficult to

specify with context-free grammars and is usually described by some other means.

The context-free grammar model was initially used to describe command languages for

text-oriented interfaces. In [38], examples of using context-free ·grammars to specify two com

mands of a text-oriented interface are presented. Figure 2.2 illustrates the specification for a

"login" command. This command requests the user's name, a password and a security level.

The user is asked to reenter the name until recognized, is allowed two tries for a correct pass

word, and cannot enter a security level that is higher than the security clearance assigned to the

user {the default security level "unclassified" is assigned if the user's request is not appropriate).

In Figure 2.2, lower case symbols denote nonterminal symbols; upper case are terminal sym

bols; production rules are annotated with conditionals; system responses and actions are

specified within square brackets. A condition must be satisfied at the input stream corresponding

to its position in the production rule, for a production to match. When a match occurs, the

Login::•

badpw: :•

goodpw: :•
I

loguser: :•

getuser: :•

baduser: :•

onetry: :•

9etseclevel:: •

badsl::•

badpv• goodpv (resp: •Enter security level•) getseclevel

loguser onetry PASSWORD (cond: SPASSWORD,'GETPASSWD USER(SUSER)
resp: •Incorrect password--start again•] -

loguser PASSWORD (cond: SPASSWORo-GETPASSWD USER(SUSER)]
loguser onetry PASSWORD (cond: SPASSWOR!PaGETPASSWD_USER($USER))

LOGIN [resp: "Enter name") getuser [resp: •Enter password•]

baduser• USER [cond: EXISTS_USER($USER))

USER (cond: not EXISTS_USER(SUSER) resp: "Incorrect user name--reenter it•]

58

PASSWORD (cond: SPASSWORo,rGETPASSWD_USER(SUSER) resp: •Incorrect password--reenter it"]

badsl• [resp: •Your security level is Unclassified"
act: CREATE SESSION($USER,$PASSWORO,Unclassified))

badsl• s~CLEVEL [condi $SECLEVEL<sGETCLEARANCE USER($USER)
act: CREATE_SESSION($USER,$PASSWORD,$SECLEVEL)]

SECLEVEL [cond: $SECLEVEL>GETCLEARANCE USER($USER)
resp: •Security level too high:-reenter it")

Figure 2.2: Grammar Specification of a LOGIN Command

59

response (if any) is displayed and the specified action (if any) performed. The special token

NULL represents no input, symbols followed by a "*" denote one or more instances of that sym

bol, and a symbol preceded by "$" denotes the current value for the specified input token. Fig

ure 2.3 presents a grammar specification of a "reply" command which allows the user to send a

reply to a message that has been received. The reply command is made up of an optional mes

sage identifier (default is "CurrentMsg"), the text comprising the reply, and an optional list of

additional addressees (which consists of the word "To" or "Cc" depending on how the reply

should be addressed, followed by one or more addressees).

The above examples use grammars to specify only the input language of the user inter

face. They do not however specify how the output language is formed, that is, how computer

responses are generated. Thus, a more precise description uses grammars not only to parse

the input but also to generate the system's output. The realization that at least two parties (for

our purposes a human and a computer) are involved in a dialogue led Shneiderman to introduce

the concept of multlparty grammars for the description of human-computer dialogues [39]. In a

multiparty grammar, an augmented context-free grammar is used to describe the human input,

machine response (i.e., acknowledgement or diagnostic} and some aspects of the interaction.

Context-free grammars are augmented with three features:

[1] Labeling of nonterminals with an identifier distinguishing the party. For example <H:

VALID-ACCT> is a nonterminal for a user input of a valid account number, and <C:

ACCEPT-ACCT> is a nonterminal denoting the computer's response when accepting a

valid user account.

[2] Assignment of currently parsed values to nonterminals, and correspondingly the use of

square brackets to indicate that the value of the nonterminal is to be used in the genera

tion of output. As an example, the following describes a simple dialogue between two

humans meeting for the first time:

~: :•

9etid::•

extras::•

extratos:: •
toaddressee:: •

extracca: :•
ccaddresaee:: •

60

REPLY getid (resp: •Enter text field" act: replybuf:=OPENFOREDIT MSG(replyid)]
TEXT (act: SETTEXT HSG($TEXT,replybuf)] -
extras• [act: UPDATE_HSG(replyid,replybuf)1 CLOSEEDIT_HSG(replyid)]

HSGID (act: replyid:•REPLY_HSG(SMSGID)} I NULL (act: replyid:•REPLY_MSG(CurrentMsg)J

extratos r extrraccs

TO toaddressee toaddressee•
ADDRESSEE (acti SETTO_MSG(replybuf,GE'M'O_MSG(replybuf)+SADDRESSEE))

CC ccaddressee ccaddreaaee•
ADDRESSEE (act: SETCC_MSG(replybuf,GETCC_MSG(replybuf)+SADORESSEE))

BNP' Specification of the •Reply• Co!IIDland

Figure 2.3: Grammar Specification of a REPLY Command

<DIALOG> .. - <1: GREET> <2: RESPOND>
<1: GREET> ::= GOOD MORNING MY NAME IS <1: NAME>
<1: NAME> ::= <1: IDENTIFIER>
<2: RESPOND>::= HELLO [<1: NAME>]

61

Note that the nonterminal [<1: NAME>] gets its value from the most recent parse, and is

used to generate the response for party 2.

[3] A nonterminal which matches any string, if all other parses fail. This feature allows the

designer to cope with incorrect syntactic forms.

An example of using the multiparty concept to describe a text-oriented logon procedure is illus

trated in Figure 2.4.

The discussion so far has been limited to describing text-oriented interfaces. A large per

centage of current user interfaces are graphical in nature. To accommodate graphical features,

Shneiderman [39] proposes the following additional tools to augment the multiparty grammars.

[1] Including special markers (as nonterminals) to describe features which merely change the

visual presentation of characters, including underlining, reversal, blinking, font, typesize,

intensity and color. For example, to support underlining, two markers are necessary:

UNDERLINE and OFFUNDERLINE. The following is an example of underlining a portion

of the system's output.

<C: RESPONSE> ::= <C: FIRSTPART> <C: UNDERLINE>
<C: IMPORTANTPART> <C: OFFUNDERLINE>

[2] Including a special facility to describe the layout of a screen as specific windows. For

example, the declaration of a screen layout which includes a status, workarea and com

mand windows, is given below:

DECLARE SCREEN CONTAINING
(WINDOW STATUS (1 :4, 1 :72) WITH STATUS-INFO
WINDOW WORKSPACE (5:34, 1 :72) WITH WORK-INFO
WINDOW COMMANDS (35:40, 1 :72) WITH COMMAND-INFO)

1. (LOGO~) : : == (START) (ACCT)

2. (START) : : == (H: I~ITIATE) (c: R[.-\DY-ACCT) I
(H: I?\\' AUD-INITIATE) (C: CRLF-REQCEST,

3. (H: ISITIATE) : : = I')
4. (H: INVALID-I~ITIATE) : : == (H *)')
5. (C: READY-ACCT) : : = READY FOR ACCO CST

r\C~l BlR 'J
6. (C: CRLF-REQLTST) : : := TO SIG~,0); TYPE AS·•(' A~D

HI I L:--.TER

7. (ACCT) : : :-= (H: \' ALID-.-\CCl) (C: ACCEPT-ACCT) !
(H: *) (C: ACCT-REQLTST)

8. (H: VALID-ACCT) : : = (H: f--;l'.~1) (H: SC~1;

·'tJ · L'-TT~R \ r'\
\• • L.'. i... '/ I

9. (C: ACCEPT-ACCT) : : = LAST SIG NOS f-OR

[(H: VALID ACCT)] \VAS (L-\ST-SIG :\0~-I:\FO)

10. (C: ACCT-REQCEST) : : = ACCOG~T ~C~1BERS ARE TWO

DIGITS FOLLO\\:ED BY A LETTER() (c: READY-ACCT~

where (H: *) is a pattern match nonterminal which 1s
attempted only after other parses have failed.

(H: N l 1 ~1) : : = 0 I l j 2 I 3 I 4 I 5 I 6 i 7 I 8 l 9
(H : Lf rr ER) : : == A I n I c .. -I z
') IS TH[CARRIAGE RETl;R~ A:\D LI~E FHD CODE

Figure 2.4: Multiparty Grammar for a LOGIN Command

62

63

where each window is described in terms of rows and columns and the name of the sym

bol describing the contents of the window. Provisions should also be made for describing

overlapping and nested windows, and for multiple screen layouts.

[3] Providing facilities to allow the information on the screen to be dynamically modified. The

basis for this facility is the capacity to move a cursor to a specified position on the screen.

Cursor movement can be described in various ways. For example, a cursor at position

(3, 1) could be moved to position (1,6) of the WORKINFO window by the following com

mands

[a] WORKINFO CURSOR TO (1,6)

[b] WORKINFO CURSOR UP 2 LEFT 5

[c] by hitting the keys { t ~ <--, <--, <--, <--, <-- }

These three examples can be described by appropriate grammars as depicted in Figure

2.5. Note that facilities must also be provided to handle illegal cursor movement.

One of the major problems with associating computer actions/responses to output nonter

minals is that the order in which the output nonterminal is performed is dependent on the pars

ing strategy. In a bottom-up parse, the action is performed after all the symbols on the right

hand side of the appropriate production have been recognized. In the case of a top-down parse,

the action is performed as soon as the symbols before the output nonterminal in the appropriate

production have been recognized. Figure 2.6 illustrates a grammar description of a dialogue for

entering rubber band lines. Note that this specification is dependent on a top-down parsing stra

tegy.

In order to alleviate some of the above problems, grammar productions that are involved

with interaction can be enclosed in an input-output tool ([40, 41]) or dialogue cell ([42, 43]).

Each interactive production is augmented with facilities to describe actions specific to interaction,

including:

J) . Ii: CTRSOR ~10\'E) : : =
H: ~ l.\R TI, G SY\iBOl. '.\'.-\.\1E)

Cl . RS OR I O ((H : I~~ fT G FR) • (II : T"; T [G FR>)

h) .ll: (U~<.;(Jj(Wl\F;,:: -~-

/ H: ST.-\IU I, C, SY.\lBOL :--.; .,\\ff\

C l"RSOR (H: \ERTICAL) (H: IIORIZO'.'-,;TAL)

Ii : \ I- R TIC:\ 1.) : : =
l. P .:, H : 1, Tl GI:: R) I DO\\'~ ; H : I ~TE GE~)

· ti · I I '1 : > I 7 0 '-: ·r ' L \ . . = [. \...JJ., - • /"'\ / ••

UH ::H: I);HGFR) I RIGHT (H: !~HEGER)

·:) lI: (TR SOR \10\E ,:· : : =
w s1,Gu ,1ovE) I

(H: sI,GLE .\fOVE) (H: CTRSOR MOVE)

·H: SI,GI.E.\10\·E):: = T: l /--1 - ·

Figure 2.5: Multiparty Grammar for Cursor Movement

64

line ➔ button di end _point

end _point ➔ move d2 end _point
I button d3

di ➔

{ record first point }

{ draw line to current position }

{ record second point }

Figure 2.6: Grammar for Entering Rubber-band Lines

65

66

(a] prompting and initialization of local variables,

(b] the action to be performed at the end of the production,

[c] the echo produced for the interaction, and

[d] the value returned by the production.

It is important to note that most of the grammar-based UIMSs augment context-free gram

mars further to handle error recovery, undo processing, and control over the parsing strategy.

2.1.1.2. Finite-State Models

As early as 1969, Parnas [44], recognizing the inadequacy of the available tools, sug

gested the use of state-transition diagrams to define interactive user interfaces. A state transi

tion diagram consists of states (represented by circles) and a set of transitions (represented by

arrows) between states. Each transition is associated with an action; transitions correspond to

user inputs and the associated action is performed by the system in response to the user input.

One of the inherent problems with grammar-based models is that the concept of time sequence

is implicit in the definition; that is, it is difficult to specify exactly when something occurs. State

transition diagrams, more commonly known as transition networks, override this problem as

time sequences are explicitly defined.

Formally, a simple transition network (STN) is a ?-tuple, M = (0,S,P,D,R,Oo,F), where

[1] Q is a finite set of states corresponding to the states in the diagram;

[2] S is a finite set of input symbols, which are the input tokens generated by the presentation

component;

[3] P is a finite set of actions, which are the actions labeling the states of the transition

diagram;

[4] D is a mapping from a x S to a, called the state transition function;

67

[5] R is a mapping from a to P, called the action function;

[6] Qo, a member of a, is the initial state of M; and

[7] F, a subset of a, is the set of final states of M.

Note that this definition of a STN differs slightly from a finite-state machine in that the value of

D(q,a) is the new state q', and the action p, a member of P, is given by R(q').

[38) provides examples of the use of state-transition diagrams to describe the "login" and

"reply" commands that were presented in the previous subsection on grammars. Figures 2.7

and 2.8 depict the specifications of the "login" and "reply" commands respectively.

Action/responses generated by the computer can be attached to either the states or the

transitions as shown in Figure 2.9, which depicts the specification of entering rubber band lines.

Note that associating actions on arcs necessitates fewer states [45).

There are two problems with using simple transition networks to describe dialogues; the

descriptions can get large, and the power of STNs limits the range of dialogues that can be

described. One way of alleviating the first problem is to partition the network into subdiagrams,

resulting in a main diagram and a number of subdiagrams. A subdiagram is a complete network

that can be invoked from another diagram, akin to procedures in high-level programming

languages. Note that the use of subdiagrams allow the specification to be divided into logical

units, thereby making the network easier to understand and manage.

The power of transition networks can be increased in two ways. Recursive Transition

Networks (RTNs) allow subdiagrams to call themselves recursively. Augmented Transition

Networks (ATNs) augment RTNs with a set of registers that can hold arbitrary values, and a set

of functions that can perform computations on the registers. Figure 2.10 uses RTNs to extend

the rubber band example to describe entering polylines. A polyline is a sequence of rubber band

lines, and the interaction allows for undoing (using backspace) the current (except the first)

rubber band line. Note that it is not possible to describe entering polylines with STNs because

(1) resp:

(2) cond:

(3) cond:

(4) cond:

(5) cond:

(6) cond:

(7) cond:

(8) cond:

(9) resp:

l_()_t'.: in

"Enter name"

not EXISTS_USER($USER) resp: "Incorrect user name--reenter it"

EXISTS_ USER ($USER) resp: "E.'nter passw'Ord"

$PASSWORD=GETPASSWD._ USER ($USER) resp: "Enter security level"
$PASSWORD;'GETPASSWD_USER($USEF) resp: "Incorrect password--reenter it"

$PASSWORD;'GETPASSWD _ USER ($USER) resp: "Incorrect passw'Ord--start again"
$SECLEVEL>GETCLEARANCE _ USER ($USER) resp: "Security level too high--reenter it"
$SECLEVEL<=GETCLEARANCE_USER($USER) act: CREATE_SESSION($USER,$PASSWORD,$SECLEVEL)

"Your security level is Unclassified" act: CREATE_SESSION($USER,$PASSWORD,Unclassified

Figure 2.7: State-Transition Diagram for LOGIN Command

O>
0)

69

extratos

resp: •Enter text field• act: replyid:•REPLY MSG($MSGID); replybuf:=OPENFOREDIT MSG(replyid)
resp: •E:nter text field" act: replyid:•REPLY-MSG(CUrrentMsg)7 replybuf:=OPENFOREOIT MSG(replyid
act: SETTEXT MSG(STEXT,replybuf) -
act: UPDATE_MSG(replyid,replybuf); CLOSEEDIT_HSG(replyid)
act: SETTO MSG(replybuf,GETTO MSG(replybufl+SADDRESSEE)
act: SETCC=MSG(replybuf,GETCC=MSG(replybuf)+SADDRESSEE}

Figure 2.8: State-Transition Diagram for REPLY Command

button

move

move butt or.

2: record first point
3: draw line to current position
4: record second point

Example transition diagram with program actions.

move/action2

button/action1 button/action3

action1: record first point
action2: draw line to current position
action3: record second point

Example transition diagram with actions on arcs.

Figure 2.9: Transition Diagram with Actions and Responses

70

butt an/action 1 command

command:

button/action3

bac-kspace/action4

action1: record first point
action2: draw line to current position
action3: record next point
action4: erase last point

Figure 2.1 O: Transition Diagram for Polyline Example

71

72

there is no mechanism for undoing lines. Figure 2.11 uses ATNs to describe the same polyline

dialogue without the use of subdiagrams. To handle undoing lines, a register is used to record

the number of lines entered and a function is used to check whether the number of lines entered

is greater than one. Note that this ATN description also includes a cancel feature which ter

minates the dialogue with an empty polyline. RTNs cannot handle the cancel feature due to the

nesting of subdiagram calls.

Shaw [46] lists the following as reasons for the inadequacy of both grammar-based formal

isms and state-transition diagrams for defining interactive graphics systems.

[1] The characterization of command languages as strings of symbols ignores the different

techniques that are possible for the input sequence.

[2] In an interactive graphical system, several different and independent graphical objects

(each with their own command language) may be active at any given time. It is not

sufficient to describe the language of each object independently, as there is generally

some interaction between the languages.

[3] It is frequently desirable to have several partially-specified command sequences active at

the same time. String-oriented formalisms normally impose a strict ordering on command

elements.

[4] Most methods cannot effectively describe the interactions between user commands and

the system that interprets these commands.

The language of flow expressions [47, 48] is proposed to overcome the above difficulties.

They describe the flow of system entities, such as resources, messages, jobs, commands and

control, through sequential and concurrent software components such as programs, procedures,

processes and modules. As an example, a line drawing command sequence can be described

as

(Line (x y U rd))* @

I

button/action3
fn2

but to ntaction,
tni

backspacetaction4
fn3

backspace/action4
fn3

action1: record first point
action2: draw line to current position
action3: record next point
action4: erase last point
actions: erase polyline
actions: return polyline

fn1: count:=1; return(true);
fn2: count:=count+1; return(true);
fn3: if count = 1 then

return(f alse);
else

count := count-1;
return(true);

Figure 2.11: Polyline Dialogue with Cancel

73

I

74

where Line, x, y, r, d, and @ are atomic elements. Thus, a line is represented by zero or more

repetitions of the Line command followed by either an (x,y) pair or an (r,d) pair, and terminated

by@. Figure 2.12 shows a finite state machine for recognizing the command.

A more interesting example is one which describes the interactions between an interactive

user, H, at a terminal and the underlying system. A user issues a command followed by a

carriage-return (CR) and then waits for a system response (RES). The system is cyclic, allowing

a new user to start a session when the terminal is free. The flows through both subsystems are

depicted both as expressions and diagrams in Figure 2.13. In the figure, Wi and Ri represent

semaphores and are interpreted as "wait on signal i", and "send signal i" respectively. As shown

in the Figure, the T/H waits and signals ensure that both subsystems are properly synchronized

at logoff. The other waits and signals are used to describe the handshaking protocols between

the two subsystems.

Finally, it is important to note that state-transition diagrams have also been used to

describe non-trivial interactive systems, as demonstrated in [49, 50].

2.1.1.3. Event Mode Is

The event dialogue model, developed by Green [51], is based on the idea of generating

and handling events. Events are generated by input devices, and within the dialogue component

by tokens sent from other components of the user interface, or from events that need to

invoke/create/destroy other events. Generated events are sent to one or more currently existing

event handlers that can handle the type of the event generated. The behavior of an event

handler is described by a template similar to a procedure in high-level programming languages.

Each template describes parameters, local variables, the event types that can be processed, the

actual processing, and initialization code. Event handlers are created by specifying the template,

and providing values for the parameters.

Formally, an event is a 3-tuple, E = (i,m,d), where

75

Figure 2.12: Finite State Machine for Drawing Lines

76

l0;1 Off

Hoo

Figure 2.13: Flow Expressions for Multi-user System

77

[1] I is a member of I, where I is a finite set of symbols that are used as names for the event

handlers in the event system;

[2] m is a member of M, where M is a finite set of symbols that are used as event names:

and

[3] d is a member of D, where D is a domain (possibly infinite) that is used for event values.

Event handlers are procedures written in a high-level programming language.

Figures 2.14 and 2.15 depict the specification for entering rubber lines and polylines (with

cancel) respectively, using events.

The major power of using events is in the description of multi-threaded dialogues. Most of

the interactive systems available today are window-based, allowing for concurrent dialogues. A

good example of multi-threaded dialogues is a cut-and-paste operation in a window-based

multi-file editor. A description of such a dialogue must allow for a section of a file in one window

to be cut and pasted to another file in a different window. This involves communication between

the dialogues running in the two windows, and can be simulated by sending an event from one

window to the other. Note that the other dialogue models cannot describe such multi-threaded

dialogues.

2.1.1.4. Discussion on Dialogue Models

This section is concerned with the descriptive power and usabiltty of the three dialogue

models that have been presented, in an attempt to determine their relative strengths and

weaknesses.

Intuitively, the event model is most powerful as it can describe multi-threaded interfaces

(such as the cut-and-paste example) that the others cannot. Note that transition networks are

equivalent in power to deterministic push-down automata. The only difference between the two

is the action function associated with transition networks. It is also important to note that the

context-free grammars employed within UIMSs are usually restricted to a subset (deterministic

EVENT HANDLER line;

TOKEN
button Button;
move Move;

VAR
int state;
point first, last;

EVENT Button DO {
IF state == 0 11-iEN

first.= current position;
state=l;

ELSE
last= current position;
deactivate(self);

ENDIF;
};

EVENT Move DO {
IF state== 1 11-IEN
draw line from first to current position;

ENDIF;
};

INIT
state= O;

END EVENT HANDLER line;

Figure 2.14: Event Handler for the Rubber-band Line Example

78

EVENT HANDLER polyline_canccl;

TOKEN
button Button;
move Move:
backspace Backspace;
cancel Cancel;
finish Finish;

VAR
point_count: integer;
point_list: list of point;
ints~te;

EVENT Button DO {
IF s~te .. 0 THEN

point_list • current position;
slate - 1;
point_count • 1;

ELSE
add current position to point_list;
point_count • point_count + 1;

ENDIF;
} ;

EVENT Move 00 {
IF state• 1 IBEN
draw line from last position to current position;

ENDlF;
} ;

EVENT Finish 00 {
retum(p<?int_ list);
deactivatc(self);

} ;

EVENT Backspace 00 (
IF point_ count > 1 rnEN
remove last point from point_list;
point_count • point_count - l;

ELSE
ouq>ut "can't delete fint point";

ENDIF;
} ;

EVENT cancel DO {
rerum(empty _ list);
deactivate(selt);

} ;

INIT
state• O;

Pm l:.Vf:NT HANOl.U. f'Ol)'linc_l.'a1Kcl,

Figure 2.15: Event Handler for Polyline with Cancel

79

80

context-free grammars) that can be handled by popular parsing techniques (usually LL(1) or

LALR(1)) . It has been shown that the set of languages generated by deterministic context-free

grammars and deterministic push-down automata are similar [45]. Practically, the event model

has the power of the programming language that it is embedded in, giving it the descriptive

power of a Turing machine. Furthermore, Green [52] has devised algorithms to convert descrip

tions in the transition network and context-free grammar models to the event model. This then

shows that the event model is at least as powerful in describing dialogues as the other two

models.

As concerns usability, it is very difficult to identify characteristics that make a particular

model usable. Usability of a dialogue model is dependent on the dialogue designer and the

application. However, the conversion routines presented by Green makes it possible for UIMSs

to support all three models.

In conclusion, it is appropriate to develop UIMSs based on the event model as it allows

dialogues to be specified in any of the three dialogue models.

2.1.2. User Interface Management Systems

A User Interface Management System (UIMS) provides a user interface designer with the

facilities to specify, generate, validate, manage and evaluate user interfaces. The common

characteristic of all UIMSs is the specification mechanism that is provided to describe all or part

of the intended user interface. This specification mechanism is based predominantly on one of

the three dialogue models presented in the previous subsections.

The first UIMS that was built was Newman's Reaction Handler [53], which provided facili

ties to specify user interfaces through an interactive state-transition diagram editor. Since then,

numerous UIMSs have been developed, both in commercial and educational environments. The

UIMSs that have been built are categorized below, by reference, according to the specification

mechanism that is used.

81

[1] Grammar-based UIMSs: [41], [43], [54), [55], and [56, 57, 58].

[2] Finite-state based UIMSs: [38], [44], [53), [59], [60], [61), [62], [63], [64], [65], [66], [67] and

[68).

[3] Event based UIMSs: [69], [70], [71], [72] and [73].

The following subsections present a representative UIMS from each category.

2.1.2.1. The SYNGRAPH System

The SYNGRAPH (Syntax directed GRAPHics) system [56, 57, 58] is a user interface gen

erator which has been developed as part of the Automated Human Interfaces (AHi) project

being carried out at Arizona State University. This research applies the principles of syntax

analysis, parser generation and data abstraction to automatically generate user interfaces. Fig

ure 2.16 depicts the basic architecture of interactive systems, which forms the model around

which the research has been developed. The Interaction Specification forms the core of the sys

tem. It defines the valid commands in terms of their syntax and the legal operands and also

describes the command's representation (i.e., their names or symbols) and the devices or tech

niques that are to be used. The interaction module is automatically generated from this

specification.

The specification of the user interface is made up of a lexical specification and a syntac

tic specification. The lexical specification describes the binding of input devices and interac

tion techniques to logical token symbols, which in tum are used in the syntactic specification.

There are seven primitive input devices supported by SYNGRAPH: menu items, locators, valua

tors, function buttons, keys, characters and picks. Associated with each input device are the fol

lowing properties: the type of the value that is returned, whether an event or sampled device,

the action to be performed when it is enabled, the prompt for its selection, the acknowledgement

when it is selected, and the effect the device has on transitions. These properties are predefined

and managed automatically by SYNGRAPH. An example of a lexical specification is given in

APPLiCATION

----------. FORM~T;£0

APPLICATIO~

S'JF'TwARE

l~TERACTIOH

OUTPUT
I

pqocESSlNG

REQUESTS

INTERACTION

OISPLAl'

SOFTWARE

INTERACTION
pqocESSOR

SPE.CIF'ICATIO~,, ~-------

Figure 2.16: SVNGRAPH System Architecture

82

83

Figure 2.17. Here, LOC refers to the locator; PICK_POINT to the stylus tip switch; SCALE and

ANGLE are real and integer valuators respectively: DRAW, MOVE and NEW_HOUSE are all

menu items; and NEW_WINDOW is an iconic menu ttem (in the Figure "m" stands for a move

command, and "d" for a draw command). Finally, the HOUSE and WINDOW tokens specify that

a picture of the appropriate type is to be picked.

The syntactic specification describes the prompts, echoes and sequencing of the tokens

specified in the lexical specification which constitute valid inputs. The syntactic specification is

expressed using a modified BNF notation, allowing for optional phrases, repeating phrases

(between braces), as well as alteration (using "~'). Syntax processing also controls the manage

ment of display and input resources. The user interface is described in terms of sub-dialogues

within which resources are allocated. Thus the specification mechanism allows the designation

of nonterminals as defining a new level of interaction. When a new level is entered, all of the

tokens used within that level (directly or indirectly) become enabled. Thus, a level defines a

specific configuration of virtual input devices. An example of a syntactic specification is depicted

in Figure 2.18(a), and the corresponding menu sets for each level are shown in Figure 2.18(b).

To handle interaction semantics, the specification mechanism allows each nonterminal to have a

semantic routine associated with it. The semantic specification is -described in terms of a Pascal

parameter string (the semantic function) and a set of Pascal declarations (the semantic attri

butes).

The specification is parsed to generate the user interface. Prompting, menu and device

management, and error detection and handling are also automatically generated. Finally, SYN

GRAPH provides a CANCEL operation which allows the user to jump to a previous state in a

single step.

2.1.2.2. The Abstract Interaction Handler

The AIH (Abstract Interaction Handler) system [63] is the user interface management sys

tem of the Information Display Systems project, being developed at the George Washington

•~~·l: : : il..S

(: .

1~ le>c-0tcr;
p:.c:(_poir.t butt c:1 1 ~
s2~le Vill~~~or RC. • I

2ngle \ulu~to: IO, 360;
d:-o.·,.; .:
me·,·:- ;
r.ew_hcuse;
new_wirid~ iccn

m(0,0) d(l.0,0) d(l.0,1.0)
d(0,1.0) ci(O,O)
m(0.5,0) d{O.S,1.0)
m(0,0.5) d(l.0,0.5),

hoose pick hoose_tYF€i
wind~; pick windav_tyr:e;

Figure 2.17: Lexical Specification In SYNGRAPH

84

r -----

1 interaction [newlcvel] : :=
I a· d , , c 1 t_,T.c e I draw_JTicd2

!
c-~i':._1:-:u:-~ (newleve:J : := m:T

(Clli'~~E I U:SER'.i' I Df:LE.;.·.::
i

i
i
I i drawy.cx3.e : : = k(I'.·,' (LTh'E I CIRCLE) I
I

[_ ------------ ______ _J

(a) Syntax Example

--------------------~

LHiE
CIECI.E

rxn:-1 for roit_Jt,cce = CHANGE
!~SERT
[,2IBfE

(b) Menu Sets for Levels

Figure 2.18: Syntactic Specification in SVNGRAPH

85

86

University. The aim of this project is to apply the principles of top-down design and functional

abstraction to the design of interactive graphical systems.

The AIH environment is made up of several components:

(1] an interaction language (IL), based on augmented transition networks, which allows the

syntax of interactive dialogues to be described,

[2] an interpreter for the interaction language (ILi), which activates appropriate application

functions, passing to them the inputs acquired from the user.

[3] a set of style modules which describe style-dependent attributes such as level of prompt-

ing,

[4] a library of user profiles which contain information on personalized styles of interaction,

[5] a screen handler which handles the output to different windows,

(6] a library of interaction techniques which describe how devices are used for user input, and

[7] an underlying device-irdependent graphics package based on the CORE standard (74],

which provides the graphics support.

A block diagram of the overall system configuration is given in Figure 2.19.

The interaction language specifies the user actions, the sequencing of user actions and

the semantic module to respond to user actions. The language presents seven task types:

select-category, select-operation, select-entity, position, quantify-integer, quantify-real and text,

which are elaborations of the interaction tasks developed in [14]. An interactive system is

specified as a network of nodes, each node being one of the seven types above. The definition

of an interaction node is presented in Figure 2.20(a). Figures 2.20(b) and {c) describe the node

records and basic types needed in describing an interaction node.

An example of the specification of a style module is presented in Figure 2.21. Style

modules can invoke various interaction techniques to accomplish the types of task in the interac-

/

/
/

/ ,,, ___ _
Interaction
Langu2ge
Program

S · 'H ACTiC

. lech.~·~e
, Lo-.!J~f·

L:X!CAL

ILi
(:~ ln~erpreter)

SH

(sc~een Handier)

CO~E
(Gr 2p1:cs Package)

~--·

Components of
:-th app:ication

user prof i!es

St';le modules

Figure 2.19: AIH System Configuration

87

type
inter~ctio:, _ :-.od~ i:,

record

what_ kind: t:1sk_ type;

prompt: prompt_help_ tr:plo;

•-(now variable stuff depending on interaction ty;;e]

case 1,•.:hat_kind of

whon select_category ~ set of category_ reccds;

when select_operation => set of operation_records;

when select_ entity =;> sat of entity_ rc::'Jrds;

whe:, po:,i!ion

when quantify_ integer

when quantify _real

i.-.·hen text

=> pos:t:on_~ecorc;

=> integer _record:

=> real_ re:::orj;

=> t:::xt__ rcccrd;

end cas~:

cn:1 rc.'cod;

(a) Interaction Node

type
task_ type is {

select_category, select_operation,

select _entity. position,

quantify_ integer, quantify_ real. text,;

prompt_ help_ triple Is
record brief: text_string;

full: tcxt_string:

help: text_ string;

end re~ord;

action_item is

record invokes: semantic_module_id;

next: node_ id;

end record;

(b) Node Record

Figure 2.20: Specifying an Interactive System in AIH

88

type

category _records Is
record which_one: keyword;

description: display _info;

what_to_do: action_items;

end record;

operation_records Is
record which_one: keyword;

description: display_ info;

what_ to_do: action_ items;

end record;

entity _records is
record which_one: identifier;

description: display _info;

wi-ia~ _ to _do: action_ items:

end record;

position _record is
record x __ range:

y __ range:

wha: to do:

end record;

integer_ record is

real_ range;

real_ ran.ge:

action_ items:

record how_ big: integer_ range;

what __ to_do: ac~ion __ items;

end record;

re~! . record is
reco·d ho,•, big: rea! _ range:

what_ to_do: action __ items:

end record;

text __ record is
record how_ big: max __ string __ length.

what_to_do: action_items;

end record;

(c) Basic Types in AIH

Figure 2.20: Specifying an Interactive System in AIH

89

J>is pb i L c v e I 1 0

. ·a:.~_ :oce. in Task_ Name;

R~l _ rcs;::ionse: out Response_ Description);

""Rcs;::;;.se_ Description is
re-cord

ca~e task_type of
when select_ category.

se!ect _ ope,3t ion,

se!ect _ ent:ty

when posit:on

when quantify _integer

when quantify _real

when text

end case
tnd rocord;

=>
=>
=~ /

=>

internal_ token;

locator _pair;

integer_ value;

real_ value;

text _record

Figure 2.21: A Style Module In AIH

90

91

tion Janguage. Figure 2.22 illustrates the available interaction techniques. The AIH enforces a

set of predefined windows: prompt, response, help, error, results and concurrent. These win

dows are implemented and handled by the screen handler package. All the information needed

by the AIH system is organized into a data base. Access to the information is through

predefined routines.

The description of the application specified by the interactive language is interpreted by the

interactive language interpreter; that is, the interpreter traverses the network defined by the

interaction language. The interpreter accepts the user input, determines the currently active

interaction task, communicates the relevant information to the interaction techniques which do

the actual interacting with the user. The style modules and the user profiles influence the selec

tion of the interaction techniques.

2.1.2.3. The University of Alberta UIMS

The University of Alberta UIMS (UAUIMS), [71]. is an attempt at evaluating the feasibiltty

of using the Seeheim model (as presented in Figure 2.1) as the basis for UIMSs. The UAUIMS

therefore provides tools to describe all three components of the user interface, that is, the

presentation, dialogue control and application interface components. The UAUIMS is based on

the event model, but provides facilities to the designer to describe the dialogue in the other two

models as well. These grammar-based and finite-state based descriptions are translated

automatically into an event based description.

The UAUIMS is divided into two major components, the user interface design component

and the run-time support component. The user interface design component provides the neces

sary tools to help the designer specifying the presentation, dialogue control and application inter

face components of the user interface. The run-time support environment converts the user

interface specification into a complete executable user interface, and provides facilities to sup

port the execution of the user interface.

92

TASK TYPE TECH"IIQUE NAME INPUT Dr\'ICE fEEDBACI.

Sclcc1 name of ca1e;ory from
,,, Charae1crs arc rchocd al arrrorna1c lo.:auon as

Ke,·board the) Jre lypcd in
a menu.

(11) The selecled ca1cgor)· bl,nk.s tn d1srlavcd menu

Sclect..Ca!c;ory Sc!ccl ord,nal number of
Kc,board

(1) Ordinal number 1\ t,hoed ar Jt~!'opr1~11e loc:i:1vn
ca1car.ir 1 on menu (ti) The sclcc1cd ca1cgor)· bhn~, ,n ~.,r:.1,cd menu

f',ck ca1e&NY fron, a menu Tablet The 1clee1::l ca:,p,- t>ltnl., in the d"r!a,cd menu

Select name of opcra1,on from I (tJ Charac:crs are echoed at appropr,a1c l<>-.Jl1,1n a,_

r,om a menu 1-:e, bnarJ ,~.ey arc 1rpcd ,n
1,,, T~c ,clee1ed opera11on hl,nt.1 ,n di,rla,cd men~

Select_Operation Sc:ec1 ord,nal number of 1·, Cl:~ .,JI number is c,·h,,ed a: arpror,riJtc lo,a:,on
opera! ,on ,n menu 1-:e, hoa•J

111) The ,elected opera11nn t>i:r.b ,n d1srla,cd men~

Ptd operation from a menu. Tablet The 1ele,:c<! opcra1ion bltnir.s in 1hc d,spia,cJ mc:iu.

~!eel name of cn1,1y from a
(1) Chara,:crs arc e;hocd a1 .1;iprorria1e loca11un as

Keyboard they arc 1ypcd in.
menu. (it) The ,elc:icd entity !)Jinks ,n d1•plavcd menu

SclecLEntily Sclccl ordinal number or cn111y
Ke;board

(1) Ordinal number 11 echoed at appropriate lo.:a1,on.

in mc::-iu. f11J The· elected cn1i1y blinks in di1pla,cd menu

Pick cn111y from a menu Tablet The 1clec1cd entity blink-. in the d11plavcd menu

1-:e)bOJrll' The •alue1 arc echoed at the appropriate loca11cn on
ProHde • pa,r or real •alues. •iJ\cr, 1, w:,mc ··10• 1f""ll'f!'" 1n1r•JC1t0ft 1nHN•td ,n

display de•1ce. ,.,,111:1 l 1tr.,,t-o~,d 10 cntt~ 1 r,,-..,1,on

Position

Pro"de a locator pa,r. Tablet
1,1 The cur,or bhnks at :he selec:ed purn,on.
I 11) The coordinates ef the selected pom1on arc echo,d

Quantify_lntcgcr Provide an 1n1ecer. Keyboard
Thr value provided is echoed at appropri,lle locath,n on
di1play Jc\lr.e.

Provide a real Keyboard
lhc value pro-,dcd II echoed al appropriate loca1wn or.

Quantify_ Real
display de'ICC

Valuator• The 1clet1e,J value" cch,,cd b, \lmu\311on ,ult"- • •· I Provide a valuator •t•nJrTl\lr!f --,~ ~1m.,tau, 1h1, .-,in, a 11t,1 ... , sorresrondin1 pm111,,n c-n dt1pla,ed 1.:Jlc
.l'f'ld a d,•r•.a\ "'""'"

Text Pro.,,d, a 1c1t siring Keybo.ard Tu1 11ring "echoed at Jf'proprta1e 10,a1,ori a, 11 "
1)1'Cd ,n

Figure 2.22: Interaction Techniques Supported by AIH

93

The design of the presentation component is supported by an interactive layout program,

called IPCS (Interactive Presentation Component Specification), that allows a designer to

interactively design the screen layout, interaction techniques and display techniques for a partic

ular user interface. Support for IPCS is provided by an underlying window system, WINDUS,

which implements the basic graphics primitives and window management routines.

The design of the dialogue control component is supported by a set of tools, one for each

of the dialogue models supported by UAUIMS. The event model is supported by a programming

language based on C. This language provides the facilities to define appropriate event handlers.

Figure 2.23 presents the structure of an event handler. The finite-state model is supported by an

interactive graphical transition diagram editor that is used to create and edit recursive transition

networks. The UAUIMS provides no support for the grammar-based model in its current ver

sion, but plans to support it in future versions.

The support for the application interface component is limited to a definition of the mapping

between user interface tokens and their associated functions within the application. Future ver

sions of UAUIMS will extend this limited support.

The specifications from each component of the user interface design are converted to a

common base format, known as the Event Based Internal Format (EBIF). An assembler con

verts the user interface specification into a file of C routines and appropriate tables used by the

run-time support component. The C routines are then compiled by a standard compiler to form

an executable user interface. Figure 2.24 depicts the process of converting an event language

program into a user interface.

2.2. SIMD Framework: User Interface Construction Kits

The major objective of UIDEs within the SIMD framework is to provide the system

designer with facilities/tools to rapidly construct user interfaces for any application. Most SIMD

UIDEs allow for the initial construction of standardized consistent user interfaces to facilitate

rapid development. Additional facilities are then provided to refine or fine-tune these user

Eventhandlcr event_handlerJ}ame Is

Token
tokenJ}ame eventJ1ame ;

Var
typ(" variableJ}arne = initial_ya)ue;

Event eventJ}ame : type {
statements

}

Event event_Jlame : type {
statC'mrnts

}

end event_handlcrJ1ame;

Figure 2.23: Structure of an Event Handler

94

,vent
languag,
progr3.m

En·nt
Compil,r EBIF . .\ss,mbrer C

Compiler

object
code for
dialogue
control

95

!{"ht du ting
routines

LoJ.der

other
sort ware
modules

Figure 2.24: Converting an Event Program into an Interface

u~er
interh.{"e

96

interfaces to better suit the peculiarities of the particular application.

We can identify the following four different types of construction kits depending on the

ease in which user interiaces can be developed, that is, the sophistication of the user interface

development environment.

[1] Graphics Packages: Graphics packages provide the facilities to manipulate the basic ele

ments of graphical input and output. Graphical input is concerned with managing and

manipulating input devices such as keyboards, mice, tablets, etc. Graphical output con

cerns the display of color, text and geometric shapes (such as lines, circles, rectangles,

etc.). Note that conventional programming languages, such as Pascal, C, and Ada, depend

entirely on graphical packages to develop the user interface component of interactive sys

tems.

[2] Window Systems: Window systems extend graphics packages to provide facilities to both

create and manage interaction of one or more applications. The base window system, a

graphics package with some additional high-level facilities (such as menus), is the sub

strate on which sophisticated multi-application interactive systems are built. Window sys

tems provide two additional components to manage interaction. The window manager pro

vides facilities to manipulate overlapping windows. The input manager controls the inter

face between input devices and applications, that is, which applications get input from

which devices. Note that the development of sophisticated interactive systems, such as

software development environments, rely on window systems for building and managing

interaction.

[3] User Interface Frameworks: A framework provides facilities to construct the components

of an abstract design for a particular application. For example, a compiler framework pro

vides facilities to construct a lexical analyzer, a parser, a symbol table, a type checker, and

a code generator. Frameworks must also be concerned with defining and managing the

interfaces between the components. User interface frameworks are concerned with the

97

construction of the following major components: the presentation of application information

to the user, the acceptance of user input, and the invocation of application functions.

Furthermore, user interface frameworks must be concerned with defining and managing

the interface between the application and the user interface. Frameworks are akin to

libraries that support conventional programming environments.

[4] User Interface Toolkits: A user interface toolkit is a collection of high level tools that pro

vide facilities to conFigure and construct user interfaces. Ideally, toolkits are built on top of

frameworks and allow the designer to interact with the underlying framework to construct

new applications.

Since this survey is concerned primarily with user interface development environments, the

following discussion will focus exclusively on environments that support user interface frame

works and/or toolkits. These environments are usually built, however, on a underlying graphics

package or window system. It is important to note that research on graphics packages and win

dow systems have developed to a point where standards are available. CORE [74] and GKS

[75] are well established standards for graphics packages, while the X window system [76] is

rapidly gaining popularity and acceptance as a standard for window systems.

The following subsections present two popular user interface frameworks and two

representative user interface toolkits.

2.2.1. The MacApp Framework

The MacApp framework [77] provides Apple Macintosh system designers, a prefabricated

standard user interface for any application. The standard Macintosh user interface is depicted in

Figure 2.25. The basic premise of MacApp is to provide a user interface that automatically han

dles characteristics that are common to all applications (such as resizing of windows), and to

allow designers to plug in details specific to the application (such as the contents of each win

dow). Since the user interface code is provided by MacApp, designers have the flexibiltty of fine

tuning the interface to suit the peculiarities of the particular application.

· • FIie [dlt Search llun Window,

-- - -
1ymeHM10 ·• Qu1aett 5 numQuedTyPH 2: .,_ ________, ___ .;;._ __ ~~

22 pelttltWIOll'\
1yme1tM1p : • Plr'lll tl 1-----------+----------1

3.
1yme1 tMep :• momC>u 4: .,_ _________ ==

,ymettMep :• rec l eng 1-,---;:::-:~~-,-••■ 5:
,ymettMep :• IQUlrt91tMec,;

ethenrt••
1yme1 tM1p :• erwet tMep;

•tut;
r :s gPel1tt1Chotc1Arnyltt
lnstlRtct(r. 3. 3t
Copye1t1(1vme1tMep, lhePort •.po

end;
end.

Figure 2.25: A Macintosh User Interface Example

98

99

An abstract MacApp application consists of one or more windows, one or more docu

ments, and a single application object. A window is associated with each document and is con

cerned with displaying the state of the document. Each window consists of a set of views, where

each view is concerned with displaying a part of the associated document. A new interactive

system necessitates only the definition of the documents and the view objects that render

images of the documents. Figure 2.26 presents the objects (and their relationships) for a typical

Macintosh application.

Specifically, the MacApp framework consists of the following six components.

[1] The application component is the main controller of the interactive system. Its main pur

pose is to receive (input) events, classify the events, and invoke appropriate application

specific event handlers. It also provides a set of standard global functions such as opening

documents and quitting the system. This component is also in charge of creating docu

ment objects.

[2] The document component provides the hooks for describing the application. Documents

manage and manipulate the application data structures, and are responsible for communi

cating their current state to view objects. Documents are also responsible with reading and

writing their data from and to backing store.

[3] The window component manages standard Macintosh windows and provides standard

facilities for moving, resizing and scrolling.

[4] The frame component is used to subdivide a window into independent parts. All Macintosh

windows consists of at least two frames, a fixed pallette area and a scrollable drawing

area. Frames can also be scrolled.

[5] The view component defines the image to be drawn within a frame. This is the view of the

application state within the appropriate document.

fW1ndov ~ ~
fFr&meL1at fW1ndov

L11t

Frame Fram•

!V1ev

View

Bill
otelS 100
ir 1400

Meals S00

Document

D tDocwnent

mndowLht t f !Doc..,.r.t

rWlndowj

!FrAJM

fFr&J"MLiat

Frame

UUndo111

g
fV1ew l l !Fr.ame

View

m
Figure 2.26: The Objects in a typical MacApp Application

100

101

[6] The command component is used to interface between the application and the user inter

face. Commands are created by documents, are responsible for performing the command

(that is, changing application data and updating views), and most importantly for undoing

the command, if necessary.

2.2.2. Smalltalk's Model-View-Controller Framework

The Model-View-Controller (MVC) framework [78] facilitates the construction of standard

ized user interfaces for the Smalltalk environment [79]. A typical Smalltalk user interface is dep

icted in Figure 2.27. As with the MacApp framework presented above, the MVC framework con

structs a user interface with standard facilities common to all applications, and provides the

necessary hooks to allow application-specific behavior to be attached. Once again, the availabil

ity of the code for the user interface allows designers to fine tune the interface to suit the partic

ular application.

An abstract Smalltalk application consists of a model, which in turn consists of a set of

related view-controller pairs. Views are used to display the state of the application while controll

ers manage interaction with the user. Controllers act as the interface between the user and the

application, as well as the interface between the application and its views. The interaction

between the three components is shown in Figure 2.28. The standard interaction cycle is as fol

lows. The active controller accepts user input and invokes the appropriate application function

within the model. The model performs the requested action, and broadcasts the change to its

dependents (that is, its set of view-controller pairs). Views update their displays through applica

tion (model) provided information.

Specifically, the MVC framework consists of the following components.

[1] The model component provides the facilities to define an application. It also facilitates the

connection of view-controller pairs as dependents and the ability to broadcast changes to

these dependents.

Fr.:i ct ion
lnteqer·
L ,:i r· 1j e [\J e q ·=' t i .. ,.. e In t e
L.:i rq eF'o:- it i ... 1 eln t eq
Nt.unbQI"' ..

arithraQtfo ' · · ·+:

m .:, t r, e rn ·=' t i ,: ·=' I f u n 1 +
te:::tir,,j

· ,r, .:, r,d r·,-,, 1

Implementors of + ,/

102

Number+ ·
me~. 5 .:11~ e s e I e ,: t ,:, r· ,=1 r, 1J •:t r·,j u r p 0 int +

" ,: ,:, rn rn 8 r1 t 5 t ·=' t i r, 'j p ur· p ,:1 ::, rn ,:i.111 n t e ,j e r +

I ternp,:,r.:1 r·/ ·.·,:1 ri.:1 t:
5 t .:, t e r,·1 e r1 t:::

A+ aNurnber
" . .:::.. r, s ·.,'..,..er· tr, e s urn of t t-1 e r·e,: e i .. ,.. er· ,:tr, d

·=' [\J u rn t:, e r. "
s e I f ::: u l:11: I .:, s 5 Fi e ::: p ,:, r, 5 i b i I i t :,··

::,rn.:, lit.:, If -:::0 ,:,f . .:::..pr·il 1, 1 '~::;:~;

Cop:-,' r·i ,j r1 t (,: :i 1 ·~ ::: 1 , 19 ::: 2, 19 ::: :~; :: e r·,:1 • C 1:1 rp .

. .:::..11 r·i9r,t:: re:::er•,.1 ed.

Create File System

.:, t : 1 p u t : (Fi I e ::; tr e .:, rn o I d Fi I e f·•,J .:, rn e d : ' ::; m •:t II t ·=' I k ::: O , :- o u n:: e :- ') .

·=' t: 2 put: (File::; t re·=' m old Fi I e [\J ·=' rn e 1:i: • :3m,:i 11 t ·=' lk::: O. c r, ,:t n 1je s').

(::;ourc:eFiles ·=' t: 1) re,:1.d 1)rily.

Figure 2.27: A Typical Smalltalk User Interface

~
I" It I "I I I

Controller
View l meuagas

(View
User input

Display

u~ device layout and
interaction interaction

input views

sensors,.,,,,_ / Model
access and

/:::ge~
I I

"' Dependents =denb_............\ ~ ~, / ::"s!'ges
messages

Application
domain
state and
behavior

Figure 2.28: Model-View-Controller Relationships

~

0
w

104

[2] The view component is concerned with display. It is equivalent to windows in most sys

tems, allowing for the creation and management of subwindows (or subviews). Views pro

vide standard facilities for clipping, transformation and display. The top level view is a stan

dard system view that provides standard facilities for resizing, movement and scrolling.

The actual display of application specific information is provided by the model component.

Note that each view has exactly one model and one controller that it is associated with.

[3] The controller component provides the basic facilities to coordinate the user with the

appropriate view and application model. Standard controllers are provided to handle the

standard system view, a menu controller for mouse-based pop-up menus, and a scroll

controller to handle scroll bars for views. The active controller is in charge of obtaining

user input and invoking the appropriate application specific function to handle the input.

2.2.3. The Flair System

The FLAIR (Functional Language Articulated Interactive Resource) system [80] developed

at TRW allows a designer to rapidly prototype a system's user interface, independent of the

application. Thus, the main aim is to allow designers to rapidly realize and manipulate conceptu

alized dialogues to test various approaches to the design of the user interface. This approach

allows the end users to be involved early in the design process to define the "best" user inter

face that will be implemented in the real system.

The FLAIR system, also called the Dialog Design Language (DDL), is a comprehensive

software tool that allows system designers to describe human-computer interactions, as well as

human factors researchers to evaluate the man-machine interface. DDL comprises the following

tools.

[1] An ACM Core standard graphics package which provides the basic primitives to manipu

late graphics objects. These primitives include drawing of lines, boxes, circles; writing of

text in different sizes and fonts; color selection; area filling; pan and zoom of the screen;

reading (writing) pixel images to (from) the screen; erasure of a single item or an entire

105

display; and cursor controlled free hand drawing.

[2] A relational data base management system, INGRES, which manages system and user

defined data relationships. User defined data can be associated with a particular graphics

symbol (on the screen) and can be queried at any time.

[3] A workstation that provides a mix of the latest technology in inpuVoutput devices, as illus

trated in Figure 2.29, ranging from voice to high resolution color graphics monitors.

The overall functionality of the DDL is shown in Figure 2.30. The DDL allows the designer

to interactively build either a static frame or more importantly to create command menu hierar

chies for dynamic scenarios. The system is voice menu-driven, i.e., the list of operations that

FLAIR can perform in any given context are provided as menus, and these operations are

invoked by voice input. The commands of the DDL consists of 15 root words which in turn can

activate 85 commands to accomplish a task, as depicted in Figure 2.31. The screen layout is

divided into six windows located on two workstations, as illustrated in Figure 2.32. The computa

tional component in Figure 2.30 performs the various functions provided by the DDL. The result

ing output operations can be the display of objects on specified windows, requests for more

information from the user, or synthesized voice-output to the user. A designer uses the FLAIR

system to design the user interface, which can be saved, edited and played back.

2.2.4. The MIKE System

The Menu Interaction Kontrol Environment (MIKE) system [81] was developed at the Brig

ham Young University Interactive Software Systems Laboratory. MIKE is a toolkit for rapidly pro

totyping a default textual user interface, and for refining the default user interface into a highly

graphical sophisticated user interface to suit the particular application.

A MIKE user interface specification is made up of the following three components:

(1] the functions that define the application,

OICilTIZ
INCi
TABLET

JOYSTICK

19-INCH
MONO
CHROME
DISPLAY

Figure 2.29: A FLAIR Work Station

VOICE
RECOGNITION

TRACKBALL

106

C.:t • VALUlAT!

OP!UTOll

INPUTS

□

rt.All

COHKANl)S

DBMS Servicu

m.ATtO!W.

DIIKS

CORL

CUPHlCS CALLS

snmms1zm
VOlCI

CEMDATIO!f

C&AJ'BtCS

(Test
Included)

DISPt.ATS
CENEU.TION

Figure 2.30: Functional Flow for the FLAIR DDL

107

FLAIR
f 1

[~: ...
t:GROOND

-,---r----- · -r--- --, -- T

F
,J.. """ ,... 'i ""''·'" .. , ..

I I I ---1--- I --,,
GROUND §HIS SYIIIOt COIICS ao, .- (I) ll,N£ T[II ~ GRID·• CIRCI[a)

r
VOi(£ -OUTPUT

IL£•• l

RIYIOIJS

ID

BARCJWIT PIE CHART SYMBOL

H(R[• ~,.,.
-.non~

COLOR.._ Cl!) ~,~ VCRTICAl [IIT[R
-COLOR• 0 RADIUS
lA!ICL 0

C.WUTE ~ iNr • •
FILL• ~ I.BEL
POINT .. FILL• 8 ACKSPAC(

LUS••
IN I SHED ..

ZCR~ Z[RO--
ONE m,c--

11i11r_:__J LJ
POINT!!.__J POINT~

£ACKiPAC[
SLICE

ZERO

I
NIN[
ll[R(•

BAtKSPA((.
-COLOR• 0

~, .. ,.. . r ... r(R(•
LOWU LEFT COi.OR•. COLOR• 9
UPP(A RIOIT (11£ ZERO

M
THR([
FOUR
LIFT ff N(fRHORAW POINT••

D£C.R[£5 ..
Acr.~PAC£

r0tANC.[Sil£

['CIT ..
STROK[

~o-

~="-Off

RADIUS
COLOR• Cl
H(R(•
CUIT[II

11-.J

COlOA

·Bl INK
-Ctr IN[-BllNK
·11[0
GRf[N

-elUC

llllOW

DlACK

Wltl TC

Cit, r----- -r -----r---1 -- -----7
'"'" "."':j""" ""j'" EFILL r c~u::

eo1• d!' P~(COLON•® ~~~£;•.
CT THIS Bl Ul ••

T11is 1-1£110 I J Au•• ~:~~,:~:•
(IIANG(. lillJI[••

NIN[CatTll'IU(lERll

-~~~~~rs.. f~~E- ~11i~r .
SOUTH CIRCl[• $ r-1-011.r••

[

BAlKSPAC[

!~~ GLOBAL t::r.AIIH
H[RCATOR r------ ~:~c~;~~C,
GAi~•• VOICE-OUTPUT• [,,1111:15

-TJl'fS
:-o:v1 ~£[).Br
··S[tl CN- tO~

OH [SQiH

hi► :''1Ai H961C i, i ~· ,-
ABORT
STOP
FINISHED
RISH
Rf AD THR[~HOl 0

• • SAN[STNTAI Ttl~:lJC.HJUT fl .\IA
S(T THR! :-.HOL 0 •• • SYIITAI Cl:P£NOENT ON CUIIRLNT COIITUT

Figure 2.31: FLAIR DDL Commands

.....
0
(X)

109

MAIN DISPL\Y AREA Menu

Display

Area
Cursor

/
·'k

Arithmetic Calculation Current
Display Area Color

Selected
System Message Area Area

Figure 2.32: FLAIR Window Areas

[2] bindings between application functions and interaction techniques, and

[3] viewport definitions to describe screen layout and visual presentation.

All of the above components are specified using interactive tools.

110

The initial prototype definition for the user interface consists of a definition of a set of types

relevant to the application, and a corresponding set of functions that can operate on objects of

each type. For example, a user interface for a simple circuit layout program is concerned with

the following types: Resistor, Capacitor, Wire and Connection. Figure 2.33 shows a list of possi

ble functions that can be defined for these types. This initial prototype definition is supported by

an interactive interface editor. With this limited amount of information, MIKE generates a default

user interface through the process shown in Figure 2.34. The interface editor generates an inter

face profile, which contains the description of the user interface. The interface editor also gen

erates Pascal code that defines the interface between the user interface and the application.

This generated code is then compiled and linked with the application-specific code and MIKE's

standard user interface code to produce the interactive program.

After the default user interface has been generated, MIKE provides facilities to refine the

presentation component in the interface profile. MIKE allows editing of three aspects of the

presentation component. The first concerns menus and the mapping of input events to applica

tion specific functions. Menus can be divided into hierarchies; menu items can have external

names or icons associated with it; function keys can be associated with menu manipulation, and

special keys can be associated to handle global inputs such as rubout, cancel and quit.

The second aspect of the presentation component that can be edited concerns prompts,

echoes and help. The interface editor allows the designer to associate arbitrary prompt strings

with every parameter that necessitates user input. Echoes can be defined to provide visual or

textual feedback to the user, and finally help strings can be associated with every object of the

user interface.

111

CreateResistor(Ohms: Integer; C 1: Connection; C2: Connection)
CreateCapacitor(Farads: Integer; C 1 : Connection; C2: Connection)
CreateWire(Cl: Connection; C2: Connection)
PickConnection(Where: Point): Connection

If Where is over an existing connection, then that connection is returned.
Otherwise a new connection is generated at Where

PickResistor(Where: Point): Resistor
PickCapacitor(Where: Point): Capacitor
PickWire(Where: Point): Wire

DeleteResistor(R: Resistor)
DeleteCapacitor(C: Capacitor)
DeleteWire(W: Wire)
MoveResistor(R: Resistor; To: Point)
MoveCapacitor(C: Capacitor; To: Point)
MoveWire(W: Wire; To: Point)
ChangeResistance(Of: Resistor; Ohms: Integer)
ChangeCapacitance(Of: Capacitor; Farads: Integer)

ResistanceOf(R: Resistor): Integer;
CapacitanceOf(C: Capacitor): Integer;
SaveCircuit(FileN ame: InString)
Discard Circuit
LoadCircuit(FileN ame: In String)

Figure 2.33: Types for a Circuit Layout Program

Xii MIKE
~l ·-~ Interface •):if · __ E_d_i t_o_r _...i

_ Generated · ·
, ':. Application
,;:;.- Interface

Include

Application
Source
Code

Include

·~.- ' "'< ;,,~, .

;,1> Standard b'='

MIKE \it:
User Interface)~[i

Code , .. ,· .. IJ

Compile
and
Link

Interface
Profile

Interactive
Application

Program

End
User

Figure 2.34: Generating a User Interface in MIKE

112

MIKE
outines

113

The final aspect of the presentation component that can be edited is the layout of the

screen and the facilities for directly manipulating displayed objects. These facilities allow the

designer to create a graphical user interface.

2.3. MISD Framework: End-User Customizable Interfaces

The main emphasis of UIDEs within the MISD framework is to provide facilities to end

users to define personalized user interfaces for a single application. The major disadvantage of

the MISD approach is cost, since it is necessary to develop user interface generators for every

application.

There has been only one implementation of a MISD UIDE in the literature. This system is

described in the following subsection.

2.3.1. The GIGL System

GIGL (Generator of Interactive Graphical Languages) is a prototype system to generate

graphical interfaces, developed by Bournique as part of his doctoral research at the University of

Pittsburgh [82]. The basic premise is that a universal "virtual" interaction language can be

developed for a particular application area. This predetermined virtual interaction language

describes all the possible aspects of graphical interfaces that can be used for the application,

enumerating all the alternatives that are possible. For instance, the universal language can

describe a menu response as

<menu response> ::= "chosen menu item is illuminated"!
"chosen menu item is blinked" I
"chosen menu item changes color"

which indicates that visual feedback is provided by either brightening, flashing or changing the

color of the chosen menu item.

Once this universal language has been defined, the generation of personalized graphical

interfaces is straightforward: choosing amongst a set of alternatives; or whether a feature is pro

vided or not; and the specification of some needed parameters (e.g., window size).

114

Context-free grammars are used to describe the universal interaction language. Terminals

of the language describe system actions. Figure 2.35 depicts a (portion of a) universal interac

tion language developed for graphical interactions. GIGL itself is a syntax-directed translator of

the universal interaction language. The language is compiled internally into a library of semantic

routines. GIGL is an interpreter of these routines.

The functional structure of GIGL is depicted in Figure 2.36. GIGL operates in two modes:

Interrogate and Interact. The interrogate mode is used to generate a specific user interface.

GIGL interactively presents queries from each syntactic class (or grammar production) defined in

the universal interaction language. Some of these queries are parametric, i.e., a value must be

specified. An example query is presented below

SPECIFY PARAMETERS OF WORK AREA:
LOWER LEFT COORDINATES? 0 100
UPPER RIGHT COORDINATES? 800 1000

Queries can be a selection from a list of options, e.g.,

CHOOSE A BUTTON PRESSING ACTION:
"KEYBOARD", "FUNC_KEY", "MENU", "VALUATOR"? menu

or attributes which are to be included or not included in the interface, as in

CAN THE USER UNDO THE PREVIOUS TRANSFORMATION?
"YES" OR "NO"? no

Note that these queries correspond directly to productions in the universal grammar in Figure

2.35. The interrogate mode creates a subset of the universal action language to describe a per

sonalized user interface. The interpreter for this language is also a subset of the semantic rou

tines already developed as part of GIGL. In the interact mode, a user interacts with the system

with a particular personalized user interface specified in the interrogate mode.

115

<file response> ::= "systea locates file" l "system indicates
no file loczted" <PECALL>

<R01ATE> ::= <i1ic1'i:1'] action> C"systec ftor:pts for angle of
rotation"J <valuatir.g actior.> [11 syst2rn prompts
fo:r point of rotaticn"J <locating actj.on>

<~OVE> ~== <~!eking acticn> <loc~ting action>

<SCAL::> : ~= <ricking actior.> C"s;stcer ~roof ts for scale factor"J
<valuating actio~> ·

<PARAN> ::= C"systen pro □ pts for line style~] <b.p.a.>
C"~yste. prO;Jt)ts for intensi tyt J <b.p.a.>

,LZ?LT> :~= <systec placebo>

<UP>::= "systec identifies hi~hcr s~bficture in hierarc~y~ I
"syste;u indicates no hi~her stibi)icture 0

<DOWN)::= 0 syste~ identi!les lober sub~icture in hierarchy" t
nsystem indicates no 1-~\;jer subpicture11

<EXECUTE> : ::: "systen de act !'Vat es ex eel. te/ cane el primitives"
".sjstec activates all ether conmands"

<CANCEL> ::= "system deactivates exec\Jte/ cancel priaitives"
nsystem activates all other commands 13

<EAC'KUP> ··.. - "systeo identifies previO\JS state of system"
"syste:s indicates backup li11it reached"

Figure 2.35: Portion of a Universal Interaction Language

hferi
menter

116

1-~----~-----~--~--~~-~~----~---~--~---~---1
I I

: ;-~;;~~i------l)-1 ;-;~;;~~;i~;:~-; ~
I I I - "I I I

<---)1 Interaction ••• ~ Ir.teraction I<---> Subject

: : Language ~-/i LrngalJge · : :

: : ___________ ! 1J ~-------------~ :
I Se&antic I
I Bou tines I
I I
I GIGL I 1~-~-~--~-.a-49-~~~-~---------~-----~-~~~~~-----~1

<-----I~tERRCCATE MODE-------) <-------INTERACT HOOE-------->

Figure 2.36: Functional Structure of GIGL

CHAPTER 3

MODELING THE MIMD
USER INTERFACE DEVELOPMENT ENVIRONMENT

The effectiveness of an interactive software system is dependent on its usability. A

software system has maximum usability if it maximizes the productivity of all its end users. The

major goal of interactive software engineering is to develop effective software systems to max

imize both their usability as well as end user productivity. There are two features of an interac

tive software system that govern its effectiveness and the productivity of its end users. The first

concerns the ability of the system to increase the productivity of end users according to their

experience. The second concerns the speed and ease with which end users can utilize new

technology that is introduced into the system. New technology is concerned with enhancing any

part of the interactive system such as the efficiency of the algorithms and code, the functionality

of the system, and the facilities for interaction. Note that both features are dependent on the

ability to modify the user interfaces of interactive systems.

The interactive systems that have been developed to date provide limited or no support for

modification of user interfaces. Thus, end users are usually forced to learn and master the user

interface of every interactive system that they use. Since these interactive systems provide only

limited "hard wired" choices for user interface modification, end user productivity can never be

maximized. Furthermore, the initial learning curve is high and costly and is the main factor that

hinders users from embracing newer tools as well as newer versions of familiar tools.

The basic premise of the MIMD framework is that maximizing user productivity and the

effectiveness of interactive systems is entirely dependent on the ability of the end user to define

and modify user interfaces. Thus, the major goal of UIDEs within the MIMD framework is to

117

118

provide facilities that allow end users to develop personalized user interfaces for any interactive

application, and to modify any aspect of these personalized interfaces at any time of their

experience with the interactive system. Another perspective of the goal of MIMD UIDEs is that

the facilities provided to end users are similar to those provided to user interface designers by

SISD and SIMD UIDEs. However, MIMD UIDEs differ from UIDEs within other frameworks in

the following major ways.

[1] The facilities provided for user interface specification and modification must be usable by

end users, who have no knowledge about the implementation of the particular application

or the user interface.

[2] The MIMD UIDE is independent of the environment that is used to develop the application

component of interactive systems.

Thus, the major problem associated with the development of MIMD UIDEs is that it neces

sitates a complete and clean separation of the application component from the user interface

component of interactive software systems. Such a complete and clean separation facilitates

the development of multiple personalized user interfaces for any application. MIMD UIDEs

necessitate information describing the characteristics of the application for which the user inter

faces are to be constructed or modified. The MIMD UIDE specification mechanism uses this

information to construct and modify user interfaces for the particular application.

A clean and complete separation of the application from the user interface necessitates the

development of appropriate models for both components. The following subsections develop the

MIMD model for applications and user interfaces respectively.

3.1. A Model for Interactive Applications

The main emphasis of the application model is to generalize interactive applications to

allow the MIMD UIDE to handle multiple applications in a consistent manner. The application

model must also be concerned with modeling the interface between the application and user

119

interface components. This interface necessitates appropriate models for the flow of information

from the application to the user interface, and for function invocation and parameter

specification.

The editor model is a popular and appropriate generalization for interactive applications.

The editor model is defined as follows.

[a] A set of objects defines the base entities of the application. These objects are combined

to form a picture. The editor allows the manipulation of this picture in terms of these base

objects. There are two types of pictures: unstructured and structured. An unstructured

picture is made up of an arbitrary combination of the base objects. In a structured picture,

only certain combinations of base objects are allowed. Note that the possible combinations

of base objects can be defined appropriately by a language. Thus, in the case of a struc

tured picture the terminals and nonterminals of the language define the base objects of

the editor, while the productions of the language define the manner in which these base

objects can be combined to form the picture.

[b] The editor maintains the picture internally within an appropriate data structure. This major

data structure defines the combination of the base objects that describe the current pic

ture. For structured pictures, this major data structure is usually a syntax tree that must at

all times conform to the language definition.

[c] The editor provides a set of transformational functions for manipulating the picture. The

base transformational functions are Insert and delete. These base functions allow for

inserting an (a set of) object(s) into the picture and deleting an (a set of) object(s) from the

picture, respectively. Note that all other manipulations (such as replication, substitutions,

global deletion/insertion, etc.) can be defined in terms of these base functions. Thus, the

base transformational functions must be defined for every editor. In the case of structured

pictures, any manipulation of the picture must conform to the language definition. There

fore, the transformational functions must allow only operations that maintain the integrity of

120

the picture.

[d] The editor also provides a set of operational functions that do not change the picture.

These operational functions provide the facilities to allow the editor to operate smoothly.

Typical operational functions are:

[1] help: to provide information about the application's functionality,

[2] save: to save the active picture on backing store, and

[3] load: to load a previously saved picture from backing store into the editing environ

ment.

It is important to note that a large percentage of currently available interactive systems can

be defined using the above editor model.

The next two subsections are devoted to developing models of the two entities of the

editor involved in the interface between the application and user interfaces: data structures

and functions.

3.1.1. Modeling Interactive Data Structures

The main source of communication between the application and user interface com

ponents is the information base of the application component. This information base is

managed and maintained within the major data structure of the application component. The

internal representation of these data structures must be translated into external forms suit

able for viewing by the user. For example, language-based editors maintain a program being

edited as a syntax tree. This syntax tree must be translated into an appropriate textual or

graphical representation for presentation to the user. Furthermore, the user manipulates the

external form, thereby necessitating a translation from the external representation to the

internal representation as well. Thus, in the realm of interactive software systems the exter

nal representation of data structures is as basic and crucial to the design as its internal

representation.

121

In the conventional model for interactive systems, data structures form the major

bottleneck in achieving a complete separation of the application from the user interface of

interactive systems. Application information is managed and maintained within conventional

data structures that do not provide any facilities to manage the external representations.

However, interaction is done solely on the basis of external representations. This mismatch

of representations has, to date, tightly coupled the two components leading to the following

unresolved issues in user interface research [71]:

[a] how should the user interface access the application's data structure,

[b] should the user interface maintain its own copy of the application's data structure to

handle error recovery and undo operations,

[c] how are user picks translated to entities within the application's data structure, and

[d] how is the application's data structure translated to appropriate external representations

for presentation to the user.

This dissertation takes the position that the above problems arise due to the inade

quacy of conventional data structures in handling the added complexity of interaction.

The design of data structures for interactive systems is crucial as it forms the basis of

communication between the two components and thus plays an important role in the separa

tion of the application and the user interface. Interactive data structures must be forced to

play dual roles, their conventional role in the management and maintenance of data internal

to the application, and their role in the management and maintenance of forms of the internal

data suitable for processing by entities external to the application component. This duality of

data structures, their Internal and external representations, is not a new concept; most

software systems provide facilities to translate the internal representation of active data

structures into a representation that is suitable for storing on secondary storage. However,

managing and maintaining both representations as one abstract object is both an exciting

122

and powerful concept. Note that to be effective, it is desirable that these dual representa

tions be mirror images; that is, there exists an analogy between them such that manipula

tions of one representation directly translates to manipulations of the other.

The power of such a concept is most evident when we consider the interactive data

structure's role in the context of interactive software. Since both the internal and external

representations are maintained and managed as a single unit, a complete separation of the

user interface component from the application component is possible. The data structure is

managed and maintained by the application component. The external representation of the

data structure is the basis of communication between the two components. The user inter

face displays the external representation to the user. User interaction, particularly parameter

specification, is in terms of this external representation. The application, through the data

structure, can easily translate between entities in the external representation and entities in

the internal representation.

The following subsections develop an appropriate model for interactive data structures.

The first subsection presents a model for the internal representation of abstract data struc

tures. The next subsection discusses the special requirements of data structures for interac

tive software, and develops a model for the external representation. The internal and exter

nal representations are combined to formulate a comprehensive abstract data structure

model for interactive software in the following subsection. The last subsection presents an

example of interactive data structures supporting multiple external views.

3.1.1.1. The Internal Representation

This section develops a model to describe the internal representation of abstract data

structures. By internal representation we imply the form of data structures that are active

within main memory during the execution of the software system. The framework that is

employed to describe an abstraction describes the information local to the abstraction and

the set of abstract operations that is provided.

123

As the term implies, data structures are composed of two objects, the data and the

structure that is imposed on the data. The cell or node is the basic building block of data

structures. Thus data structures are a collection of nodes connected according to the struc

ture definition. In its most general form, a node contains one or more fields. Each field is

defined appropriately by a name that identifies the field and its corresponding type. Thus

each node has the form

{<field_ name> : <field _type>}+

where the '+' indicates one or more occurrences.

The definition of a node describes the local information of the data abstraction. The set

of operations defined for the data abstraction describe the behavior of nodes. We can iden

tify four basic operation types that must be defined for any node:

[1] the assignment operation which allows values to be assigned to nodes,

[2] the retrieval operation which allows values of fields to be retrieved,

[3] the comparison operation to allow nodes to be compared, and

[4) the attribute operation which allows queries on the attributes of the node (e.g., size,

types of fields, etc.).

Of course, a node may extend these base operations to define operations that are specific to

its nature. For example, type coercion, that is the ability to change a given type to the node's

type, is a special operation which can only be defined for certain classes of nodes. Another

example are relational comparison operations (<, <=, >, >=) which can only be defined for

nodes which have a definite ordering. Other operations are addition, concatenation, subtrac

tion, union, etc. However, the models developed for abstract interactive data structures will

only consider those operations that are basic to every instance.

The structure abstraction is concerned with defining the relation of data nodes and the

set of operations that define the behavior of the structure, or more specifically the manner in

124

which data nodes are managed and maintained. The local information of the structure

abstraction defines neighborhood relationships which describe how nodes are connected

to neighboring nodes in the structure. The basic set of operations that must be defined for

each structure are as follows.

[1] Access operations to allow nodes in the structure to be accessed. Access operations

can be further refined into the following two types:

[a] a next operation which allows the neighbors of a particular node to be accessed,

and

[b] a traversal operation which uses the next operation to access all the nodes in the

structure in a specific order.

[2] Search operations that provides facilities to identify a node that meets certain criteria (e.g.,

a specific value of a field). Note that search operations are dependent on the comparison

operation provided by data nodes in the structure.

[3] Manipulator operations that allow the structure itself to be manipulated. In particular,

manipulator operations allow for insertions and deletions of nodes to and from the struc

ture. Manipulator operations must ensure that the structure is always consistent. That is,

the resulting structure does not violate the neighborhood relationships defined between

nodes.

Figure 3.1 summarizes the model for the internal representation of data structures. This

model is general enough to describe most data structures. If the node information contains a

single field of a base type (i.e., integer, real, character, string), then the operations are exactly

those that are defined for these base types in any high-level programming language. For nodes

that contain composite fields, the operations will depend on the nature of the fields. Most of the

operations can be defined in terms of operations defined for the base types. For instance, a par

ticular field may be designated the key and the comparison operators defined in terms of the

DATA

t
I

LOCAL
INFORt1ATION:

(<narr.e>: <type>}+

r
LOCAL
INFORMATION:

neighborhood
re 1 at i onsh i ps

next

DAT A STRUCTURE
(INTERNAL)

~

/ERA~~~---
assignment retrieval comparison attributes

STRUCTURE
I

l
OPERATIONS:

/I
access search manipulator

traversal insertion • deletion

Figure 3.1: A Model for the Internal Representation

125

126

comparison operators defined for the type of the key field. As examples of the structure abstrac

tion, consider the definition of lists and binary trees as depicted in Figures 3.2 and 3.3 respec

tively.

3.1.1.2. The External Representation

Before we present a model for the external representation, it is appropriate to outline our

assumptions about the underlying graphics capabilities. In general, an external representation

can be modeled as an arbitrary two-dimensional graphical display which is maintained in an

internal display buffer. Conceptually, display buffers are infinite allowing the entire display of

any given data structure, however large, to be generated. A graphics package provides the facil

ities (e.g., routines for drawing lines, curves, etc. and graphic primitives such as color, reverse

video, etc.) to allow an arbitrary two-dimensional picture to be generated in the display buffer.

Thus, the model of each node of the data structure defines an appropriate display routine

which describes its external form. Each display routine is passed entry coordinates into an

appropriate display buffer on invocation and has the effect of generating its external image at

the specified position in the display buffer.

Due to the inherent duality of representations, conceptually it should be possible, and it is

desirable, to model the external representation of data structures using the same framework that

was used to model its internal representation as summarized in Figure 3.1. The model for the

external representation is shown in Figure 3.4. Note the similarity between the two figures. The

external representation model is also made up of a data abstraction and a structure abstraction.

For each node in the internal representation, there exists a node in the data abstraction of

the external representation. This node, which defines the local information of the data abstrac

tion, contains the display routine and its corresponding display attributes (e.g., width and height)

of the external image of the node. The four basic operations defined for the internal representa

tion are redefined in the following manner.

LOCAL
I NF ORM AT I ON:

neighborhood
relationships

(prev t ous_node;
next_node;]

next
(access_previous;
access_next)

127

STRUCTURE: LIST

OPERATIONS:

access

traversal
(linear; from
1st to last)

search
(linear)

insertion
(at ith
position]

manipulator

deletion
(from ith
position)

Figure 3.2: The Internal Representation of Lists

LOCAL
INFORMATION:

neighborhooo
relationships

(parent;
lef Lchl ld;
r1ghLch11d}

l
next

(access_parent;
access_lertchl Id;
access_rlghtch1 Id}

STRUCTURE:
BINARY TREE

access

traversal

(preorder;
1norc1er;
postorder)

OPERATIONS:

search

(preorder;
tnorder;
postorder)

Insert ton
(ad<Lparent;
ad<L1 eftch 11 d;
add_rlghtchi ld}

128

manipulator

de let Ion
(de lete_parcnt;
de lete_lef t;
delete_right}

Figure 3.3: The Internal Representation of a Binary Tree

DATA

LOCAL
INFORMATION:

I

I

{displey_routine;
d;sp lay _.attr;butes)

l
LOCAL
INFORMATION:

neighborhood
relationships

(display
geometry)

next

DAT A STRUCTURE
(EXTERNAL)

♦

//ERA~
assignment retrieval comparison attributes

(display)

STRUCTURE

I

access

traversal

search

insertion
(draw)

l
OPERATIONS:

manipulator

deletion
(erase)

Figure 3.4: A Model for the External Representation

129

130

[1] The assignment operation allows the display routine along with its display attributes to be

associated with a node.

[2] An important retrieval operation is the invocation of the display routine to facilitate the gen

eration of the node's image.

[3] The comparison operation is used to determine whether a particular (x,y) coordinate lies

within the display of the node. This operation facilitates the identification of a node through

its external display.

[4] The attribute operation allows for queries of display attributes (e.g. the width and height of

the display).

The structure abstraction defines the behavior of the display buffer which will contain the

external representation of the data structure. The local information of this abstraction defines the

relationship of each node's display to the displays of its neighboring nodes. That is, it describes

the geometry of the display of the entire structure. More specifically, the neighborhood relation

ships define the necessary information to calculate the entry coordinates of each node's display

in the display buffer. Note that this calculation necessitates knowledge of the width and height of

each node's display which is readily available from the data abstraction. A similar set of opera

tions that were defined for the internal structure abstraction is provided.

[1] The access operation is defined by the next and traversal operations. The next operation

allows access of the displays of neighbors of a particular node's display. The necessity of

such an operation is best described by the following scenario. The external representation

of the data structure is presented to the user on some output device. A cursor is posi

tioned on some part of this external display, that is, within the display of some node in the

external representation (which can easily be determined from the comparison operation

provided by the data abstraction). The user now indicates that the cursor be moved to the

next node's (vertically below the current node) display. This action is translated to a call on

the next operation of the structure abstraction which calculates and returns the entry

131

coordinates of the display of the node directly below the current node. The traversal opera

tion allows an ordered access of each node's display in the buffer.

[2] The search operation facilitates the identification of a node according to its external

display. Specifically, the search operation accepts an (x,y) coordinate in the display buffer

and identifies the node within whose display the (x,y) coordinates lie. The search operation

is easily described in terms of an ordered traversal which accesses each node's com

parison operation. This is a useful operation to facilitate parameter specification.

[3] The manipulator operations allow for quick insertions (draws) and deletions (erasures) of a

node's display to and from the display buffer respectively.

3.1.1.3. A Comprehensive Model

It is important to note the similarity of the models that define the internal and external

representations of data structures. This solidifies the concept of the close relationship between

the two representations. However, to arrive at an effective comprehensive model for interactive

data structures we must merge the internal and external models to allow the two representations

to be maintained and managed as a unit.

This comprehensive model of interactive data structures -is further complicated by the

requirements of the more sophisticated interactive systems which rely on multiple external

representations of an internal data structure to increase the bandwidth of communication

between the user and the internal information maintained by the application. As an example, the

popularity and effectiveness of the many language-based structured editors available today is

based on the ability of allowing the user to view and manipulate a single program as a collection

of external views, for example, a textual view, a programming language view (e.g. Pascal, C,

Ada, etc.), a graphical view (e.g., Nassi-Schneiderman diagrams, flow charts, etc.), an execution

view, etc. Figure 3.5 presents a typical example ([83]) of such an editor's interface. Note that the

user can manipulate any of these views, and these manipulations must be translated automati

cally by the system to manipulations of the single internal representation of the program, usually

~ _. • ~ I - :1 • ,•

TOP IN OUT

DELETE PICK PUT

IECDI (FtnCt1on gcd)
1Fb=0ll£N

gcd := a
HSE

NEXT BACK SCROLL IIISC

BEFOtlE AFTER BUFFER SUBST

gcd : = gcd« a : =) §. (b : =) a "OD b);
STATE/t£NT

END

RWTINE

IECDI (/Jrogr<M eXMP 1 e)
STATElfENT

END.

JUNP CLEAII

TRANS SKIP

fllH

gcd
sqr

arc tan
In

IKP

y
cllr
11n

pred
tof

abs
Odd

tru,
trunc

Figure 3.5: An Editor with Multiple External Representations

132

133

in the form of a syntax tree. Conversely, since all the external views are generated from the

internal syntax tree, modifications of the syntax tree must be automatically and immediately

reflected in all its external views.

Therefore, the model for interactive data structures must allow for a single internal

representation and its multiple external representations to be managed and maintained as a unit.

Figure 3.6 presents such an integrated model for interactive data structures. Note that the struc

ture manipulator operations are redefined so that any changes made to the data structure

automatically updates all its external representations.

3.1.1.4. Example of Interactive Data Structures

To close this section, let us consider an example of an interactive system and design its

interactive data structure. Suppose we would like to build an interactive system, EMPSYS, to

manage the employees of a company. The company is divided up into a number of depart

ments. Each department has a manager who is in charge of a number of employees. A Chief

Executive Officer (CEO) sits on top of the employee hierarchy and is in charge of all the

managers.

EM PSYS allows the manipulation of employees of a company. The user of EM PSYS is

allowed to access employees in the following three ways:

[1] by their social security number,

[2] by their name, and

[3] by their position in the employee hierarchy.

Since the design of the internal representation of the employee data structure is well

understood, our objective in the following discussion is to concentrate on the design of the exter

nal representations and highlight the correspondence between the dual representations. To sim

plify the discussion, we use a list as the internal representation of the employee data structure.

INTERACTIVE DATA STRUCTURES
!Local lnformat1onj

(DATA ABSTRACTION)
[a] NODE INFORMATION:

Internal - {<field_name>: <field_type>}+
External - { display _fu nc; display_ attr} +

(STRUCTURE ABSTRACTION)
[b] NEIGHBORHOOD RELATIONSHIPS:

Internal - linking conventions
External - display geometry

jOperat1ons I
(DATA ABSTRACTION)

[1] ASSIGNMENT OPERATIONS:
Internal - assign value to internal representation
External - assign value to external representation

[2] RETRIEVAL OPERATIONS:
Internal - return value of internal representation
External - display external representation

[3] COMPARISON OPERATIONS:
Internal - compares two internal data nodes
External - compares an (x,y) coordinate with node's display

[4] ATTRIBUTE OPERATIONS:
Internal - returns data attribute
External - returns display attribute

(STRUCTURE ABSTRACTION)
[5] ACCESS OPERATIONS:

[a] NEXT OPERATION:
Internal - return neighbor of data node
External - return neighbor of node's display

[b] TRAVERSAL OPERATION:
Internal - access each node's data
External - access each node's display

[6] SEARCH OPERATIONS:
Internal - search for node with matching data
External - search for node whose display contains (x,y) coordinates

[7] MANIPULATOR OPERATIONS:
[a] ADDITION OPERATION:

Internal + External - adds new node in data structure and updates
all external representations

[b] DELETION OPERATION:
Internal + External - deletes node from data structure and updates

all external representations

Figure 3.6: An Abstract Model For Interactive Data Structures

134

135

The Internal representation of the data abstraction defines the following fields for each

node in the data structure:

[a] the name of the employee (NAME),

[b] the employee's social security number (SS#),

[c] the position of the employee in the company (POS) which can be one of {CEO, Manager,

Employee},

[d] the name of the department where the employee works (DEPT), and

[e] fields that describe the control hierarchy of employees within the company.

This control hierarchy is described by the following fields for the employee (CEO or Manager)

that is in control:

[a] the number of employees that the controller is in charge of (CONTROLS),

[b] the identifier of the first employee that is controlled (FIRSTEMP), and

[c] the identifier of the last employee that is controlled (LASTEMP).

To complete the description, the following fields are defined for employees that are controlled:

[a] the identifier of the next employee in the control chain (NEXTEMP), and

[b] the identifier of the controlling employee (BOSS).

The structure abstraction, the list, contributes the PREV and NEXT fields that defines the

neighborhood relationships of nodes in the list. Figure 3. 7 presents an example of the internal

representation. The thick arrows in the Figure depict the control chain for the employees within

the Computer Operations department of the company.

According to the specification, the interactive data structure must maintain three external

representations: name_ view, ss# _ view, and position _hierarchy_ view. The external represen

tation therefore contributes a set of three display functions (along with their associated attri

butes) to the definition of each node in the interactive data structure. These display functions are

1

I
NAME: Janet Black NAME: Sue Blue
ss•: 222536780 ss•: 456905509
POS: Manager POS: Employee
DEPT: Computer Ops. DEPT: Computer Ops.
CONTROLS: 2 CONTROLS: 0

1FIRSTEMP: ode6 FIRSTEMP: NIL
LASTEMP: ode2 -.-----~LASTEMP: NIL
NEXTEMP: Node7 NEXTEMP: NIL
PREV: NIL PREV:

136

2
NAME: Bill Brown
ss•: 678934568
POS: Employee
DEPT: Genetic Eng.
CONTROLS: 0
FIRSTEMP: NIL
LASTEMP: NIL
NEXTEMP: NIL

---PREV:

3

NEXT: NEXT: ----+--....,.EXT:

NAME: Robert Green
ss•: 432768654
POS: Employee
DEPT: Computer Ops.
CONTROLS: 0
FIRSTEMP: NIL
LASTEMP: NIL
NEXTEMP: Node2
PREV:
NEXT:

7
NAME: Steve Gold
ss•: 763765362
POS: Manager
DEPT: Genetic Eng.
CONTROLS: 4
FIRSTEMP: Node3
LASTEMP: Nodes
NEXTEMP: NIL
PREV:

6
NAME: J t 11 Green
ss•: 223876534
POS: Employee
DEPT: Genetic Eng.
CONTROLS: 0
FIRSTEMP: NIL
LASTEMP: NIL
NEXTEMP: NIL
PREV:
NEXT:

NAME: Nancy Red
ss•: 456873452
POS: Emp I oyee
DEPT: Genetic Eng.
CONTROLS: 0
FIRSTEMP: NIL
LASTEMP: NIL
NEXTEMP: Node9

~--1PREV:

5 4
NAME: James Brown
ss•: 785874309
POS: CEO
DEPT: GENTECH
CONTROLS: 2
FI RS TEMP: Node 1
LASTEMP: Node7
NEXTEMP: NIL
PREV:

~----1NEXT:

8
NAME: Peter White
ss•: 123873456
POS: Emp Joyee
DEPT: Genetic Eng.
CONTROLS: 0
FIRSTEMP: NIL

ASTEMP: NIL
NEXTEMP: Nodes

---PREV:

9

NEXT: --------NEXT: -------,f-----..NEXT: NIL

Figure 3.7: The Internal Representation for EMPSYS

137

capable of generating the appropriate display of the node in each of the three external represen

tations that are maintained. Note that the interactive data structure must maintain three display

buffers to hold the three external views. Figure 3.8 extends the example in Figure 3.7 by com

bining the internal representation with the three external representations resulting in a single

interactive data structure. In the Figure, display functions are abbreviated to d _fi and display

attributes to d _ al where "i" stands for the ith external representation. The Figure highlights the

boundaries of nodes' displays within each butter.

The neighborhood relationships of the structure abstraction of each external representation

provides the information for calculating the entry coordinates of each node's display within the

appropriate display buffer. For example, the following information calculates the entry coordi

nates for each node's display within the name_ view display butter

(x,y) = previous node's entry coordinates;

entry coordinates = (x, y + previous node's height + K);

where K is a constant to allow for some space between displays. The first node's display is

appropriately defined as

entry coordinates = (0, display buffer's width I 2).

As an example of interacting with the above data structure, consider the following

scenario. The position_hierarchy display buffer has been passed by the application to the user

interface to be presented to the user. The user interface presents a portion of the display buffer

within a window on some output device. Say the user would like to delete a particular employee

from the company. The user specifies the employee to be deleted by moving a cursor with a

mouse to the desired node in the screen. These screen coordinates must now be translated by

the interactive system to a particular node in the interactive data structure. The user interface

has the necessary information to translate the screen coordinates to coordinates within the

position_hierarchy display buffer. The search operation provided by the external representation

is capable of determining the node within whose display these coordinates lie. Note that the

138

1 --------1 ..----- 2 ,---------,3 9
cLf 1 d_a 1
d_f2 d_a2
<Lf3 d_a3

Name_view

I Black, Janet I

d_f 1 cLa 1
cLf2 cLa2
cLfJ <La3

d_f 1 <La 1
<Lf2 cLa2
d_f3 cLa3

S5 6 _view

!Brown, Bill

!Brown, James I

! Green, Jill

456-90-5509

1678-93-4568

1785-87-4309

1223-87-6534

1432-76-8654

1763-76-5362

1456-87-3452

j12J-87-J456

I Green, Robert

j 60/(l Steve I
I Re{l Nancy I
I White,, Peter

<Lfl <Lal
<Lf2 <La2
cLfJ d_aJ

Posi tion_h1erarchy_v iew

6ENTECH

Ot1PUTEA OPS
JANET BLACK

GENETIC ENG
STEVE GOLD

Figure 3.8: The External Representations for EMPSVS

139

search operation uses the traversal operation to access each node's comparison operation.

Finally the node is deleted from the interactive data structure through its manipulator operation

which has the effect of updating all of the (three) external representations to reflect the change

of the deletion.

3.1.2. Modeling Application Functions

The final issue that must be considered to achieve the total separation of the application

from the user interface concerns function invocation and parameter specification. In general,

each application function requires the specification of a set of parameters and the end result is

either error feedback or some information depicting the effect of the function call. However,

within an interactive environment, the function is capable of providing error feedback or some

resulting information after the specification of each parameter. The error usually indicates an

invalid parameter specification. The resulting information could either be help information to aid

in specifying the next parameter or information that shows the overall effect of the function call.

For example, consider the insert function that requires two parameters, the identification of the

point of insertion and the specification of the object to be inserted. The specification of the first

parameter could result either in an error indicating an invalid insertion point, or a list of valid

objects that could be inserted at the specified insertion point to aid in selecting the second

parameter. The second parameter could also result in an error indicating an invalid object for

insertion, or the insertion of the specified object at the specified point. The resulting information

is the update of the external representations showing the result of the insertion. Thus, each

function necessitates interaction with the user. The conventional approach to interactive system

design is to allow each function to be involved in parameter specification, that is, accepting user

input and displaying intermediate results. The role of the user interiace is therefore subordinate

to function invocation. Thereafter, the application takes over control of the interaction.

To achieve a complete separation of the application from the user Interface, Interac

tion with the user must be the sole responsibility of the user Interface. This necessitates

140

a redesign of the functions provided by the application. An appropriate model of interactive

functions that allows such a complete separation is as follows.

[a] Each function is defined by a set of services, where each service is capable of processing

its parameters independently. Usually, the function defines a service to handle each of the

parameters that must be specified. On invocation, the function presents the set of services

it can perform. The function can also define a default ordering of its services.

[b] On invocation, each service accepts its parameter(s), an error buffer and a result buffer.

Upon completion, the service presents information either in the error buffer indicating an

error in parameter specification, or in the result buffer which describes the effects of the

service.

Note that such a model allows the specification of the action to be taken upon service comple

tion. This action is either the invocation of a particular service provided by the function or quit

ting the function. For example, the next action to be taken when an error is detected is usually

to call the service again. This then allows the user interface to totally control the application's

functions, and more importantly does not require the functions to be involved in user interaction.

3.2. A Model for Customizable User Interfaces

Given the model of interactive applications as presented in the previous subsection, the

user interface model is mainly concerned with allowing customization of every object involved in

interaction. Interaction can be divided into the following two categories.

[1] Presenting Information to the user: This category encompasses the interfacing of infor

mation to the user. It is therefore concerned with presenting application specific informa

tion, as well as user interface information involved with interaction. The major types of

information to be interfaced to the user include the external representations of the informa

tion base of the application, the base entities of the application, menus, help and error

messages, and interaction feedback.

141

[2] Function Invocation and parameter specification: This category encompasses the main

goal of interaction, that is, the invocation of functions and the specification of parameters.

The following subsections develop models to allow customization of the above two categories of

interaction respectively. The final subsection presents the overall user interface model.

3.2.1. Presenting Information to the User

Customization of the information presented to the user is provided by the following two

objects of the user interface component.

[1] Name-mapping objects provide facilities to define external user-defined representations

for any internal entity involved in interaction. Thus, users can define personalized names

for any name used in interaction, including function and parameter names.

[2] Display objects provide facilities to customize the layout of the information presented to

the user.

Note that name-mapping objects are concerned with defining a one-to-one mapping

between internal and external representations. They are therefore modeled in exactly the same

manner as the internal and external representations of the data component of interactive data

structures as presented in section 3.1.1. The following discussion ·is devoted to modeling display

objects.

Display objects control the presentation of information to the user. There are three types of

information that the interactive system presents to the user.

[1] The external representations of the major data structure maintained by the application.

[2] Information maintained by the user interface to aid in function invocation and parameter

specification. This information (usually) corresponds to menus of functions, services and

application entities.

[3] System messages that correspond to error messages or textual feedback about the

current interaction.

142

Thus, display objects are concerned with presenting the above information on some physical

output device for viewing by the user. The specification mechanism provides the facilities to

allow the user to customize these display objects thereby personalizing the presentation of infor

mation.

Any information that is to be presented to the user is maintained internally (either in the

application or user interface components) within interactive data structures. Each interactive data

structure defines the external representations of its internal form that is suitable for viewing by

the user. It is these external representations, which are maintained within internal display

buffers, that are interfaced to the user through display objects. In other words, display objects

provide the facilities to map information within these display buffers to physical output devices

for viewing by the user.

The internal display buffers contain the image of the entire interactive data structure.

Display objects provide the mapping from display buffer to output device through windows and

vlewports. Windows define rectangular regions within display buffers describing the extent of

the image that is presented to the user. Viewports map windows onto rectangular regions

defined on physical output devices. [Note that these standard definitions for windows and

viewports [84] conflict with the use of the term windows as defined by some current interactive

systems (e.g., window managers) to designate an area on the screen (i.e., a viewport)]. Note

that by adjusting the position or size of the window relative to the display buffer, the effects of

panning and zooming can be produced. The interactive system can present the largest possi

ble picture of the image within the display buffer by defining a window that just surrounds the

image within the display buffer. A smaller picture of the entire image is produced by defining a

window larger than the image. Conversely specifying a smaller window forces clipping of the

image allowing a larger scale of the portion of the image presented to the user. These effects

are depicted pictorially in Figure 3.9 (a), (b) and (c) respectively. Note that the size of a viewport

controls what portion of the window is depicted on the output device. The entire model of

Window and objects in world Resulting picture on view surface
coordinate system ------------

----- ------------------ ~-------~
------ I --- I

------- I~:'./::-=,-;; I
----- ---1 :) ~"t-~ I .-;:::::-___________ .,.---· I ~ ., I

r I o I
I I i c:i::==:1
I I o <):~ a I

I
: 7-j ~:TL-:5:-l· rWindO\'J 1:----r--1:~=:. I

~
17 : ·l O I)---------)

. _,._j I, I./ ./
\. -·---' C, y/,,...--- //

(0 ";;~~ ~: I /
i ✓ '\. '. ,-;--·.-, ; ! /
f' 'I.-~ j ! l_! ~ i 1' ./ LJ~ , .• <_;.;,,,_-1 ./

7 I ./
/ I ./ L--::::: __________ _y

(a) Smallest enclosing
window, no clipping;
largest picture possible
of entire object.

(b) Larger window, no clipping;
scaled-down picture.

----T-f--c.c:~
---------- I @ I

J_ P' ~r------------1 I (cl Clipping window; magnified
,7--e- ;. r !. ~ (1

1
.

1

(scaled-up) portion of object.

i l [QJ ~Window I l/ 'Om~
I /' u:.w:r;:L.f-1 ; ~- __ ===-F-_J
I I r'>~,,,..... --~----~-~-•.

;1---- ~. -J -1 l i--J :
'I p l I' •
l - ~

Figure 3.9: Mapping Window Contents to Viewing Surface

143

presenting information to the user is depicted in Figure 3.10.

3.2.2. Function Invocation and Parameter Specification

144

The most important and most crucial aspect of customizing user interfaces is the descrip

tion of how the user interacts with the functions provided by the application. Typically, user

interaction is described as follows. The user initially activates a function within the application.

Once the function is activated, the services provided by the function are called in some specified

order. Each service necessitates the specification of some parameter(s), and produces either

some error feedback or some information resulting from the service. This information is

presented to the user. In either case, the next action to be performed is either a service pro

vided by the function or quitting the function altogether.

The user interface model for functions resembles the application model for functions as

presented in section 3 .1.2. For each application function a corresponding function Interaction

object is defined within the user interface model. This function interaction object is concerned

with function invocation and managing the services provided by the function. Each service of an

application function is modeled by a corresponding service Interface object within the user

interface. The service interface object is in charge of interacting with the user to specify the

required (set of) parameter(s), calling the associated service within the application, and display

ing the results of the service to the user. Figure 3.11 depicts the relationships between function

and service objects in the application model and their counterparts in the user interface model.

The final aspect of the user interface model concerns parameter specification which is the

major component of interaction. Parameter specification is an Interaction task which is

appropriately specified in terms of Input techniques and the corresponding Interaction dev

ices. Foley, Chan and Wallace [14] have identified six fundamental interaction tasks that are

application and device independent. These tasks can be mapped onto many different techniques

and devices. The fundamental tasks are:

Interactive Data Structure

Internal
Represen tatian

E:z:ternal Representation
Di la But fer l Di la Buffer n

• •

\
\ • wmoow

VICWPORT

Phg!lical Output Device

Figure 3.10: Interfacing Information to the User

145

146

Figure 3.11: Function Interaction Objects

147

SELECT: select from a set of alternatives (usually) in a menu;

POSITION: indicate a position ((x,y) coordinate) on a output device;

ORIENT: orient an entity in 2-d or 3-d space;

PATH: generate a time sequence of positions or orientations;

QUANTIFY: specify a value to quantify a measure; and

TEXT: enter a text string as data.

The model of interactive applications as graphical editors mainly concerns itself with three tasks:

SELECT, POSITION, and TEXT. The user interface model therefore defines Interaction task

objects to handle the select, position and text tasks.

We can identify three basic input techniques which provide the basis for describing the

three interaction tasks.

[1] Coordinate-Input: this technique allows the specification of an (x,y) coordinate. It is used

to define both the SELECT and POSITION tasks.

[2] String-Input: this technique allows a text string to be input, and is used to define the

SELECT and TEXT tasks.

[3] Function-Key-Input: this technique allows a function key to be associated with a particu

lar choice and is used to define the SELECT task.

The user interface model defines a corresponding set of Input technique objects to handle

coordinate, string and function-key inputs.

Each of these input techniques can be realized by many physical input devices. As

described in [84], input devices can be classified into five logical categories: picks (e.g., light

pen), locators (e.g., tablet, mouse, trackball, joystick, touch tablet, sonic tablet), valuators (e.g.,

potentiometer), keyboard, and buttons (e.g., programmed function keyboard, chord keyboard).

Note that the examples provided for each category are currently available physical input devices

148

that are natural to the category. However, most computer systems available today provide only

a keyboard with function keys and a locator such as a mouse. It is necessary to have the capa

bilities of all logical categories to provide a rich mix of parameter specification possibilities. It is

possible, however, to simulate the logical function of any category with any input device. Some

of these simulations are extremely awkward and can therefore be ignored (for example consider

simulating a keyboard). Our design model therefore allows any physical input device to be used

for the three input techniques outlined above. The physical input device is mainly concerned

with accepting input signals from the user and returning these signals for processing by the user

interface. The model defines action table objects that are used to translate these input signals

into meaningful internal actions that can be operated on by the appropriate input technique

object. As an example, the actions associated with the Coordinate-Input technique are UP,

DOWN, LEFT, RIGHT and ENTER. The first four actions correspond to cursor movement, while

the ENTER action designates the current (x,y) coordinate as the parameter which is passed to

the appropriate interaction task object to process. If a joystick is used as the input device, then

the signals corresponding to joystick movement would be translated by an appropriate action

table object to the corresponding LEFT, RIGHT, UP, or DOWN action. The signal that is

returned by the joystick when the button is pressed will be translated by the action table object

to the ENTER action. If a keyboard is used as the input device then certain key signals (for

example t <--, -->, ~ would be translated as cursor movement actions while a designated key

(e.g., ENTER or RETURN) signal would be translated by the action table object to the ENTER

action. Note that allowing the user to customize action table objects greatly personalizes param

eter specification.

To complete the specification of interaction task objects, the input value returned by the

input technique object needs to be mapped to appropriate internal values. Note that the input

technique object returns a value in terms of the specified user interface. These values need to

be transformed into internal values that can be operated on by the application. Mapper objects

149

transform input values from input technique objects into entities that can be operated on by

interaction task objects. Interaction task objects in turn pass these parameter values to the

appropriate service interface object. Figure 3.12 depicts the overall model for interaction show

ing the data flow through the model. Figure 3.13 shows the associations of the tasks, mappers,

input techniques, action tables and input devices supported by the model.

An important measure of the effectiveness of a model for user interfaces is the speed and

ease with which new interaction tasks, input techniques and interaction devices can be incor

porated. The model for parameter specification presented above is very flexible, and allows new

interaction tasks, input techniques and interaction devices to be easily added. The inclusion of a

new interaction task necessitates the definition of a new interaction task object and a

corresponding mapper object that provides the facilities to map all possible inputs acceptable by

the task. The inclusion of a new input technique necessitates the definition of a new input tech

nique object (and possibly a set of corresponding action table objects), and the definition of a

new mapping function in each of the mapper objects that can process the input. Finally, new

interaction devices necessitate only the definition of appropriate action table objects.

3.2.3. The Overall User Interface Model

To summarize, the user interface model comprises the following six objects.

[1] Function Interaction Objects: These objects control the interaction between the user and

a particular application provided function. They control their associated service interface

objects, which perform the actual interaction with the user.

[2) Service Interface Objects: These objects are in charge of the actual interaction with the

user. Specifically, these objects receive a parameter from the user through associated

interaction task objects, call the associated service within the application, and display the

results of the service to the user through display objects.

Input
Technique

Input Device

Interaction
Task

mapping

Bclion Table

Figure 3.12: Data Flow for Parameter Specification

150

Select
Task

5el1eted
Elltitg

Select mapper

Ceardinate
lnpnt

Bctiaa/Valae

CNrdinate
Table

Pasitioa
Task

CDGrdinate
Pair

Pasitia mapper

String IDpat

Bcti1111/Valae

Cllaracter
Table

laput Dffice

Tezt
Task

151

oteniHd
Iring

Tez:t mapper

FuncliGII Kev
IDpal

Bcztian/
9alue

lteg Table

Figure 3.13: Relationships of Parameter Specification Objects

152

[3] Name-Mapping Objects: These objects provide a one-to-one mapping between user

defined external representations and internal representations of any entity involved in

interaction. These objects facilitate the translation of parameters from user defined

representations to application specific representations, and also any internal entities

involved in the information to be presented to the user.

[4] Interaction Task Objects: These objects facilitate parameter specification by the user.

Each interaction task object comprises a mapper object to translate all acceptable inputs

into forms operable on by the task object. Mapper objects in turn accept input from Input

technique objects. Input technique objects control the interaction (input) devices that are

used for parameter specification. Action table objects facilitate the translation of signals

from these physical input devices into actions or values that are meaningful to the particu

lar input technique object.

[5] Display Objects: These objects are in charge of presenting information to the user. This

information is usually in the form of internal display buffers maintained by the user inter

face.

[6] Device Objects: These objects are the physical input and output devices that are part of

the interactive system.

It is important to note that the user interface model also includes interactive data structures to

model the internal structures maintained by the user interface to aid in interaction, for example,

menus.

Figure 3.14 is an operational snapshot of a typical interactive system depicting the major

objects that are involved in both the application and user interface components. An interaction

cycle is described as follows. The user uses the input devices to enter information into the sys

tem. User input is managed by interaction task objects. The final input value is transformed by

name mapping objects into an internal value that is passed to the appropriate service interface

object. The service interface object invokes the appropriate service within the application

u
t C

e
s

USER INTERFACE COMPONENT

Displag
Objects

D01

D02

DOn

■teraction
lasts

IT1

IT2

ITII

Name
Map pi D4J
Objecb

function
I nteFection

Objects

FIO 1(INSERT)

Service
laterface
Objects

ERROR
BUFFER

SI01

RESULT
BUFFER

SIOn

Fl On

153

APPLICATION COMPONENT

unctions

F 1 (INSERT)

S1

Sn

Fn

11terective Date Structure

Figure 3.14: Operational Snapshot of the Interactive System

154

component, passing it the appropriate user input. The results of the service are first transformed

by name mapping objects into external user defined representations, and then passed to display

objects. Display objects present the information to the user on a physical output device.

It is important to note that the user interface component of interactive systems also pro

vides a set of functions to support interaction. These high-level user interface functions provide

facilities for screen layout (such as defining, moving, resizing and scrolling viewports, resizing

windows, etc.), manipulating menus, setting global interaction attributes (such as color, screen

size, etc.), and invoking function interaction objects. These user interface functions are modeled

exactly as application functions, thereby necessitating function interaction and service interface

objects to be defined. The user is provided similar facilities to customize every aspect of interac

tion with these user interface functions. Thus, the MIMD model facilitates a total customization

of every aspect of interaction within any interactive software system.

CHAPTER 4

THE DESIGN OF THE MIMD
USER INTERFACE DEVELOPMENT ENVIRONMENT

This chapter transforms the MIMD model developed in the previous chapter into a con

crete design. The presentation of the design is organized as follows. The first subsection

presents an overview of the user interface generation process, and describes the information

that is needed from the application component to form the basis of a specification mechanism

for describing user interfaces. The next subsection introduces the object-oriented philosophy of

system design and implementation. The design of the MIMD UIDE, using the object-oriented

paradigm, is then presented in the following two subsections. The first of these subsections

deals with the design of the objects involved in presenting information to the user. The second

concentrates on the design of objects involved in function invocation and parameter

specification.

4.1. The User Interface Generation Process

Figure 4.1 depicts the process of generating a user intertace using the MIMD approach.

This process is comprised of two phases, specification and generation. The user specifies

personalized interfaces for a particular application in the specificaton phase. This interface

specification is used to build the intended interface in the generation phase.

To facilitate the specification of personalized interfaces, the application component pro

vides application specific information. This information is used to define a specification mechan

ism for creating user interfaces that are appropriate only for the particular application. Users

then employ this specification mechanism to define personalized, application specific interfaces.

The next subsection describes the details of this application specific information.

155

Interactive System

Application User Interface

Applic&tion
Dnt8base

.-----------..
·----- -----·

Specificotion
Mechanism

User

MIMD Generator

Input/Output
Device D/B

---------.
··--------

lnterfoce
Kernel

Interface
Generator

Graphics
Kernel

User Interface
Specification

Figure 4.1: The User Interface Generation Process

156

157

The development of user interfaces requires, at a minimum, the following components:

[a] a device-independent graphics kernel that provides support for the presentation of infor

mation to be interfaced to the user,

[b] an Interface kernel that defines the data structures and routines common to all inter1aces,

and

[c] an Input/output device database that describes the characteristics of all input/output dev-

ices supported by the underlying operating environment.

The generation phase merges the user interface specification with the above components to

generate a personalized user interface for some particular application.

4.1.1. Application Information for the Specification Mechanism

The first issue to be considered in designing MIMD UIDEs is the information that must be

provided by an application to form the basis for developing an appropriate specification mechan

ism. This information consists of three components: information describing the entities of the

application, information describing the external representations of the major data structures, and

information describing the functions provided by the application.

As was pointed out in the previous chapter, the base entities of an application are depen

dent on whether the application manipulates a structured or unstructured picture. Throughout

our model, we will assume a structured picture since unstructured pictures are just a special

case. The possible forms that a structured picture can take are appropriately defined by a two

dimensional context-free language [85, 86]. The symbols, that is, the terminals and nonterminals

of the underlying grammar define the base objects of the structured picture, while the produc

tions of the grammar, define the manner in which base objects can be combined. The entity

information provided by the application is appropriately maintained in a language table. The

language table contains the following data for each entity of the language:

158

[a] the internal name of the entity;

[b] the type of the entity; that is, terminal, nonterminal or production;

[c] the display routine for the entity;

[d] a list of applicable productions for nonterminal entities; and

[e] a description of the entity to aid the user in understanding its role within the application.

(For example, a production's role is to define how its left-hand side nonterminal is

expanded. It is therefore presented to the user as a possible substitution for the nontermi

nal entity. During interaction, nonterminal entities present their associated productions as

selections for expansion.)

The language table serves two purposes. It allows the user to understand the structure of the

picture that is manipulated by the editor. It also provides the necessary information for the

specification mechanism to facilitate user defined customizations of entity names.

The information describing the external representations of the major data structures main

tained by the application is defined appropriately in a view table. The view table contains the

following information for each external representation that is supported:

[a] the identifier of the display buffer that contains the external representation, and

[b] a description of the external representation including an appropriate example of its form.

The information provided by the view table is used by the specification mechanism to allow the

user to define customized layouts of the external representations. The view table also facilitates

understanding of the manner in which the internal state of the application is presented.

The function table contains the relevant information about the functions provided by the

application. Each entry in the table contains the following information for each function:

[a] the name of the function;

159

[b] a service table that contains information about the services provided by the function. An

entry in the service table contains the following information:

[1] the name of the service;

[2] the name(s) of the parameter(s) that must be specified;

[3] the type of the parameter(s), for example, a language entity, an (x,y) coordinate in an

external representation, a function, a service, a boolean, a character, a string, an

integer, or a real number;

[4] the range of possible values for the parameter(s), if applicable;

[5] the default value(s) for the parameter(s), if applicable;

[6] information to aid in parameter specification;

[7] the error feedback generated by the service for invalid parameter specification; and

[8] the resulting information that the service provides after processing the valid

parameter(s).

[c] an ordering of services that define the (default) action (either a service call or quitting the

function) that is taken after successfully completing the service (note that the default action

for an error is to call the service again); and

[d] documentation on the function, describing each service in detail.

The specification mechanism uses the information provided by the function table to present the

functionality of the editor to the user. This information also facilitates the customization of the

entire interaction process, ranging from the names of functions and services to the manner in

which they are invoked.

Since the main objective of the MIMD UIDE is to allow end users to develop personalized

interfaces, ideally the specification mechanism itself is an interactive system. The specification

mechanism presents the application related information that is contained in the above tables to

160

the user and allows the user to specify the relevant aspects of the intended user interface. Since

this application specific information is always available, customization of the user interface is

possible at both the micro (for example, customization of entity names) and macro (for example,

customization of interacting with a function) levels. This approach allows the user interface to

evolve piece-meal with the user's experience.

4.2. The Object-Oriented Paradigm

The object-oriented philosophy of system design and implementation is being heralded as

the structured programming of the 1980's. The term object-oriented was first used to

describe the Smalltalk programming environment developed at Xerox PARC [79, 87]. Object

oriented programming is currently the hottest technological fad in software engineering as is

evident from ongoing research in the area [31, 88, 89, 90, 91] and the enormous popularity of

conventions and tutorials devoted to this topic. The major reason for its popularity can be attri

buted to the fact that it is one of the best available software engineering design methodologies

that supports both encapsulation and reusability, the bases for modern software engineering.

In this dissertation, the following model and terminology of object-oriented design is

assumed. The design of an object-oriented system is described by a set of classes. Each class

defines all the information necessary to construct and use its particular kind of objects. Each

object is therefore an Instance of one class. Each class defines

[a] how its instances are created,

[b] a collection of Instance variables that describes the local storage for maintaining each

instance's individual state, and

[c] a set of operations (or methods) that can be performed on instances of the class, that is,

methods that are generic and apply to any instance of the class.

A class can be defined in terms of one or more other classes using Inheritance. If a

class B is defined in terms of class A, then B inherits the instance variables and methods of

161

class A. Class A is the superclass of class B, and conversely B is the subclass of A. Class B

can override or restrict any of the methods that it inherits from its parent class A. Of course,

class B can also define its own instance variables and methods. Thus an object-oriented system

is designed as a hierarchy of classes.

An object-oriented software system is therefore a collection of objects. Communication is

achieved through messages that invoke one of the set of operations defined on the object.

Thus, objects in a object-oriented system are encapsulated modules since they can be

accessed only through the set of operations that define their external interface. Classes and

inheritance promote reusability since newer classes can be defined as derivations of existing

classes. (Cox [31] aptly uses the term Software-lC's to describe the predefined classes of any

object-oriented system.)

Finally, it is important to note that most object-oriented systems define a class Object

which is the root of the inheritance hierarchy of all classes within the system. The Object class

is the most generic class, and is the only class that has no superclass. It defines how objects

are managed by the system and describes a repertoire of behaviors that will be inherited by all

other classes. It also provides the basic protocol for instantiating objects of any class. Since the

Object class is dependent on the particular implementation environment of the object-oriented

system, we will assume its existence for the purposes of our design without giving particulars

about its specification.

The presentation of the design for MIMD UIDEs employs the following framework to define

classes. Each class definition describes its parent class, along with the instance variables and

the set of methods that it provides. The class definition will not include how instances of the

class are created, as these are implementation dependent and best decided during the detailed

design and implementation phases.

162

4.3. Presenting Information to the User

This section develops the design of objects involved with presenting information to the

user. The first subsection presents the design of interactive data structures. The following sub

section discusses the design of display objects.

4.3.1. Interactive Data Structure Objects

Interactive data structures form the basis for managing and manipulating data within the

application and user interface components of interactive systems. The external representations

of interactive data structures, which are maintained within internal display buffers, describe the

information to be interfaced to the user.

The following subsections develop the design of interactive data structures. The first sub

section describes the design of the data component of these interactive data structures, while

the second subsection describes the design of the structure component. These two subsections

consider interactive data structures that support only a single external representation. The next

subsection extends the design of interactive data structures to support multiple external

representations. The final subsection describes the use of interactive data structures within the

MIMD UIDE.

4.3.1.1. Data Objects

The design of the data component of interactive data structures is defined by three subc

lasses of Object:

[1] the Internal Data class which defines the internal representation of data,

[2] the ExternalData class which defines the external representation of data, and

[3] the lnteractiveData class which merges the above classes to define the data component of

interactive data structures.

The following subsections present the design of these three data classes.

163

4.3.1.1.1. Internal Data

The lnternalData class is an abstract class that is defined as the root of the internal

representation of the data abstraction inheritance hierarchy. Its contribution to the design is not

in the power of its instances, but in defining a template that describes the methods and local

data that must be provided by any class that is derived from it. In other words, the lnternalData

class defines the abstract external interface (or protocol) that must be provided by any internal

data object. The actual definition of the methods is described at the subclass level. Each of the

abstract methods defined at the lnternalData class level simply return subclassResponslblllty

which is an error indicating that the subclass was responsible for providing the definition of the

method. Figure 4.2 depicts the specification of class lnternalData. Note that the instance vari

able datalnfo is a dummy variable to facilitate the description of the methods. This instance vari

able will be appropriately redefined at the subclass level.

Instance Variables:

Class: lnternalData
Superclass: Object

[a] Object datalnfo; r the actual data */

Methods:
[1] ASSIGNMENT OPERATIONS:

assignData(Value); r Assign Value to datalnfo */

[2] RETRIEVAL OPERATIONS:
retrieve Data(); /* return the value of data Info * /

[3] COMPARISON OPERATIONS:
isEqual(anObject); /* return TRUE if anObject is equal to datalnfo,

FALSE otherwise */
(4] ATTRIBUTE OPERATIONS:

size():/* return the size of datalnfo */

Figure 4.2: Class lnternalData

164

The base data types provided by any object-oriented system will be defined as subclasses

of the lnternalData class. Thus classes Integer, Real, Character, and String will be derived from

class lnternalData and will redefine the methods accordingly. Since the specification of these

base type classes is straightforward (and is usually provided as part of the object-oriented sys

tem), their definitions will be assumed. The following discussion defines class EmployeeData

which describes the information maintained for each employee for the example interactive sys

tem, EMPSYS. The datalnfo instance variable of class EmployeeData is appropriately

described as

datalnfo = { String Name;
Integer SS#;
Integer Pos;
String Dept;
Integer Controls;
EmployeeData• FirstEmp, LastEmp, NextEmp, Boss;

}

Thus Name and Dept are objects of class String while SS#, Pos (0: CEO, 1: Manager, 2:

Employee} and Controls are objects of class Integer. All the other fields signify identifiers of

EmployeeData objects. Note that the syntax used throughout this design is based on the C pro

gramming language [92]. The methods for the EmployeeData class are described in terms of

the methods provided by the classes of its subfields, as follows.

[1] Retrieval Operations: We define retrieval methods for each field, as follows.

retrieve<F _NAME>(); r return(<F _NAME>-->retrieveData()}; */

where <F _NAME> is substituted by the name of each field. Note that the terminology

<Object_name>-•><method _ name>(<parameters>);

is used throughout the design for invoking an object's method.

[2] Assignment Operations: The assignData(Value) method assumes that Value is an object

of class EmployeeData. Its definition follows.

Name-->assignData(Value-->retrieveName());
SS# -->assignData(Value-->retrieveSS#());
Pos -->assignD ata(Value-->retrieve Pos());
Dept-->assig nData(Value-->retrieveDept());
* ... etc ... *

165

[3] Comparison Operations: Let us assume that two objects of EmployeeData are equal if

their social security numbers are equal. Thus the method isEqual(anObject), where anOb

ject is a EmployeeData object, is defined as

return(SS#-->is Equal(a Object-->retrieveSS#()))

[4] Attribute Operations: The size() method of EmployeeData is just the addition of the size

of its component parts (Name, SS#, Pos and Dept), and therefore can be described as

return(Name-->size() + SS#-->size() + Pos-->size() + Dept-->size())

The assumption is that the size() method of any object returns an Integer object, and the

'+' method is defined by the Integer class. Thus the expression "3 + 4" is an invocation of

the '+' method of Integer object 3 which adds its value to parameter 4 and returns the sum

7 as an Integer object.

The above definition of class EmployeeData depicts the reusability aspect of object

oriented systems. The system need only provide the base type class definitions as appropriate

derivations of the abstract class lnternalData. The designer of the interactive system reuses

these base classes to define the data that is specific to the needs of the interactive system.

4.3.1.1.2. External Data

The definition of the ExternalData class is depicted in Figure 4.3. Note that lnternalData

and ExternalData are parallel hierarchies, with the Object class as their common parent. The

reason for separating these classes is due to the fact that the design of an interactive system

will normally require the use of non-interactive data. That is, data that will never be interfaced to

the user and therefore does not require a definition of its external representation. The design of

the interactive system will create instances of class ExtemalData to describe the external image

166

of only those lnternalData objects that participate in the external representation of interactive

data structures.

As an example, consider the ss# _ view external representation of the example interactive

system EM PSYS. Each node will declare an object of External Data that is capable of generating

the node's display in the ss# _ view display buffer. The instance variable display Function contains

the necessary information to convert the Integer object SS# of the internal representation to its

appropriate display in the buffer. For example, if SS# has the value 593142618, then the

Instance Variables:

Class: ExternalData
Superclass: Object

[a] Function displayFunction; r the display routine */

[b] Object displayAttributes; r the attributes of the display, i.e.,
its width and height • /

[c] Object entryCoords; r the entry coordinates of the node's display
in some display buff er • /

Methods:
[1] ASSIGNMENT OPERATIONS:

- assignDisplay(dispFunc, dispAttr); r sets displayFunction to dispFunc and
displayAttributes to dispAttr*/

- assignEntry(xyPair); r sets entryCoords to xyPair * I

[2] RETRIEVAL OPERATIONS:
- display(dispBuf); r displays node in buffer dispBuf at coordinates

entryCoords by invoking displayFunction * /
- retrieveEntry(); /* returns entryCoords */

[3] COMPARISON OPERATIONS:
contains(xyPair); r return TRUE if xyPair lies within the boundaries

of the node's display, FALSE otherwise */

(4] ATTRIBUTE OPERATIONS:
displayAttr(); r returns displayAttributes */

Figure 4.3: Class ExternalData

167

displayFunction might display it as follows:

I593-14-2618 I
4.3.1.1.3. Interactive Data

To complete the design of the data abstraction of interactive data structures, the external

and internal representations must be merged into a single unit. In systems that support multiple

inheritance, the class lnteractiveData is defined as a child of both the lnternalData and External

Data classes. However, since many of the current object-oriented systems do not support multi

ple inheritance, a more practical design of class lnteractiveData combines the two representa

tions by declaring instance variables of each class. Its methods must be designed to provide

access to the internal and external representations respectively. Figure 4.4 depicts the

specification of class lnteractiveData. Note that class lnteractiveData could include methods to

expose the methods defined for the lnternalData and ExternalData classes. For example, the

method lsEqual(anObject) to compare two lnteractiveData objects can be defined as:

return(data Part-->isEqual(anObject-->accesslnternal())).

Class: lnteractlveData
Superclass: Object

Instance Varlables:
[a] lntemalData dataPart; r the internal representation*/

[b] ExternalData displayPart; /* the external representation */

Methods:
(1] access Internal(); r returns data Part * I

[2] access External(); r returns display Part */

Figure 4.4: Class lnteractlveData

Figure 4.5 summarizes the inheritance hierarchy of the data classes.

4.3.1.2. Structure Objects

168

The design of the structure component of interactive data structures follows the same prin

ciples used in the design of the data component. Specifically, the design must allow for both

conventional structures as well as interactive structures. The development of interactive systems

will include internal structures that need not be interfaced to the user, and therefore do not

require any external representations. To exploit reusability, our design of interactive data struc

tures must take advantage of the internal structures. Thus the design defines two parallel inheri

tance hierarchies, the structure hierarchy which describes the internal structure abstraction, and

the interactive structure hierarchy which extends the internal structure abstraction to include

external representations.

4.3.1.2.1. Internal Structures

The Structure class is an abstract class that defines the root of the internal structure inher

itance hierarchy. This generic class defines the protocol that describes the behavior of any

structure, such as lists, trees, tables, sets, etc. It defines the set of methods that must be pro

vided by any structure class that is derived from it. The implementation of these abstract

methods within the Structure class is as subclassResponslblllty. This produces an error mes

sage indicating that the definition of the method is the responsibility of the subclass.

Figure 4.6 summarizes the specification of the Structure class. The following points are

worth noting about the specification.

[1] The data contained in each node of the structure is defined as an instance of class Object

to allow structures of any data object to be defined. Note too that such a design allows for

the definition of both homogeneous as well as heterogeneous structures. It is obvious

that the design allows homogeneous objects of a particular class in a structure. Homo

geneity can be achieved as a side effect of inheritance. A structure specified in terms of a

169

Object

~ --
Externa IData Interact iveData

Integer Real

Figure 4.5: The Data Abstraction Hierarchy

Instance Variables:

Class: Structure
Superclass: Object

(a] nodelnfo = { Object nodeData; /* the data in each node of the structure*/
Links nodeNeighbors; /* a node's neighborhood relationship*/

} ;

Methods:
[1] ACCESS OPERATIONS:

- nextNode(aNode, alink); r returns alink neighbor of aNode * I
- eachNodeDo(codeBlock); r accesses each node in the structure and

makes each node perform codeBlock */

[2] SEARCH OPERATIONS:
searchNode(aObject); /* uses traversal method each Node Do to determine

if aObject exists in the structure. Returns
identifier of node if found, NULL otherwise*/

[3] MANIPULATOR OPERATIONS:
- addNode(aNode, alink, aObject); r adds a new node aObject as alink

neighbor of aNode */
- deleteNode(aNode); r deletes node aNode from the structure */

Figure 4.6: Class Structure

170

particular class can hold objects of any class derived from that class; that is, it may be

heterogeneous. For example, assume a structure that is defined to maintain objects of

class A. Suppose classes B and C are derived from class A. The structure can also hold

B and C objects, since their behavior is compatible with A objects.

[2] The iterator method eachNodeDo accepts a block of code, codeBlock, that each node in

the structure is asked to perform. The nature of codeBlock is dependent on the particular

implementation style of the object-oriented system. Systems like Smalltalk [79] and

Objective-C [31] allow an actual block of statements (enclosed between square brackets)

to be passed as an argument (or selector of a message). In other systems, codeBlock

could be defined as a function that contains the statements that each node will perform.

(Refer to [94] for a further discussion on iterators for abstract data structures.) We will

assume the former style.

171

[3] As an example of using the iterator, the method searchNode can be described as follows.

codeBlock = [[eachNode do:
Boolean isFound;
isFound = eachNode-->isEqual(aObject};
if (isFound}

return(eachNode); r Node is found•;
]
return(NULL); r Node was not found•;

] ;
return(eachNodeDo(codeBlock});

The description of specific structures is defined as derivations from class Structure. As

with the design of the data component, it is useful to identify a set of basic structures on which

other structures can be built. It is widely accepted in computer science education that the list

and tree structures are the basic structures. Figure 4.7 presents an appropriate inheritance

hierarchy for internal structures which represent most of the major data structures that are

employed in designing software systems. Note that even though lists and trees are the base

structures, class Set and Graph have parallel inheritance hierarchies. This allows their definitions

to be based on any of the base structures.

Figure 4.8 presents the specification of the list structure. Note that nodes within a list are

accessed by their position in the list. Thus class List provides additional methods to facilitate

processing of nodes based on their position in the list.

The queue structure restricts access to only the first and (currently) last element of the list.

Thus class Queue can be simply derived from class List by overriding the following methods.

[1] The access methods are redefined as access First() and access Last() which provide

access to the first and last nodes in the queue. These can easily be defined in terms of

the methods provided by List as accessNode(1} and accessNode(numberNodes) respec

tively.

[2] The addNode method of class Queue adds a node always to the front (or the end} of the

queue, and can be described using List's method addElement(1, a Object}.

172

Object

Queue --------,---....;::,,..---, l,....._B..;;.:,_-T-re_e__,I

Figure 4.7: The Structure Abstraction Hierarchy

Class: List
Superclass: Structure

Instance Variables:
[a] nodelnfo = { Object nodeData; r the data in each node of the structure */

Link next; /* each node has a next neighbor*/
Link previous:/* and a previous neighbor*/

} ;
[b] Link firstNode; /* access to the first node in the list */
[c] Link last Node; r access to the last node in the list * /
[d] Integer numberNodes; r the number of nodes (currently) in the list */

Methods:
[1] ACCESS OPERATIONS:

- nextNode(aNode, alink); r returns next or previous neighbor of aNode */
- accessNode(aPos); r returns node at position aPos in the list*/
- eachNodeDo(codeBlock); r traverse list from firstNode to lastNode */

[2] SEARCH OPERATIONS:
searchNode(aObject); r uses traversal method eachNodeDo to determine

if aObject exists in the structure. Returns
identifier of node if found, NULL otherwise*/

[3] MANIPULATOR OPERATIONS:
- addNode(aNode, alink, aObject); r adds a new node aObject as previous

or next neighbor of aNode * I
- addElement(aPos, aObject); r adds aObject as aPos element of list*/
- deleteNode(aNode); /* deletes node aNode from the structure */
- deleteElement(aPos); r deletes node at position aPos in list*/

Figure 4.8: Class List

173

[3] Correspondingly the deleteNode method of class Queue always deletes the node at the

end (or the front) of the queue, and can be described using List's method

deleteElement(numberNodes).

Note that class Queue must restrict access to the other methods provided by List. This is done

by overriding each method to return an error message. Through the rest of this discussion we

assume that classes invalidate superclass methods that violate their behavior by returning an

error message.

174

A stack is a list with access restricted to one end only, usually the front. Its methods

accessFirst, addNode and deleteNode apply to only the first node of the stack. Here again,

class Stack is derived as a subclass of List and its new methods are easily described in terms

of methods in class List.

Finally, the table structure is a special kind of List wherein access to nodes is provided by

the application of a hash function. The three base methods of list that access a node (nextNode,

addNode, and deleteNode) are overridden in the specification of class Table so that a hash

method of each data object is invoked to determine its position in the list. It is the responsibility

of the data objects to provide this hashing method. An abstract hash method is therefore defined

at the Object class level which forces the subclasses derived from it to provide their own

definitions.

Figure 4.9 depicts the specification of the BinaryTree class, as binary trees are the most

common tree structures used in the development of software systems. The description of the

methods provided are self explanatory.

Finally, we close this section with a discussion of class Set. A set can be based on any of

the structures we have discussed, as its only requirement is that it cannot contain any duplicate

elements. The Set class declares an instance variable SetStruct to be an object of class Struc

ture, thereby allowing a set to be based on a list, table, or tree structure. To ensure that no

duplicate elements are added to the set, the Set class defines its own addElement(aObject)

method. This is defined in terms of the methods provided by the structure SetStruct and can be

accomplished as follows:

if (SetStruct-->searchNode(aObject) == TRUE)
return(error("Node aObject already exists, cannot add"));

else
(SetStruct-->addNode(aObject));

The Set class will also define methods that are specific to sets, such as set union, difference

and intersection.

Instance Variables:

Class: BlnaryTree
Superclass: Tree

[a] nodelnfo = (Object nodeData; r the data in each node of the structure */
Link parent;/* link to parent*/
Link leftChild r link to left child */
Link rightChild r link to right child */

} ;
[b] Link root;/* the root of the binary tree */

Methods:
[1] ACCESS OPERATIONS:

- nextNode(aNode, alink); /* returns parent, left or right child of aNode*/
- eachNodeDo(codeBlock); /* an inorder traversal of the binary tree*/
- eachNodeDoPre(codeBlock); /* a preorder traversal of the binary tree */
- eachNodeDoPost(codeBlock); r a postorder traversal of the binary tree*/

[2] SEARCH OPERATIONS:
- searchNode(aObject); r uses one of the traversal methods above to find

aObject. Returns identifier of the node if found,
NULL otherwise*/

- isLeaf(aNode); /* returns TRUE if aNode is a leaf node (no left or
right child), FALSE otherwise*/

[3] MANIPULATOR OPERATIONS:
- addNode(aNode, alink, aObject); /* adds a new node aObject as left or

right child of aNode */
- deleteChild(aNode, alink); i deletes left or right child of aNode */
- deleteNode(aNode); /* deletes aNode (must be a leaf node) from tree*/

Figure 4.9: Class BinaryTree

4.3.1.2.2. Interactive Structures

175

Class lnteractiveStruct extends the Structure class by providing facilities to maintain and

manage the external representation. The main assumption is that objects of the Structure class

have as their node's data, objects of the lnteractiveData class. This ensures that data objects

Include both their internal and external representations.

The lnteractiveStruct class is specified in Figure 4.10. The following points serve as an

explanation of the specification of the lnteractiveStruct class.

Class: lnteractlveStruct
Superclass: Object

Instance Variables:
[a] Structure internalStruct; r the internal representation of interactive

data structures */
[b] DisplayBuffer dispBuf; r the buffer wherein the external representation

of the data structure is generated */
[c] Function displayGeometry(); /* a function that calculates the entry

coordinates of nodes' displays in dispBuf */

Methods:
[1] ACCESS OPERATIONS:

- nextDisplay{aNode, alink); /* returns entry coordinates of the display
of alink neighbor of aNode * I

- eachDisplayDo{codeBlock); /* accesses the external representation of
each data node; makes it perform code Block* I

[2] SEARCH OPERATIONS:
searchDisplay(xyPair); /* uses traversal method eachNodeDo to search

for a node whose display contains xyPair. Returns
identifier of node if found, NULL otherwise*/

[3] MANIPULATOR OPERATIONS:
- addlnteractive(aNode, alink, aObject); /* adds a new node aObject into

the interactive data structure
as alink neighbor of aNode */

- deletelnteractive(aNode); /* deletes node aNode from the interactive
data structure */

Figure 4.10: Class lnteractlveStruct

176

[1] displayGeometry is a function that is capable of calculating the entry coordinates (within

dispBuf) of the display of every node's external image. This function is called whenever

the interactive data structure is changed through additions or deletions of nodes. display

Geometry could employ either a brute-force method wherein every node's entry coordi

nates are recalculated whenever a change is made, or an incremental method wherein the

function accepts the identifier of the node that affected the change and recalculates the

entry coordinates of only those nodes in the structure that were affected by the change.

For simplicity, we will assume the former design of displayGeometry.

178

The deletelnteractive method is similarly described.

As an example, consider a modification of EMPSYS which maintains only a single external

representation, ss#_view. The data structure for EMPSYS is an object of class lnteractiveStruct.

The instance variable internalStruct defines the list of nodes, dispBuf defines the display buffer

ss# _ view, and the displayGeometry function contains the necessary information to calculate the

entry coordinates of each node's display in dispBuf. The displayGeometry function can be

defined in terms of the list's iterator as follows:

/* Assume that DWI DTH defines the width of dispBuf * /
codeBlock = [eachNode do:

]

/* If 1st node then entry= (0, DWIDTH/2) */
If (eachNode-->isEqual(internalStruct-->accessNode(1)))

(eachNode-->accessExternal())-->assignEntry((O,DWIDTH/2));
Else [

/* access previous node * I
prevNode = (eachNode-->accesslnternal())-->retrievePrev();
/* extract entry coordinates * I
xyPair = (prevNode-->accessExternal())-->retrieveEntry();
/* adjust y coordinate * I
xyPair.y += ((prevNode-->accessExternal())-->displayAttr()).height + K;
/* assign entry coordinates * /
(eachNode-->accessExternal())-->assignEnt ry(xyPair);

]

internalStruct-->eachNodeDo(codeBlock);

4.3.1.3. Supporting Multiple External Representations

The following two new classes extend the design of interactive data structures to allow for

multiple external representations:

[1] class MultiData, which is derived from class lnteractiveData, that associates a list of exter

nal representations of data with its single internal representation, and

[2] class MultiStruct, which is derived from class lnteractiveStruct, that associates a list of

display buffers with a single internal representation to hold its multiple external representa

tions.

179

Figure 4.11 depicts the specification of class MultiData. The multiple external representa

tions are maintained in variable displayPart which is defined as an object of class List. The

accessExternal method provides access to the ith display in the list displayPart, and is suitably

described by

return(displayPart-->accessNode(i));

Class: MultlData
Superclass: lnteractiveData

Instance Variables:
[a] lnternalData dataPart; /* inherited from lnteractiveData */

[b] List displayPart; /* a list of ExternalData objects, i.e., multiple
external representations of data Part • I

Methods:
[1] accesslnternal(); r return dataPart */

[2] accessExternal(i); r returns ith external display; i.e., node i of
List displayPart */

Figure 4.11: Class MultlData

Finally, Figure 4.12 shows the specification of the MultiStruct class. Note that the lnternal

Struct variable is assumed to hold data elements which are objects of class MultiData. The

description of methods nextDisplay and eachDisplayDo is similar to the descriptions of these

methods for the lnteractiveStruct class. The only change is the use of

accessExternal(i)

to access the ith external representation of the data node. Any manipulation of the data struc

ture must update all of its external representations. Thus, the manipulator methods are redefined

in class MultiStruct to change all the external images. As an example, the redisplay of all exter

nal representations within the addlnteractive method is described as follows.

Class: MultiStruct
Superclass: lnteractiveStruct

Instance Variables:
[a] Structure internalStruct; I* inherited from lnteractiveStruct */

[b] List dispBufs; /* a list of display buffers to hold the multiple
external representations * I

[c] List displayGeometry; r a list of geometry functions, one for each
external representation * I

Methods:
[1] ACCESS OPERATIONS:

- nextDisplay(iPos, aNode, alink); r returns entry coordinates within
iPos display buffer of the display
of alink neighbor of aNode * I

- eachDisplayDo(iPos, codeBlock); r accesses each data node's iPos
external representation and makes
it perform code Block * /

[2] SEARCH OPERATIONS:
searchDisplay(iPos, xyPair); /* searches for a node whose iPos external

representation contains xyPair */

[3] MANIPULATOR OPERATIONS:
- addMulti(aNode, alink, aObject); r adds a new node and updates all

its external representations */
- deleteMulti(aNode); /* deletes a node from the structure and updates

all its external representations */

Figure 4.12: Class MultiStruct

codeBlock = [Integer i;
i-->assignData(0); r i = o */
eachNode do:

i-->increment 1 (); /* i = i + 1 * /
eachDisplayDo(i, [eachDisplay do:

eachDisplay-->display(each Node)]);
]

dispBuf s-->eachNode Do(code Block);

180

181

4.3.1.4. Using Interactive Data Structure Objects

The following user interface objects that are involved in the presentation of information to

the user necessitate the use of interactive data structures: name-mapping objects, the applica

tion specific information that is used to define the user interface specification mechanism, and

menus.

Name-mapping objects are used to define mappings between user defined representations

and the internal representations of those entities that are interfaced to the user. Thus, name

mapping objects are merely instances of class lnteractiveData or MultiData, allowing for both a

single representation or multiple representations of internal entities.

The information provided by interactive applications that form the basis for defining an

appropriate specification mechanism (the language, view and function tables) are merely

instances of class List or Table. The data that describes the contents of each table is defined by

an appropriate class which is derived from class lnternalData.

User interfaces require the definition of menus to aid in function invocation and parameter

specification. Menus maintain names of entities known to the application (function names, ser

vice names, and language entity names), which describe possible parameter choices. For per

sonalized user interfaces, menu entries correspond to name mapping objects that describe the

user defined representations of internal entities. Menu objects are appropriately defined as

instances of class lnteractiveStruct or MultiStruct which maintain name mapping objects in an

appropriate structure (usually a list or tree (for hierarchical menus)). Figure 4.13 depicts an

example of a user defined menu for function invocation. The menu supports three external

representations to allow selection of the function according to its iconic representation, its asso

ciation with function keys and its textual representation. The Figure also depicts the objects

involved in a typical interactive data structure that maintains multiple external representations.

User defined name mapping objects correspond to the MultiData objects shown in the Figure.

Each MultiData object is made up of an lnternalData object that defines the function name, and

List Object

MultiDatn ob·ect
lnternnlData Object

Name: Insert

Dis

.

[I]

Nnme: Delete I
........

F 1: INSERT ADO

REMOVE
F2: DELETE

Fl 0: HELP

Figure 4.13: Example of a MultiStruct Object

182

183

a List object that maintains three ExternalData objects that are capable of generating the

appropriate external images of the function name in each of the three display buffers. The Fig

ure highlights the boundaries of the external images generated by these ExternalData objects.

The external representations are defined as a List object that maintains three DisplayBuffer

objects. Finally, the menu itself is a MultiStruct object that maintains the internal representation

along with its three external representations.

4.3.2. Display Objects

Display objects are concerned with interfacing information internal to the interactive system

to the user. The information to be interfaced to the user is maintained as suitable external

representations within display buffers. These external representations are displayed on appropri

ate physical output devices for viewing by the user. The transformation of the image within the

display buffer to an image on the output device is achieved through windows and vlewports.

Windows define rectangular regions within display buffers describing the extent of the image to

be interfaced to the user. Viewports define rectangular regions on the physical output device

wherein a portion (according to the viewport dimension) of the image defined by the window is

depicted to the user.

The design of display objects is defined by the following classes.

[1] Class DisplayBuffer defines the characteristics of internal display buffers, providing the

facilities to generate and maintain external images.

[2] Class DisplayDevice defines the characteristics of the final display providing the facilities to

maintain and manipulate viewports.

[3] Class View defines the transformation of images from display buffers to output devices

through windows and viewports.

The following subsections describe the design of the three classes.

184

4.3.2.1. Display Buffer Objects

It is appropriate to maintain the image within internal display buffers as a display file of

graphical display commands, for the following reasons.

[a] This approach allows any image, however large, to be maintained.

[b] The image maintained within the display buff er must be transformed from world coordi

nates to device coordinates before being presented on the output device. It is more

efficient to apply this transformation on display commands rather than on the actual image

itself.

[c] The actual image to be displayed is generated once before being presented to the user.

[d] Changes to the image are accomplished by manipulating (that is, deleting and inserting)

display commands. This approach is more efficient than erasing and redrawing images.

[e] Most of the graphics kernels currently available provide image generation facilities only at

the viewport level.

Thus, the major concern of the DisplayBuffer class is to provide facilities for manipulating

the display file of graphics commands and for extracting an appropriate portion of the image as

defined by windows. The specification of class DisplayBuffer is depicted in Figure 4.14. Note

that the graphics display commands supported will correspond to similar facilities provided by

any graphics standard such as Core [74]. We have included only a few of the possible com

mands in Figure 4.14. The getWindow method will only return those display commands that are

involved in generating the image within the window specification. In other words, getWindow

clips the image to the specified window.

4.3.2.2. Display Device Objects

Each display device can have many viewports associated with it. All of these viewports

may not be visible at the same time. Therefore display devices provide the facilities to maintain

these viewports and their displays. The specification of the DisplayDevice class is shown in

Instance Variables:

Class: DlsplayBuffer
Superclass: Object

[a] List displayCommands; r the display file of graphics commands defining
the external image*/

[b] XyCoords curXy; r the current (x,y) coordinates updated by every
display command * I

[c] Integer numEnt; r the number of entries in displayCommand */

Methods:

(**** GRAPHICS PRIMITIVES ****)

[1] moveAbs(xyPair); r set curXy to xyPair */

[2] moveRel(xyPair); /* add xyPair to curXy */

[3] lineAbs(xyPair); /* generate line command from curXy to xyPair */

[4] lineRel(xyPair); /* generate line command from curXy to (curXy+xyPair) */

[5] circle(xyPair,radius); r generate circle command*/

[6] text(aString); /* generate aString text command*/

(**** DISPLAY FILE MANIPULATION****)

[7] clearDisplay(); r set numEnt to zero * I

[8] deleteDisplay(aPos); r deletes aPos entry from displayCommands */

[9] addDisplay(aCommand,aPos); r adds display command aCommand at aPos
position in displayCommands */

(**** WINDOW INTERFACE****)

[1 O] getWindow(winEntry,winDim); r return list of display commands
corresponding to window specification*/

[11] getCurXy(); /* return curXy * /

Figure 4.14: Class DlsplayBuffer

185

186

Figure 4.15. Viewports are maintained in viewStruct which contains the following information for

each viewport: the identifier of the viewport object, the dimensions of the viewport, a flag indicat

ing whether the viewport is visible or invisible, and the position of the viewport on the display

device. Note that the DisplayDevice class defines display devices at a logical level. The actual

association with a physical output device supported by the underlying operating environment is

achieved by the physicalDev instance variable. Such a design strategy allows separate

instances of DisplayDevice to handle different types of physical output devices. It also makes it

easy to handle different emerging technologies by merely deriving subclasses from DisplayDev

ice to describe the characteristics of the newer technologies.

Instance Variables:

Class: DlsplayDevice
Superclass: Object

[a) String devName; /* the internal name of the display device*/
[b] XyCoords devDim; /* the lower right coordinates of the device, assuming

that (0,0) is upper right coordinates */
[c] List viewStruct; /* a list of viewports maintained by the device*/
[d] Objld physicalDev; /* the identifier of the physical output device */

Methods:
[1) identifyView(xyPair); r returns the top most viewport within whose

display xyPair lies */
[2] clearArea(aView); /* clears the area of the display device affected by

the display of aView */
[3] ctearDevice(); r erases the entire display * I
[4] displayView{aView); /* display aView viewport */
[5] displayAII(); /* displays all viewports */
[6] viewlnvisible(aView); /* makes aView invisible and erases its display*/
[7] viewVisible(aView); /* makes aView visible and draws its display*/
[8] addView(aView,aPos); r adds aView at position aPos in viewStruct */
[9] deleteView(aView); /* deletes aView from viewStruct */
[10] circulate(aView); /* brings a View's display to the top*/

Figure 4.15: Class DisplayDevice

187

Viewports must be allowed to overlap to facilitate multiple viewports to be displayed simul

taneously and to allow the space allocated to viewports to intersect. To facilitate overlapping

viewports, it is necessary to define an ordering of their displays. This ordering is defined as their

position in the List object viewStruct. Thus, if the space occupied by two viewports A and B

intersect, and the position of A in the list is less than that of B, then the display of B will hide the

intersection portion of A's display. Figure 4.16 depicts four overlapping viewports and their

corresponding position in list viewStruct. In the Figure viewA is the bottom most display while

viewD is the topmost display. The following serve as an explanation of the methods provided by

class DisplayDevice.

[1] The identifyView method determines a viewport given an (x,y) coordinate on the device.

This is done by a reverse traversal of viewports maintained in viewStruct, starting at the

top most viewport. The viewport method identifyXy is called to determine whether xyPair

lies within its display. This method returns the identifier of the viewport if found, NULL oth

erwise.

[2] The clearArea method is used to clear the portion of the device that is affected by aView's

display. This method returns the identifier of the bottom most viewport whose display was

affected. Note that redisplay starts from this viewport.

[3] The clearDevice method clears the entire display space.

[4] The displayView method causes the display of viewports starting with aView and terminat-

ing with the top most viewport. This method is described as follows.

r determine position of aView in viewStruct */
startPos = veiwStruct-->searchNode(aView);

codeBlock = [eachNode do:
eachNode-->displaylmage();

r call iterator method of viewStruct * I
viewStruct-->eachNodeDo(codeBlock, startPos);

188

Li st vi ewStruct

View A View B View C View D

Position 1 Position 2 Position 3 Position 4

Figure 4.16: Overlapping Viewports

189

where searchNode and eachNodeDo are methods provided by class List.

[5] The displayAII method causes the display of all viewports. This is done in a similar fashion

to displayView, setting startPos to 1.

[6] The viewlnvisible method is used to erase a viewport's display, and is described by the fol-

lowing.

r clear area affected by aView */
bottomView = clearArea(aView);
I* set aView's visible flag to FALSE */
aView-->assignVisible(FALSE);
/* redisplay affected area * I
displayView(bottomView);

[7] The viewVisible method makes a viewport visible and causes its display to appear on the

output device. This method is similar to the viewlnvisible method, except that the visible

flag is set to TRUE.

[8] The addView method allows a viewport to be associated with an output device. The

relevant information of the viewport is described in aView and the viewport is inserted at

position aPos in viewStruct. Note that if the viewport is visible, then it must be displayed

on the output device. The following describes the method.

/* add aView to viewStruct */
viewStruct-->addElement(aPos,aView);
/* if viewport is visible, display it */
If (aView-->retrieveVisible() == TRUE)

viewVisible(a View);

[9] The deleteView method causes a viewport to be disassociated from the output device.

Note that if the viewport was visible, then a redisplay is necessary. Therefore, the method

is described by the following.

/* If visible, redisplay * I
If (aView-->retrieveVisible() == TRUE)

view Invisible(a View);
I* delete from viewStruct * I
viewStruct-->deleteNode(a View);

190

[1 O] The circulate method allows a viewport's display to be the top most display on the output

device. This necessitates both a shift from its current position in viewStruct to the top most

viewport, and a redisplay. The method is described by the following.

r clear area affected by viewport's display */
bottomView = clearArea(aView);
r delete viewport from current position */
viewStruct-->deleteNode(aView);
r add viewport to last position * /
viewStruct-->addElement(aView ,last);
r redisplay * /
displayView(bottomView);

The effect of the circulate method is depicted in Figure 4.17 which shows the result of

making viewB of Figure 4.1 6 the top most display.

4.3.2.3. View Objects

The View class defines the characteristics of viewports and their corresponding windows.

Its specification is depicted in Figure 4.18. The relationships between display buffers, windows,

viewports, and output devices in interfacing internal information to the user is depicted pictorially

in Figure 3.1 O (presented in the previous chapter). Note that windows are defined by their entry

coordinates within the display buffer and their corresponding width and height. The description of

viewports necessitate two entry coordinates, one into the associated window and the other in

the display device. Note that scrolling is achieved by moving the window relative to the virtual

image defined within the display buff er. The new window is mapped onto the viewport for

redisplay. The display of the viewport on the display device is made up of the viewport display,

which produces the boundaries of the viewport, and the image display.

The resizeWin method allows the redefinition of the window. Note that both the entry coor

dinates of the window within the display buffer and the dimensions of the window can be

changed. As was pointed out earlier, resizing of windows is useful in obtaining the effects of

zooming. Panning or scrolling within the image is achieved by changing the entry coordinates of

the window in the display buffer, as defined by the moveView method. The resizeView method

191

list viewStruct

View A View C View D View B

Position 1 Position 2 Position 3 • Position 4

Figure 4.17: Effect of Circulating View B

Instance Variables:

Class: View
Superclass: Object

[a] String viewName; /* the internal name of the viewport */
[b] Dimension viewDim; /* the width and height of the viewport */
[c] Dimension winDim; /* the dimension of the window*/
[d] XyCoords win Entry;/* the entry coordinates of the window in the

display buffer*/
[e] XyCoords viewEntry; /* the entry coordinates of the viewport in the

window*/
[f] XyCoords devEntry; r the entry coordinates of the viewport in the

display device */
[g] Function dispView; /* the display routine that generates the viewport

boundaries*/
[h] Object viewAttrs; /* the display attributes of the viewport used by

dispView */
[i] Objld bufld; r the identifier of the associated display buffer*/
Li] Objld displayDev; /* the identifier of the associated display device*/

Methods:
[1] resizeWin(xyPair,newDim); /* sets win Entry to xyPair and winDim to newDim*/
[2] moveView(xyPair); /* set viewEntry to xyPair */
[3] resizeView(newDim); /* sets viewDim to newDim */
[4] displaylmage(); /* generate viewport image on displayDev */
[5] identifyXy(xyPair); /* determines whether xyPair lies within the

viewport's display*/
[6] viewToWin(xyPair); r transforms xyPair from device coordinates to

world coordinates */

Figure 4.18: Class View

192

allows the dimensions of the viewport to be changed. The displaylmage method causes the

display of the internal image on the display device. This is achieved as follows. First bufld's

method getWindow(winEntry, winDim) is called to extract the display commands corresponding

to the image defined by the window. This image is clipped to the viewport specification and

transformed from world coordinates to device coordinates to generate the appropriate image on

the display device. The other methods are self explanatory.

Let us close this subsection by discussing how a user (x,y) coordinate input is translated

into an internal object. The input coordinates are passed to the controlling DisplayDevice

193

object's identifyView method which returns the View object in charge of the (x,y) coordinates.

The View object's viewToWin method is called to transform the coordinates from device coordi

nates to world coordinates. Finally, the lnteractiveStruct object that defines the interactive data

structure which controls the display buffer is passed the world coordinates to determine the

internal object within whose display the coordinates lie.

4.4. Function Invocation and Parameter Specification

The user interface component's main role is to control user interaction with the functions

provided by the interactive software system. Therefore, the major and most crucial part of per

sonalizing user interfaces is the specification of how the user interacts with the system's func

tions. User interaction is described as function invocation, parameter specification, displaying

results and the specification of the next action to be performed. The previous subsection

presented the design of the classes concerned with displaying information to be interfaced to the

user. This subsection defines the classes that control function invocation, parameter

specification and action specification.

To reiterate, the underlying model for function interaction defines application functions as a

set of services that can process their parameters independently. To simplify the design without

loss of generality, each service handles the specification of exactly one parameter. On invoca

tion, each service accepts the parameter value, an error buffer and a result buffer. These

buffers are merely instances of class DisplayBuffer as presented in the previous subsection. On

completion, the service returns the result of processing the parameter in one of the buffers and

designates the next action to be performed. The contents of the returned buffer are presented to

the user. The specification of the next action to be performed is either a service provided by the

current function or quitting the function altogether. Control is therefore passed to the specified

service or the user interface's main interaction function which controls the entire interaction pro

cess. The above interaction step is repeated by allowing the user to invoke a function provided

by the main interaction function until the user quits the interaction function itself, thereby

194

terminating the session with the interactive system.

Service interaction needs an interaction task that will be used for parameter specification.

Interactive software systems are mainly concerned with three interaction tasks, selecting a

choice form a set of alternatives, designating an (x,y) coordinate in a specified display buffer,

and entering text. The user interface specification allows the personalization of parameter

specification by describing how user input is translated into an appropriate parameter value

required by the interaction task. The model for parameter specification is presented in Figure

3.13 (in the previous chapter). The user specifies the physical Input device that is used to

specify the parameter. The input signals returned by the physical input device are translated into

internal actions or values by appropriately specified action tables. The action/value is pro

cessed by an appropriate Input technique which controls the input process. When the parame

ter has been input, its value is passed to a specified mapper. The mapper transforms user

defined values to internal values. The transformed parameter value is then passed to the

appropriate service by the interaction task.

Therefore, function interaction is described by input device objects, action table objects,

input technique objects, mapper objects, interaction task objects, service interface objects and

function interaction objects. The following subsections present the object-oriented design of

these components.

4.4.1. Input Device Objects

The lnputDevice class is mainly concerned with the physical aspects of user input; waiting

for user input, sensing the input signal, and returning the input signal. The logical classification

of input devices into valuators, picks, locators, keyboard and buttons is defined at higher levels

by action table objects and input technique objects.

The specification of the lnputDevice class is depicted in Figure 4.19. The methods provide

facilities to activate and deactivate the input device, as well as to get the signal input from the

user. The getlnput method waits for the user input and returns the signal to the caller.

Class: lnputDevice
Superclass: Device

Instance Variables:
[a] String in Dev; r the internal name of the input device * /

[b] Objld outDev; /* the associated physical output device */

Methods:
[1] activate Dev();/* activates the input device * /

[2] deactivateDev(); /* deactivates the input device*/

[3] getlnput(); r waits for user input and returns the signal*/

Figure 4.19: Class lnputDevlce

4.4.2. Action Table Objects

195

Action table objects are used to translate signals returned by physical input devices into

actions or values operable on by the associated input technique object. The main facilities pro

vided by action table objects are allowing the definition of associations between input signals

and the corresponding action/value, as well as searching for an action/value given an input sig

nal. Thus, action tables can be defined as instances of an appropriate data structure provided

by the system. Figure 4. 7 shows the inheritance hierarchy of the classes that define the data

structures supported by the MIMD UIDE. In most cases, action tables would be instances of

class List.

Following the model of parameter specification, three types of tables can be identified.

[1] Coordinate Table: This table is used to maintain associations related to coordinate input.

The actions necessary for coordinate input are LEFT, RIGHT, UP, DOWN and ENTER.

The first four actions designate cursor movement, while the ENTER action designates the

current cursor coordinates as the desired input value. The input signals that are associated

with these actions are dependent on the physical input device and defined by the user.

196

[2] Character Table: This table maintains associations related to string input. As pointed out

earlier, the keyboard is the sole input device for string input as all other simulations are

awkward. Therefore, the associations define relations between keyboard keys and

corresponding actions. The actions necessary for string input are the following:

[a] MOVE: to move a character cursor UP, DOWN, LEFT or RIGHT;

[b] ADD: to add a character to the string;

[c] DELETE: to delete a character from the string; and

[d] ENTER: to designate the completion of the string input.

The input signals corresponding to these actions are user defined. The following presents

the default associations:

[a] t <--, -->, J.key signals for the MOVE action;

[b] alphabetic, numeric, punctuation and white space key signals for the ADD action;

[c] BACKSPACE and DELETE key signals for the DELETE action; and

[d] RETURN and ENTER key signals for the ENTER action.

Note that the action associated with each signal is a token which is a (type.value) pair that

defines the type of the action and the value of the action. Thus, the action returned by the

·t signal would be (MOVE.UP) while the action returned by the 'a' signal would be (ADD,

'a').

[3) Key Table: This table is used to maintain associations related to function key input. Each

physical input device designates the number of function keys supported. The associations

define relationships between the function key signals and their corresponding actions. The

actions will usually correspond to identifiers of internal objects (function objects, service

objects, name mapping objects, etc.).

197

4.4.3. Input Technique Objects

Input technique objects control the input aspect of interaction. Their major concerns are to

control the input process and return the designated value to the associated interaction task

object. The design strategy defines a class lnputTech which is the parent of all the input tech

nique objects supported by the system. The subclasses Coordinatelnput, Stringlnput and

FuncKeylnput are defined to handle coordinate, string and function key inputs respectively.

The specification of class lnputTech is depicted in Figure 4.20. It describes the instance

variables common to all techniques and the inAction method that obtains the user input. Note

that curAct is made up of two fields: Type and Value, which designate the type of the action and

the corresponding value respectively. The inAction method is described as follows.

Class: lnputTech
Superclass: Object

Instance Variables:
[a] Objld viewld; /* the viewport associated with user input */
[b] Objld bufld; /* the display buffer associated with viewld */
[c] Objld outld; /* the associated display device object */
[d] Objld inld; /* the associated input device object */
[e] Objld actld; /* the associated action table object*/
[f] Signal curln; /* the current input signal*/
[g] Action curAct; /* the action associated with curln */

Methods:
(1] inAction(); /* gets user input, sets curAct */

[2] processAction(); r processes the action in curAct */

Figure 4.20: Class lnputTech

/* get input signal * /
curln = inld-->getlnput();
/* search for curln in action table */
actNode = actld-->searchNode(curln);
/*retrieve action from actNode, if found*/
if (actNode != NULL)

cur Act = actNode-->retrieveAction();
else r ERROR * /

curAct = ERROR;

198

The processAction method must be provided by any class derived from class lnputTech to con

trol the processing of input. It is defined in class lnputTech to force every subclass to define the

method.

Figure 4.21 depicts the specification of class Coordinatelnput. The processAction method

is described as follows.

Class: Coordinatelnput
Superclass: lnputTech

Instance Variables:
[a] Objld cursorld; /* the associated cursor object*/
[b] Dimension curDim; /* the dimensions of the cursor*/
[c] XyCoords curEnt; r the entry coordinates of the cursor on the

display device * /
[d] String errMsg; /* the message indicating an error in input */
[e] Objld errBuf; /* the DisplayBuffer object in charge of error messages */
[f] Objld errView: /* the View object associated with errBuf */

Methods:
[1] processAction(); /* the controlling method for coordinate input*/

Figure 4.21: Class Coordinatelnput

for (EVER)
{
r get input action * /
inAction();
switch(curAct.Type)
{

case MOVE:/* set entry coordinates of cursor*/
switch(curAct.Value)
{

case LEFT: curEnt.X -= curDim.Width; break;
case RIGHT: curEnt.X += curDim.Width; break;
case UP: curEnt.Y -= curDim.Height; break;
case DOWN: curEnt.Y += curDim.Height; break;

/* redisplay cursor by calling moveCursor method */
cu rso rld-->moveCu rsor(cu rEnt, out Id);
break;

case ENTER: return(curEnt};

default:/* ERROR */
/* Add error message to display buffer*/
errBuf-->elearDisplay(};

errBuf-->text(errMsg};
/* Display errBuf * /

out Dev-->displayView(errView);

199

The specification of the Stringlnput class is exactly the same as the Coordinatelnput class,

except that it includes the following instance variables:

[a] String inStr; r the input string */

[b] Integer curPos; r the current character position in inStr */

[c] Objld strBuf; /* the display buffer wherein inStr is displayed */

[d] Objld strView; /* the viewport associated with strBuf */

and its processAction method is described as follows.

for (EVER)
(
I* get input action * /
inAction();
switch(curAct.Type)
{

case MOVE: /* set entry coordinates of character cursor*/
switch(curAct. Value)
{

case LEFT: curEnt.X -= curDim.Width; curPos--; break;
case RIGHT: curEnt.X += curDim.Width; curPos++; break;

}
/* redisplay cursor by calling moveCursor method*/
cursorld-->moveCu rsor(curEnt,outld);
break;

case ADD: /* add character to string * /
inStr-->addCharacter(cur Act. Value);
curPos++;

/* echo print character * /
strBuf-->text(curAct. Value);

outDev-->displayView(strView);
break;

case DELETE: r delete current character*/
inStr-->deleteChar(curPos);

/* redisplay string */
strBuf-->clearDisplay():
strBuf-->text(inStr);

outDev-->displayView(strView);
break;

case ENTER: return(inStr);
default: r ERROR * /

r Add error message to display buff er * /
errBuf-->clearDisplay();

errBuf-->text(errMsg);
/* Display errBuf * /

outDev-->displayView(errView);

200

The specification of class FuncKeylnput is also similar to class Coordinatelnput, except

that it does not require any cursor related instance variables and that its processAction method

is redefined as follows.

4.4.4. Mapper Objects

for (EVER)
{
I* get input action * I
inAction();
if (curAct.Type == ERROR)
{

}

I* Add error message to display buffer * /
errBuf-->elearDisplay();
errBuf-->text(errMsg);
/* Display errBuf */
outDev-->displayView(errView);

else
return(curAct.Value);

201

Mapper objects transform user input returned by lnputTech objects to internal values oper

able on by the interactive system. The design of the parameter specification aspect of user inter

faces requires three types of mappers, SelectMapper, PosltlonMapper, and TextMapper, for

each of the interaction tasks supported by the MIMD UIDE. Each mapper provides the facilities

to map all possible user inputs returned by lnputTech objects to values known to the interaction

task objects. For example, SelectMapper accepts any of the three possible user inputs (coordi

nate, string and function key) and maps them to the corresponding selection, returning the

choice to the interaction task object in control. Figure 3.13 (presented in the previous chapter)

depicts the role of the three mappers in parameter specification.

The class Mapper which is the root of the mapper inheritance hierarchy, specifies the pro

perties common to all mappers. The following instance variables are common to all mappers:

[a] Objld viewld; r the viewport wherein user input is made*/

[b] Objld structld; /* the interactive data structure associated with viewld */

Class SelectMapper is derived from class Mapper and defines the following methods to

convert user input into an internal entity. In the following, it is assumed that structld contains

user defined name mapping objects which define at least two fields, lntName and ExtName, the

internal and external names of selections, respectively.

[1] xyToSel(xyPair); /* map xyPair to selection*/

described as follows:

/* map xyPair from device coordinates to world coordinates*/
intXy = viewld-->viewToWin(xyPair);
/* identify node in structld * /
nodeld = structld-->searchDisplay(intXy);
/* access internal name of nodeld and return it */
return((node ld-->access Internal())-->retrieve lntName());

[2] strToSel(aString); r map aString to selection*/

defined as follows:

/* search for node in structld with lntName equal to aString */
codeBlock = [eachNode do:

]

if ((eachNode-->accesslnternal())-->retrieveExtName == aString)
return(eachNode);

/* call iterator method of structld * I
node Id = structld-->eachNode Do(code Block);
I* access internal name of nodeld and return it */
return((node ld-->accessl nte rnal())-->retrieve I ntName());

[3] lblToSel(lblld); r map label identifier to selection* I

described similar to the strToSel method.

202

Class Posit:onMapper contains the definition of method extTolnt(xyPair) which accepts an

(x,y) coordinate in device coordinates, calls viewld's viewToWin method to transform xyPair to

world coordinates, and returns these transformed coordinates.

The specification of the TextMapper class is depicted in Figure 4.22. The main aim of this

class is to tokenize a string (usually a command) input by the user into internal entities. The

string is broken down into components corresponding to internally known entities (or keywords)

such as function name, service name, language entity name, etc. The tokenized string is main

tained in variable keyTknTbl as {keyword.value) pairs. The lexAnalyzer method performs the lex

ical analysis, returning the next token within inStr. This method uses lexStruct to determine the

Class: TextMapper
Superclass: Mapper

Instance Variables:
[a] String inStr; /* the input string to be tokenized * /
[b] Objld tokenSet; r the structure that defines associations between

keywords and tokens * /
[c] Objld lexStruct; r the structure used by the lexical analyzer to

tokenize inStr */
[d] Obj Id keyTknTbl; /* the structure which holds the result of tokenizing

inStr as (keyword.value) pairs*/
[e] Token curTkn; r the current token defined as (Type.Value) pair*/
[f] Integer curPos; r the current position within inStr * /

Methods:
[1] lexAnalyzer(); /* the lexical analyzer*/

(2] tokenizeStr(aString); /* the controlling method that tokenizes aString */

Figure 4.22: Class TextMapper

next token which is returned in curTkn. The method tokenizeStr is described as follows.

inStr = aString;
curTkn = lexAnalyzer();
while (curTkn.Type != END)
{
r search for associated keyword for token type */
keyword = tokenSet-->searchNode(curTkn.Type);
r add keyword and token value to keyTknTbl * /
keyTknTbl-->addNode(keyWord,curTkn.Value);

}
return(keyTknTbl);

4.4.5. Interaction Task Objects

203

The preceding sections have developed the classes that form the basic building blocks

necessary to define interaction task objects. As depicted in Figure 3.13 (presented in the previ

ous chapter), interaction task objects control an lnputTech object and a corresponding Mapper

object. The lnputTech object is in charge of getting user input. The user input is then passed to

the Mapper object which transforms it into an appropriate internal value. This value is returned

204

to the service interface object to process.

The design of interaction tasks defines class lnteractTask as the root of the inheritance

hierarchy which describes the properties of interaction tasks. The instance variables defined by

class lnteractTask are the identifiers of the associated lnputTech and Mapper objects, inTechld

and mapld respectively. The method userlnput is used by all subclasses to get the user's input

and is defined as

userlnp = inTechld-->processAction().

The userlnp variable contains the user input. Class lnteractTask also defines a method proces

slnput (as subClassResponsibility) to force its subclasses to define an appropriate method to

process the user's input.

The specification of classes SelectTask, PositionTask and TextTask redefine the proces

slnput method to describe the manner in which the class processes the user's input. The

SelectTask class defines an instance variable selType which identifies the type of selection; that

is, one of COORDINATE, STRING and FUNC_LABEL. Its processlnput method is described as

follows.

r get user input * /
userlnput(};
/* call appropriate mapping function * I
switch (selType)
(

case COORDINATE: return(mapld-->xyToSel(userlnp));
case STRING: return(mapld-->strToSel(userlnp));
case FUNC LABEL: return(mapld-->lblToSel(userlnp));

} -

The PositionTask class defines its processlnput method as follows.

r get user input * /
userlnput();
r call mapping function*/
retum(mapld-->extTolnt(userlnp));

Finally, class TextTask's processlnput method is defined as

I* get user input • /
userlnput();
/* call mapping function*/
return(mapld-->tokenizeStr(userlnp));

4.4.6. Service Interface Objects

205

The Service class defines the properties of objects that interface with a particular service

provided by the associated function. The main objective of service interface objects is to allow

users to specify parameters through interaction task objects, call the appropriate service, and

designate the next action to be performed. Figure 4.23 depicts the specification of class Service.

Its serve method is appropriately described as follows.

Instance Variables:

Class: Service
Superclass: Object

[a] String serviceName; /* the internal name of the service */
[b] Function seviceld; /* the actual internal function providing the service*/
[c] Object parmStr; /* the actual parameter passed to service Id • I
[d] Objld errBuf; /* the error buffer passed to serviceld */
[e] Objld infoBuf; /* the result butter passed to service Id */
[f] Objld errView; /* the viewport associated with errBuf */
[g] Objld infoView; /* the viewport associated with infoBuf */
[h] Action errAct; /* the action to be taken on error*/
[i] Action nextAct; /* the next action to be performed*/
[j) Objld taskld; /* the associated interaction task */

Methods:
[1] serve();/* the controlling method that provides the service*/

Figure 4.23: Class Service

r get parameter specified by user*/
parmStr = taskld-->processlnput();
r call actual service */
is Error = serviceld(parmStr,errorBuf ,infoBuf);
r process error*/
if (isError == TRUE)
(
r display errorBuf * /
errView-->displaylmage();
r return error action*/
return(err Act);

}
else
(

}

r display infoBuf • /
info View-->di splay Image();
r return next action */
return(nextAct);

206

Note that both err Act and nextAct designate the next action to be performed, which is either the

identifier of a service provided by the function or quitting the function.

4.4.7. Function Interaction Objects

Function interaction objects control the services provided by functions of the interactive

system. The specification of class Function is depicted in Figure 4.24. The serviceTbl lists the

Instance Variables:

Class: Function
Superclass: Object

[a] String funcName; r the internal name of the function */
[b] Constant quitCmd; r the action to quit the function */
[c] List serviceTbl; r a list of services provided by the function*/
[d] Obj Id curService; r the current service object in control • /

Methods:
[1] doService(); /* controls services of the function*/

Figure 4.24: Class Function

207

identifiers of the service interface objects associated with the function. The main method doSer

vice is described as follows.

/* get first service */
curService = serviceTbl-->accessNode(1);
for(EVER)
{
r call service's serve method */
nextAct = curService-->serve();
/* if next action is QUIT, return */
if (nextAct == quitCmd)

return;
else

curService = serviceTbl-->accessNode(nextAct);

The overall inheritance hierarchy of the classes that define display objects and function

interaction objects is depicted in Figure 4.25.

208

Object

Devices

isplayBuffer V1ew isplayDevice Cursor

OutputDevi ce lnputDevice

lnputTechniqu lnteractTask

Service Function

oordtnatelnput String Input FuncKeylnput

Selectr1epper osi ti ont1apper Textt1apper

SelectTask Posit1onTask TextTaslc

Figure 4.25: User Interface Class Hierarchy

CHAPTER 5

IMPLEMENTING A PROTOTYPE MIMD
USER INTERFACE DEVELOPMENT ENVIRONMENT

This chapter describes our experiences in implementing a prototype of the MIMD UIDE

developed in the previous chapters. Initially, the major concern of this implementation phase was

the quest for an ideal development environment. We realized that implementing an MIMD UIDE

would be extremely difficult, if not impossible, without the right set of development tools.

Our requirements for the development environment were straightforward: an object

oriented environment with an appropriate base graphics and windowing system (hereafter

referred to as the windowing system). Specifically, the object-oriented environment should pro

vide the necessary support to develop the classes presented in the previous chapters. The win

dowing system needed for a MIMD UIDE should provide basic facilities for graphics input/output

as well as tools to easily build higher level interface objects, such as menus. The development

environment should not impose its own philosophy on data structures and the windowing kernel.

Object-oriented development environments can be divided into two broad categories: true

object-oriented environments and environments that extend conventional languages (such as

Ada, Pascal, Lisp and C) with object-oriented features (e.g., classes, inheritance, etc.). We

evaluated a typical environment from each of the categories in an attempt to determine the

feasibility of using them to implement the MIMD UIDE prototype. Smalltalk [79, 87], currently the

most popular true object-oriented environment, is highly interactive and includes state-of-the-art

tools for object-oriented software development. C++ [94] is built as a preprocessor for the popu

lar C programming language [92], and provides conventional programming tools (editor, com

piler, linker, debugger) for software development. Smalltalk and C++ represent the two extremes

209

210

among the existing environments for object-oriented software development.

The next section contrasts these two environments with the aim of showing their strengths

and weaknesses as suitable environments for developing the MIMD UIDE. This section substan

tiates our implementation plans, that is, attempting to modify Smalltalk's SIMD user interface

philosophy to achieve a MIMD UIDE.

The rest of the sections within this chapter describe experiences with modifying the very

heart of the Smalltalk environment. The second section concerns implementing interactive data

structures within Smalltalk. The following section is devoted to our attempts in modifying

Smalltalk's Model-View-Controller user interface framework towards an MIMD framework.

5.1. Contrasting Smalltalk vs. C++

In the previous chapter, the object-oriented philosophy was introduced in terms of the

basic components: objects, classes, methods and message passing. Inheritance was also intro

duced as the basis for object-oriented software development. It is important to note that every

object-oriented development environment must provide the above basic components as well as

inheritaoce.

There exist, however, other features and techniques that _determine the effectiveness of

the support provided by an environment for object-oriented software development. Johnson and

Foote (95] identify the following features and techniques as crucial to effective object-oriented

software development: polymorphism, standard protocols, frameworks and tool-kits. Each

of these features has a profound effect on the reusability and extendibility of the object-oriented

system. The following discusses each of these in detail.

Conventional typed languages, such as Pascal and C, are monomorphlc in the sense

that every object (function, variable, constant, etc.) has a unique type. Statically typed languages

impose a further restriction by requiring that the types of all objects be known at compile time.

Such a strong restriction is a double-edged sword for software development. On one hand it

211

allows type inconsistencies to be discovered at compile time and can guarantee that executed

programs are type consistent. Furthermore, strong static typing facilitates efficient code genera

tion and also imposes a strong discipline on programming. Conversely, static typing decreases

flexibility and expressive power by prematurely constraining the behavior of objects. In contrast,

polymorphlsm increases flexibiltty and expressive power by deferring the determination of the

type (behavior) of objects to execution time. Thus, a polymorphic operation can be viewed as

having multiple behaviors depending on the type of its operands [96]. A popular example of a

polymorphic operation is sorting which should be applicable to a wide range of types. Thus,

polymorphism facilitates the development of generalized abstract operations, which in turn pro

duce software products that promote extensibility and reusability.

Through the years many techniques have been developed to allow limited polymorphism in

conventional languages. Overloading function names allows the same function name to be

developed for a large number of types. For example, the operation a + b would invoke an

appropriate + function depending on the type of the operands. Furthermore, type coercion allows

operations to be more polymorphic, that is, applicable to a variety of compatible types. Gener

ics [97] facilitate the definition of a template of a general operation which is not bound to any

type. Specific instances of the general operation can be instantiated by providing type informa

tion.

Polymorphism is the cornerstone for developing effective object-oriented software. Note

that in an object-oriented system, operations are pertormed by message passing. Messages in

turn determine the correct method (operation) in the receiver's class and invokes that method.

This implies that messages are dynamically bound procedure calls. Thus message sending

causes polymorphism. Another perspective of object-oriented polymorphism is that the type of

an object is determined by the set of messages it understands, that is, its behavior.

This general object-oriented polymorphism is an integral part of the development of

interactive systems. Data structures depend on polymorphism to maintain and manipulate

212

heterogeneous objects. Windowing systems in general depend on polymorphism to allow

different types of objects to be displayed. The only requirement in both cases is that the objects

understand some common set of messages.

The underlying basis of abstract types and hence object-oriented systems is the separation

of the specification from the implementation of the object. The specification of the object defines

its behavior or protocol. Developing generalized abstract behavior requires standard proto

cols. Objects with standard (or identical) protocols are interchangeable or plug compatible.

That is, objects can be substituted or changed only with objects that have an identical protocol.

Note that this is more general that allowing substitutions only between objects derived from simi

lar classes. Standard protocols allow complex classes to be built by interconnecting a set of plug

compatible objects. Note that the MIMD UIDE is built as complex classes that interconnect com

patible objects. Furthermore, standard protocols promote a standard vocabulary for communica

tion between object-oriented programmers. This is extremely important in the realm of object

oriented programming, since it facilitates easy learning and reuse of classes.

Abstract classes provide an important vehicle for representing standard behaviors or pro

tocols [95, 98]. Abstract classes were used extensively in the design of the MIMD UIDE

presented in the previous chapter. The major characteristics of abstract classes are as follows.

Abstract classes never define data (or instance variables) but the standard behavior (or

methods) of classes that are derived from it. Note that abstract classes never have instances.

However, concrete classes derived from it have instances (or objects). Thus, the roots of class

hierarchies should always be abstract, while the leaf classes are always concrete. It is important

to note that inheriting from an abstract class can never violate encapsulation. A good example of

an abstract behavior is enumeration for data structures. A number of standard protocols can be

defined for data structures dependent on an iterator. For example, Figure 5.1 shows standard

protocols for enumeration provided by Smalltalk's Collection class that depend on a do: (itera

tor) method that is defined at the concrete subclass level. As an example, the iterator method

enumerating

do: aBlock
self subclassRespons1b1l1ty

collect: aBlock
I newCollect1on I
newCollection - self species new.
self de [each I newCollection add: (a8 1 Jck value: each)]
1 newCollect1on

detect: aBlock
1 self detect a Block if None: [self errorNotFound]

detect: aBlock lfNone: exceptionBlock
self do: [:each I (aBlock value: each) ifTrue: [Teach]].
rexceptionBlock value

Inject: thisValue Into: binaryBlock
I nextValue I
nextValue - thisValue.
self do: [:each I nextValue - binaryBlock value: nextValue value: each].
TnextValue

reject: aBlock
Tself select: [:element I (aBlock value: element) = = false]

select: aBlock
I newCollection I
newCollection - self species new.
self do: [:each I (aBlock value: each) ifTrue: [newCollection add: each]].
tnewCollection

Figure 5.1: Collection's Enumeration Protocol

213

for the concrete class Set is shown below:

do: aBlock

1 to: self baslcSlze do:
[:Index I

(self basicAt: Index) lsNII
lfFalse: [aBlock value: (self baslcAt: Index)]]

214

Note that the abstract classes correspond closely to the conventional notion of program skele

tons which require certain parts to be defined to generate the concrete program.

The discussion so far has concentrated on features and techniques for developing general

abstract classes and their immediate descendents. However, effective software development is

mainly concerned with developing general abstract designs. Thus, the design of software is usu

ally defined in terms of the major components and how they interact. The abstract design of an

object-oriented software system is called a framework. Ideally, a framework is a set of abstract

classes, one for each major component of the design. A set of messages defines the interfaces

between the components. Two examples of frameworks, Macintosh's McApp and Smalltalk's

MVC, were presented in Chapter 2 as examples of SIMD UIDEs. Note that frameworks facilitate

reuse at the highest level of granularity and are therefore desirable.

The effectiveness of a framework is dependent on the ease with which it can be (re)used.

Frameworks can therefore be classified as white-box or black-box [95]. A white-box framework

necessitates knowledge about how it is constructed (that is, its implementation), to be (re)used.

A white-box framework provides the top level control and sequencing of activities and can there

fore be viewed as an extendible skeleton. Using white-box frameworks requires the creation of

many additional (sub)classes to tailor the framework for the particular application. In contrast, a

black-box framework only requires the provision of components that define the behavior specific

to the application. The black-box framework uses these application specific components to

automatically generate the object-oriented software. Thus, black-box frameworks require under

standing of only the external interface of the major components. It is important to note that there

215

are only a few examples of frameworks currently available. Most of these available frameworks

are white-box and, as we shall show later, very difficult to use.

Frameworks provide the basis for developing toolkits, which provide users with a collec

tion of high-level tools to automatically configure and construct new applications. The main

advantage of black-box frameworks is that they provide an ideal foundation for developing tool

kits. Note that the MIMD UIDE is a toolkit that allows end users to configure and construct user

interfaces for interactive applications. It is important to point out that currently there exist only a

few instances of object-oriented toolkits. Two that have been discussed in the literature are Gla

zier [99] and ARK [100]. Both of these are built on top of white-box frameworks.

5.1.1. The Smalltalk Object-Oriented Development Environment

Smalltalk js the most popular true object-oriented environment. A true object-oriented

environment implies an everything-is-an-object philosophy, message sending as late bound pro

cedure calls, and general polymorphism as described in the introduction to this section. Thus, an

expression such as a + b is a message + with argument b that is sent to object a. Even simple

arithmetic such as "3 + 4" is implemented as above.

Smalltalk provides the standard programming syntax availc3:ble in most conventional pro

gramming languages, including assignments, conditionals and loops. However, everything in

Smalltalk is implemented in an object-oriented manner. A particularly useful construct is the

block object, which represents a deferred sequence of actions. For example, the block below is

used within a loop to initialize the contents of an array.

[Index <· Index + 1.
array at: Index put: O].

A block is not executed immediately. The block must be requested to execute itself by passing it

the message value. Furthermore, blocks can have a maximum of two arguments associated

with it and can be passed actual arguments during execution by using the value: or

value:value: messages. For example the following code defines a block that determines the

size of any array, and is then used on a specific array instance.

slzeAdder <·· [:array I total <·· total + array size].
total <·· o.
slzeAdder value: #(ab c)

where #(a b c) creates an array with values a, b, and c.

216

Loops are implemented as messages in separate classes. For example, a simple Pascal

like for loop is implemented in the Integer class by the method tlmesRepeat. Thus, the expres

sion

4 timesRepeat: [amount<-- amount + amount]

invokes the method timesRepeat in object 4's class passing it the block [amount <·· amount +

amount] as an argument. The method tlmesRepeat: aBlock is implemented as

I count I

count <·· 1.
[count <= self]

whlleTrue: [aBlock value.
count <·· count + 1].

Note that the whlleTrue: message is part of the protocol for blocks.

The above discussion on blocks serves two purposes. One is to show the complete

object-orientedness of the Smalltalk system. The other is to show the power of blocks as

objects. Note that the MIMD UIDE design presented in the previous Chapter made extensive

use of such a block concept.

The standard Smalltalk environment consists of a large class hierarchy which includes

classes that define its data structures and user interfaces. For example, Smalltalk-BO version 2.0

has more than 250 classes with over 2000 methods. To use Smalltalk to develop object-oriented

software requires a good understarding of these classes, since a large percentage of develop

ment time is spent in reusing or modifying existing classes.

217

As pointed out in Chapter 2, the Smalltalk environment imposes a consistent interaction

style that Is depicted In Figure 5.2. Smalltalk is window oriented, presenting many simultaneous

contexts. A three-button mouse is used exclusively for selection, usually from pop-up menus that

depict the choices for selection. Keyboard input is used only to get names (for example for filing

purposes), and for entering text within editors. Note that text editor functions, such as selecting

text for replacement within an editor, is also done using the mouse.

Smalltalk is equipped with state-of-the-art tools for object-oriented software development.

Browsers allow navigation through the class hierarchy. Inspectors permit the state of instances

to be inspected. Editors allow pictures and classes to be edited. Finally, debuggers allow mani

pulation of the runtime state. The system also provides functions that aid reusability. The

senders function when applied to a method collects all methods in the system that send that

method as depicted in Figure 5.3. This allows the implementor to determine how a particular

method is used within the system. The Implementors function provides a list of all classes that

implement similarly named methods, as shown in Figure 5.4. This allows the implementor to

determine how standard protocols are implemented within the system.

Thus, Smalltalk is definitely the state-of-the-art in object-oriented development environ

ments. The major drawback, however, in using Smalltalk to develop the MIMD UIDE is its

enforcement of a consistent interaction style. Note that the MIMD UIDE requires a redesign of

the entire foundation of Smalltalk including data structures, the graphics kernel, the windowing

environment and the interaction style. Since Smalltalk's entire class hierarchy is based on its

implementation of these base components, reusability is minimized. In fact, building an MIMD

UIDE using a SIMD UIDE is futile since we are using an enforced consistent style to break the

system to a more generalized style. Such an attempt is possible only if the SIMD UIDE is built

on top of a very general abstract foundation. As we shall show later in this chapter, this is not

the case in Smalltalk.

218

0.0 1024.0 Hit?)(j ;:::::::::::::::tllH?>
::::::::::::::::::::::::::::::

·:::. _,._·~::::::::::::::::::::~:!:~:~ Display Screen

0.808

.... r-....__.._..__-''~ ~ ::
..

. -...... -----'
.
:::::::::~:::~::::~:::-::::_::::_:::_::::-:::-::::...1::::~:~:i:~:i:i:~:~ .. ·.·.·.·.·.·.·.·.·.·.·.·.·.·::

(ESC I 1 I 2 I 3 I 4 I S I S I 7 I B I g I O I . I • I ' I LF I DEL I
I TAB I O I w I E I A I T I v I u I I I O I P I I I J I .. I 85 I I

(CTRL I A I s I D I F I G I H I J I K I L I : I . I RETURN I I
I I SHIFT I z I X I C I V I B I N I M I ' I I / I SHIFT

Space Bar
Keyboard

Figure 5.2: Smalltalk's User Interaction Style

Pointing
Device

ChangelistYiew class open
ChangeListYiew class recover ~

c copyView

p 11 Crea te and schedule a list browser containing only the displayed items.

e Accessed by choosing the menu command clone.•

self controlTermina te.

ChangelistYiew openOn: model filterCopy

------------------------------.. ·. .

Figure 5.3: Example of Sender's Function

219

Systa

yello

Integer +
Colle LugePositivelnteger +

Number +

A+-
•Answer the sum of tht receiver a.nd the ugument, a.Number.

Sum is a new Fr a.ct ion unless the argument is a. Float, in which

case the sum is a Float.•

I commonDenomina tor newNumer a. tor I
(a.Humber isMemberOf: Fr action)

ifTrue:

[denomina. tor • ~umber denominator

ifTrue: ['t(Fr action

numerator: nu mer a tor + a.Number numerator

denominator: denominator) reduced),

commonDenominuor +- denominator 1cm: a.Number denominator,

newNumerator .- numerator

• (commonOenomina tor / denominator)

Figure 5.4: Example of Implementors Function

220

221

5.1.2. The C++ Object-Oriented Language

C++ (94] extends the powerful software development programming language C [92] with

object-oriented features. Bjame Stroustrop [94] aptly describes the power of both C and C++:

A programming language serves two related purposes: it provides a vehicle for the pro
grammer to specify actions to be executed and a set of concepts for the programmer to
use when thinking about what can be done. The first aspect ideally requires a language
that is "close to the machine", so that all important aspects of a machine are handled sim
ply and efficiently in a way that is reasonably obvious to the programmer. The C language
was primarily designed with this in mind. The second aspect ideally requires a language
that is "close to the problem to be solved" so that the concepts of a solution can be
expressed directly and concisely. The facilities added to C to create C++ were primarily
designed with this in mind.

In the last decade, C has become the language of choice for software development due to its

simplicity, its closeness to the machine, its portability, and most importantly, its ability to directly

access the powerful UNIX operating system [101]. Consequently, C++ has access to thousands

of library functions and utility software code that have been written in C.

Most C++ implementations are built as preprocessors that translate the object-oriented

extensions into C text. The object-oriented features make C++ a superset of C, allowing C++ to

be similar to C syntactically, and maintains its simplicity and power. The major disadvantages of

C++ are the limited support for polymorphism and the conventional environment for developing

object-oriented software.

The ANSI standard C (on which C++ is built) is statically typed. This implies that sending a

message to an object requires knowledge about the type of the function that implements the

method, as well as the types of all the parameters. C++ supports polymorphism in two ways.

The first is by overloading function names. Figures 5.5 and 5.6 show the specification and

implementation respectively, of class Complex. Arithmetic on complex numbers is achieved by

operator overloading. Another feature that supports both standard protocols and polymorphism

is vlnual functions. A function defined as virtual in a class allows subclasses derived from it to

provide their own version. The system guarantees that the correct function is applied according

to the type of the object. As an example, an abstract class DisplayObject could provide a virtual

222

class complex {
double realPart, imagPart;

public:

}

complex{double x = 0.0, double y = 0.0) /*constructor*/
{ realPart = x;

imagPart = y;
}

double real() {return realPart;}
double imag() {return imagPart;}

complex operator+ {complex&); /*overload*/
complex operator* {complex&); /*operators*/
complex operator+ (double&); /* if double is added*/

Figure 5.5: C++ Specification of Class Complex

complex complex::operator + (complex& aComplex)
{ double newReal, newlmag;

}

newReal = real Part + aComplex.real();
newlmag = lmagPart + aComplex.lmag();
return complex{newReal, newlmag);

complex complex::operator * (complex& aComplex)
{ double newReal, newlmag;

}

newReal = (realPart * aComplex.real()) -
(imagPart * aComplex.imag{));

newlmag = (realPart * aComplex.imag()) +
(imagPart * aComplex.real());

return complex(newReal, newlmag);

complex complex::operator + (double& aNumber)
{ double newReal;

}

newReal = realPart + aNumber;

return complex(newReal, lmagPart);

Figure 5.6: C++ Implementation of Class Complex

223

224

function draw, indicating that all displayable objects must be able to draw themselves. Any class

derived from DisplayObject is therefore forced to provide (define) their draw function.

Note, however, that the above features do not support polymorphism between objects in

different class hierarchies. This type of polymorphism is essential in developing heterogeneous

data structures and windowing systems. The major problem is that C++ does not support

dynamic binding. However, it is possible to simulate dynamic binding in C++ essentially by forc

ing each class to provide its own massager. Thus, invoking a method (function) of a class is

achieved by invoking the massager and providing it with the name of the method, an argument

list and a return list. The template of the messager is provided below.

void massager (char * methodName, void ** argumentllst, void ** returnllst)

(Int methodlndex = "Search for methodName In Class's list of methods",
If ("Not Found·) then

return error,
switch (methodlndex) {

case METHODONE:
"Extract the parameters needed for the method from
argument List and cast It to appropriate type",

"Call method with arguments",
"Cast returned value Into (void *) and attach to
returnllst",
break,

case METHODTWO:

Note that (void *) is a typeless pointer and is extremely useful in deferring the determination of

type to execution time. Its use as a general argument list is similar to the standard C facility of

using argv and argc to accept program arguments for the main function. The messager concept

was used successfully in developing a prototype implementation of the data structure of the

MIMD UIDE.

Another deficiency in C++ is that it does not support the powerful Smalltalk concept of

blocks of statements as objects. As is evident from the design of the MIMD UIDE, such a

225

concept is extremely useful in the design of generalized abstractions. In C++, such blocks were

implemented as stand alone functions and passed as parameters.

The only class that is provided with C++ is Stream, which implements type secure, flexible

and efficient methods for standard (non-graphical) input and output. This classless property of

C++ is extremely attractive for developing an MIMD UIDE since there are no biases imposed by

the underlying system. It is also important to note that C++ provides no graphics/windowing

support. This is again an advantage as far as developing the MIMD UIDE is concerned

because it allows any available graphics/windowing system to be used with the system.

Finally, the development environment of C++ is conventional, that is, an editor, compiler,

linker, and symbolic debugger. There are no special tools/functions provided to support object

oriented programming. While this is clearly a negative incentive, it is important to point out that

in the recent OOPSLA'88 conference, numerous vendors were exhibiting C++ development

environments that were similar to Smalltalk.

5.1.3. Discussion

The crucial aspect of implementing the MIMD UIDE according to the design presented in

the previous chapter is the underlying graphics and windowing system. An ideal

graphics/windowing system provides generalized components (e.g., input/output devices, points,

text, windows, etc.) and most importantly does not impose any style of interaction. It should also

provide facilities to build higher level components (e.g., menus, editors, icons, etc.).

Smalltalk is therefore extremely unsuitable as a development environment for the MIMD

UIDE. Its base graphics/windowing system imposes a strict adherence to a consistent style,

which is reflected throughout the class hierarchy. Moreover, the underlying graphics kernel is

specific to this style and does not support generalized components. Thus, creating a MIMD

UIDE using a Smalltalk-like SIMD environment requires the replacement or modification of core

classes which would invalidate a large percentage of the existing class hierarchy. In fact, as

shall be shown later, such massive reorganization is extremely difficult and is not supported by

226

current object-oriented technology.

C++ on the other hand is classless and provides no support for graphics and windowing. It

provides the base facilities for object-oriented development and allows any graphics/windowing

system to be attached to it. This makes C++ a double-edged sword for the development of the

MIMD UIDE. On one hand, it presents an ideal environment since it imposes no biases. On the

other hand, building an entire MIMD UIDE from scratch has many disadvantages.

The major disadvantage is in finding an ideal graphics/windowing system. Most of the

currently available graphics/windowing systems impose their own biases, and are not general

enough to implement a MIMD UIDE according to the design presented in the previous chapter.

In fact, many graphics/windowing systems were evaluated including Starbase [102], Meta Win

dows [103], and Domain Graphics [104]. None of these systems were found to be suitable as a

base for the MIMD implementation. In Chapter 2, however, it was noted that X windows [105] is

gaining rapid popularity as a standard due to its generality. X may prove to be an ideal choice

for the underlying graphics/windowing system for the MIMD UIDE.

The other disadvantage of using C++ is its conventional development environment. Such

an environment makes a large object-oriented implementation extremely tedious and time con

suming, mainly because of the lack of support for rapid prototyping, reusability and interactive

debugging.

We realized that developing the MIMD UIDE in C++ requires a substantial investment in

building the base line classes. With our limited experiences in building object-oriented software

systems, we felt that much more could be learned by attempting to modify an existing, fully

operational UIDE. Furthermore, if the fully operational UIDE employed a SIMD framework then

its modification would present an invaluable basis for determining the effectiveness of our MIMD

UIDE design.

Smalltalk's Model-View-Controller (MVC) user interface framework is currently the most

popular and most effective UIDE. We briefly presented the MVC framework in Chapter 2 as an

227

example of a SIMD UIDE. Attempting a modification of the MVC framework presented a golden

opportunity to contrast and evaluate our MIMD UIDE. The major goals of this attempt were:

[a] to understand the complexity of building object-oriented user intertace development

environments,

[b] to determine the characteristics of an ideal graphics/windowing system suitable for an

MIMD UIDE implementation,

[c] to contrast MIMD UIDEs with SIMD UIDEs, and

[d] to determine the strengths and weaknesses of the MIMD UIDE design.

The rest of this chapter discusses the efforts in making Smalltalk an MIMD UIDE.

5.2. The Interactive Data Structures Prototype

Smalltalk's data structure hierarchy is shown in Figure 5.7. Class Collection provides the

standard protocol for all data structures, as shown in Figure 5.8. Class Collection is an abstract

class, and some of its methods (such as iteration (do:), adding elements (add:) and removing

objects (remove:ifAbsent:)) must be provided by the subclasses derived from it.

Figure 5.9 shows a map for distinguishing between the various data structures provided by

the system. Note that all the data structures provided are essentially lists, and the differences

between them depends on the implementation of the data elements or the structure. Smalltalk's

data structure hierarchy is not suitable as a basis for interactive data structures within the MIMD

UIDE because of the following reasons.

[1] The major advantage of using an object-oriented implementation is the separation of the

implementation from the specification. The user of a list structure should not be concerned

with the internal representation of a list, e.g., whether an array or linked list. Thus, the Col

lection class is not general enough to model the well established conventional abstract

data structures [106]. Note that the user of Smalltalk's data structure hierarchy must have

intimate knowledge of the implementation of the internal representations.

228

Sy11 .. e,;;;;;J
N..-n<-Martlldtl ---·-------- --·-------
NuNri~w, Arri yedColltction 1cct1slng

l\..O .. e ·-.as r1n LO■ictio,, tlltlng
ci1ectio11rUnor"'9d S.q"•1e1u11<:a1ecuen ·-~ Collctlo11S·Sequ1nc11111t ----------- , ..
Coltctioru·Tnt -•11111
Cohctionr AITlyed printift9
ColeCUOIIS•ltrNIIS convartlng
c ... ca.ns-1.,.,-.-: privltl
ar1,nic1-ilriilitnu ---------
Gr1pl'k1-ol1p1&y 0.jecu
Qr1p,,lc1-Pa1111
Qr1pr.c1·V,ew1
Gr1pNC1-f191ns
Or&pNCs·Ulters
Qr&pNCs·t.wen
ICefllel-Oll)lcts
~a.1111

I ..._ ... UIOa lns11nc1 CIIH

O.ject (I

Caltctlell O ... ,._..,,.)
~,1or1 r .. , ,. >

~UIIC--!1011()
Ml~DOII()

AITIY Q
lytaArro O

~11\0d()

llwwT1y (',,,,,,. '•lklH')

ltf1ns 0
lyMO! ()

Tutr11f1ns' 'liN')
WartlArr&)' O

Dl,pllylbapQ
■trffl ('nvt' '11tp' ·,u,• l

T11~11 ('1111-e,.c.1• ',&~')
UMa&Jsc r11,mJnt' 'laftlJNI')

...,._ ('emnllplll')
~t!on ('llnttlNI' 'l&Jtlnllll' l

~flOll('90nllllcl')

111 ('Ulr l
0letkrluy 0

.... clty01ctlMa,y ('¥1"9,llfty')

MIIIIOIIOictlNat) 0
Utwll>ktlanary ()
l)'na01cti1Nry 0

Figure 5. 7: Collection Class Hierarchy

229

Sy11t• 8rww11rl
~Nnc-M4grotuOII ----·---· ----·-·-MuMtnc.,....__, Atr&y9dCditC!•Oft 1ccnslng

:s;o•!c_u_o-.•,ocmac, l'-_O■ tC!IOII luting
Coltc!t011J·U'l0r6<1r1d Sequonc .. oteCIIIIK ,ien :t..; Coh:do"1·Sequenceltlle ----·----
coa.:dofts·Tu, 111-111119
Coltctions·Atr&ytd pnntin9
Co .. ctlons·StrMa, con..nlna
Co1tctioM·8~p•rt pr1••tt
G,1pr.c1-Pn•1t.1•U ·----------
C,apr,ic1-0.1~y 0.}ICU
Cr&pNtl-f'&tllS
G1ap,wc1·View1
Cupl'tlc1-fl.,11
Qrap-ic1-£11tor,
Gtapr,ics""""'o"
l<efflel-Oll)lm
Kaffiel-0.JNI I _...,,_, inst&IICI cl&ll

("11:Ctl""' sln)
('tlfflftf lloc_,, ~ -UOt.)

r.-.·••••AltJ
(',._.mt· - ,_.:lt .. sent:,,Al:)
(' ,.,,, ctltet: NUC!' oeuct:,~1: do: ift)lct:lnte: r1)tct: slltct:)

('pn,1trof' ,mtOtl 11...011:)

('~"'I' asl•t uOtlllrt.c.ltction 11ltt ullorttfOeleetiwl 1,lorttdCohcd01<)
('p,i•&UI' -,1y01ect l'l'Wfa,ty()olltctiell lff'lfllitM&ICft lffMiltf- IITtfNOtl(ayt• ,,..... Md'ltilt)

Figure 5.8: Collection Class Protocol

230

Collection

no yes

SequenceableCollectlon

ves no
)'

access test ordered determined

I I duplicat1:s allowed'.'

=
Identity Dictionary

I
internally

I
class of elements

I
ei.:t.ernally

yes

[§]~ :=a=----------

no

access1ble by a key? I I
yes ------'------no Number any

ArrayedCollectlon 18 Sort1dCollection

class ol elements~

Link any
/class of e1ements~

Smalllnteger Character any~

I Byte!rray I I St~ng I ~ I Ar~•~ I ~ Llnkedllat OrderedCollectlon

Figure 5.9: Smalltalk's Data Structure Map

231

[2] The data structure hierarchy provides no support for other types of structures, such as

trees and graphs. The class hierarchy does not have support for queues or stacks, even

though these are just specialized lists. The incorporation of queues or stacks within the

hierarchy requires a new subclass that specializes each of the concrete structure classes.

[The abstract Collection classes are SequencableCollection and ArrayedCollection.] This

again indicates a malformed general data structure abstraction.

[3] The data structure hierarchy provides no support for external representations. Its main

purpose is to model the internal representation of the basic data structures based on lists.

[4] There are other indications that the Collection hierarchy needs reorganization. For

instance, consider the size method which is used to return the size of the data structure.

This method is implemented in class Collection as follows.

I tally I
tally <·· 0.
self do: [:each I tally <·· tally + 1].
Atally

This indicates that the default size for each structure is the number of elements it contains.

However, all of Collection's immediate subclasses (that is, SequencableCollection,

Arrayed-Collection, Bag, MappedCollection and Set) redefine the size method. Since Col

lection is an abstract class, its default size behavior is never used in any data structure

objects. Taking this inconsistency one step further, the abstract class SequencableCollec

tion redefines the size method as subClassResponslblllty forcing all of its subclasses to

provide a size method. Note that SequencableCollection is ensuring that none of its subc

lasses can access the default behavior defined in Collection. However,

SequencableCollection's subclass Linkedlist provides a size method that is exactly the

same as the default behavior in Collection!! This simple example of inconsistency shows

the need for reorganizing Smalltalk's data structure hierarchy.

232

The interactive data structure prototype was therefore developed parallel to the Collection

class. It is important to note that it was necessary to use Smalltalk's data structures in the

implementation. The prototype followed the design exactly. Smalltalk's graphics kernel provided

the basis for developing the external representations. These classes were used as follows.

[1] The XyPair type used throughout the MIMD design was replaced by Smalltalk's Point

class. The protocol for class Point is shown in Figure 5.10 Note that the methods match

the requirements for XyPair perfectly.

[2] The Dimension type used throughout the MIMD design was replaced by Smalltalk's Rec

tangle class. The protocol for class Rectangle is shown in Figure 5.11 Again there was an

exact match between Dimension and Rectangle.

[3] The external representation of the interactive data structures was developed using classes

from Smalltalk's graphics kernel. Smalltalk images are represented as instances of class

Form. An example of a Form is presented in Figure 5.12. A Form has a rectangular struc

ture that defines its width and height, and a bitmap which stores the pattern of pixels that

define the contents of the form. Any graphical object, including text, can be displayed on a

Form. Forms can be combined into a single larger Form as depicted in Figure 5.13. Since

the basic representation of Forms is a bitmap, many sophisticated operations can be per

formed. Forms can be copied between source and destination Forms with different combi

nation rules (replace, over, under, etc.), can be clipped to a particular rectangular area,

and can be filled with patterns defined by a mask Form.

Forms were used to represent the DisplayBuffer class within the MIMD UIDE design.

Thus, the external representations of interactive structures are maintained as Forms. Since

Forms can be made up of smaller Forms, it is appropriate to represent the display of each

ExternalData object as a Form. These ExternalData Forms are then displayed on the

DisplayBuffer Form to create the external representation of the interactive structure.

Finally, the displayGeometry instance variable was implemented as a Smalltalk block

Point instance protocol

accessing
X

x: aNumber

y
y: aNumber

comparing
< aPoint

< = aPoint

> aPoint

> = aPoint

max: aPoint

min: aPoint

point functions
dist: aPoint

dotProduct: aPoint

grid: aPoint

normal

transpose

truncatedGrid: aPoint

Answer the x coordinate.

Set the x coordinate to be the argument,
aNumber.

Answer the y coordinate.

Set the y coordinate to be the argument,
aNumber.

Answer whether the receiver is above and to
the left of the argument, aPoint.

Answer whether the receiver is neither below
nor to the right of the argument, aPoint.

Answer whether the receiver is below and to
the right of the argument, aPoint.

Answer whether the receiver is neither above
nor to the left of the argument, aPoint.

Answer the lower right corner of the rectan
gle uniquely defined by the receiver and the
argument, aPoint.

.Answer the upper left corner of the rectangle
uniquely defined by the receiver and the argu
ment, aPoint.

Answer the distance between the argument,
aPoint, and the receiver.
Answer a Number that is the dot product of
the receiver and the argument, aPoint.

Answer a Point to the nearest rounded grid
modules specified by the argument, aPoint.

Answer a Point representing the unit vector
rotated 90 deg clockwise.
Answer a Point whose x is the receiver's y and
whose y is the receiver's x.
Answer a Point to the nearest truncated grid
modules specified by the argument, aPoint.

Figure 5.10: Point Class Protocol

233

Rectangle instance protocol

accessing
topleft

topCenter

topRight

rightCenter

bottom Right

bottomCenter

bottom Left

leftCenter

center
area

width
height
extent

top

right

bottom

left

Answer the Point at the top left corner of the
receiver.

Answer the Point at the center of the receiv
er's top horizontal line.

Answer the Point at the top right corner of
the receiver.

Answer the Point at the center of the receiv
er's right vertical line.

Answer the Point at the bottom right corner of
the receiver.

Answer the Point at the center of the receiv
er's bottom horizontal line.

Answer the Point at the bottom left corner of
the receiver.

Answer the Point at the center of the receiv
er's left vertical line.

Answer the Point at the center of the receiver.

Answer the receiver's area, the product of
width and height.

Answer the receiver's width.

Answer the receiver's height.
Answer the Point receiver's width @ receiver's
height.
Answer the position of the receiver's top hori
wntal line.

Answer the position of the receiver's right
vertical line.
Answer the position of the receiver's bottom
horizontal line.
Answer the position of the receiver's left ver
tical line.

origin: orig,nPoint corner: cornerPoint
Set the points at the top left corner and the
bottom right corner of the receiver.

origin: originPoint extent: extentPoint
Set the point at the top left corner of the re
ceiver to be originPoint and set the width and
height of the receiver to be extentPoint.

testing
contains: aRectangle

containsPoint: aPoint

intersects: aRectangle

Answer whether the receiver contains all
Points contained by the argument, aRectangle.

Answer whether the argument, aPoint, is
within the receiver.
Answer whether the receiver contains any
Point contained by the argument, aRectangle.

Figure 5.11: Rectangle Class Protocol

234

, :: ,:ol I lit ,: r i n .: - T e • t
, :: ,:d I ii' ,: t I r1 :. - /;. r-r ·=' _. ... e ,j

, :· ,:,11 e ,: t i ri .: - ::, t r ~ ·=- re, .:
,::ollii',: ti,:,r,, -::"JP~":,r-t
,:,r,:;,~,t-,i,: :-Prirt",iti-..-~.:
Qraphics-Oi,play Obj
, :::; r ·=- ~· r-11 ,: , - 1=· :o r r, ,
, :, r· ·=' ~• r, 1,: , - : .• r,·, L .. :, I ,
•]r.~ ~1t'11i: ~· - i~ .·.,. :.·

~·

.:f·~--·
i:,

, :: 1J r;, •=· r
C•i.: pl.:, _. • .-r· . .-1e,Jiur,·,
[,j .:-pl.;. _..,,:,t,_ie ,: t
C•i;-pl =' :,::::,,: reer,
Oi,playText
F,:,rrn

----..
,·· ----:--4--.

I,_ ,: __ , _,I / __

·-----·

I· /.-/4'/r/al
1 □ 1 □ 1 ■ 1 ■ 101

:ii:i:~;.;.in9
,jj,;,~•I:, :,·in9
,j i .:• p I .:, .'•' t11:, · .:, ,: ,: ~ :- _;

·,:

I 1111 Ill I~ I [::JI

g [I] ~

Figure 5.13: Forms within a Form

236

237

object which contained the necessary instructions to calculate the entry coordinates of

each ExternalData's display Form on the DisplayBuffer Form maintained by the lnterac

tiveStruct (or MultiStruct) object.

5.3. The User Interface Prototype

As presented in the survey of SIMD UIDEs in Chapter 2, Smalltalk provides a Model

View-Controller (MVC) framework to develop its consistent user interfaces. This section is

devoted to a detailed discussion of the MVC framework with the aim of showing how it could be

modified to realize a MIMD framework.

The discussion is divided into three major parts. The first completes the description of

Smalltalk's graphics kernel by presenting how input/output devices are handled. A detailed

description of the MVC framework and its weaknesses are then presented. Finally, modifications

to the MVC framework are presented that generalize it to a MIMD framework.

5.3.1. Smalltalk's Graphics Kernel

The previous sections have introduced most of the important classes that make up

Smalltalk's graphics kernel. The major pieces missing from the discussion are graphical input

and output. Input is concerned with how input devices (mouse, keyboard, tablet, etc.) are han

dled, as well as how user input through these devices is modeled. Output is mainly concerned

with how graphical output is presented on the display device. Each of these categories is dis

cussed be low.

A three-button mouse is Smalltalk's primary input device. All other input devices are

relegated to secondary status. In fact, interacting with Smalltalk without a three-button mouse

can be slow and extremely difficult. This was most evident when the University of Central

Florida acquired a Smalltalk site license for its Local Area Network (LAN). Most of the PCs on

the LAN were not equipped with mice and users found it very difficult and cumbersome to

interact with Smalltalk through keyboards, and eventually gave up their efforts in using Smalltalk.

238

In contrast, the Computer Science department runs Smalltalk on single SUN workstations that

are equipped with three-button mice. These machines are probably the most popular within the

department.

Smalltalk's (over)use of the mouse is reflected throughout the system design and imple

mentation. The consistent interaction style imposed by Smalltalk designates the left or red but

ton exclusively for selection, the middle or yellow button for invoking a pop-up menu of choices

(of functions or methods) that are context dependent (that is, associated with the active view or

portion of display within which the cursor lies), and the right or blue button for global functions

available from any context (in Smalltalk this corresponds to window functions, such as move,

frame, open, close, etc.).

The keyboard is used only when it is impossible to use the mouse, that is, for entering

text. Even within text editors, the mouse is used to invoke all editor functions (such as selecting

blocks, copying, pasting, etc.). The keyboard is used only to enter text within the editor.

The implementation of input devices is defined by three classes in Smalltalk: lnputSensor,

lnputState and KeyboardEvent. Class lnputSensor represents the top level interface to the input

devices in the system. The system creates a global instance Sensor which represents all user

input devices, that is, the mouse and keyboard. Its protocol is divided into three categories:

mouse, keyboard and cursor. The mouse behavior allows for the determination of

[a] the current coordinates of the mouse (mousePoint),

[b] the state of the buttons (redButtonPressed, blueButtonPressed, yellowButtonPressed,

noButtonPressed, anyButtonPressed), and

[c] the ability to wait for some user action on the mouse (waitButton, waitNoButton, and

waitClickButton).

Note that lnputSensor provides a polling mechanism to detect mouse location. Thus the cursor

always follows the mouse.

239

Keyboard actions are event initiated. Each key press generates a keyboard event that is

represented as an instance of class KeyboardEvent. Basically, each keyboard event is

represented by a key character (the character representation of the key stroke), as well as a

meta state which indicates whether a special key was also pressed (e.g., control and shift

keys). Keyboard events are maintained in an event queue within class lnputState which

represents the state of the input devices. The keyboard behavior within lnputSensor provides for

[a] determining whether the keyboard has been pressed (keyboardPressed),

[b] getting the character representation of the key that was pressed (keyboard) [note that this

does not include the meta state],

[c] determining whether the control or leftshift key were pressed (ctrlDown, leftShiftDown)

[note that methods are not provided to determine other meta states such as right shift and

alternate keys],

[d] accessing the keyboard event itself (keyboardEvent), and

[e] manipulating the keyboard event queue (flushKeyboard, keyboardPeek).

Finally, the cursor behavior allows for accessing and setting

[a] different types of cursor shapes (e.g., up, down, left and right arrows, crosshair, hand,

etc.), and

[b] the current cursor position (cursorPoint and cursorPoint:).

Thus, Smalltalk's implementation of input devices is extremely biased towards the mouse,

in keeping with its consistent style of interaction. It is important to note that the mouse location

can be determined by an event-based mechanism (through behavior provided in class Input

State). However, since this behavior is not supported by primitives (similar to assembly

language routines in conventional environments), the interaction becomes awkward and cumber

some. Note too that the keyboard behavior is not general, and is biased to its limited use within

Smalltalk's interaction style. In trying to implement action tables (that is, tables that associate

240

keyboard characters with mouse actions), we discovered that printable keys perform differently

than non-printable keys (e.g., function and arrow keys). Associating mouse actions with printable

keys allowed the cursor to move smoothly, while non-printable keys produced a jerky motion.

The display screen is represented by a single global instance Display of class DisplayS

creen. DisplayScreen is a subclass of Form to distinguish it from all other forms. Class Form

has already been presented in the previous section.

5.3.2. Smalltalk's Model-View-Controller User Interface Framework

The Model-View-Controller (MVC) framework is used throughout Smalltalk to develop con

sistent user interfaces. The MVC framework was briefly described in Chapter 2 as an example

of a SIMD UIDE. This section presents the MVC framework in greater detail. To reiterate, the

MVC framework comprises the following three components:

[1] the Model represents the application domain,

[2] the View displays the state of the model, and

[3] the Controller handles user interaction with the application and manages flow of control.

This three-way factoring of user interfaces is conceptually general enough to model any style.

However, its realization in Smalltalk does not enforce this generality and is specific to the con

sistent user interface style of the system, resulting in a loose SIMD UIDE framework.

The discussion that follows starts by describing the MVC framework from the general con

ceptual viewpoint, and moves progressively toward the concrete Smalltalk implementation. It is

important to point out that the MVC framework is supported by very little documentation. The

only major reference is a cookbook for the MVC that is published by Xerox PARC [78]. The

ensuing discussion is mainly based on actual use of the MVC implementation within Smalltalk

and discussions with other Smalltalk programmers.

The MVC framework is supported by three abstract classes: Model, View and Controller.

Conceptually a MVC triad contains an instance of a Model along with numerous view/controller

241

pairs. Models maintain their associated views and controllers as dependents but do not have

direct access to them. Views must be able to access their associated model to obtain the appli

cation state for display. Controllers need access to both the associated model and view. They

access the model to invoke its functionality and the view to facilitate interaction with the user. A

basic interaction cycle is depicted in Figure 5.14. The user interacts with the active controller to

specify the action to be performed. The controller notifies the model to perform the desired

action. The model performs the action which (probably) changes the application state. The

model then broadcasts a message to all its dependents that it has changed. Views could access

the model to inquire about the new state to update their displays.

The rest of this section is organized as follows. The first subsection presents the three

abstract classes: Model, View and Controller. The next subsection presents some user interface

components that aid in building Smalltalk user interfaces. The most important component is

menus which form the major interaction technique used consistently throughout Smalltalk. The

other tools that are described include Prompters to elicit textual input (such as names),

Confirmers to elicit boolean (yes/no) input, and Lists that model a list of textual strings and form

the basis for selection from a list of items. The following subsection presents complete MVC

examples with the aim of showing how to build the MVC triad and.more importantly to show how

the MVC framework works. This section also includes a brief description of the system's main

view and controller classes (StdSystemView and StdSystemContoller) which provide the basis

for developing MVC triads. The final section discusses the strengths and weaknesses of the

MVC framework.

5.3.2.1. The Model, View and Controller Abstract Classes

The only behavior required of models in the MVC framework is the ability to have depen

dents and to broadcast changes to these dependents. This behavior is implemented in class

Object, the root of the entire class hierarchy. In fact, some Smalltalk implementations do not

provide a separate Model class. The protocol of the Model class provides the following behavior:

-

usel-
input
sensors

'-., Dependents
change
messages

Figure 5.14: Basic Model-View-Controller Interaction Cycle

242

243

[1] Manipulating dependents, that is the ability to access, add and remove dependents

(dependents, addDependent:, removeDependent:) which are maintained as an

OrderedCollection.

[2] Broadcasting change messages to dependents to indicate that the state of the application

has changed. This behavior is defined in class Model by the protocols changing and

updating. However, the methods provided within these protocols (e.g., broadcast:,

broadcast:with:, changed:with:, etc.) are never used in any of the existing MVC triads

within Smalltalk. One of the reasons is that none of the existing MVC frameworks use the

powerful concept of associating multiple view/controller pairs with the model. All of the

MVC frameworks use the changed:aParameter or changed methods provided in class

Object. These methods send an update message (update:aParameter or update) to all the

dependents maintained by the Model. View and Controller classes provide their own

specific versions of update methods.

The View class is an abstract class that manages the display of structured pictures. A

structured picture is organized as a hierarchy of views. This implies that all views, except the

root or top view, have a superVlew, and can have subVlews (maintained as an OrderedCollec

tion). A view along with its subviews are treated as a single unit in many of class View's

methods. For example, displaying a view causes its subviews to be displayed as well. Each view

maintains its own coordinate system. To allow mappings between coordinate systems, each

view has two transformations associated with it. The local transformation allows for mapping

between the view and superview coordinate systems. The dlsplayTransformatlon allows for

mapping between the view and display screen coordinate systems. All transformations are

instances of class WindowTransformation.

The region of the display screen occupied by the view is called its dlsplayBox, an

instance of class Rectangle. The displayBox can include a border which is defined by its width

(borderWidth, an instance of Rectangle) and color (borderColor, an instance of Form). The

244

region of the displayBox excluding the border is called the view's boundlngBox (a Rectangle).

Finally, a view has an associated window (a Rectangle) which defines the visible part of the

view, and a vlewport (a Rectangle) which defines the view's area in its superview. Note that the

view does not maintain a display file or display buffer of its image. The actual image is created

by subclasses of View.

A view is connected to its model and controller by actually maintaining them as instance

variables. Therefore, a view has complete access to its associated model and controller, and

more importantly must know about their behavior. Note that this is in sharp contrast with the

model which does not require any knowledge about the behavior of its view/controller pairs, and

accesses them through a well defined interface.

The abstract View class's protocol and methods are depicted in Figure 5.15. Besides

operations that access various aspects of the view, the behavior of views allow for manipulating

its subviews (adding and removing), displaying the view (display, deemphasizing, clearing, indi

cating, scrolling), transforming the view, and testing whether the view area contains a particular

point.

Controllers coordinate the associated model and view with the input devices and handle

interaction. Class Controller provides the abstract behavior for all controllers. It contains three

instance variables: model to access the associated model, view to access the associated view,

and sensor (an instance of lnputSensor) to access the associated input device.

Before we present the behavior of controllers, it is important to understand the scheduling

mechanism. A global object ScheduledControllers, an instance of class ControlManager, is the

scheduler. On creation, each controller is added to ScheduledControllers list of controllers. Only

one controller and its associated view are active at any given time. The scheduling of the active

controller is achieved by the method searchForActiveController, which asks each controller if it

wants control (implemented as method isControlWanted in Controller). The default behavior for

wanting control is implemented in Controller as determining whether the associated view has the

51111■ llrow1;;J

ICemtl-Mttnodl
1Cem1t-,r-o01nu Controlllr ini!ldn-,..u,

1,1:"ci-=,1r1:r.':-,c:c~~~-r.,,, ... =.,::c,.,..::z--------f~==·-- =.::..tntll:tlll
.. urlaca•l<ipport t-'~.:;:..::."'~---~-----~ ICCt1S
.. ,.rl&et·IC- Willf-W1gTr1nsf11f1Htlon sullVlew ICCUS
.. ,.rlace·i..111 -----·--· c;,on,,.... ICCl1J
.,,trl1ce·Tu1 llulc contral s..,..,ai
l11ttrlac1·Tu1Eoltor,_ ICCISS
.. ttrl&e1·lllenu1 vitwpG,t IC0111
.,t1rl1c:1•~1/Con1lnl ctspl&y tt1 1ccass
11urt1c1•lrow,er i.et eccus
.,t,rlacr.,1pec1or M\llew in~ifti
.,,trl1c:1·°""'9tr MYltw rMO-Ant
.. ltrl&e.11-f,lt Molli .,,..yr,g
.,,ert101·Tru1cn,t tllE■,lluizint

.,,ertaca-~jecu t-------------1tl1play trusfllraltlon
111ert1e1-c111nge1 I tra•sfllrwng
.,,trfaee•Teniinal ns11rc1 cl&Js Dordng

CHti.lln·,..1M' IIIRIIIIN ,_,.)
('tndftt' ... 11,,,dbillt:)

('- ICCHI' ■--1 •llll)
('s...,V- acce,s' kT111Yllw rwsatM\IIN,, ~ t~V•w)

('1.alVltw ICCIII' llrst&.tVlew IUtSullllltw u\lle..Con11lnlng: 1UD\lltw1)
('cOlllr..., ICCl11° CllltrOIV conuolltr: CllftlitConttofler dll11ilControNarClu1 ■odel:controllar.)
("btsle COft[ral 11..-nc,• lublliewWl'ringCOllt,01)

('--• ICCIII' "11UltWlftdow IIINtWlnaow wlnotw wlftfow:)

('ril•PG" acc11t' filw,art)
f.,pily NI acca,s' ...,._vec,, ca■putt!_.,gllo, ,bpi1y801 ~1110lspl1y8o1)

('IOCl &cell!' IILocLld ISUNocuf loel WMCk)

('subVn lnMnint' 1ddSIIOVllw: allc!Sj)\llew:tbo-ft: UdSuh'i.-r.lli9n:wirn: UdSuoVII~ 1ddSl.tVitwffCycic: &dtlSIAIVltwirtbordl~ ~Vlew:tol.eftOt.

1Heu11Vllw,t~~10t &llc!lubVitw~: lddllull'-'IN:whlow:vltwpon: ln1artllub\litw-.&IIOl'S lnstn&e\llewNflll"clfCydic:)
('subVltw ,_..,.. l'll11MSul!Vllw: rt111116uiVltws ,..--,~.,View re■ov.su&Vllw: reMvl&ubVlews)

C'••pllylnf' -.,io 11Jp11y9onllr dispt1ySl'9: OiJpl1ySue\llew1 dospilyVitw)

('Hf ... slzint' tla(.,,.aslN d1f111p1111lzel!U0Vllw1 de!11p11&sln\lltw 1"9'11slzt tllpll&sillM'w'llws l■llf\tslnVltw)
('fispily lnllSfWW>ldln' ~yTraM,.,,.: tllpllyTrus'-"Nt.., lnver,tOlspl&yTraftffllfl'l!)

('trlNfatlliftt' lllp.'Wltll. scllt:tranJlatitn: sclltlly: transf9nl: tr&MfiorNtioll transtonHtlln: trwattlly; wlndtw:-ritwport;)
c~· ~ w,arColar: barll~111t11 ~c11: IIOnllrWl4tN.•ttrlflt:toixbottOtt lmldlCGlar tnsldeColor.J
('scnllftg'--y.)
('cll&rlll(...., div. cllll1MIIII Clltnuidt:)

C""-&tillf' fllSII lliflll!t)
("upt&tlftt' --t• .,.,.,,
('pnnte' ~tlOl,p&yTrantflnl&tNIII C'OllpUtlttHl0ispl&ylox fllContrgle, 91t't'lewplrt gttWiNow ilspact '1Cydc: ll(Translffll&tillt N!Wlndow: ~;)

Figure 5.15: View Protocol and Methods

245

246

cursor (Implemented by method viewHasCursor which is defined as view contalnsPolnt: Sen

sor cursorPolnt).

The basic control sequence protocol, defined in method startup, is described by invoking

the three methods controllnltlallze, controlLoop and controlTermlnate. The controllnitialize

and controlTerminate methods are redefined in subclasses of Controller to allow for specialized

initiation and termination behavior. For example, most controllers highlight their associated view

on initialization and unhighlight the view on termination. The controlLoop method describes the

actual controlling mechanism as follows:

[self lsControlActlve] whlleTrue: [Processor yield. self controlActivity].

Therefore the method controlActivity is carried out as long as the controller is active. The default

control activity is to pass control to the controller associated with a subview of the current view,

allowing the lowest subview in the hierarchy to gain control. This method, controlToNextLevel,

is implemented as follows:

laVlewl
aVlew <·· view subVlewWantlngControl.
a View - - nll lfTrue: [a View controller start Up].

The subViewWantingControl, defined in class View, determines if ~my of its subviews wants con

trol as follows:

sub Views reverse Do:
[:aSubVlew I aSubVlew controller lsControlWanted lfTrue: rasubVlew]].

Anll

Finally, the default behavior for a controller being active (method isControlActive) is that the view

has the cursor and the blue button is not pressed. Note that the blue button is used exclusively

to initiate global windowing functions (such as moving, framing, collapsing) and is handled by a

system controller, StdSystemController, which will be described later.

247

5.3.2.2. Smalltalk User Interface Components

The Smalltalk system includes a large number of classes that provide the components to

rapidly build standard user interiaces. Most of these classes are subclasses of the three abstract

classes: Model, View and Controller. Figures 5.16, 5.17 and 5.18 present an overview of the

entire hierarchy for the three abstract classes respectively. Each Figure presents the class

names and the instance variables they define. Note the convention that is used consistently to

name related classes involved in a MVC triad. The View's name is the Model's name con

catenated with the word View, and the controller's name is the model's name concatenated with

the work Controller. For example, Switch, SwitchView and SwitchController form a MVC triad

that implement buttons or switches which can be on or off.

The major component of the standard Smalltalk interface that is defined independent of the

MVC abstraction are menus. All menus within the Smalltalk interface are dynamic and pop up

at the current cursor position when activated by a specific button press on the mouse. The

menu component hierarchy allow for both simple and hierarchical menus as shown in Figure

5.19.

Class PopUpMenu is the root of the menu component hierarchy, and provides the entire

behavior for pop-up menus. Typically a pop-up menu consists of a list of items (strings) from

which the user makes a selection. The style of interaction with pop-up menus is standardized.

The pop-up menu is activated by a mouse button press. On activation the pop-up menu displays

its items in a rectangular region on the screen with a selection highlighted. The user uses the

mouse (with the button still depressed) to move over the desired selection. As the mouse moves

over any selection, it is highlighted. When the button is released over a highlighted selection, the

pop-up menu returns the selection and removes its display from the screen. Therefore class

PopUpMenu bundles the model (the list of items), view (the rectangular area on the screen),

and controller (the standard mouse behavior for menus) into a single class.

Model
BinaryChoica
Browser

Debugger

MethodlistBrowser
Explainer

FileModel
FileUst

Hierarchicalfilelist

Icon
Inspector

Contextlnspector
D icti o na ryl nspecto r
OrderedCollectionlnspector

String Holder
ChangeUst

FilllnTheBlank
Project

TextCollector
Terminal

Switch
Button
OneOnSwitch

SyntaxError

dependents
trueAction falseAction actionTaken
organization category className meta
protocol selector textMode

248

context receiverlnspector
contextlnspector shortStack sourceMap
sourceCode processHandle
methodlist methodName
class selector instance context
methodText
fileName
list myPattern isReading
selectionName isDirectory emptyDir
myDirectory
form textRect
object field
temp.Names
ck ·

contents islocked
listName changes selectionlndex list
filter removed filterlist filterKey
changeDict doltDict checkSystem
field list
actionBlock actionTaken
projectWindows projectChangeSet
projectTranscript projectHolder
entryStream
displayProcess serialPort localEcho
ignorelf characterlimit
on onAction off Action

connection
class badText processHandle

Figure 5.16: Model Class Hierarchy

View -=--

BinaryChoicaViaw
DisplayTextViaw
FormManuViaw
FonnView

formHolderView
lconViaw
ListView

model controller superView subViews
transformation viewport window
displayTransformation insetDisplayBox
borderWidth borderColor insideColor
bounding Box

rule mask editParagraph centered

rule mask
displayed Form
iconText isReversed
list selection topDelimiter
bottomDelimiter lineSpacing isEmpty
emphasisOn

249

ChangelistView
SelectionlnlistView itemtist printltems oneltem partMsg

initialSelectionMsg changeMsg listMsg
menuMsg

StandardSystemView

AClockView
BrowserViaw
FilalistView
GClockView
lnspectorViaw
NotifierView

StringHolderView
FilllnTheBlankView
ProjectView
TextCollectorView

TerminalView
Switch View

Boolean View

labelframe labelText
islabelComplemented savedSubViews
minimumSize maximumSize iconView
iconText lastframe cacheRefresh
myProject date

cacheform cacheBox myProject date

contents
displayContents

complemented label selector
keyCharacter highlightform arguments
emphasis On

TextView partMsg acceptMsg menuMsg
Code View initialSelection

OnlyWhenSalactedCodaView sele~tionMsg

Figure 5.17: View Class Hierarchy

model view sensor
250 Controller

BinaryChoiceController
FormMenuController
MouseMenuController redButtonMenu redButtonMessages

yellowButtonMenu
yellowButtonMessages blueButtonMenu
blueB uttonMessages

AClockController
BitEditor
form Editor

GClockController
Icon Controller

ProjectlconController
Screen Controller
Scroll Controller

listController
LockedlistController

ChangelistController
SelectionlnlistController

Paragraph Editor

TextEditor

clockProcess
scale squareform color
form tool grid togglegrid mode
previousTool color unNormalizedColor
xgridOn ygridOn toolMenu
underToolMenu
clockProcess

scrollBar marker

paragraph startBlock stopBlock
beginTypelnBlock emphasisHere
initialText selectionShowing

StringHolderController islockingOn
ChangeController
FilllnTheBlankController

CRFilllnTheBlankController
Proj ectControll er
TextCollectorController

Terminal Controller
TextController

CodeController
AlwaysAcceptCodeController
OnlyWhenSelectedCodeController

StandardSystemController status labelform viewform
NotifierController

NoController
SwitchController selector arguments cursor

Figure 5.18: Controller Class Hierarchy

--

restore pay
garbage collect

e,clt ro et

ete
uncMtete

move
hardcopy

ardeopy below
save

Figure 5.19: Examples of Simple and Hierarchical Menus

251

252

Class ActionMenu is a subclass of PopUpMenu that adds the ability to associate selectors

with the list of items. Therefore, when the user makes a selection from the list of items, its

associated selector is returned. This allows methods to be associated with choices, and can be

performed immediately when its corresponding item is selected. Class HierarchicalMenu com

pletes the menu component hierarchy. It allows entire pop-up menus to be associated with the

list of items.

The use of pop-up menus within the MVC triad is achieved by class MouseMenuController.

This class provides the behavior for associating pop-up menus along with a corresponding set of

messages to be connected to the three mouse buttons. The messages correspond to methods

to be performed when the corresponding item is chosen. The control activity behavior is defined

as follows:

sensor redButtonPressed & vlewHasCursor lfTrue: rself redButtonActlvlty].
sensor yellowButtonPressed & vlewHasCursor lfTrue: ["self yellowButtonActlvlty].
sensor blueButtonPressed & vlewHasCursor lfTrue: ["self blueButtonActlvlty].

For example, the blueButtonActivity method is defined as follows:

I Index I
blueButtonMenu -- nil

lfTrue: [index <·· blueButtonMenu startup.
Index -= O lfTrue: [self menuMessageRecelver

perform: (blueButtonMessages at: Index)]]
lfFalse: [super controlActlvlty].

This method checks to see if a menu has been attached to the blue button. If not, it calls its

parent's control activity. Otherwise, the pop-up menu associated with the blue button takes con

trol (by sending it the message startUp), and the user makes a selection. If a selection is made

then the receiver of the menu is asked to perform the corresponding method stored in the mes

sage list for the blue button.

Prompters and confirmers are MVC triads that are used to elicit simple user input. They

are created (and take control immediately) by providing the prompt string and the action to be

taken on selection. They return a string value and a boolean value, respectively. Figure 5.20

253

shows examples of prompters and confirmers.

Another important MVC triad component provides the ability to make a selection from a list

of strings. This is the MVC counterpart of the pop-up menus presented earlier, and can be

viewed (sic!) as providing facilities for static (always visible) menus. They are implemented by

the triad classes List, ListView and ListController, and are used extensively throughout Smalltalk.

Figure 5.21 shows Smalltalk's system browser which allows the user to browse (and manipulate)

the class hierarchy. The four views at the top of the browser are ListViews. The bottom view

shows the code associated with the method redButtonActivity (defined in class ListController)

which describes the behavior for selecting an item from the list. Note that the code does not

include scrolling behavior. The scroll bar appears automatically when the cursor moves into the

view.

So how is scrolling achieved? Controllers of views that can be scrolled are defined as

subclasses of class ScrollController (a subclass of MouseMenuController) which provides

Smalltalk's standardized scrolling behavior. Whenever a scrollable view's controller is activated,

its controllnitialize method displays a scroll bar at the left of the view. The scroll bar represents

the length of the information in the view. The marker or slider inside the scroll bar depicts the

amount of the information that is currently shown relative to the total length. ScrollController pro

vides the behavior for scrolling by taking control whenever the cursor is inside the scroll bar

area, as defined in its controlActivity method:

self scrollBarContalnsCursor
lfTrue: [self scroll]
lfFalse: [super controlActlvlty].

Scrolling is achieved either by predefined (up/down) increments, or by grabbing the marker and

moving it to the desired position. The calculation of the marker's extent is done by dividing the

associated view's window (the portion being shown on the screen) height by its boundingBox

(the total area of the view) height. Note that no provision is made in Smalltalk for horizontal

scrolling.

Plaasa type a tlla name:

fileName.st

Ara you certain that you
want to ramova this method?

yas ~ no

Figure 5.20: Examples of a Prompter and a Confirmer

254

Syt1tll 9rewtl'I
Mmtt-~ttrlOdl

:::~;~'.'~" l--'~r~~vr-11':,~'tro~"~"---------1= ::;,~:M
1n1race-,, .. , .. n 1.DC~t1Con1rtt1tr tcl'Glila
1111..-&ca-~ !leltctlanlrtJstConttdler ,..,.,

1111,..aca-icw !leiec1iolllril11v1t.. ~~~---··

F:.:.;,:"",..::::LL-l:~~:!':..:.,~---------4 ~~~~---·
lltt,..&ct· T 111EllltDI'
lllterf&ce-........ ,
1n11rlaca-llraapt/Cenflnl
., .. ,..,ca-trow,e,
"urlac1-1n,,-.:1or
lntl't.c:•·O....-,
111tr1aca-f'ltM
.,,arl,ca·Tran1cript
"ttrlac.-flt'o)lcll
llte,fac.-Cllar,g.1
.,,trlecrT..-.i

,...._dwlt.,,
itstanct I

I,..._~, ttdellctlall 1tl&J!tllc1ioll 11trt$tttCll4ft I
.. 11111c _1•u.
lllllel.ctloa •..., ltlect•

[Mft-rduttOI\PruMfJ
'lffllllTN&

(111&~ • ..., IIM!11tc11Dft: _,., eur,orfloin1.
trlailtleCdeft••flil

(•IIIMctlon • a1&11eitctlon.
wltw -dllletioN!tic ftfft&tltctlttl

Cl&tS

11txtSllect,o11 ·• e1GS•c11ot1 ,rr,,,. [rtOS11tclloMlo>•-t • f&111]D.
lllltStltetioll -- ... I, (,.rtS.lletioft • oldleltctlon

if'T,_ [ftOltlectiellMr.tNftt]

11'&114: [INl]) lfTM1: (11lf c11&n~off1Selec:1ion: ,,..,s•ctJonJ

Figure 5.21: The System Browser

255

256

5.3.2.3. MVC Examples

The root of any MVC triad is an instance of class StdSystemView, which along with its

associated controller, an instance of class StdSystemController (a subclass of MouseMenuCon

troller), define the behavior of the window system. StdSystemView provides an (empty) window

with a label on top. MVC triads are created as subviews of a StdSystemView. StdSystemView

contains the behavior for manipulating the label, the view as a whole (for example, moving,

reframing, and collapsing), and the size of the view on the display. Its associated StdSystem

Controller defines the default behavior for invoking windowing functions associated with the blue

button of the mouse. The specifics of the behaviors of both these system classes will be

described in the following examples.

The general (undocumented) rule for building a MVC triplet is to build the model, and then

the view, and then the controller. The view is built before the controller to allow the functionality

of the triad to be tested immediately. The following presents two complete examples of MVC

triads.

The Counter example is the simplest demonstration of a full MVC triad. Very simply, the

model is a numerical value that can be incremented/decremented, the view shows the value of

the counter, and the controller implements a pop-up menu allowing the user to increment or

decrement the counter's value. The model for the counter is shown in Figure 5.22 and is self

explanatory. The CounterView class is defined as a subclass of View and is responsible for

displaying the state of its model, Counter. The definition of CounterView is shown in Figure 5.23.

It includes a method displayView for displaying the value maintained in its associated Counter

model. Note the update: method which is used to update the view when the model changes.

The defaultControllerClass defines the type of controller for the view and is automatically

created when the view is created. The CounterController class is depicted in Figure 5.24 and its

behavior is self explanatory. The only aspect missing from the definition is how the MVC triplet

is created. This is shown in Figure 5.25 and is implemented as a class method in CounterView.

Model subclass: #Counter
instanceVariableNames: 'value '
classVariableNames: ''
poolDictionaries: ''
category: 'Demo-Counter'

Counter methodsFor: 'lnHlallze-release '
lnHlallze

·set the initial vah.Je too.·
self value: O

Counter methodsFor. 'accessing '
value

• Answer the current value of the receiver.·
ivalue

value: aNumber
•initialize the counter to value aNumber. •
value +- aNumber.
self changed "to update displayed value•

Counter methodsFor: 'operations'
decrement

•subtract 1 from the value of the counter.•
self value: value •1

Increment
•Add 1 to the value of the counter.•
self value: value + 1

Counter class methodsFor: 'Instance creation '
new

• Answer an initialized instance of the receiver.•
isuper new initialize •return a new instance of the receiver-

Figure 5.22: The Counter Model

257

View subclass: #CounterVlew
instanceVariableNames: • •

· dassVariableNames: ' '
pool Dictionaries: ' '
category: 'Demo-Counter '

CounterView methodsFor: 'dlaplaylng '
dlaplayVlew

•Display the value of the model in the receiver's view.•
I box pos displayText I
box +- sett insetDlsplayBox. •get the view's rectangular area for displaying"

•Position the text at the left side of the area,
1/3 of the way down•

pos +- box origin + (4 @ (box extent y / 3)).
"Concatenate the components of the output

string and display them"
displayText +- ('value: ', sett model value printString) asDlsplayText.

displayText dlsplayAt: pos

CounterView methodsFor: 'updating ·
update: aParameter

·s1mp1y redisplay everything.·
self display

CounterView methodsFor: 'controller access •
defauHControllerClass

•Answer the class of a typically useful controller.•
f CounterController

Figure 5.23: The Counter View

258

MouseMenuController subclass: #CounterControllar
instanceVariableNames: • •
classVariableNames: ' •
pool Dictionaries: ' •
category: 'Demo-Counter •

CounterController methodsFor: 'lnltlallze-release '
Initialize

·initialize a menu of commands for changing the value of the model. •
super initialize.

259

self yellowButtonMenu: (PopUpMenu labels: 'lnaement\Decrement' withCRs)
yellowButtonMessages: #(increment decrement)

CounterController methodsFor: menu messages '
decrement

"Subtract 1 from the value of the counter.•
self model decrement

Increment
•Add 1 to the value of the counter.·
seH model increment

CounterController methodsFor: 'control defaults '
lsControlActlve

'7ake control when the blue button is not pressed.·
fsuper lsControlActive & sensor blueButtonPressed not

Figure 5.24: The Counter Controller

260

CounterView class methodsFor: 'Instance creation '
open

•Open a view for a new counter.·
•seled and exearte this comment to test this method"

·eounterView open.·

I aCounterVlew topVlew I

aCounterVlew +- CounterView new
model: Counter new.

aCounterView borderWidth: 2.
aCounterVlew insideColor: Form white.

topView +- StandardSystemView new
label: 'Counter'.

topView minirrumSlze: 80@40.

topView addSubView: aCounterView.

topView controller open

·create the counter display view■
•a new CounterVlew instance"
"With a Counter as Its moder

"give it a borderWidth•
"and white insides·

ihe top-level view"-
•a new system window■
iabelled 'Counter' •

•at least this big"
•actd the counterView as a subView•

·start up the controller"

Countar

valua: O -----.... -4 lncramant
acramant

Figure 5.25: Creating the Counter MVC

261

Figure 5.26 shows the interfaces between the MVC components for this example.

The basic steps of the MVC triad creation is as follows [note that the ordering of the steps

is not relevant].

[1] Create the views of the MVC triad with their corresponding model.

[2] Create a top view, an instance of StdSystemView.

[3] Attach each view of the MVC triad as a subview of the top view, defining the layout of

these subviews within the top view.

[4] Perform any initializations.

[5] Schedule the top view's controller.

The last step invokes the open method defined in StdSystemController which allows the user to

define the area for the view, displays the top view (and its corresponding subviews), and then

assigns itself as the active controller with the control manager, ScheduledControllers. It is impor

tant to note that the MVC framework does not enforce where the MVC creation should take

place. In fact, the Smalltalk system has examples of the creation process done by the model

(e.g., Filelist's openOnPattern:), the View (e.g., ProjectView's open:) and the controller (e.g.,

FormEditor's createOnForm:). Conceptually, the creation message should be carried out within

the view, because it has direct access to both the model and the controller, and more impor

tantly because the creation message mainly concerns setting up the view within a top StdSys

temView.

The next example is a simple editor to manipulate the contents of a list of strings. Such an

editor could be used, for example, to maintain a list of message names for browsing. The MVC

triad for such an editor is implemented by classes ListHolder, ListHolderView and ListHolderCon

troller. The ListHolder model contains an ordered collection that represents the list. The func

tionality of the editor is defined by standard editing facilities such as undo, edit, copy, cut and

paste. Many of these functions implicitly use a Macintosh style clipboard. The class definitions

262

value: 0 - ·model: a Counter
dependents: --- Vscontroller: a CounterController

OrderedCollection (a CounterView)•-- superView: a StandardSystemView

Counter · /
subViews: OrderedCollection O
insetDisplayBox: 421@34 comer: 569@104
borderWldth: 2@2 comer: 2@2
borderColor: a Form

model: a Counter0 insideColor: a Form
view: a CounterView-
yellowButtonMenu: a Po8iUpMenu Counter View
yellowButtonMessages: increment decrement)

Interaction devices sensor: an lnputSensor~
l User \ CounterController

·~

(mouse, keyboard) I

Figure 5.26: Interfaces of the Counter MVC

for the model, view and controller are presented in Appendix C.

5.3.2.4. Weaknesses of the MVC Framework

263

The major strength of the MVC framework is that it provides a large number of prefabri

cated components that allow designers to very rapidly create standardized Smalltalk user inter

faces. It is also extremely flexible (in the confines of building consistent interfaces) because any

of the classes can be modified or extended very easily. However, its weaknesses far outshadow

its strengths. The rest of this section discusses its weaknesses. The discussion starts with the

weaknesses of the MVC framework in general and gradually describes specific weaknesses.

The major drawback of using the MVC framework is that it requires intimate knowledge of

the structure and implementation of all its components. As was pointed out in the introduction to

this chapter, this makes the MVC framework a white-box framework. This drawback is made

worse by the lack of decent documentation. This implies a large learning curve, which is exacer

bated by the numerous undocumented and non obvious protocols, guidelines and subtle rules

that are necessary to gain a complete understanding of the MVC framework. Note that the

recent OOPSLA conference included an entire tutorial dedicated to MVC programming, support

ing the difficulty of mastering it.

As a white-box framework, the MVC is poorly organized and designed. Kent Beck [107]

puts it aptly:

The people who wrote It had an Incomplete understanding of what their code was

supposed to do and where It would fit with the rest of the system.

Conceptually, the MVC framework is a powerful concept. However, its realization and extension

is extremely weak.

The major criteria for a well-designed white-box framework is as follows [95].

[1] The major components of the design are represented within the framework as abstract

classes which have well defined interfaces between them.

264

[2] The entire hierarchy that implements all aspects of the framework should be narrow and

deep, that is, the abstract classes should be the roots of the entire class hierarchy.

[3] All the subclasses should adhere to the major principles of the overall design abstraction.

The following shows that the MVC framework does not meet any of the above criteria.

The Model abstract class is the weakest link in the design. It does not provide any

behavior or structure for implementing applications. The only behavior that is provided is for

maintaining the associated view/controller pairs as dependents which is used to broadcast appli

cation state changes. This behavior, however, defines a particular aspect (change manage

ment) of the interface between the model and its associated view/controller pairs.

The View abstract class provides a well defined behavior for its interaction with the screen

and its subviews. However, it does not define any behavior or structure for its interaction with

the associated model. The manner in which the view interacts with the model is defined in sub

classes of View, thereby losing the generality of the design abstraction. More importantly, class

View does not define any interface between itself and the corresponding model. This interface

is achieved by maintaining the model object itself as an instance variable. This is a poorly

designed interface between components of a framework, and is the major reason why each view

subclass is mainly concerned with defining this interface with the model. Note that the sub

classes of View are implementing an application behavior, that is, how the external representa

tion of its state is created. These subclasses require an intimate knowledge of the actual imple

mentation of the model which is highly undesirable in abstract components. The model, on the

other hand, requires no knowledge of its corresponding views.

The interface between the view and its controller is much better. The defaultController

Class method is a good example of automatic connection between components, as it allows a

view to instantiate an appropriate controller to control itself. Views only provide behavior to

return their controllers and never actually access the controller itself. However, the view actually

maintains its controller object as an instance variable and therefore could potentially access the

265

internals of the controller. This is again an example of a poorly designed interface between com

ponents.

The same philosophy is also used in defining the interfaces between the controller and its

associated view and model. Once again, controllers are forced to have intimate knowledge of

structure and implementation of the view and model. The major weakness of the Controller class

(and of the entire MVC framework in general) is that the three-button mouse is bound as the

interaction device very early in the design. This does not provide for any other devices to be

used.

The entire class hierarchy that implements the user interface components basically falls

under the three abstract MVC classes. The major exception is the implementation of pop-up

menus. Class PopUpMenu is a subclass of Object, and includes its own view and controller. It is

interesting to note that static menus, implemented by the MVC triplet List, ListView and ListCon

troller, present the same functionality as pop-up menus. The only difference is that one is static

(always visible) and the other dynamic. Thus, their only difference is in the viewing facilities.

Since displaying a view causes all its subviews to be displayed, class PopUpMenu is defined

separately only because of the inability of class View to dynamically display some of its sub

views.

The major goal of a framework is to divide a design into a specific number of components

which carry out well defined functions within the design. Therefore the framework should enforce

where each function of the overall design should be performed. The conceptual functionality of

the abstract MVC classes is not enforced in their implementations. This non-enforcement of

functionality within each component is probably the gravest problem with the effectiveness of the

MVC framework. This major problem with the MVC framework is best described by Sam Adams

[108]:

A simple analogy of MVC is a computer system where the Model is a database manager,
the View is a terminal display, and the Controller is the application program running the
whole show. While this analogy is useful at times to explain the basic divisions of labor in
MVC, it presents a poor example of the fact that in Smalltalk, the "application program" is

266

typically scattered over the behaviors of several objects.

And that is exactly the reason why many programmers have a difficult time learning how to
use an MVC. I am constantly being asked the question, "which methods should I put in the
View and which should I put in the Controller or Model?".

In my experience I have observed that only the most simple applications of MVC's in
Smalltalk applications adhere strictly to the general guidelines. In fact, in the standard
image of Smalltalk-BO, there are several examples where a View has a built-in Model or
has no Controller

The previous subsections have presented numerous examples of the inconsistency of the MVC

framework. For example, the MVC triad can be created in any component of the MVC triplet.

Another important inconsistency is the scrolling behavior for views which is defined within class

ScrollController. Scrolling exemplifies the ad-hoc manner in which the MVC framework has

evolved. Object-oriented framework evolution should be reflected within the root abstract classes

of the framework. It should not be achieved by destroying the design abstraction at lower levels

in the hierarchy.

We end this section just as we began it, on a positive note. There exist examples of some

black-box frameworks within the MVC framework implementation, known as pluggable views.

Experience with the MVC implementation revealed that the views and controllers of MVC triads

dealing with lists, text and code were essentially similar. Pluggable views factor out this com

mon behavior and allow them to be specified as parameters in a creation message. The major

pluggable views within Smalltalk-BO are SelectionlnlistView, TextView and CodeView.

SelectionlnlistView is a black-box framework built from the MVC triad List, ListView and

ListController, which were presented earlier as (basically) an implementation of static menus.

The SelectionlnlistView provide a parameterized instance creation method

on:aspect:change:llst:menu:lnltlalSelectlon: that automatically creates an instance of a static

menu. For example, the list of classes presented by the system browser (as the second view on

the top of Figure 5.22) can be created as follows:

ClassllstVlew <·· SelectlonlnllstVlew "an Instance of SelectlonlnllstView·
on: aBrowser "model of the SelectlonlnllstVlew"
aspect: #className "message to get the selected Item"

267

change: #className: "message sent on Item selection"
11st: #classLlst "message sent to generate 11st"
menu: #classMenu "message sent to get menu"
lnltlalSelectlon:

#className "message sent to get Initial selection"

The messages indicated by #<symbol> is implemented by the corresponding model aBrowser.

Figure 5.27 shows the classMenu method (in the lower view) which provides functions for mani

pulating classes as shown in the pop-up menu in the second view on the top.

Appendix D presents a complete example of the use of SelectionlnlistView for creating

class Notebook which manages a two-level topic hierarchy, each with associated text. Some

examples of notebooks might be a calendar organized by month and day or a university course

catalogue organized by department and course title.

5.4. Generallzlng the MVC Framework

This section discusses modifications to the MVC framework in order to

[a] make it into a generalized white-box framework, and

[b] push it towards a flexible MIMD framework.

The modifications that are suggested are aimed at the basic components for creating user inter

faces_ within Smalltalk. That is, the MVC abstract triplet Model, View and Controller. The discus

sion will also focus on important features of user interfaces such as menu, scrolling, support for

inpuVoutput devices, and scheduling (and managing) controllers.

The major goal of these modifications is to ensure that the conceptual abstract design of

the MVC framework is maintained in its implementation. The first step in this generalization is to

determine the exact behavior of each of the major components in the MVC framework. The next

step builds well-defined interfaces between these components. The final step ensures that the

protocol (or behavior) defined in the root abstract classes is followed by all its subclasses.

Therefore, none of the subclasses should be allowed to break or combine the behavior of the

abstraction. However, the design should allow black-box frameworks to be developed to

268

Sy,t"' lnw1erl

~MetPINI ------- ·--------- ···--
~ ... ,._,," ~.,,., laltllllatioA Cl&UIJ,t
M"'et-~pott ... ,.rvie .. U!.')'ht mass
Wltlrfact-fr ... w~ MetllOdultlrowHf t-mt'-tion.s clu!N&•
•11"'am•ll,ppon ---··-- d&tsN&•
•te"'&ee•ICOIIJ Clut-llMI new<Jull.lst:
Mter'acrl.JIII (;l&llfinlt lwitc:11 Mlee;tHCl&II
lnterface·T&n pnaocol hi -------·
"'•""aca·TtnUltw prctocdlUlleUQft5
lnterltm·M1""1 Mlletor ~st
ln11r'a«-·"'-t/Cenh SMCtllf flMcdans

1 ... ,--,c•---- tut
.,,.,.ace·llls,tctlf cltk/acce,t/1,qiialn
lllltr'act•~r c:IIAngeaa...,.-1
l1t1rl&c,i·f11-
lllterface•Tr&~I
lntrl&ce-Jr-ojectl
•terlact·CllaftfH

Nl&ntl I CIUS W,ter'ace·Tenill&I

~,._,,,.
clu!H&• - II lrTru■: ["'} cia, __ ,.,,,.IUI:

[au.MIIIII • t.ctionMlnu
l&llllt '111 cait"""t ~•"\sflt""' l'ilran:hy

Nerarcly\N!Wdell\CNaM<~tOCOII

inn •&r re111e1111 "' re'1\c1&11 reh
1111fe1t1• ,_..,_.~

.. ., #(4 I,, 12)
M1Ct0n: l(lhOutCl&ss ,mtO.itCl&u ,,.....aas, ,.,,.....,an:hy

.,......,.,_,. .0.U .. tOaalleftt taf~tOCOlt

"9••~es llnwtl0u1Van&0111 wow,1Clut11111nncu
~~!•1pNt11tlc
,.,....au,,_,,IO&u)}

• CluJMtftu

Figure 5.27: The classMenu Method

269

facilitate the automatic generation of standard components. For example, the design should

allow the development of classes such as Selectionlnlist (presented in the previous section)

which automatically creates the view/controller pair for selecting from a list of items.

The discussion on generalizing the MVC framework is presented from the perspective of

its three major components, that is the Model, View and Controller. The following subsection

presents an overview of the modifications that are suggested. The final subsection summarizes

the generalization process by comparing it to the MIMD UIDE design, and draws some conclu

sions about the development of object-oriented user interface development environments.

5.4.1. A General MVC Framework

Conceptually, the MVC framework separates the application (Model) from its user interface

(View/Controller pair). In its current implementation, the Model is the weakest component. This

weakness forces the associated View/Controller pair to be involved in application behavior,

thereby tightly binding the user interface with the application. To achieve a general MVC frame

work, it is necessary to ensure a clean separation between the Model and its View/Controller

pair.

This separation forces all application behavior to be define9 within the Model component.

The major behavior of the Model that is involved in user interaction is the external

representation(s) of its internal state. Thus, the Model is modified to generate its external

representation on a Form. This Form (or an array of Forms for multiple external representations)

defines the interface between the Model and its View. The View accesses its application Form

to present to the user. Whenever the application's state changes, it regenerates its external

representation(s) and informs its View(s) to update themselves. This causes the View to access

the application's Form for redisplay to the user.

The other important behavior of the Model is its functionality. Since the Model is the only

component in the MVC triplet that has knowledge about application functionality, it should create

the interface to access its functionality. This functionality is interfaced to the outside world

270

through two objects: a list of items and a corresponding list of selectors (hereafter referred to as

the application's Item/selector pair). The list of items are strings corresponding to names of

functions provided by the application, and the list of selectors are the actual application methods

to be invoked when its corresponding item is accessed.

An application is presented to the user within a single window on the screen. This window

contains a set of subviews corresponding to external representations presented by the applica

tion. The top level view behavior is similar to that described for StdSystemView. That is, it pro

vides an empty rectangular region with a label, handles windowing functions (such as move,

frame, close) and contains the top level controller for the entire application. All other views are

associated with the application through a Form that represents the application's state. The main

behavior of such application view allows for manipulation of this Form, including scrolling and

zooming.

In keeping with the design of maintaining View/Controller pairs, it is appropriate to associ

ate the application's functionality (that is, its item/selector pair) with the View. This results in

well-defined interfaces between the three components. The View is the only component that

communicates with the application, accessing it through a well-defined interface (the Form that

defines the application's external representation and the item/selector pair that defines the

application's functionality). The View is also the only component that communicates with the

Controller.

The Model's item/selector pair, maintained by the View, forms the basis for generating

menus. Thus, menus are associated with Views. Menus are also represented by an MVC triplet:

the Model is the item/selector pair, the View is the rectangular region displayed on the screen to

present the menu to the user, and the Controller allows the user to a make a selection. The

selection is passed by the Controller to its associated View, which in turn invokes the appropri

ate action in the Model (corresponding to the entry in the selector). The Model performs the

associated action, creates its new external representation and informs the View that it has

271

changed. The View updates itself by accessing the Model's Form and redisplaying it. Note that

menu views are registered as subviews of the associated view. Subviews can be designated as

visible or invisible, to allow for both static and dynamic views. Besides being a good model for

static and pop-up menus, this feature allows any view to be dynamically displayed when

activated. This is helpful in allowing the user to manipulate the information that is presented by

the application. Note that such a feature also generalizes scrolling, supporting both Macintosh

like static scroll bars and Smalltalk-like dynamic scroll bars. The actual scrolling behavior is

standardized in class View, since scrolling is always achieved by moving a window on the Form

maintained by the View.

The Controller component needs modification to reflect the modifications in the other two

components. There exists a single instance of a scheduler or control manager. Its main behavior

is to determine which application wants control. This can be achieved either by asking each top

level view whether the cursor is in their associated view's area, or by registering all top level

controllers with the scheduler (and using the method isControlWanted to determine which con

troller wants control). Note that the default behavior for isControlWanted in the current MVC

implementation is viewHasCursor. Therefore, the former approach is preferable. If the cursor lies

outside all application windows, a screen controller is given control to allow global Smalltalk

functions (such as save, quit, refresh, etc.) to be accessed. If the cursor lies within an applica

tion window, the corresponding view is activated. The default behavior for activating windows is

to give control to its top level controller. When the user moves the cursor outside the confines of

the current active application window, control is returned to the scheduler.

This view-oriented control scheduling is followed throughout the generalization. The top

level controller determines if any of its subviews want control by invoking the isActivation

method. Note that this message is sent to all subviews, including those that are not visible. This

is to allow dynamically activated views to take control on a button or key press. Menu, scroll

and editing controllers specialize this general behavior to suit their particular functionality.

272

Finally, each controller should indicate the input devices that are needed. Ideally, the sys

tem should provide low level behavior for all input devices (mouse and keyboard), and then

allow the class lnputSensor to be used to provide access to these devices. Thus, instances of

lnputSensor could provide access to only the mouse or keyboard, or to both. This allows

interaction to be based on any (combination of) input device(s). Note that only the input

device(s) defined by the instance of lnputSensor are active, all others are deactivated.

5.4.2. Remarks on Generalizing the MVC Framework

It is interesting to compare the current MVC implementation with the MIMD UIDE

developed in the previous Chapters. The major weakness of the MVC is that it fails to cleanly

separate the application from the user interface. This is mainly due to the fact that the Model

component does not define any structure or behavior for the application. In contrast, the MIMD

UIDE imposes a strict separation, by developing the necessary models that define the exact

behavior of the application. Interactive data structures model a well-defined interface between

the application and the view presented to the user. The operations defined for interactive data

structures provide for smooth translations between the view and the internal state of the applica

tion. Furthermore, function interaction and service interface objects model a well-defined inter

face between the controller and the application's functionality.

Furthermore, the Controller component of the MVC implementation is very specialized to

the input device and interaction style imposed by Smalltalk. The MIMD UIDE develops a layered

approach to the controller through the input device, action table, input technique, mapper and

interaction task classes. This layered approach facilitates easy modification at every level, and

more importantly supports a wide range of styles and techniques.

The modifications that were suggested in the previous section were basically to augment

the MVC framework with the strengths of the MIMD UIDE. We would like to point out that some

of these modifications (with the notable exception of modifications to the Model) have been

incorporated into a version of Smalltalk that was ported to the Macintosh. We are not sure

273

whether these modifications to the MVC framework in SmalltalkN-MAC [109] were made to

reorganize a weak framework, or to take advantage of the powerful user interface toolbox [11 O]

provided by Macintosh. However, this reorganization of the MVC framework brings out an

important problem with current object-oriented development environments: the lack of tools to

reorganize the class hierarchy [95]. When a weakness is encountered in a framework, it should

be strengthened in reorganizations/modifications at the highest abstract class level. The lack of

reorganization tools filters weaknesses to the lower concrete classes thereby making the prob

lems worse. Currently, the only way to enhance a framework is to totally reorganize the entire

class hierarchy, which is infeasible due to time and economic considerations.

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

A large percentage of software engineering is devoted to the development of interactive

software systems. Interactive software systems are comprised of two components: the applica

tion component defines the system's functionality and the user interface component defines the

behavior of the system. It is widely accepted that the user interface component is more impor

tant since it determines the effectiveness of the interactive system. User interface software

engineering research can be divided into two broad categories. The first is concerned with

developing new technologies for interactive styles, techniques and devices. The second is con

cerned with building User Interface Development Environments (UIDEs) to aid in the construc

tion of user interfaces. The research presented in this dissertation falls into the latter category.

Current research in UIDEs focuses on models, techniques and tools that allow the system

designer to rapidly develop user interfaces for interactive applications. A major contribution of

this research is that it develops a new perspective of UIDEs. This perspective views the end

user of interactive systems as the only person capable of determining what constitutes an

effective user interface. Thus, the emphasis of developing the user interface has shifted from

the system designer to the end user. The main goal of this research has been to develop UIDEs

that provide the end user with facilities to construct user interfaces, similar to those provided to

system designers by currently available UIDEs. That is, end users should be able to customize

every aspect of the user interface for any interactive application.

Besides maximizing user productivity and therefore system effectiveness, such a perspec

tive has the following advantages.

274

275

[a] A UIDE that supports interface construction by the end user, automatically supports con

struction by the system designer as well. Thus, system designers can initially create a

default user interface that defines their interpretation of the most effective way of using the

interactive system's functionality. The end user can use this default interface to gain an

understanding of the interactive system, and then modify it to suit his/her own personal

behavior to maximize productivity.

[bl Since the user interface can be modified at any time, it can evolve incrementally with the

user's experience. This is probably the most important advantage of end user customiz

able user interfaces. Current interactive systems present the same interface throughout

their lifetime. After an initial gain in end user productivity, such an approach does not allow

the user interface to increase productivity continuously by taking advantage of the growing

expertise of end users.

(c] A non-changing interface is prone to technological obsolescence. Thus, any major shift in

interaction styles, techniques and devices would render the entire interactive system

obsolete. Furthermore, this would require a costly rebuilding of the user interface com

ponent for all the interactive systems built on an obsolete user interface style. More impor

tantly, such an approach introduces these technological advancements at a very large

granularity. That is, the new interactive system presents a completely different behavior

from the previous system, and therefore requires users to relearn behavior for accessing

functionality that is well understood. This retraining and relearning is extremely expensive

and usually hinders the use of newer technologies. Modern interactive software engineer

ing has failed to adequately address the problems associated with technological change.

However, a user modifiable interface can accommodate the introduction of newer technolo

gies without affecting user productivity, and more importantly does not render the entire

system obsolete. Thus, users can incorporate these new technologies incrementally into

their user interfaces according to their own pace of learning.

276

In the ever changing world of interaction technology, it is imperative to build UIDEs that

support continuous modification of every aspect of user interfaces. This research is the first

attempt at developing such a user-modifiable UIDE.

The rest of this Chapter is organized as follows. Section 6.1 presents the specific contribu

tions of this research and summarizes results. One of the most exciting results of this research

is that it has provided a platform for future interactive software engineering research. However,

to be effective as a platform, it is necessary to build a fully operational and efficient UIDE. Sec

tion 6.2 outlines immediate future plans for building a complete user-modifiable UIDE. Finally,

section 6.3 discusses how the experiences in developing such a UIDE can be applied to gen

erating entire interactive tools and ultimately environments.

6.1. Research Summary and Contributions

This dissertation developed a classification scheme for UIDEs, based on the multiplicity of

user interfaces and applications that can be supported. This is the first attempt at developing

such a classification. Classification schemes are important in any research area as they provide

the basis for contrasting and evaluating different approaches and models. The classification

scheme for UIDEs has been helpful in identifying the characteristics of UIDEs, and more impor

tantly has aided in understanding their strengths and weaknesses. Most of the UIDEs that have

been developed to date fall in the SISD, SIMD, and MISD [S= Single, I= user lnterface(s), M=

Multiple, D= application Domaln(s}] classes, and were surveyed in Chapter 2.

Current user interface development efforts are directed at the popular SIMD class. SIMD

UIDEs support the generation of a single consistent interface style for many applications. The

many disadvantages of such an approach has been presented in the introduction to this

Chapter. The major goal of this research was to develop a MIMD UIDE, capable of generating

multiple user interfaces for many applications.

It is widely accepted that a complete separation of the user interface from the application

is necessary to support the development of flexible UIDEs. This dissertation has shown that

277

UIDEs in the SISD, SIMD and MISD classes do not achieve a clean separation, which is the

major reason for their inflexibility. In Chapter 3, models were developed for both the application

as well as the user interface components that provide a clean and well defined separation.

Interactive applications were modeled as general editors capable of manipulating an arbi

trary 2-dimensional (structured) picture. The internal state of the picture, along with its external

representations, are maintained within Interactive data structures. These external representa

tions are intertaced to the user by the user interface component, and form a well-defined inter

face between the two components. Furthermore, the model generalizes the functionality of the

editor to allow the user interface component to be solely responsible for interaction. The model

developed for the user interface component generalizes both the presentation of information to

the user, as well as interaction with the application. The layered interaction framework allows

for modification at a very fine level of granularity. Thus, the model facilitates the development of

customizable interfaces.

The design of the MIMD UIDE presented in Chapter 4 provides a robust set of object

oriented classes. These object-oriented classes form the basis for an MIMD UIDE that is easily

extensible to accommodate an ever changing technological environment.

Finally, Chapter 5 presented the experiences of implementing the MIMD UIDE prototype

by generalizing Smalltalk's Model-View-Controller (MVC) user interface framework. The MVC

framework, introduced in Chapter 2 as an example of an SIMD UIDE, is used within Smalltalk to

develop consistent interfaces. Conceptually, the MVC framework is a general three-way factor

ing of interactive systems, with the Model representing the application, the View presenting the

application's internal state to the user, and the Controller managing interaction with the user.

However, its realization within Smalltalk results in a rigid, inflexible class hierarchy that only facil

itates the creation of specific interfaces. Furthermore, the exact boundaries between the three

components are neither enforced nor maintained. One of the major problems with the implemen

tation is that the exact nature of the behavior of the Model (or application) is not specified. This

278

leads to interactive systems whose user interface is tightly bound to the application, resulting in

inflexible Interfaces.

Implementing the MIMD UIDE made it clear that a general graphics/windowing platform is

crucial for the development of flexible UIDEs. Unfortunately, SIMD UIDEs, such as Smalltalk,

do not provide such a general graphics/windowing subsystem. This implementation also vali

dated the claim that a clean separation of the user interface from the application component is

necessary for the development of flexible UIDEs. The modifications that were made to general

ize Smalltalk's SIMD UIDE represent an attempt at defining such a complete separation.

In conclusion, the experiences with implementing a prototype of the MIMD UIDE has

strengthened the validity of the models and design that were developed for the MIMD UIDE. It

has also shown that current object-oriented environments are not suitable for developing flexible

UIDEs. It is therefore necessary to build an MIMD UIDE from scratch, on top of a flexible, dev

ice independent, general-purpose graphics/windowing subsystem that does not impose any

biases on interaction styles, techniques and devices. It is important to note that standards for

graphics/windowing systems do not currently exist. However, the current indication is that such

general-purpose, object-oriented graphics/windowing systems will be marketed in the very near

future.

6.2. Further Research In MIMD UIDEs

The major aim of further research in the immediate future will be to develop a complete

MIMD UIDE. This development will be carried out on two platforms. The first platform is

Smalltalk/Von the Macintosh, which has added the necessary modifications to Smalltalk's sup

port for user interfaces to make it more suitable as a development environment. The second

platform will be based on C++. Since C++ is classless, it presents a platform that facilitates an

MIMD UIDE implementation that exactly follows the design. X windows will be used as the sup

port for the underlying graphics/windowing system.

279

The prototype will then be converted into a fully operational, effective MIMD UIDE. Such

an attempt will require further research into the following three areas: interactive data structures,

interaction technologies, and the development of efficient user interfaces. Each of these areas is

discussed below.

Interactive Data Structures

The effectiveness and efficiency of interactive data structures is largely dependent on the

specification and maintenance of neighborhood relationships for both the internal and especially

the external representations. Our design of the neighborhood relationships for the external

representation used an ad-hoc block that (re)calculated every node's display geometry. When

ever a change occurred in the data structure, this brute-force recalculation was applied.

Furthermore, certain natural extensions of interactive data structures also require the

definition and maintenance of dependencies. The following extensions would enhance the gen

erality of the interactive data structure model.

[1] This research was concerned with developing user interfaces for interactive systems that

comprise a single application. The current trend, however, is to develop sophisticated

interactive environments that integrate multiple application.s which are presented to the

user as a single system. To accommodate such complex interactive systems, it is neces

sary to extend the model to include many applications implying multiple interactive data

structures. The major problems will be in defining dependencies between these structures,

and maintaining these dependencies whenever any data structure changes.

[2] The design of the data structure hierarchy included only the standard base data structures

(lists, trees, sets, graphs) and their variants. However, sophisticated interactive applica

tions and environments require more complex structures. One possible way to extend the

interactive data structure model is to allow the base structures to be pasted (combined)

together to form complex structures. Once again, the major issue to be resolved is the

definition and maintenance of dependencies between the components of the complex data

280

structure.

There exist three models for specifying and maintaining dependencies that are worth con

sidering: Smalltalk's dependencies, semantic attributes and constraints. Each of these models is

discussed below.

Smalltalk's model for dependencies was presented in the previous Chapter. To reiterate,

every object can maintain a list of objects that are dependent on it. Whenever an object

changes its internal state, tt can broadcast a (parameterized) change message to its depen

dents. These dependent objects react to the change through locally defined updating schemes.

The major advantage of such a loose model is its simplicity for defining the dependencies. The

major disadvantage is that the maintenance of these dependencies must be provided by the

designer and is therefore carried out in an ad-hoc manner.

In the initial wor1< for this research, context-free grammars were extended to 2-dimensions

in order to develop a formalism for defining graphical applications [85]. Figure 6.1 shows an

example of using an attributed graphical grammar to define the language of D-Charts [111].

The major problem with defining such graphical languages is the specification of the display

geometry. This problem was solved by defining a rectangular region (width, height and entry

point) representing the minimum area necessary to display each terminal and nonterminal.

Each production in the grammar defines a set of equations that specify how the rectangular

region of the left side nonterminal can be computed in terms of the rectangular areas associated

with symbols on the right. As an example of these display equations, consider the expansion of

a <D-Chart> nonterminal by applying production 1, as shown in Figure 6.2. The dimensions of

the rectangular region enclosing the expanded <D-Chart> is given by

W' = max (wldth(ENTRV), wldth(<Body>), wldth(EXIT));
H' = helght(ENTRV) + helght(<Body>) + helght(EXIT).

Thus, the geometric attributes for the display attributes for <D-Chart> are synthesized from the

geometric attributes of symbols on the right side of production 1. However, not all geometric

~ , : <l>_O,art) - <)ociy>

·~

2: <)ocly> - I <coo;•"> I
<)3odt;>

}: <Bodf> - e
<)!ody> <l,oop_body>

G
- ~

I -4: <~>
<cau•> (l)ef'ault>

5: <tooc _body> ____,.

-
-

9: <t,1(>

<Bodr>

I
¢ae(>~HI£)

I

I
¢• .. >

I

W[

~'j'"'~
<)od)';>

Figure 6.1: A Sample D-Chart Grammar

281

OCHART IIH
w

(a) Before DCHART Expansion

r;-=-----=-=-;7
I '(ENTRY) I I I j_ _____ 1 I

'/Tl, I I I I I
1 1 BODY : I H' 11 I I
I L.:----.J I

I c-r)-r I 11 I I
I I EXIT I I
I~----~ I .,_ ---- - _,

W'

(b) After OCHART Expansion

Figure 6.2: A D-Chart Expansion

282

283

attributes can be synthesized. For example, the display of 0-Chart conditional structures (given

by productions 4, 7, 8, 9 and 10) must ensure that the vertical dimension of the <Default> be the

same as the vertical dimension of <Cases>. To force this alignment, both <Cases> and

<Default> inherit their height attribute from their common parent, <Body> in production 4. Thus,

synthesized attributes pass information up the associated syntax tree while inherited attributes

pass information down or across the tree. Reps [112] has devised incremental algorithms to

ensure the consistency of these (semantic) attributes whenever a change is made to the tree.

When applied to defining dependencies within interactive data structures, the semantic attributes

model has the advantage of automatically maintaining the dependencies. The major disadvan

tage is that such semantic equations are difficult to specify.

Constraints specify relationships that must be maintained. A constraint that A = B + C

could be used to determine A given B and C, but could also be used to determine B given A

and C, and C given A and B. That is, constraints are multi-directional. A set of constraints are

transformed into executable procedures that automatically maintain the specified relations. Fig

ure 6.3 shows an example of a constraint MidPointLine which consists of a line and a point and

the constraint that the point is always in the middle of the line. Constraints are versatile as is

evident from their use in a wide variety of applications including geometric layout [113], physical

simulation and algorithm animation [114], document formatting [115], design and analysis of

mechanical devices and electrical circuits [116], jazz improvisations [117], and user interfaces

[118]. The major advantages of using constraints to maintain relationships is that they are

declarative in nature, and particularly suited to graphical techniques. Figure 6.4 shows a graphi

cal definition of MidPointline (119]. The major disadvantage of constraints is that the algorithms

for maintaining them are complex, and for a large set of constraints extremely slow. However,

ongoing research on constraints may remedy this disadvantage in the very near future.

Another important extension of interactive data structures is how they can be animated.

Animation of data structures and algorithms are very useful in simulating interactive systems and

ThinglabObject subcla,s: #MidPointUna
instancaVariableNames: 'line mp'
cla,sVariablaNamas: "
poolDictionaries: "
ca tagory: 'Prototypes'!

MidPointUna prototype parts: 'llna mp'.
MidPointLina prototypa figld: 'fine' r;placaWith:

(40t&40 lin;: 100~20).
MidPointLine prototype fiald: 'mp' raplaceWith:

70~30!

MidPointUne prototypa lns;rtQr,:
#{'line point 1' 'line point2').

MidPointUne prototype constrainars: #('line')!

Constraint ownar. MidPointlina prototype
rulQ: 'mp • ((lina point 1 + lina point2) _I I 2)'
error. 'line location dist: mp'
methods: #(

'salt sat.mp: (line point 1 + llna point2) //2'
'lina sat.point2: lina point 1 + (mp-Jina point 1 •2)'
'line sat.point 1: Jina point2 + (mp-lina point2*2)'
)I

Figure 6.3: Specification of MidPointline

284

ThingLab Object Definer

P1 P1

P2

I

ins art
dCIICltCI
constrain
marga
mova
edit

Anchor
Bitlmage
Constant
EqualLangthUnu
ExprConstant
Exprf quality
Exprusion

M

Figure 6.4: Graphical Specification of MidPointline

285

286

in manipulating the runtime state of the system for debugging. Two approaches for animating

interactive data structures are worth considering. The first is the use of temporal constraints

[114] to specify the evolution of data structures and their external views by discrete time incre

ments. Figure 6.5 shows three examples of animation using temporal constraints. The second

approach concerns the maintenance and manipulation of temporal data within databases. A

temporal data is a triplet, (0, T, A) where 0 is the identifying object, T is the time, and A the

attribute value of 0 at time T. To capture the evolution of 0 through a period of time, it is neces

sary to define a time sequence for 0 as (0, <T,A>*). Such temporal data can be subjected to

temporal queries such as "get values for 0 in the time range from ta to tb." A survey of over 70

articles devoted to research in temporal databases can be found in [120].

Note that both the temporal approaches presented above are mainly concerned with main

taining and manipulating the history of evolution for a particular structure. In the realm of animat

ing interactive data structures, the main concern is with maintaining and manipulating the history

of changes to the data structure. Thus, the initial state of the interactive data structure is copied

to a transcript file. Every operation (along with its parameters) applied to the data structure is

recorded in the transcript file. It would then be necessary to develop tools that can execute the

transcript file, allowing the user to start and stop the animation at any point, reverse execute the

transcript, etc. Such a facility would require the definition of methods that reverse (or undo) the

effect of every method provided to manipulate the interactive data structure. Note that the dis

cussion so far has concentrated on animating a single interactive data structure. To facilitate

animation of the entire interactive system would require that all operations entered in a particular

interactive data structure's transcript file be time stamped relative to the start of the session.

This would provide the necessary information to synchronize the simultaneous animation of

many interactive data structures.

LC .,
L,r,1S.9~111
Man
M1cP1a11lca!No •at1,1u
M1cPlal'ica"'o ••••••••••••

l.

Or.cillatin& 11um11,on1 The 11umbcr1
iadicatc 1h1 dlarp on rht capaciaor. and the

currcnr ahrouJh ahc inductor. The mass on the
spr1111 01eill11u in tll'O dimt1111on1.

C,

IDrt
!ortQ1,11u1
Spring

.. ! ~ . .;'I .. _ '--· .. -~ -.•. ;- ...

510 &cin.Qwau1
.. ,., IIHSS&SI !pring
td:t TextTtlln;

t

Aa 1aima11on of 1 1elee1io11 aon cau1t11
ill 111id-s...,1p.

Poillt
PTilcAC
Proc,S
~QA
~HDW

LJ
IIIPX::

DD L..J -~
O HOWX::

u u \t u
WOl:: MM.K:: 0.t.x::e3 ACX::

AD opcra1iDI IJIU• 111im1tio1. A Hardware
ffOGIII ta procs•dia& fro• 1M r11d,-
l1&. to wak oa ka a1111p 1act.111p,

Hd 1 ••--• 11 ... , ••• to the procua
OA (Oeaeral ACCNllill&)

Figure 6.5: Animation Using Temporal Constraints

287

288

Interaction Technologies

There currently exist a large number of interaction styles, techniques and devices. To be

effective, the MIMD UIDE must incorporate as many of these interaction technologies to provide

the user a rich mix of possibilities for developing user interfaces. The modifications that will be

necessary to incorporate these interaction technologies have already been outlined in Chapter 3.

Initially, the MIMD UIDE will incorporate more interaction devices including joysticks, trackballs

and voice. The next step is to complete the interaction tasks to include path, orient and quantify.

Newer interaction technologies, such as three-dimensional graphical interaction, may require

extensions to the model.

Efficiency

Finally, the MIMD UIDE must be concerned with efficiency. The main problem with graphi

cal interaction is speed. This problem is more acute in the design of the MIMD UIDE due to the

complete separation of the application from the user interface. This requires the user interface

to communicate with the application for most of the information needed for interacting with the

user. For example, since the user interface only maintains the display buffer of the external

representation, it must communicate with the application to facilitate movement between objects

in the display buffer. However, the more sophisticated workstations available today support

graphical algorithms that are done entirely in hardware. These graphical architectures may be

the solution to most of the speed problems.

6.3. Tool and Environment Generators

This dissertation has been mainly concerned with generating the user interface component

of interactive systems. It defined a general model for the application component as a basis for

developing a well-defined interface between the two components. To be an effective tool, it is

necessary to expand and strengthen the application model to allow the automatic generation of

applications. Such an application generator when combined with the user interface generator

would result in a Interactive tool generator, as depicted in Figure 6.6. Note that all the

USER.

Figure 6.6: Interactive Tool Generator

SPeuhC,lT1o

MEUl.4.J1SM

289

290

applications that are generated are maintained in a database. This tool database would also

maintain the set of user interfaces that were generated for each application. Such a system

would provide an ideal basis for sharing and reusing at a very high level of granularity, that is,

entire interactive tools!

The major issue to be resolved for developing such a tool generator is a 2-dimensional for

malism that can be used to define the graphical language that describes the application. The

previous section introduced the notion of attributed graphical grammars that extends conven

tional context-free grammars . The major problem of extending inherently 1-dimensional formal

isms is that they result in poor specification mechanisms and more importantly increase the

complexity of the design.

Arefi (86] uses the formalism of graph grammars to develop a general framework for the

specification of graphical languages and their syntax-directed editors. The major contribution of

her work is that the editing operations that manipulate the graphical language are defined within

the specification of the language being edited . In other words, the specification of the graphical

language includes the editing operations that can be performed on it. Figure 6. 7 depicts the

definition of a Petri-net editor using this formalism. Note that <del-place> and <del-trans> are

delete operations applied to the places and transitions of the Petri-net, respectively.

The major problem with developing a practical formalism is the lack of a suitable 2-

dimensional structure to represent the grammar that specifies the language. Note that syntax

trees are perfect representations of context-free grammars as they provide a one-to-one map

ping between the grammar and any string in the language. This strong representation is the

main reason for the massive advancement in 1-dimensional language technology, which

includes compiler generators, syntax-directed editors, editor generators, and environment gen

erators. To be effective, formalisms for interactive graphical systems must also model a struc

ture to represent the language that provides a one-to-one correspondence with the underlying

grammar used to define it. It may be possible to use the interactive data structure model as the

291

del-place del-trans

app y
: : = del

ca) place place trans

del-place
app Y

1 del
place I (b) place

appl½

~ del place ~ I p:=
(C) C2f G~

1

y

del-place

app Y

0 .. - del
, (d) trans place ..

place trans

del-trans

l~el
app Y

trans I (e) trans place

del-place
app Y

(f) place : : = place

Figure 6.7: Graph Grammar Specification of Petri-Net Editor

292

basis for developing such a representation based on Arefi's formalism. It is important to note

that formalisms developed for 2-dimensional graphical languages would provide an important

theoretical foundation for the entire tool, including the user interface component.

Finally, the tool generator along with the theoretical formalisms would provide an ideal

foundation for the development of an environment generator. An environment generator would

be mainly concerned with specifying the combination of tools for the environment. For example,

a typical programming environment consists of editors, linkers, and debuggers. The important

aspects of generating an environment is the definition of interfaces and dependencies between

these tools. Furthermore, an environment necessitates the definition of procedures to manage

(e.g., version and change management) and control (e.g., access and version control) the

environment as a whole.

When a truly evolvable and extendible environment generator has been developed,

modern software engineering can ensure that software can progress at the same pace that

hardware has in the last few decades. This research developed tools for the user interaction

component of this environment generator. Hopefully, this work will motivate others to contribute

to this new and important area of research.

APPENDICES

APPENDIX A

FORMAL DESIGN METHODOLOGIES

FOR USER INTERFACE DEVELOPMENT

295

A first and crucial step towards the development of effective user interfaces must be the

formulation of design methodologies which provide the basis for building interfaces. Central to a

user-oriented design methodology is the definition of a user's model of the interactive system.

The user's model provides the basis for designing the rest of the interactive system. This appen

dix reviews the research on developing effective design methodologies for the development of

user interfaces.

What are the goals of an effective user interface design methodology, and what are its

desirable features? Green [22] suggests three basic goals.

[1] A formal notation for describing the user interface should be provided by the design

methodology. A formal notation is important for two major reasons. It ensures that a

description of a user interface is interpreted in a uniform manner by the users of the nota

tion; i.e. the personnel involved in the development of the user interface. More impor

tantly, a formal notation serves as the basis for the implementation of the user interface

from its description.

[2] The methodology should provide mechanisms for validating the man-machine interface

design. Here we are interested in determining the correctness of the design before its

implementation. The experiences of the research on Software Engineering has shown that

it is hard, if not impossible, to show that a design is error free. The major concern is there

fore the elimination of major bugs from the design before its implementation.

[3] The methodology should provide an effective framework for evaluating the quality of the

user interface; that is, its effectiveness. Very little is known about the factors that affect

the quality of the user interface. The methodology should at least provide a framework for

measuring the human factors principles in the design. The following subsections present

two impressive design methodologies for user interface development.

296

A.1 Green's Design Methodology For User Interfaces

The design methodology proposed by Green [22] is divided into two components; a formal

description of the user's model and a formal specification of the user interface based on the

user's model. The design methodology builds a separate user's model for every type of user

that will be involved.

The description of the user's model comprises two components

[1] a task model, which formally describes the user's view of the problem in terms of atomic

tasks. The task model is obtained through an informal task analysis, i.e. the decomposition

of the problem into a number of tasks which are atomic from the user's point of view.

[2] a control model, which describes the actions that the user can perform.

Thus, the task model describes the tasks to be performed and the control model describes the

commands that are provided to perform them; both from the user's viewpoint. Note that the con

trol model must be consistent with the task model.

The notation employed for describing the task and control models is comprised of three

components; object definitions, operator definitions, and invariants. Object definitions declare

the properties (attributes) of the objects, similar to data structure definitions. Operator definitions

describe the conditions for the application of an operator and the effects on the objects. Invari

ants describe the relations between the operators and objects in the model, and may vary

greatly from user to user.

As an example, consider the design of a user interface based on the screen layout dep

icted in Figure A.1. The screen is divided into a menu area which depicts the geometrical

shapes available to the user, and a work area, where the user creates pictures by arbitrary

placement of the available geometric shapes. Three commands are supported: the place com

mand allows the user to use a digitizing tablet to select a geometric shape from the menu and

drag it into the work area; the move command which allows the user to move geometric shapes

297

- -

Figure A.1: A Simple Graphical Editor

298

around the work area; and the remove command which allows any geometric shape to be

removed from the work area. The corresponding task and control models describing this user

interface using the notation described above is presented in Figure A.2.

The next step in the design is the specification of the user interface from the high-level

description provided by the control model. The specification language is based on state

transition diagrams and is influenced by SAi's SPECIAL language [23]. The specification

comprises several state machines (called modules), where each machine is a collection of V

and O functions. The V functions represent the machine state while the O functions describe

transitions that change the machine's state. The specification of the example user interface is

provided in Figure A.3.

The evaluation of the user interface specification to determine its correctness is described

by the following three tests:

[1] the specification is consistent if each operator in the control model is implemented by the

functions in the specification,

[2] all the invariants in the task and control models must hold for the specification, and

[3] testing the behavior of the specification under designer determined conditions.

A.2 Moran's Command Language Grammar

Probabty the most impressive design methodology developed to date is Moran's Command

Language Grammar (CLG) [24]. The basic premise of Moran's proposal is that

to design the user Interface of a system Is to design the user's model.

Thus a CLG representation of a system describes the user's conceptual model of the system.

The description of a user interface follows a top-down design methodology. The user's

conceptual model is described, then a command language that implements the conceptual

model is designed, and finally a display layout is designed to support the command language.

The CLG representation is structured as a number of levels with the aim of separating the

TA!:K MODEL euaple_tulq

OBJECT geoaetr1cal_object;
ATTUBlT!E Uod I (trtanall, circle,

1quare);
AnltBUT! where : poillt:
ATTR11\1TE extent I Extent;

EKD;

OBJ?CT vorlr._aru;
ATTlllBUTE extent I hunt;
ATH.IBUTE cootents : LIST OF

aeo-t rical_object;
t.':I>;

OfERATOR placa(ob 1 &et-aetr1cal_object:
p : point);
Pk!

p 1o v.:>rk._area,u:tent;
PCST

ob.vhera • p;
ob on vork_area,c.outentt;
p in ot>,c11tent;

ENO;

OPERA.Oil 1110vc(ob geomctr1cal_objcct;
r : point);
PRE

p 1n vork._area,e1ttent;
ob on vork area,contenu;

POST -
ob ,vhere • p:
p 1n ob,estenc;

£ND;

OPERATOR reaove(ob I geoaietrical_object);
rRE

ob on vork_area ,contents:
POST

NOT ob on worlr._aue,coaunta;
EKD;

INYAJUANT
FOllALL a: geoaetrical_object I

I on vork._area,contentl
{

1,extent in work_area,e:ii:tent;
}:

E:ffl TA.SK MODUl.! e:ii:aaple_tuk;

Figure A.2(a}: Task Model for Example Interface

299

CONTROL HODEL , uia;,lo_interfaco;

ODJECT menu_! teia;
ATTRIBUTE ayllbol aeo■etrtcal_object;
ATTRlDUTE extent Extent;

ESD; :

OBJECT 11cnu;
ATilllllllf! utent I Extent:
ATTRIBUTE item : LlST OF ■enu_item;

EMD;

OBJECT tracker;
ATTRIBUTE t ucker_■ymbol

aeo .. , r lea l_objec:t;
ATTII.IaUT! where : point;

t!,"l):

OBJECT tablet;
ATTRIIIUT! buttoo_push I boolean;
ATTRIBUTE poaltlon I point;

om:

OPEii.ATOii. anu_aolect -> aaoeecrlc ■ l_objec:t;
PU.

tr ■cker.vhere in 11enu,extanq
tablet, butt un_pu■h;

POST
LET :,: ■en\l_iu■ I tracker.where 111

:,,extent;
menu_eelec:t • y;
tr.ic:lr.er,tuc:ker_eymbol • y; ~.

Clr;~TOII. work_■e!ect -> aeo■etrical_object;

traclr.er.where in vorlr. area.extent;
tabht . button_pu■ h; -

POST
LET y:geoaetrical_object (traclr.er.vhere

io y.exteot AND y ln
vork area,cooteot ■);

vorlr._e-;lec:t • y;
tuc:'1.er.trac'lr.er_ayllbol • y:

!Kt':

OPEJLt.TOll releHe(ob : aeo~etrtc:al_object);
PR!

traclr.er.vhere lo vorlt area,ezunt;
tablet.buttoa_puah: -

POST
ob ,wtlere • trac\:ar ,where:
traclter,vhere lo ob,exuot;
ob oo vork area,contenta;
tablet ,butcoo_pueh • PALS!;
trac:lr.er .traclter_eyllbol • tracki■Lcroe■;

Elm;

OP!IATOl 4clete;
PU

IIOT traclter,vhera 111 vorlt_arH,Utent;
tablet ,b\ltton_p\ls"I;

POST

END;

IIOT traclr.er,trackar_e:,llbol oo
vor\: area, coataota;
tracker. tracltar_eyabol • tracklnLcroH:

lNVAJllANT
FOllALL ■ :menu iu■ I ■ on ■anu,lteu

(-
■,uteot in unu,axteot;

};

UV.U.tA.'IT
tracltcr,vhere • tablet.po1ltio11 AMt>
tracke-,traclter_ayai>ol,vhere •
track•: ,vho:n;

E!ID C:Otrrll.01. 1-',00tt. U:'\1:111 le _ 1.otet f see;

Figure A.2(b): Control Model for Example Interface

300

~D111.E geor-Hr!eal_nbject;

F'tr.lCTIONS

Yrtr.i aizc -> rcllll
l~ITtALLY

• 1&• • ? ;
DID;

Vn."lf v!,erc -> point;
l~lTlALLY

where • •·
Et.:>;

Ynnt ntcnt -> htcnt;
l!f!Tl.\LLY

ea:tcnt • appear -e11cent.
!!'ft>;

V""' ln(p:potnt) •> boolean
OtRfVED

1n • (p - lltleu) In appear.extent:
t?."D;

Vrt.1C appear •> ONE OF (ct rcle, aqua re,
tr tangle, croa ■);

lHlTIALLY
appear • 7;

[!ft);

Vf't,11 ob_typa -> ltrtng;
INITIALLY

ob_type • ? l
[Nl>;

OFUM tnlt(t7pe11trtng: p:point; a:real);
POST

END;

ti type • "circle" fflE:f
appear • c1rch(1):

tr c7pe • "aquar•" TH!lf
appear • eq11au(a);

l1 typa • "crtanah" THEN
appear • cr1a11ala<1>;

IF type • "track.er" THEN
appear • cro••<•>;

ob_c7pe • type:
where • p;
at&e ·•:

Ort:'lC nev poaitioa(p:potnt);
POST

Vhera • p;
END;

KOO!iLE ■enu;

P.\lAH!T!llS
po• :p<>int:
x:oha ,7atze: ranl;

D!C:.AUTIOWS
at ,a2.g'J: geo■etr1cal_object;

FUNCTIONS
VF\IH axtent •> Exte11t:

lNITULLT
ettant • ! ;

EKD;

301

YP'UN al.ht ·> LIST Ot geo~etric3l_<'b!c-c:;
HIDDC.
IHITlALLT

aH1c. • t;
!tit>;

'IT\r.l hlt(p:polnt) -> ·,.,ole.:i:
DEUVED
hit • EXISTS a:,ieo::i-ttrtcal_,,bje:t

a on 211st

[!fl);

(
p in g,catcnt;

} i

VFUM decode(p:polnt) •> geometric ._c-bj-,:t;
DElllVED

EMD;

LET a:1eo■atr1cal_obJect
p 1.n a,exte!lt:

dacode • g;

Clt/N 1n1 ti
POST

at, hit C"c1rcla", i.ot toe, o. is•xa1z ..);
a2, inh ("1quare", ■iddle, O.: 5 •xs 1ze);
al, in1t ("trianalt", top, o. 25•u1zc);
11 on •li•t;
a:? on 11lht;
cl on 11Uet;
eaunt • Eatent(pos,p+(uiu.~staa));

tHD; I.
IH:I MODUL! Mnu i

Figure A.3: Interface Specification

,Ai.A.~tHllS
j)OS : point;
1<s:ie,rai&e:real;

\"F1J"!; extent -> uter,t;
INITlAU.Y

eatent • '•
£.S!l;

VF'Uli dHat -> LIST OF geo..ctr1cal_objact;
111:>Dts
INlTI.U.l.T

dlist • ~.
!:S:>;

vn;ic hit (p:po1ut) -> boolean;
DEil1vtP

bit • EXISTS 1:1eooetrical_objac:
I on dlist
{

p 111 g,u:te11t;
);

V~~~~de(p:po111t) -> 1e0Mtric&l_object;

L~ 1:1eo-tric:al o::,jact
p in g,e:ateut;

decode • Ii
t'm;

OFt.'li 111clude(1:1eoa«trical object);
PU -

I. ei:teut 111 exte11t;
PCST

I 011 dliat;
E!rn;

C'i''c~ u::iove(g:gec~ctr1c:al_object);
n.t

I on dltst;
!'CS":'

llv1' g 011 dlht;
(';:';

Ort..,, i11it;
PuST

lJCO t!CID1Jl! vorll_area;

TL'?ICTIOSS

·,n"N b-.itton state -> 011£ OF (\:;, ,dovn);
l!HT:Al.LY-

bu:ton_stata • up;
ESD;

vn~ posit1011 -> point i
1:HTlA!.LY

p::sit1on • !;
ISD;

OF1..-:l but :on_;,u1h;
POST
~ .. cc.oa atat• • down;

tra:1te"i' .aelect (poait ion,;
Et,1);

onm button releue;
POST -

buttoa_atata • iap;
Elm;

Onnt chan1e_poa1t1011(p point);
POST

poa1t10D • p;
tr■Ck.UoaoTe(politiOD);

DD;

t,:I> KODUL! ublet;

D::CUJlATIO!lS
cross : geoaetrieal_object;
cenu : i::ianu;
work_area : vork_area;

FtNC'IlOSS

V:U!I erou_dis;,layed -> boolean;
Bl!l!lDl
l!HTIAUY

crou_dh;-layed • TRL"E;
V.'D;

\'Ttr.l trac:ker_syt:!lol -> 1e::11ae~r1.cal_::b!ect;
INITIALLY

t raelter_ayuol • cross;
~1);

Vl't.'!C vhera -> poi~:;
I!IITIALL'f

Where • ?;
a.:>;

on;ir 1:10ve(p : ;,oict);
PCIST

Where • ;,;
tr!clter_a~ol.vhere • p;

0,1);

Ort.11 ulect(i, : point);
POST

C.\!£ ;, ta c1nu.cxte::t A.'Q Mau.hit(!))
(

} ;

LET I : geoaetrlc:al_objec:~
I • :ae:iu • decode(p);

c:irre::t_cr.,aa • g;
trac:lter_ay=!>ol • FAl.St;

C.\51!: c:ro■ a_displa7ed M1l
..,.,.,._area.hit(p)

};

LIT & : geoe1etrical_object
I• vor:t_area,decode(p);

tril::lter_sycbol • g;
croaa_dhplayed • FAl.S?;

CASE ? tn worlt area.extent .U,1)

:,OT cross d1;played
{ -

}:

vorlt_area. include (trac1ter.17L.!>o:);
traclter_aydiol • croaa;
c:ron_dlsp ~aycd • TllliE;

C.\.i~ ~lO, crc"9_<!t•1>hycJ A'ID
:tOT p in 11-,rlt_a ,.1,1?xt~ ·, :

>:
£.'ID;

vr,rii._. J;l!J. rec-.<l'I<! (t ra.:;.cr _sy::bo t);
tr.ic'..: ■ r_-tym~ol • cru ·i.li
c:ro~s_,!lipl3/ed • T:t :_; ;;;

Figure A.3 (contd): Interface Specification

302

303

conceptual model of the system from its command language and to show the relationships

between them. The six levels, each being a refinement of the previous level, are organized into

three components which describe the CLG structure.

[1] The Conceptual Component: describes the organization of the system as abstract con

cepts. This component is comprised of the task level and the semantic level. The task

level analyses the user's requirements to specify the structure of the tasks which describes

the system from the user's viewpoint. The semantic level defines the methods for accom

plishing task structures in terms of the objects and operations (that manipulate these

objects) around which the system is built. The semantic level serves both the user and the

system; it describes the conceptual entities and operations for the user, and correspond

ingly the data structures and procedures for the system.

[2] The Communication Component: describes the command language and the dialogue of

the user interface. The syntactic level and Interaction level make up the communication

component. The syntactic level is a further refinement of the semantic level, describing the

command language with which the user communicates to the system. The methods of the

semantic level are described in terms of the commands developed at the syntactic level.

The meaning of the commands are defined in terms of the operations described at the

semantic level. The command languages are described in terms of basic syntactic ele

ments: commands, arguments, contexts, and state variables. The interaction level

specifies the syntactic level elements in terms of physical actions; i.e. primitive device

techniques for input (e.g. keypresses) and display actions for output. The rules describing

dialogue structure are also described at the interaction level.

[3] The Physical Component: describes the physical devices of the user interface. The spa

tial layout level describes the nature of the system's display at each point of interaction.

It therefore is concerned with the arrangement of input/output devices and the graphics

facilities for displays. The device level describes the physical properties of input/output

304

devices and the underlying graphics primitives. These levels make up the physical com

ponent.

The command language grammar is the specification mechanism used in describing the

first four levels that make up the conceptual and communication components. The levels

comprising the physical component has not been developed yet. The CLG notation, informally

described in Figure A.4, is based on the concepts of frames [25, 26], schemata [27], semantic

nets [28], and production rules [29].

To understand the complexity of defining the user interface using the CLG framework, Fig

ures A.5 to A.17 depicts the descriptions of a user interface for a mail system, at the four levels.

Each message of the mail system consists of a header and a body. The header specifies the

sender, receiver, data and subject; while the body contains arbitrary text. Every message that is

created is put in a message file for the specified user. The user interface described in the Fig

ures is for a system, EG, that helps the user manage the message file. Figures A.5 and A.6

specifies the entities and tasks at the task level. Figures A.7, A.8 and A.9 describe respectively

the conceptual entities, operations and methods of the semantic level. The corresponding enti

ties, commands and methods of the syntactic level are developed in Figures A.10, A.11 and

A.12, and A.13 respectively. Finally, the command interactions, rules for commands and argu

ments, and a description of methods specified at the interaction level are depicted in Figures

A.14, A.15 and A.16, and A.17 respectively.

I

305

CLG is a symbolic notation for describing systems as conceptual structures. The basic objects of
ClG notation arc symbols and symbolic expressions. An expres~ion, which is a structure of
symbols, represents a concept by describtng it, that is, by ha·,ing its constituent symbols represent
constituent aspects of the concept. An expression can be associated wllh a symbol as its
def mi ti on The symbol can then stand for the express.ion and hence for its concept:

symbol -+ expression -+ concept

Notationally, symbols are arbitrary strings of characters, indicated by being in I sans serif typefont,
like THIS. An expression i5 a list of symbols or subexpressions in parentheses. For c>- .npkl, Q :

(X Y (W Z)) defines the symbol O by an expression with three elements-two symbols, X and Y,
and a sube:w:press,on, (W Z), with two symbols. The syntax of expressions is not arbitrary. There
are three forms of expression in CLG.

The first form is the bas.ic CLG expression, a hierarchic description. It describes a concept by

declaring that it is an instance of another concept. plus some modifications. For example, CHAR
: (AN ENTITY CODE : (A NUMBER)) defines CHAR to be en instance of ENTITY with a
companent called its CODE, which is a NUMBER. A descriptive expression thus consist3 of a
prefix symbol, • type symbol, and a list of components. A component of an expression may be
thought of as a symbol definition Within the localized context or the expression. Tho symbol
naming • component may also be used in olher expressions. A component CODE of an
e:w:pression CHAR can be unamt>cguousJy referred to by the expression (THE CODE OF CHAR).
The pretax symbols A or AN indicate thal an e,cpression is a pattern describing a class concept.
The pret,x THE indicates that the expression descnbeS a unique referent.

There are some minor variations to the syntax of this form of expression: The prefixes A or AN
may be dropped. The symbol "=" is everywhere optional. A component may be unnamed. There

is a special component, named OBJECT, that implicitly follows the type symbol. For example,
(MOVE X FROM Y TO Z) has three components, the first of which, X, is the OB-JECT of the

MOVE.

The second form of exprcs:.ion is for representing collections of elements.
colon after tho first !:ymbol, which indicate the type of collection. For example:
(SEO: X v Z) repre---..,cnt. respectively, a set end a sequence of three eJement3.
X Y Z) define:; X Y Z to be \he disjunction of the three items.

It is indicated by a
(SET: X Y Z) and

XYZ = (ONE-OF:

The third form of expreS5ion, (• •• .), contains any English st.itement. ft is usually used '13 a
sube:w:pression, allowing inform~I descriptions to be inserted anywhere within an expression
structura.

An exprt-~sion reprcscnt!l o concept, and ib components represent the parts or esr.,ect3 of that
concept. Component.5 can also rcpre--....ent the relations between e:w:pressions. For example, tf T =
(A TASK). P : (A PROCEDURE), and M : (A METHOD FOR T 00 P), then M $hows lhe
relation bctwc~n T and P There are ,mplacit rel31ions between D'1 expression and its component
exprcss,ons. For c:w:.1mplc. tho dclin1t,on of P above 5hould be (A PROCEDURE OF M). but tho
OF component doe:; not need to be stated. since it is ,mpticil. Tho other ,mplicit relation is IN.
For e:w:ample, if S : (SIT: X Y Z), then X, Y, and Z implicitly have the component IN S.

Figure A.4: CLG Notation

~tNO-MES~;ACC : {AN ENTITY

NJ\ME = "Scnd-mc~~agc"

(• Th15 IS~ me:~s.1•JC S~llt by lht~ snm ~:,;tc:n.

/\ !~[NO I\H· SS/\C.(ha~ ,1 I ll"'ad~r .1nd ,1 (kd)'

I he Hc:ider co11IJ111:; lhu l,cllJ:; ro. r1om. D.1tc. f;m~ . .1n.l Sub;cct

Tll~ Body conlJ1n:; .'.lrb1lrary IC:itl.))

MESSAGE-rlLE~ : (A TEXT-FILE

NAME : "Mc~5ago File"'

OWNEn : (I\ USER)

(•There,~ only one r-.11:!'JSf,G[f-lL[for t!-'lcll USEf;)

(• Althcuuh tt,e u5,., m:iy w.1nt tu thin:, ol ti 11::, Lie J:; h.:ivina a

sequence or SEND ~.tE:.SSI\GEs. tilt? opcr.1tH1CJ :;,~tr.rn or.11 trcJ'.'.i ,!

n~ ~ texl l1lc, ic, .'.l~ .'.l ~c:quc;ncc uf cllJr.1c;lr..:r:;))

Figure A.5: Task Level Description of Entities

306

GET-INFORMATION : (A TA Sit(• Gelo pieco of information from tho l.l5t SEND MESSt,GE

from a given p~..on and delete the SEND-MESSAGE from

MESSAGE-FILE.))

NC:\•/.f.1AIL • TUIN-OUT = (A TASK DO (SEQ: {NEW-MAIL)

(THIN•OUT -MESSAGE$)))

NEW-MAIL : (A TASK(• Check for new SENO-MESSAGEs and, if any. rc:1d them.)

(• This i:; the most frequent ta$k.)

DO (SEQ: (CHECK-FOR-NEW-MAIL)

(nEAO-NEW•MAIL)))

CHECK -FOR-NEW-MAIL : (A TASK(• Check to sec if there are any ne.-...rS £N~ MESS.AGE!l)
FAILURE : (• if no new S:::NO-MESSAG::s 61rc found))

REAO-NEW•MAIL : (A TASK(• Rc.ld all new SEND-MESSAGES, deleting these thol aro

not of f ur&her Interest.))

THIN-OUT-MESSAGES : (A TASK(• While in EG, thin out a long MESSAGE-FILE b1deletino

lhe SEND-MESSAGEs tMI are no longer important.))

Figure A.6: Task Level Description of Tasks

307

CG-SYST[M = (A SYSTEM

NAME = "EG"

ENTITIES : (SET: MESSAGE SUW.1AAV

MAILOOX DIRECTORY scnf.fN)

OPrnA TIONS : (SCT: SUOW DELETE))

MESSAGE -: (AN [tJTITV

REPnESENTS (A SnJD-Mf:SSACE)

N/IME : "Mc5,.3go ..

AGE : (ONE-OF: OLD NEW)

(• /\ MES:.;AGE h.J5 J Hr.adcr .1ncJ il Oody.

The HCJtJcr cont.1111::; l~c r1cld~ To, from. O.ilc, Time, =,,cJ Subject.

l he Ondy cont;1in:. ,..,, !litr Jry text.)

(• The AGE is .1 timc-dcpcndcnf m:lrlr: s.ec MAILUOX.))

!;Ur.H.1An',' : (AN ENTITY

MAIL0O.lC = (A LIST

Cr (A r.,cSSAGE)

NAMC: = "Summc>ry''

(• This summ.irizcs .i MESSAGE in enc lino

by givinn ils AGE mark and its Header fields.))

nEilRESEtJTS (A MESSACE• FILE)

OWNER : (A USER)

MEMBER : (A MESSAGC!)
NAME : "M.3ilbox"

(• This CO!'llilins all e•isling MESSAGEa. EG-SVSTEM puts all inc::mino

M[SSAGEs al the end of the MAIL0OX ~nd mork:; them NEW.

All MCSSAGEs from p
0

rcv1ous EG-SYSTEM scss,ons arc marked OLD.))

DIRECTORY : (A LIST

FOR (A MAIL0OX)
Mf.MOER : (A SUMMARY)

NAME : "Oircclory")

SCRCEU = (AN ENTITY(• This i:l :l!',Sumcd lo be l.1roc cnoul)h lo di!iplJy the ulnECTORY

or any MESSAGE.))

Figure A.7: Semantic Level Description of Entities

308

DtLETE = (I\ SYSffM-Or>fnATION

OBJCC T = (A PMlAMETEn

VALUE = (A MESSAGE))

(• ·1 Ill' 00.WCT 1<; rt•rnovcd r,om MAILOOX Jnd ,rs SUMMt,nY is removed

l1om Oln[C:OnY.))

SHOW : (A SYSl EM OPCnl\TION

OrlJCCT = (J\ PflnAMETEn

VALUE = (AN ENTITY))

IN (J\ Pi\nM,1ETEn

VALUE = (A PLACE ON scntEN)

OCFJ\ULT·VI\LU[= UNKNOWN)

(· The O0J[CT IS shown to th~ uscn JI some pLJCC on the .SCREEN.

l hC' OUJECT m.:iy be .'.l MCSS/\GE. a SU1'.1:v1ARY, or lhc DIRECTORY))

LOOK = (A usrn. OPEnA TION

li·J (A PARAMETER

VALUE = (A PLACE ON SCRECN)

DEFAULT-VALUE: UNKNOWN)

AT (A PARAMETER

VALUE = (AN ENTITY))

FOR (A PARAMETER

VALUE : (PATTERN ENTITY))

ncsuL T : (AN (NTITY (• !hell SJtisfics the FOn p3trcrn))

FA JLUnE = (• 11 no!l11ng c:m be rounr1 that sJlt511cs the Fen pattern)

(· The U!:ifll looks IN some pl:ic:c /\T 5omc entity Fon something,

which is another entity.))

READ = (A USEn,OPEnATION

OOJCCT : (A PARAW:TCR

VALU~ : (AN CN rlT't'))

IN (A PARAME:TEn

VALUE : (A PLACE ON SCRF:EN)

OCFAlJLT,VALUE = UNKNOWN)

Figure A.8: Semantic Level Description of Operations

309

SEM -M 1 : (A SEMANTIC -METHOD

Fdn GET •INFORMATION

DO (SEO: (STAnT EG -SYSTEM)

(SHOW Dlnt'.CTOnv)

(LOOK AT DIRECTORY FOR (A MESS.'\G!::))

(SHOW (THE RESULT OF LOOK))

(REA O (THE RE~UL T OF LOOK))

(OELCTE (THE RESULT OF LOOI())

(STOP EC · SYSTEM)))

SEM-M2 = (A SCM/\NTIC-METHOO

FOR CHECK-FOR -NEW-MAIL

DO (SEO : (START EG-SYSTEM)

(SHOW OIRECTOOY)

(LOOK AT 0I11ECTORY FOR (A Mf:SSAGE AGE = M.:'N}J})

~EM -MJ = (A SEMMJTIC-METHOD

roR HEAO-NEW•MAIL

DO (REPEAT

OINOING m TO (EACH MESSAGE AGE : NEW)

DOING (SEO: (SHOW m)

(r:EA D m)

(OPT (OELETE m)})))

SEM-M4a = (A SEMANTIC -METHOD

Fon THIN-OUT-MAILBOX

DO (REPEAT

OINOING m TO (EACH MESSAGE)

DOINO (SCO: (SHOW (SUMMARY OF m))

(RCAD (SUMMAnv OF mi)

(OPT (SEO~ (SHOW m)

(READ m)))

(OPT {DELETE m)))))

5EM-M4b : (A SEMANTIC -MC:THOO

f-"On TtflN -OUT •MAILOOX

DO (nCPEAT

UNTIL FAILURE

DOING (SF.Q ; {SII0\1
/ DIRECTORY)

(LOOK AT OIRECTOllY FOR (A MESS,,GE))

(OPT (SEO: (SHOW (THE OESUL T OF LOOK))

(READ (TtiE RESULT OF LOOK))))

(OPT (DELETE (THE RESULT OF LOOK))))))

Figure A.9: Semantic Level Description of Methods

310

E~ COrHF.X T = (fl COMMAND-CONTEXT

STATE-VAnl~OL~S = (SET; cunnrnT -MCSSAGE)
DESCRIPTORS :: (SET: MESSAGE -NO)

DISPLAY-AREAS : (SET: OIRECTORY -AF:G1 MESSAGE -ARE'.A .

COMMAND-AR[A)

COMMANDS : (SET: SHOW-MESSAGE SHOW-NEXT-MESSAGE

DELETE-Cun nENT-MES SAGE OUIT -EG)

ENTRY-COMMANDS : (SET: [NTER -EG CNTEn -CG -1;:.NEW -MAIL))

CURRE'NT-t.1ESSAGE = (A STATE-VARIAOLE

CONTEXT : EG-CONTCXT

VALUE : (A MESSAGE)

NAME = "Currant Mc~sngo")

MESSAGE-rm = (A OESCnf PTOn

NAME : "Message Number"

FORM : (AN INTEGER)

VALUE : (A MESSAGE)

OCFAULT-VALUE = (THE cunRENT-MESSAGC)

(· The M[SSAG[-tJO for each MESSAGF. is its ~equcntial posi! ion in

t.1/\ILBOX upon cnterinn EG-CONTEXT MESSAGE-NO::. do not

ch,111ua when M[SSAG[s .:ire OCLETEcJ from M/\ILSOX.)

DOES ,CASE: (IF(• the FOR~! of MESSAGE -NO less lhc'.ln 1 or grc~lcr

than the number of ,.1ESSAGEs in MAILOOX)

THEN (REPORT(• Mf:SSAGE -NO out cf bound~)

IN COMMANO -AHEA))

311

(IF(• the Fom.t of Mf.SSAGF-NOcorrcspond:; lo J cf~letcd r/ESS~GE)

TltCN (JlCr>OnT (• clrh•!f:d M[SSAGU IN COMMANO-AnEA))

(nETurm (• the M[SSAC,E corrcspondina tu lllP. rom .. 1 ot

M[SSAGE -NO))))

tG-DISPLAY-AllEA :: {A DISPLAY-AREA ON SCREEN CONTEXT: CG-CONTEXT)

nrncc1onv . .'\rl[/\: (,\NfG DISPLAY-AREA

NJ\ME : "Directory Window ..)

Mf.SSAGf. hf.£: ,'\ ~ (Ml CG lllSPL,\ Y-AREA

NJ\M(= "Mr.ss~gc Window")

C(H.1MMIC ,'\nrA. (MJC:G OISPt.AV-AREA

fJf\MC -: "Comm.\nd Window ..)

Figure A.10: Syntactic Level Description of Entities

ENtER·EG ;_ U\ cmn.1/\NO

,.:or; rr x r = os cc:HEXT
tJ,\ r.~f -: "[(.; ..

DOCS (IF (THEnc.. IS (A MESSAGE) IU MAILOOX)

THEN (SCO . (CtJTEn EC -CONTEXT)

(SHOW DIHECTORY IN OIRECTOnY-AREA)

(SHOW-MCSSAGE (THE RCS ULT OF THERE-15)))

r.LSE (REPORT(• No ~IESS/\GEs 1n M/\ILDOX))))

ENiER-EG -IF-NE:W-MAIL = (A COMr.1MJO

CONTrXT = OS -CONTEXT

tJ/\t.1E : "CG New"

OOfS (IF (THt:n(-1S (/\ MCSSAGE AGE : NF.W) IN MAILOOX)

THCtJ (SEQ : (HITER EG-CONTEXT)

312

(SHOW OlnF.CTOflY IN DIRECTOflY-AHEA)

(SHOW-MESSAGE (TtlC nESULT
OF THERE -IS)))

fLSr. (nr::ronr (· No Nf ';V t.l[SSAG[~ ,n Mf\lLF,OX)),)

Figure A.11: Syntactic Level Description of Commands to Enter Context

EC-COMMAND : (A COMMAND

CONTEXT : EG-CONTEXT)

SHOW-MESSt,G[: (AN EC-COMMAND

NAME : "Mc~silgo"

OOJt:CT : (AN ARGUMENT

FORM = (A P,1ESSAC2-NO))
DOES (~ET: (SHOW (SUMMARY OF {THE OOJECT))

IN OfRECTORY-AREA)

(StlOW (MCSSAGE-NO OF (THE O0JCCT))

IN OlnECTORY·AAEI",)

(SHOW (THE OOJECT) IN MESSAGE-AREA))

SIDE-EFFECT : (DINO CURRENT-t'1ESSAGE TO (THE ODJECT))

(· D1:.p!Jys the SUMMARY by h1ghl19htinu the SUM~lARY of OOJ(CT

in !ht! DU'':EC.TORY in DIRECTORY-AREA.))

DELCTE-CURnrnT-MCSSACE = (AN CG-COMMAND

NAME : "Oolc-to"

DOES (SEQ: (DELETE (THE CUAi1ENT-PI.ESSACE))

(IF (THt:nE- IS(" MESSAGE) IN MAILflOX)

THW (SHOW-NEXT-MESSAG[)

313

ELSE (SEO: (REPORT(• No more MESSACE3

in MAILBOX)

SHOW-NEXT-MESSAGE : (AN EG·COMMAND

IN COMMAND-AREA)

(EX IT FROM EG-CON ,-EXT)))))

NAME : .. Next Mossago"

DOES (IF (THERE-IS (A MESSAGE) IN MAIL0OX

OUIT-EG : (AN EG-COMMAtJO

NAME : "Quit"

AFTCR (THE CURRENT-MESSAGE))

THEN (SHOW-MESSAGE (THE RESULT OF THERE-IS))

-ELSE (SEO: (REPORT(• End of MAILBOX)

IN COMMAND-AREA)

(SHOW-MESSAGE 1))))

DOES (EXIT FROM CG-COUTEXT))

Figure A.12: Syntactic Level Description of Context Commands

SYN-M 1 = (A SYNTACTIC-METHOD

Fon GET-INFOHMATION

00 (SEO: (ENTER-EG)

(LOOI< IN DlnE:CTOR't'-AnEA AT DIRECTORY

FOn (/\ MESSAGE-NO))

(SHOW-MESSAGE (THE RESULT OF LOOK))

(READ (THE CURRErJT-MESSAGE) IN MESSAGE-AREA)

(DELETE-CUR RENT-MESSAGE)

(OUIT-EG)))

SYN-M2 : (A SYNTACTIC-METIIOO

Fon CHECK-Fon-NEW-MAIL

DO (Er.JTER-EG-IF-NEW-1,1AIL))

SYN-M3 : (A SYNTACTIC-METHOD

_FOil nEAD-NEW,MAIL

DO (i,EPEAT UNTIL(• [ncJ of M,'\IL80:-')

DOING (SEQ: (nEAD {THE CUAf~ENT-MESSAGE)

5'. rJ M4~ = (A SYNTACTIC-METHOD

trJ MESStiGE-AREA)

(CHOICE: (SHOW-Nl:XT-MESSAGE)

(DELETE-CURRENT-MESSAGE)))))

FOR TH!N-OUT-MAILOOX

DO (SEO: (IF (NOT-EQUAL (MESSAGE-NO OF (THE CURRENT-M[$St.CE))

TO 1)

THEN (SHOW-MESSAGE 1) J
(REPEAT UNTIL(• End of MAILBOX)

DOING (SEO: (READ (SUMMARY

SYN-M4t) = (A SVNTACTIC-M:::THOO

OF (THE CURRENT-MESSAGE:;)

IN DIRECTOWf-AREA)

(OPT (READ (THE CURRENT-MESSAGE)

IN MESSAGE-AREA))

(OPT (DELETE-CU ARENT-MESSAGE))

(SHOW-NEXT-MESSAGE)))})

FOR THltJ-OUT-MAILOOX

DO (nCPC:J\ T UNTIL FAIi.URE

OOING (SEO: (LOOI, IN orm:cronY-AnEA AT Ol~ECTCnY

·FOn (J\ t.1ESSAGE-~JO))

(SHOW-MESSJ\GC (THC nrsuLT OF l.001<))

(Or>T (nEAO {THE c-unnENT-MESSACE)

IN MESSAGE-AREA))

(OPT (DELETE-CURRENT-MESSAGE)) J) J

Figure A.13: Syntactic Level Description of Methods

314

315

Non -terminal Constih:cnts:

S = ''the Specification"
n c ''the □ody of"

D = "the Dcsign3tion of/in"
F a ''Iha Form of/in"
T = ''the Termination of"
I = "the lntcrpretcltion of"

Tcrmi,:ial Constituents:

W ::1 "When is"
P = ''the Prompt for"

A = "the Action for /in"
R • "the Response to"

1 (W .S OF SHOW-MESSAGE) (ANYTIME IN EG-CONTEXT)

2 (P.S OF SHOW -MESSAGE) (OISPLA Y "Command: ")

3 (W.0.0 .S OF SHOW-MESSAGE) -+ (FIRST IN (B.S OF SHOW-MESSAGE))

4 (A.0 .0 .S OF SHOW-MESSAGE) -+ (KEY: "M")

5 (R .0.0 .S OF SHOW-MESSAGE) (DISPLAY "Messo90 ")

6 (W.S OF (OOJECT OF SHOW-MESSAGE))
_,. (AFTER (O.S OF SHOW -MESSAGE))

7 (r>.S OF (A MESSAGE -NO)) (OISPLAV .. II "i

8 Ct\ n.s OF (AN INTfGEn)) (KEV : (THE INTEGER))

9 (A.T.S OF (A MESSAGE-NO)) -+ (KEY : nETurm)

10 cn .s OF (A MESSAGE-NO)) -+ CDISPLA Y (THE MESSAGE -NO))

11 (W.I.S OF (OOJECT OF $HOW-MESSAGE))

.... (OEF'ORE (I OF SHOW -MESSAGE))

12 (W .I.S OF SHOW-MESSAGE) (AFTER (S OF SttOW-MCSSAGE))

Figure A.14: Interaction Level Description of Show-Message

r~n 1 = (n111.r: ron (\'/ .S Of- (AM CG-C0f,1MANO})

._ (/\NYl 1:.,c IM EG-CONTEXT))

cn2 = :nuu: ron (P.S OF (AN EG-COW,1ANO;)

- (DISPLAY "Commc)nd:" IN COWAAND-AFH~A))

c:11 ~ (nUI.(ron (\'/ 0 0 S OF {MJ CG COMMA'''"

-+ (FlnST liJ m.s OF (THE cor\1MANu)i))

U~-• .: (HULE FOfl (;\,O.U.$ OF (AiJ EG-COi-.1MMJD))

._ (KEY:(• ttr~.1 lc!t~r ol the COMMAND N/\MF)))

CIIS : <nu LE fOfl (n.o.o.s GF (ArJ CG-COMMt.NO))

- (DISPLAY(• Full NAME of lhr~ COMMJ\ND) ltl COMM,\NO-/\REA))

C~G :: (nULE r-cn ('r'✓ .I.S OF (MJ re-COMMAND))

-• (/\FHll (S OF (TH[COMMAND))))

Figure A.15: Interaction Level Description of Command Rules

316

AAl : (RULE FOR (W.S OF (AN ARGUMENT

OF (AN EG·COMMANO)

VALUE : (A MESSAGE)))

-+ (AFTEn (0 .O.S OF (THE COMMAND))))

AR2 = (OULE Fon (P.S OF (AN ARGUMENT

OF (AN EG-COMMAND)

FOOM = (A MESSAGE-NO)))

- (OISPLAV "II" IN COMMANO-AREA))

ARJ : (RULE Fon (A.0.5 OF (AN INTEGER))

--+ (KEV: (THE INTEGER)))

AR4 : (RULE FOR (A.T.S OF (A MESSAGE-NO))

-+ (KEY: RETUPN))

AAS : (RULE FOR (R.S OF (A MESSAGE-NO))

--+ (015PLA Y (IF (DEFA UL TEO (A .S OF (THE MESSAGE-NO)))

THEN (MESSAGE-NO OF (THE CURRCNT-MESSAGE))

F.LSE (THE MESSAGE-NO))

IN COMMAND-AREA))

AR6 .: (RULE Fon (W.t.S OF (AN ARGUMENT OF (AN EG·COMMANO)))

--+ (0CFORE (I.S OF (THE COMMAND))))

Figure A.16: Interaction Level Description of Argument Rules

317

1/\-M 1 : (AN INTEnACTION-METHOO

Fon GET-INFORMATION

DO (SEO: (l<C:Y: "EG •• AeTunN)

(LOOK IN DIRECTORY-AREA AT DIRECTORY

FOR (A MESSAGE-NO))

(KEY: "M" (A MESSAGE-NO) RETURN)

(RE/\ D (THE CU rt RENT-MESSAGE.) IN MESSAGE-AREA)
(l<EY: "O" "O")))

I.'\ M2 : (AN INTEnACTION-MEnlOD

ron CH[CK-F0fl Nf:W-P.1/\IL

0 0 (t(r V : "r G / N " H ET Un N))

l~-M3 : (AN INTERACTIC'"! t.1ETHOD

Fon flCAD-NEW-MAIL

00 (n(P[AT UtJTIL (• Enc or MI\ILOOX)

oorr:r tc-,:-:a: (AL'\0 (THE CUHR(NT-MESSAGE)

IN MESSAGC-Ar1EA)

(CHOICE. {l<EY: "N")

IA-t.14.J : (AN INTE:~ACTION-METHOO

ron THIN-OUT-MAILOOX

(l<EY: "O")))))

00 (SEO: (IF (NOT-EQUAL (MESSAGE-NO OF {THE CURRENT-MESSAGE))

TO 1)

THEN (KEV: "M" "1" RETURN))

(REPEAT UNTIL(• End of MAILOOX)

DOING (SCQ: (READ (SUMMA RV

IA-M<1b : (AN INTEnACTION-METtiOO

FOR THIN•OUT-MAILOOX

OF (THE CURRENT-MESSAG~))

. IN DIRECTORY-AREA)

(OPT (READ (THE CURRENT-MESSAGE)

IN MESSAGE-AREA))
(OPT (KEV: "0"))

(KEV: "N")))))

DO (REPEAT UNTIL FAILURE

DOING (SEO: (LOOK IN DIRECTORY-AREA AT DIRECTORY

FOR (A MESSAGE-NO))

(KEY: "M" (A MESSAGE-NO) RETURN)

(OPT (READ (Ttit; CURRENT-MESSAGE)

tN MESSAGE-AREA))

(OPT (tCEV; "'O")))))

Figure A.17: Interaction Level Description of Methods

318

APPENDIX 8

AXIOMATIC MODELS FOR USER INTERFACE SPECIFICATION

320

Most axiomatic specification techniques are based on algebraic axioms [36) . The alge

braic specification approach describes a class of objects by defining the set of functions which

operate on the class. The syntax of each function is described by its name, domain and range.

The semantics of the function is defined by a set of algebraic axioms which must be finite, and

can only contain operations of the given type or other previously defined types, global variables

and conditional tests. The functions are grouped into two categories: generator functions and

Inquiry functions. Generator functions have ranges of the given object class, while inquiry func

tion have ranges outside the object class. The advantages of using an algebraic specification

technique are described below.

(a] It provides a simple notation which is easy to comprehend; promoting clarity and concise

ness.

[b] It is easy to construct a specification which is complete and usually consistent. A

specification is complete if every inquiry operation applied to every object of a given type is

defined by the axioms. This requires that axioms be defined for each application of an

inquiry function to a generator function. Consistency implies that each inquiry operation

associates at most one value with each object of the type.

[c) The specification is extensible, in the sense that minor changes in concepts result in minor

changes in the specification.

[d] The specification allows for formal reasoning about the design of the user interface before

its implementation. Such reasoning, usually through theorems, can prove properties of the

specification.

(e) Most importantly, the specification allows the user interface to be implemented directly,

and exactly matches the behavior of the specified system.

Chi [121] compares and evaluates four axiomatic approaches to the formal specification of

user interfaces. All the approaches are used to define the user interface of a commercial line

321

editor, which has an 80 character edit buffer, a 24 character window into the buffer, and keys for

activating editing commands and for entering text; as illustrated in Figure B.1. The algebraic

specification of the editor is given in Figure B.2.

One of the approaches compared in [121] was proposed by Guttag and Horning [122],

which extend the algebraic axioms with routines which are specified using predicate transform

ers proposed by Dijkstra [123]. The idea here is that the axioms are more appropriate to specify

abstract operations, while routines are better suited to specify concrete operations which are

capable of handling system constraints (e.g. the limit of the buffer size). Figure B.2 provides the

Guttag and Horning specification of the line editor.

Probably the most impressive work on data abstraction is the work carried out by Mallgren

[37, 124]. This work was aimed at describing graphic data types to precisely describe graphical

programming languages. One of the aspects of this research was describing interaction primi

tives whose semantics are precisely specified, making it possible to write and prove assertions

about user interfaces and interactive programs. User interfaces necessitate the specification of

concurrent operations, as it involves two parties - the human and the computer - which can

attempt concurrent operations. Traditional algebraic specifications provide no facilities for the

specification of concurrent operations. Mallgren developed an event algebra approach for the

specification of concurrency. As described in [121],

an event algebra augments an existing algebra by defining a second algebra whose

objects are states of the shared objects In the first algebra and whose operations

are the state lnltlallzatlon, event, and characteristic functions associated with the

shared objects and Its operations In the first algebra.

Mallgren views the user interface as containing a single shared object with associated opera

tions for handling user and program interaction. As Mallgren [37] indicates, the resulting inter

face contains

h
cursor position

rend-of-line
j,_character

[x~~--~~xJ-r-x-x-.-.-. -.-.-_-__ x__:x1...,x_x_ s- ---7
-·---------~--------~
4--displJy w1ncow~

~----..rurront linc----

4-----ed 1 t buffer-------_,.

lcLEARI lt.1ovELEnl MOVERIGHTI

I INSERT I I DELETE

Command Koys

G].
@J.
[D.

Text

. [II
lTI

. II]
+
Keys

Figure B.1: The User Interface of a Line Editor

322

(i,ntr,rH>r Fulfclions

I . cl::1r: - - > li11c
"' mnvckft : li111! --> line
3. 1:1:i\Cri.:,ht : line - -> line
4 . iu;z rt : lin-:: x i;hJ rJ.:!Cr x µosilive __ intcgcr - -> line

5. Jel e te: line x po:.:tivc_intcger - -> line
6 . rc: ..: rJ : line x {.:Ir, move , insJcl, type}--> line

Inquiry F1111ctio11s

7. i:urpo;: line - - > p1)sitive _ integer
8. ~11.;:: line--> nu11ncg:itiv.:_1ntcgcr
9. elil.:hr: line--> ch:irJctcr

10. content : line x positive __ intcger --> ch:irJctcr
11. w111stJ.t: line--> positive _ _ intcgcr

,Auxiliary F1111ctio11s

12. mJxsiz : --> positivc_intcger
13. winsiz : --> p0sitive_integer

Axio"'S
I . .:11it ' '"lc111p1yl111 1: \= I

,11d..:111pl~ iln..:)-:: 11

cul..hr(c:111p1yl1nc)" ">"

cu111.:111(.:111p1yli11c , t) =""
wi11stJrt(..:1nptyli11c) = I

curp11s(111 ·. 1·.-ck'1 (/,)) = curpos(/.) -

wi11;tJrt(1110vdd't(/.)} =
IF ,~inslarl(/,J> I
TIii :-4 \,i11:.1:ir1(/,)- I t-:LSt -: winstart(/,)

cttrj)llS(111ovcri;,;h1(/,)) = curpos(/,) + I
winst1r,(.111r,crii;ht(L)) :a

IF CJrpos(/.) _, winsiz .
rm~ ,, :nst:irt(L) + I ELsr. winstart(l)

MZC(ins:rt(/,,c,p))•site(l)+ I
cont en: (insert(/,, c, p)) = C,\SE

i<p: eontent(l,i)
i=p: C

i>µ: content(l,i- I)

site(Jclcte(l,p)) a sitc(L)- I
co11,l'il: (dcl::tc(/,, p)) =- CASE

I <p: contcnt(l, i)
/ ";iii p: content(L, i + I)

cokh r; re-cord(/,. Of')) = CASE 011 OF
cir:">"
move : eolchr(/,)
iusd.::I : ir eolchr(L) = ">"

THEN ELSE eolchr(l)

type:"_"

1J..outincs
. PROCEDURE Cle:u(VAR line)

SUCH THAT WP(Clc3r{L), Q) = Q(record(clcar, clr)/l]

., PlZOCEDURE Movclcf1(VAR lint?)

SUCH THAT WP~fovcleft(l), Q) =

323

[curpos(L) > I ==> Q[rccord(movclcft(/,),
M~D curpos(L) = I ==> Q[rernrd (!,, move)/!, I

move)//,j

I
3. PROCEDURE Moven~ht(V AR line)

SUCII TIIAT WP(M ovc righ t (L), Q) =
[(i:urpos(L) ~ m:(l) AND curpos(/.) < 111:ixsiz) ==>

. Q(rwJrd(movcriglit(/.), move)//, I
AND (curpns(/,) > size(/,) 0lt rnrpos(/.)), 111:ax:;iL) "' "'>

Q[rccord(L, 111 11vc)//. J]

4. PROCEDURE lnsert(VAR line)
SL'CH Tl IAT WP(lnscrt (I.), Q) =

I (si'le(/,) < m:1xsi1 ANIJ curpu,(/.) ·';size:(/.))==>
(J[record(ins..:rt(/ . . "[]", curplistl)), insdcl)/LI

\Nil (si1.e(/,) = 111Jxsiz ANU curpos(/,) <site(/,))==>
(![rt:cord(

insi:rt(ddetc(/. , 111:ixsiz), "I J", curpos(/.)), i11sdcl)//.j
:\Nil cnrpus(/.) > si1c (/,) ==>

(}lrc,.:ord(l. , insd,:1)/ /. I

5. l'llOC'l.Ll_il{E Ocll:tc(Vi\R line)
SLICl I Tll:\J' Wl'(I kh:tr (/, J. Q) _.

[bile(/.)> . . /\NII rnrpu,(/,)1<".sizc(/.))==>
(!(1ccorJ(tlclctc(/,, curpos(/,)), i11sd.:IJ,'/, J

ANt> (size(!.)= 0 Olt curplls(/,) > siz,:(/, }) ==>
Q[recurJ(l, insJd),'L. j

6. PROCEDURE Type(V AR line, char)
SUCll TIIAT WP(Type(/., c), Q) =

((curpos(L) < m:ixsil ANL> curµos(L) ~ size(l)) ==>

Q(record(
moveright(

insert(
Jclete(L , curpos(/,)), c, curpos(/,))), type)//.)

AND (curpos(/,) = lllJXSil AND curpus(/.) :-:; size(/.))==>

Q(rccord(
insert (

dclcte(L. curpos(L)), c, curpos(l)), type)//,)
AND (curpos(L) < mJxsiz AND curpos(L) > size(L))==>

Q(record(movcright (insert (l, c, curpos(l))), type)/ l J
AND (curpos(L) = maxs1z AND curpos(L) > size(L)) ==>

Q[record(insert(l ,c ,curpos(L)), type)/ L J l
7. FUNCTION Display{VAR line, position)

Sl/CII THAT PRE(Displ:iy(L,p)) = I <. p,;;; winsiz
V.\LUE Disp!Jy(/,,p)=

[(winstart(l) + p - I < size(l) + I)
==> cont..:11 t (L ,\vinstJrt (L) + p - l)

ANO (winstart(L)+p- I =size(l)+ I AND cu,pos(L)=si,c(l)+ I)
==> colchr(l)

AND ((winst:irt(l.) + 11 - I= sizc(L) + I AND curpos(/,) < siz::(/.) + I)
Olt (winstart(l)+11- I >size(/,)+ I))

==> .. "

8. lTNCTIUN Ulink(VAR line)
V,\LUE lllink(/,) =

[i:urpos (/,) ~ sizl?(/,) ==> curpn,(/,) - winstart (L) + I
AND i:urpos(/,) >size(/.)==> NO:\E I

.Votes 011 Nntari,m: Q!x/yl ~lands for the prcdi.:ate Q with
x s11 bsti1111cJ fo, all fri!I! n.:currcni:,s ufy [IOJ .

Figure B.2: Algebraic Specification of the Line Editor

324

the complete history of operation calls (and their parameters) since Initialization.

Thus, Information Is added to the Interface whenever any of Its operations Is

Invoked. The Interface provides Information In two ways: by returning a value to an

operation call and by controlllng the time at which the operation returns.

The event algebra specification of the line editor is presented in Figure B.3.

!'~am Acti11n5

I girlt.cy: -:-- drna ,: t.:r
2. puthne: lu,c - ·>

J. kcystrukc : chJrJCl<:r -~> _
4 . rcadlinc : --> arrJy_ut_d1Jractcrs(l. .w11mlj

G,·11,ra:or F1111ctinns (E1•c•11t F1111c!ic111s of

th:: A boVL' Four Actio11s)

5. Sinit : --> Ulstate
6. gctkeyScatl : Ulstate --> Ulstate
7. gctkeySreturn : Ulstatc --> Ulstatc
8 . putlin.:Scall : Ulstate x line--> Ulst:Hc
9. putlincSrcturn : Ulstatc x hue--> lllstatc

IO. k:ystrol--cSi;:ill : Uistatc x clmac1cr --> Ulstatc
11. keystrokcSrcturn : Ubt:it..: x character--> Ulstatc
!:. rcadl111eScall : Ulst:ltc --> L'lstatc
13. rcaulineSrcturn : Ulstatc --> Ufst:.it:.:

b1.711iry Operations (Char:ictrristic Fu11crio11s
of th.: Four Actiom)

14. getk.-y:wait : Ulst:ue --> boole:rn
15. gctkey:value: Ulstate --> charactrr
16. put line : wait: UlstJte x line--> boolean
17. putline:value: Ulstatcx line-->
J 8 . keystroke : wait: Ulstate x character - - > boolean
19 . keystroke: value: Ulstate x character-->
:o. readline : wait: Ulstate - - > boolean
21 . re:idline : value : Ulstate -->

arr:iy _of_ characters[I .. winsizJ

Axioms

I. ;ctkey
3. :wait(Sinit) = true
b. :wait(getkcySreturn(S)) = true
c. : wJit(keystrokcSreturn (S, c)) = false
d. : v:ilue(Sinit) = unucfincJ
c. :value(keystrokeSreturn(S,c)) =

IF getkcy:wail(S)
THEN C

USE :v:i!uc(S)

2, readlinc
a. :w:iit(Sinit) = true
h. :wJit(putlincSreturn(S, L))= false
... :wait(readlincSreturn(S)) = true
d. :v:iluc(Sinit) :s undefincJ
e. : valuc(putlineSreturn(S,l))=

1 F rc:idline: w:iit (S)

THEN display(/,, I) .. display(/,, winsi.:)
rt.SE :value (S)

Sample u.~c, lnrcrfac'! lnrcractim1

PROGRAM lJI
VAR c: char.icier;/,: line;
HECIN
L ~ clclr: p1111inc(l.); c <- gcrkcy;
WHILE 7 (c = 0ftkcy) 110

BE(;[N
lF c = cnrcrkcv
THEN L <- i,;,c,prct(L)
£LS€ CASE c OF

dc:irkcy: /, <- clear
lcftkcy: /, <- rnovclcft(I,)
rightkey: /, <- movcright(/,)
inscrrkcy: L <- insert(/,)
di!lctckcy: L <- dch:tc(L)
OTHERWISE : /,<- type(L,c) ;

put line(/,);
c <- get key
E'JD

END

usrn u1
CO:-JSTANT winsiz:: 24;

325

VAR c: dur:icter; r: array of char:icters[I .. wiusi.l};
DEG!N
t <-· rcadlinc;
WHILE true DO

BF.GIN
keystroke (c);
r <- readlinc
END

END

Figure B.3: Event Algebra Specification of the Line Editor

APPENDIX C

THE MVC TRIAD:

LISTHOLDER, LISTHOLDERVIEW AND LISTHOLDERCONTROLLER

Model subclass: #ListHolder
instanceVariableNames: 'list selection clipboard undoAction

undoClipboard undoSelection oldentry'
classVariableNames; 11

poolDictionaries: 11

category: 'Interface-Lists'

I am a model for manipulating lists represented as ordered collections.

ListHolder methodsFor. 'initialize-release'

initialize
·initialize the ListHolder·

selection +-0.
clipboard+-· --- ·.
undoClipboard +-nil.
undoSelection +-nil.
undoAction +-nil

UstHolder methodsFoc 'accessing'

list
·Answer the list currently held by the receiver.
(Message is sent by ListViewccupdate:.r

i1ist

list: anOrderedCollection
·set anOrderedCollection to be what the receiver holds. ■

list +-anOrderedCollection.
selection +-0.
self changed: #list

listlndex .
·Answer the index into the receiver's list of the current selection.
(Message is sent by ListView«update:.r

iselection

327

togglelistlndex: anlnteger
·user selected or deselected anlntegerth element of the list -
record it for use by ListHolder operations.
(Message is sent by ListController•changeModelSelection: -

therefore, its name is forced even though inaccurate.)·

selection = anlnteger
ifTrue: [selection +-0}
ifFalse:[selection +-&nlnteger).

self changed: #listlndex

UstHolder methodsf:oc 'actions'

copySalection
clipboard +-list at selection

editSelecti on
self undoAction: #restoreSelection.
oldentry+-list at selection.
list at selection

put (FilllnTheBlank request: 'edit entry:'
initialAnswer: (list at: selection)).

self changed: #list

newAfter
selection +-Selection + 1.

·turns out add:beforelndex: works with index one past end·
self newBefore

newBafore
self undoAction: #removeSelection.
list add: (FilllnTheBlank request 'new entry:') beforelndex: selection.
self changed: #list

pasteAfter
selection +-Selection + 1.

·turns out add:beforelndex: works with index one past end·
self pasteBefore

328

pasteBefore
self undoAction: #removeSelection.
list add: clipboard beforelndex: selection.
self changed: #list

removeSelection
self undoAction: #pasteBefore.
self copySelection. ·put selection on clipboard·
list removeAtlndex: selection.
selection > list size ifTrue:[selection +-list size].
self changed: #list

restoreSelection

undo

·undo last entry edit or entry edit undo
by swapping current entry and oldentry·

lcurl
cur +-list at: selection.
self undoAction: #restoreSelection.
list at selection put oldentry.
old entry +-Cur.
self changed: #list

·undo the last action by executing the inverseAction block.■

I clip I
undoAction = nil

ifTrue: [inil]
ifFalse:[clip +-undoClipboard.

selection +-undoSelection.
self perform: undoActipn.
clipboard +-Clip]

undoAction: aSymbol
·record undo selector plus current selection and clipboard·

undoClipboard +-Clipboard.
undoSelection +-Selection.
undoAction +-&Symbol

329

UstHolder class
instanceVariableNames:"

UstHolder class methodsFoc 'instance creation'

new
isuper new initialize

onlist: a list
·create a new ListHolder for alist·

I alistHolder I
alistHolder ~self new.
alistHolder list alist.
ialistHolder

UstView subclass: #ListHolderView
instanceVariableNames: 11

classVariableNames: 11

poolDictionaries: 11

category: 'Interface-Lists'

I view a list stored in a ListHolder.

UstHolderView methodsf:or: 'controller acam'

defaultControllerClass
ilistHolderController

UstHolderView methodsFor. 'updating'

update: a Symbol
super update: aSymbol.
aSymbol == #list

ifTrue: [super update: llistlndex]
·11 list has been redisplayed, restore list index.
Warning: redisplay moves list back to top;
selection may be out of view.■

330

UstHolderView class
instanceVariableNames: "

UstHofderView class methodsf:or; 'instance creation'

openOn: alistHolder

self openOn: alistHolder named: 'List'

openOn: alistHoldernamed: aString
·schedule a List editor·

I topView alistHolderView I

·create the list view:
top View +-StandardSystemView

model: alistHolder
label: aString
minimumSize: 100@ 150.

·Add the list view to the top view.■

alistHolderView +-Self new. ·
alistHolderView model: alistHolder.
alistHolderView insideColor: Form white.
alistHolderView borderWidthlelt 1 right 1 top: 1 bottom: 1.

• Add the list view to the top view.·
topView addSubView: alistHolderView.

·initialize the list view with the list.·
alistHolderView list alistHolder list

·schedule the top view's controller.■
topView controller open

331

UstController subclass: #ListHolderController
instanceVariableNames: 11

classVariableNames: 'ListHolderVellowButtonMenu
ListHolderVellowButtonMessages •

poolDictionaries: 11

category: 'lnterf ace-Usts'

I am used to manipulate ListHolders and their views.

UstHolderControUer methodsFor; 'initiaUze-release'

initialize
super initialize.
self initializeYellowButtonMenu.
iself

UstHolderController methodsfor. 'private'

cantDo
view flash flash

initialize YellowButtonMenu
self yellowButtonMenu: ListHolderYellowButtonMenu

yellowButtonMessages: ListHolderYellowButtonMessages

modelDo: a Symbol
·send model the message aSymbol bracketed
by controlTerminate/controllnitialize to avoid
various scroll bar confusions·

self controlTerminate.
model perform: aSymbol.
self controllnitialize

332

UstHolderController methodsFor: 'menu mmages'

copySelection

view selection = 0
ifTrue: [self cantDo]
ifFalse: [model copySelection)

cutSelection

view selection = 0
ifTrue: [self cantDo]
ifFalse: [self modelDo: #removeSelection]

editSelection
view selection= 0

ifTrue: [self cantDo]
ifFalse: [self modelDo: #editSelection]

insertAfter

view selection = 0
ifTrue: [self cantDo]
ifFalse: [self modelDo: #pasteAfter]

insertBefore

view selection = 0
ifTrue: [self cantDo]
ifFalse: [self modelDo: #pasteBefore]

newAfter

view selection = 0
ifTrue: [self cantDo]
ifFalse: [self modelDo: #newAfter]

newBefore

view selection= 0
ifTrue: [self cantDo]
ifFalse: [self modelDo: #newBefore]

333

undo

self controlTerminate
·otherwise scroll bar gets confused __
handled here instead of using modelDo:
because need value of model message·

model undo = nil
ifTrue: [self cantOo].

self controllnitialize

UstHolderController class
instanceVariableNames: 11

ListHolderController class methodsf":or; 'class initialization'

initialize
·initialize the menu for the yellow mouse button.■
·ustHolderController initialize·

ListHolderYellowButtonMenu +-
PopUpMenu labels:

'undo\edit\copy\cut\paste before\paste after\new before\new after' withCRs
lines: #(1 4).

ListHolderYellowButtonMessages +-
#(undo editSelection copySelection cutSelection

insertBefore insertAfter newBefore newAfter)

UstHolderController class methodsfor; 'instance creation'

new
isuper new initialize

334

APPENDIX D

CLASS NOTEBOOK: USING SELECTIONINLIST

Model subclass: #Notebook
instanceVariableNames: 'changed filename sections section

entries entry•
classVariableNames: 'Delimiter EntryDelimiter EntryMenu

NoEntryMenu NoSectionMenu
SectionDelimiter SectionMenu TextMenu •

poolDictionaries: 11

category: 'lnterface-N otebook'

A generic two-level mechanism which organizes chunks of arbitrary
text into named entries which are themselves organized into named
sections. Uses would include phonebooks (category/person),
notebooks (topic/title), and course catalogues (department/name).

Instance Variables:

sections
section
entries

entry

dictionary of dictionaries
key of current section

dictionary of current section
(for convenience of entry methods)
key of current entry in current section "s dictionary

Notebook methodsFoc 'initialize-release'

initialize
sections +-Dictionary new.
section .-0.
entry +-0.
filename.-".
changed .-false

Notebook methodsFor; 'changing'

changeRequest
·1s change, in particular closing the interface, OK?·

changed ifTrue: [(self confirm: 'Changes have been made since last put
do you really want to close?') iffalse: [ifalse]].

fsuperchangeRequest

336

Notebook methodsfoc 'sections'

add Section
·Add a new section.■

lnamel
name +-FilllnTheBlank request: 'Name of new section?' initialAnswer: ".
[sections includesKey: name] whileTrue:

[name +--FilllnTheBlank
request: 'Name of new section?' initialAnswer: name.

(name = ") ifTrue: [iself] ·abort·
].

[sections includesKey: name] whileTrue:
[name +-FilllnTheBlank

request 'A section with that name already exists;
name of new section?'

name=·· ifTrue: [iself].
self addSection: name.
self setSection: name.
changed +-true.
self changed: #section

currentSection
isection

currentSection: aString
self setSection: aString

removeSecti on

initialAnswer: name].
·abort·

·Remove current section, prompting for confirmation.■

(BinaryChoice message:
'Do you really want to remove section

··, section, ··r) ifTrue:
[sections removeKey: section.
self setSection: nil.
changed +-true.
self changed: #section]

337

renameSection
·Rename current section.■

lnewnamel
newname +-FilllnTheBlank

request 'New name for section
•· ,section,"7'

initialAnswer: section.
newname = section ifTrue: [iself]. ·abort if unchanged·
[sections includesKey: newname] whileTrue:

[newname +-filllnTheBlank
request 'A section with that name already exists;

new name for ··,section,"'?'
initialAnswer. newname].

newname = " I newname = section ifTrue: [iself].
sections at newname put (sections at: section).
sections removeKey: section.
self setSection: newname.
changed +-true.
self changed: #section

1ectionMenu
·the menu of section commands·

section == nil

section Names

ifTrue: [iNoSectionMenu]
iffalse: [iSectionMenu]

isections keys asSortedCollection

338

Notebook methodsFoc 'entries'

addEntry
·Add a new entry:

lnamel
name +-FilllnTheBlank request: 'Name of new entry?' initialAnswer: ".
[entries includesKey: name] whileTrue:

[name +-FilllnTheBlank
request 'Name of new entry?' initialAnswer: name.

(name=") ifTrue: [iself] ·abort·
].

[entries includesKey: name] whileTrue:
[name +-FilllnTheBlank

request 'A entry with that name already exists;
name of new entry?'

initialAnswer: name].
name= "ifTrue: [iself]. ·abort·
self addEntry: name to: entries.
self setEntry: name.
changed +-true.
self changed: #entry

currentEntry
ientry

currantEntry: aString
self setEn~ry: aString

entryMenu
"the menu of entry commands·

entry== nil

entryNames

ifTrue: [iNoEntryMenu]
iff alse: [iEntryMenu)

entries== nil ifTrue: (inil].
ientries keys asSortedCollection

339

remove Entry
·Remove current entry, prompting for confirmation.■

(BinaryChoice message:
'Do you really want to remove entry··, entry, ··n ifTrue:

[entries removeKey: entry.
self setEntry: nil.
changed ~true.
self changed: #entry]

rename Entry
·Rename current entry:

lnewnamel
newname ~ FilllnTheBlank request: 'New name for entry

•· ,entry,··7·
initialAnswer: entr-y.

newname = entry ifTrue: [iself]. ·abort if unchanged·
[entries includesKey: newname] whileTrue:

[newname ~FilllnTheBlank
request 'A entry with that name already exists;

new name for ··,entry,··1·
initialAnswer: newname].

newname = " I newname = entry ifTrue: [iself].
entries at newname put (entries at entry).
entries removeKey: entry.
self setEntry: newname.
changed ~true.
self changed: #entry

Notebook methodsfor; 'text'

acceptText aText
·enter a Text at current entry.■

entry== nil ifTrue: [1false].
self put aText copy at entry in: entries.
changed +-true.
1true

340

text
·the text of the current entry·

entry== nil ifTrue: [inil].
ientries at entry

textMenu
rTextMenu

Notebook methodsFoc 'private'

addEntry: a String to: a Dictionary
·Add a new section named aString·

aDictionary at aString put Text new

addSection: aString
·Add a new section named aString·

sections at aString put Dictionary new

put aString at: anEntryName in: a Dictionary
·Make a String be the current text for anEntryName in aDictionary.■

aDictionary at anEntryName put aString

setEntry: aString
·Make aString be the current entry.■

entry +-aString.
self changed: #text

setSection: aString
·Make aString be the current section.■

section +-8String.
section== nil

ifTrue: [entries +-nil]
iffalse: [entries +-Sections at a String].

self setEntry: nil.
self changed: #entry

341

Notebook methodsfor: 'fileln/Ouf

get
·Add entries from notebook stored on a file.■

I filnam I

filnam +-(FilllnTheBlank request 'Name of file to get notebook from?'
initialAnswer: filename).

self getFrom: filnam. ·should check to see if it exists·
self changed #section

getEntryln: aDictionary From: aStream
·Read entry from stream.
The stream starts positioned at first character of entry name·

lent textl

ent+-aStream upTo: Character er.
Transcript show: ' ',ent er.
text+-(aStream upTo: Delimiter) asText.
self add Entry: ent to: aDictionary.
self put text at ent in: aDictionary

getfrom: aFileName

·upTo: stops normally at EDF'

·add entries from notebook file to this notebook, overriding any
text already stored for duplicated section/entry pairs.■

lstrml

filename=" ifTrue: [filename +-&FileName].
·rt getting several, keep first name·

strm+-(FileStream oldFileNamed: afileName).
strm skipTo: Delimiter; next ·skip any header info in file·

[strm atEnd] whilefalse:
[self getSectionFrom: strm].

strm close

342

getSectionfrom: aStream

put

·Read section and its entries from stream.
The stream starts positioned at first character of section name·

1sec secdictl

sec +-aStream up To: Character er.
aStream next ·gobble next delimiter·
Transcript show: sec; er.
(sections includesKey: sec) ifFalse: [self addSection: sec].
secdict+-sections at sec.
[aStream atEnd I (aStream peekFor: Delimiter)] whileFalse:

[self getEntryln: secdict From: aStream]

·File notebook out putting 1'No delimiter characters in front of section
heads and one in front of entry heads. Delimiter character cannot
be used in headings or entry text:

I strm I

strm +-FileStream fileNamed: ·should check to see if it exists·
(filename +-(FilllnTheBlank

self putTo: strm.
changed +-false

request 'Name of file to put notebook to?'
initialAnswer: filename)).

putEntry: anAssoc on: a Stream
•file out the entry named aName on aStrearn·

ltextl

text+-anAssoc value.

aStream nextPut: Delimiter,
nextPutAII: anAssoc key; er;
nextPutAII: text.

text isEmpty iffalse:
[(text last= Character er) iffalse:

[aStream er]]

343

putSection: anAssoc on: aStream
·tile out the section named a Name on aStream·

aStream nextPut Delimiter, nextPut Delimiter,
nextPutAII: anAssoc key: er.

anAssoc value associationsDo: [:assoc I self putEntry: assoc on: aStream]
·Dictionary enumeration is arbitrary order;
if want alphabetical, must sort keys and access each:

putTo: aStream
·File notebook out using .markers for section heads and entry heads·

aStream nextPut: Character er. ·could put a header here·
sections associationsDo: [:sec I self putSection: sec on: aStream].

·oictionary enumeration is arbitrary order;
if want alphabetical, must sort keys and access each:

aStream shorten; close

Notebook class methodsFoc 'class initiafization'

initialize
·initialize Notebook with appropriate menus and fileln/Out delimiters:

·Notebook initialize·

Delimiter+.-$\.

SectionMenu +-ActionMenu
labels: 'add section\put to file\load from file\rename\remove·

withCRs
lines: #(3)
selectors: l(addSection put get renameSection removeSection).

NoSectionMenu +-ActionMenu
labels: 'add section\put to file\load from file'
selectors: l(addSection put get).

EntryMenu +-ActionMenu
labels: 'add entry\rename\remove' withCRs
lines: #(1)
selectors: l(addEntry renameEntry removeEntry).

NoEntryMenu +-ActionMenu
labels: 'add entry'
selectors: #(addEntry).

TextMenu +-ActionMenu
labels: 'again\undo\copy\cut\paste\accept\cancel' withCRs
lines: #(2 5)
selectors: #(again undo copySelection cut paste accept cancel)

344

Notebook class methodsFor; 'instance creation'

from: afileName
·create a new notebook and get its contents from afileName.■

I notebook I
notebook +-Self new.
notebook getFrom: aFileName.
inotebook

new
isuper new initialize

Notebook class methodsfor: 'user interface'

openfrom: aFileName
·open an MVC interface on a new Notebook with contents from
afileName.■

self openOn: (Notebook from: aFileName) named: afileName

openNamed: aString
·open an MVC interface on a new Notebook.■

·Notebook openNamed: 'Notebook'·

self openOn: Notebook new named: aString

open On: a Notebook named: a String
·open an MVC interface on aNotebook.
This could really be an instance method, but it is conventional
to make MVC creators class methods.■

•style note: in general methods should be smaller than a page and do
just one thing, so I would normally break this up into subfunctions.
However, in this case I felt it would confuse the presentation.
Also, I wanted this method to look like typical system MVC interface
creation methods, which typically are in one piece.■

345

I topView sectionView entryView textView I

topView+-StandardSystemView
model: aNotebook
label: aString
minimumSize: 275@350.

sectionView+-SelectionlnlistView
on: aNotebook
aspect #section
change: #currentSection:
list #sectionNames
menu: #sectionMenu
initialSelection: #currentSection.

entryView +-SelectionlnlistView
on: aNotebook
aspect #entry
change: #currentEntry:
list #entryNames
menu: #entryMenu
initialSelection: #currentEntry.

textView +-TextView

·moder
·change symbol for section·
·msg to select new section·
·msg to get list of sections·
·msg to get section menu·
·msg to get initial section·

·model·
·change symbol for entry•
·msg to select new entry·
·msg to get list of entries·
·msg to get entry menu·
·msg to get initial entry"

on: &Notebook ·model·
aspect #text ·change symbol for new text· ..
change: #acceptText ·msg to store new entry text·
menu: #textMenu. ·msg for text menu·

topView addSubView: sectionView
in: (o@O extent 1@0.2) 1op 20% •
borderWidth: 1. ·

topView addSubView: entryView
in: (o@0.2 extent 1@0.25) ·next 25%.
borderWidth: 1.

topView addSubView: textView
in: (o@0.45 extent 1@0.55) ·bottom 55% •
borderWidth: 1.

,here are many other messages for adding subviews; .
addSubView:in:borderWidth: happens to be very convement
for arranging multiple subviews.■

topView controller open ·activate the whole interface·

346

BIBLIOGRAPHY

(1] Teitelbaum, Tim and T. Reps, "The Come II Program Synthesizer: A Syntax-Directed Pro
gramming Environment," Communications of the ACM, vol. 29, no. 9, pp. 563-573,
Sept. 1981.

[2] Moran, Thomas P ., "Guest Editor's Introduction: An Applied Psychology of the User,"
Computing Surveys, vol. 13, no. 1, pp. 1-11, ACM, New York, March 1981.

[3] Newell, Martin E., "Towards a Design Methodology for Interactive Systems," in Metho
dology of Interaction, ed. R. A. Guedj et al., pp. 317-324, North-Holland Publishing
Company, Amsterdam, Netherlands, 1980.

[4] Nievergelt, Jurg, "Geometric Designs," Colloquium talk at the University of Central
Florida, November 1985.

[5] Kay, Alan and Adele Goldberg, "Personal Dynamic Media," Computer, pp. 31-41, IEEE,
March 1977.

[6] Nickerson, R. S., "On Conversational Interaction with Computers," in User-Oriented
Design of Interactive Graphics Systems, ed. Sigfried Treu, Proceedings of the
ACM/SIGGRAPH Workshop, pp. 101-113, ACM, Pittsburgh, PA., October 1976.

[7] Baecker, Ronald, "Towards an Effective Characterization of Graphical Interaction," in
Methodology of Interaction, ed. R. A. Guedj et al., pp. 127-147, North-Holland Publish
ing Company, Amsterdam, Netherlands, 1980.

[8] Guedj, R. A., Methodology of Interaction, North-Holland Publishing Company, Amster
dam, Netherlands, 1980.

[9] Tozzi, Clesio, "Man-Machine Communication in Process Control," in Methodology of
Interaction, ed. R. A. Guedj et al., pp. 393-398, North-Holland Publishing Company,
Amsterdam, Netherlands, 1980.

(1 O] Ohsuga, Setsuo, "Towards Intelligent Interactive Systems," in Methodology of Interac
tion, ed. R. A. Guedj et al., pp. 339-360, North-Holland Publishing Company, Amsterdam,
Netherlands, 1980.

[11] Dzida, W., S. Herda, and W. D. ltzfeldt, "User-Perceived Quality of Interactive Systems,"
in Methodology of Interaction, ed. R. A. Guedj et al., pp. 189-193, North-Holland Pub
lishing Company, Amsterdam, Netherlands, 1980.

(12] Foley, J. D. and V. L. Wallace, "The Art of Natural Graphic Man-Machine Communica
tion," Proceedings of the IEEE, vol. 62, pp. 462-471, IEEE, April 1974.

[13] Foley, J. D., "The Structure of Command Languages," in Methodology of Interaction,
ed. R. A. Guedj et al., pp. 227-234, North-Holland Publishing Company, Amsterdam,
Netherlands, 1980.

[14] Foley, J. D., V. L. Wallace, and P. Chan, "The Human Factors of Computer Graphics
Interaction Techniques," Computer Graphics and Applications, vol. 4, no. 11, pp. 13-
48, IEEE, Nov. 1984.

(15] Britton, E. G., "A Methodology for the Ergonomic Design of Interactive Computer Graph
ics Systems," Ph.D. Dissertation, Dept. of Computer Science, Univ. of North Carolina,
Chapel Hill, NC., 1977.

347

348

(16] Wallace, V. L., "Conversational Ergonomics," in Workshop on User Oriented Design of
Interactive Graphics Systems, ACM, Pittsburgh, PA., Oct. 1976.

(17] Newman, W. M, and R. F. Sproull, Prlnclples of Interactive Computer Graphics,
McGraw-Hill, New York, NY., 1979.

(18] Moran, Thomas P., "Introduction to the Command Language Grammar: A Representation
for the User Interface of Interactive Computer Systems," Report SSL-78-3, Xerox Palo
Alto Research Center, Palo Alto, CA., 1978.

(19] Dunn, R. M., "A Philosophical Prelude to Methodology of Interaction," in Methodology of
Interaction, ed. R. A. Guedj et al., pp. 183-188, North-Holland Publishing Company,
Amsterdam, Netherlands, 1980.

(20] Hornbuckle, G. D., "The Computer Graphics/User Interface," IEEE Trans. Human Fac
tors In Electronlcs, vol. HFE-8, no. 1, pp. 17-22, IEEE, March 1967.

(21] Hansen, W. J., "User Engineering Principles for Interactive Systems," in Proceedings
Fall Joint Computer Conference, vol. 39, pp. 523-532, AFIPS Press, Arlington, VA.,
1971.

[22] Green, M., "A Methodology for the Specification of Graphical User Interfaces," Computer
Graphics, vol. 15, no. 3, pp. 99-108, ACM, Aug. 1981.

[23] Robinson, L., "The HDM Handbook, Volume 1: The Foundations of HOM," Project Report
4828, Computer Science Group, SRI International, 1979.

[24] Moran, Thomas P., "The Command Language Grammar: A Representation for the User
Interface of Interactive Computer Systems," International Journal of Man-Machine Stu
dies, vol. 15, pp. 3-50, 1981.

[25] Minsky, M., "A Framework for Representing Knowledge," in The Psychology of Com
puter Vision, ed. P. H. Winston, pp. 211-277, McGraw-Hill, New York, NY., 1975.

[26] Bobrow, D. G. and T. Winograd, "An Overview of KRL, A Knowledge Representation
Language," Cognitive Science, vol. 1, pp. 3-46, 1977.

[27] Norman, D. A., et al., Explorations In Cognition, W. H. Freeman, San Francisco, CA.,
1975.

[28] Brachman, R. J., "What's in a Concept: Structural Foundations for Semantic Networks,"
lnternatlon Journal of Man-Machine Studies, vol. 9, pp. 127-152, 1977.

[29] Newell, A. and H. A. Simon, Human Problem Solving, Prentice-Hall, Englewood Cliffs,
NJ., 1972.

[30] Brooks, F. P., "No Silver Bullet: Essence and Accidents of Software Engineering," Com
puter, vol. 20, pp. 10-19, 1987.

[31] Cox, B. J., Object Oriented Programming: An Evolutionary Approach, Addison
Wesley, Reading, Mass., 1986.

[32] Flynn, M. J., "Very High Speed Computing Systems", Proceedings of the IEEE, vol. 54,
pp. 1901-1909, December 1966.

[33] Pfaff, G. E., Ed., User Interface Management Systems, Springer-Verlag, Berlin, 1985.

(34] Liskov, B. and S. Zilles, "An Introduction to Formal Specification of Data Abstractions," in
Current Trends In Programming Methodology, Volume 1: Software Specification
and Design, ed. R. T. Yeh, pp. 1-32, Prentice-Hall, Englewood Cliffs, NJ., 1977.

(35] Liskov, B. and s. Zilles, "Specification Techniques for Data Abstractions," IEEE Trans.
Software Engineering, vol. SE-1, no. 1, pp. 7-19, March 1975.

349

[36] Guttag, J. V. and J. J. Horning, "The Algebraic Specification of Abstract Data Types,"
Acta Informatica, vol. 100, no. 1, pp. 27-52, 1978.

[37] Mallgren, W. R., "Formal Specification of Graphic Data Types," ACM Trans. Program
ming Languages and Systems, vol. 4, no. 4, pp. 687-710, Oct. 1982.

(38] Jacob, R. J. K., "Using Formal Specifications in the Design of a Human-Computer Inter
face," Communications of the ACM, vol. 26, no. 4, pp. 259-264, April 1983.

[39] Shneiderman, B., "Multiparty Grammars and Related Features for Defining Interactive
Systems," IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-12, no. 2, pp. 148-
154, March/April 1982.

[40] van den Bos, J., "Definition and Use of Higher-level Graphics Input Tools," in SIGGRAPH
'78 Proceedings, ACM Computer Graphics, vol. 12, no. 3, pp. 38-42, Aug. 1978.

[41] van den Bos, J., M. J. Plasmeijer, and P. H. Hartel, "Input-output Tools: A Language
Facility for Interactive and Real-time Systems," IEEE Trans. Software Engineering, vol.
SE-9, no. 3, pp. 247-259, 1983.

[42] Borufka, H. G., H. W. Kuhlmann and P. J. W. ten Hagen, "Dialogue Cells: A Method for
Defining Interactions," IEEE Computer Graphics and Applications, vol. 2, no. 5, pp.
25-33, 1982.

[43] ten Hagen, P. J. W. and J. Derksen, "Parallel Input and Feedback in Dialogue Cells," in
User Interface Management Systems, ed. G. E. Pfaff, pp. 109-124, Springer-Verlag,
Berlin, 1985.

[44] Parnas, D. L., "On the Use of Transition Diagrams in the Design of a User lnter1ace for
an Interactive Computer System," in Proceedings 24th National ACM Conference, pp.
379-385, ACM, New York, NY., 1969.

[45] Aho, A. V., R. Sethi and J. D. Ullman, Compilers, Prlnclples, Techniques, and Tools,
Addison-Wesley, Reading, Mass., 1986.

[46] Shaw, A. C., "On the Specification of Graphics Command Languages and their Proces
sors," in Methodology of Interaction, ed. A. A. Guedj et al., pp. 377-392, North-Holland
Publishing Company, Amsterdam, Netherlands, 1980.

(47] Shaw, A. C., "Systems Design and Documentation Using Path Descriptions," in Proceed
ings 1975 Sagamore Computer Conference on Parallel Processing, pp. 180-181,
IEEE, Silver Spring, MD., 1975.

(48] Shaw, A. C., "Software Descriptions with Flow Expressions," IEEE Trans. Software
Engineering, vol. SE-4, no. 3, pp. 242-254, May 1978.

[49] MUMPS Development Committee, MUMPS Language Standard, American National
Standards Institute, New York, NY., 1977.

[50] Singer, A., "Formal Methods and Human Factors in the Design of Interactive Languages,"
Ph.D. Dissertation, Dept. of Computer and Information Science, Univ. of Massachusetts,
Amherst, MA., Sept. 1979.

[51] Green, M., "A Graphical Input Programming System," M.Sc. thesis, Dept. of Computer
Science, Univ. of Toronto, Toronto, Canada, 1979.

[52] Green, M., "A Survey of Three Dialogue Models," ACM Trans. on Graphics, vol. 5, no.
3, pp. 244-275, July 1986.

[53] Newman, w. M., "A System for Interactive Graphical Programming," in Proceedings of
the Spring Joint Computer Conference, pp. 47-54, Washington, DC., 1968.

[54] Edmonds, E. A. and S. P. Guest, "An Interactive Tutorial System for Teaching Program
ming," in Proceedings of the IERE Conference 36: Computer Systems and

350

Technology, pp. 263-270, IERE, London, 1977.

[55] Hanau, P. R. and D. R. Lenorovitz, "Prototyping and Simulation Tools for User/Computer
Dialogue Design," in SIGGRAPH '80 Proceedings, ACM Computer Graphics, vol. 14,
no. 3, pp. 271-278, July 1980.

[56] Olsen, D. R., "Automatic Generation of Interactive Systems," ACM Computer Graphics,
vol. 17, no. 1, pp. 53-57, ACM, Jan. 1983.

[57] Olsen, D. R. and E. P. Dempsey, "Syntax Directed Graphical Interaction," SIGPLAN
Notices, vol. 18, no. 6, pp. 112-117, ACM, June 1983.

[58] Olsen, D. R. and E. P. Dempsey, "SYNGRAPH: A Graphical User Interface Generator,"
ACM Computer Graphics, vol. 17, no. 3, pp. 43-50, July 1983.

(59] Denert, E., "Specification and Design of Dialogue Systems with State Diagrams," in
Proceedings of the International Computing Symposium, pp. 417-424, North-Holland
Publishing Company, Amsterdam, Netherlands, 1977.

(60] Casey, 8. E. and 8. Dasarathy, "Modeling and Validating the Man-Machine Interface,"
Software Practice and Experience, vol. 12, pp. 557-569, 1982.

[61] Feldman, M. 8. and G. T. Rogers, "Toward the Design and Development of Style
Independent Interactive Systems," in Proceedings of the ACM SIGCHI Human Factors
In Computer Systems Conference, pp. 111-116, ACM, New York, NY., 1982.

[62] Guest, S. P., "The Use of Software Tools for Dialogue Design," International Journal
Man-Machine Studies, vol. 16, pp. 263-285, 1982.

[63] Kamran, A and M. B. Feldman, "Graphics Programming Independent of Interaction Tech
niques and Styles," ACM Computer Graphics, vol. 17, no. 1, pp. 58-66, 1983.

[64] Kieras, D. and P. G. Polson, "A Generalized Transition Network Representation for
Interactive Systems," in Proceedings of the CHI '83 Human Factors In Computing
Systems, pp. 103-106, ACM, New York, NY., 1983.

[65] Schulert, A. J., G. T. Rogers and J. A. Hamilton, "ADM - A Dialogue Manager," in
Proceedings of the CHI '83 Human Factors In Computing Systems, pp. 177-183,
ACM, New York, NY., 1985.

[66] Sibert, J., R. Belliardi and A. Kamran, "Some Thoughts on the Interface Between User
Interface Management Systems and Application Software," in Methodology of Interac
tion, ed. R. A. Guedj et al., pp. 183-192, North-Holland Publishing Company, Amsterdam,
Netherlands, 1980.

[67] Wasserman, A. I., "Extending State Transition Diagrams for the Specification of Human
Computer Interactions," IEEE Trans. Software Engineering, vol. SE-11, no. 8, pp. 699-
713, Aug. 1985.

(68] Jacob, R. J. K., "A Specification Language for Direct-Manipulation User Interfaces," ACM
Trans. on Graphics, vol. 5, no. 4, pp. 283-317, Oct. 1986.

(69] Elshoff, E. L., et al., "Handling Asynchronous Interrupts in a PU1-like language,"
Software Practice and Experience, vol. 4, pp. 117-124, 1974.

[70] Kasik, D. J., "A User Interface Management System," ACM Computer Graphics, vol.
16, no. 3, pp. 99-106, July 1982.

[71] Green, M., "The University of Alberta User Interface Management System," in SIG
GRAPH '85 Proceedings, ACM Computer Graphics, vol. 19, no. 3, pp. 205-213, July
1985.

[72] Hill, R. D., "Supporting Concurrency, Communications and Synchronization in Human
Computer Interaction - The Sassafras User Interface Management System," ACM Trans.

351

on Graphics, vol. 5, no. 3, pp. 179-210, July 1986.

[73) Flecchia, M. A. and R. D. Bergeron, "Specifying Complex Dialogues in ALGEA," in
Proceedings of CHI and Graphics Interface '87, pp. 222-228, Toronto, Canada, April
1987.

(74) "Status Report of the Graphics Standards Committee," ACM Computer Graphics, vol.
13, no.3, Aug. 1979.

[75] International Standards Organization, Graphical Kernel System (GKS), Version 6.6,
May 1981.

[76) Scheifler, R. W. and J. Gettys, "The X Window System," ACM Trans. on Graphics, vol.
5, no. 2, pp. 132-165, April 1986.

[77] Schmucker, K. J., Object-Oriented Programming for the MacIntosh, Hayden Book
Company, Hasbrouck Heights, NJ., 1986.

[78] Krasner, G. E. and S. T. Pope, "A Cookbook for using the Model-View-Controller User
Interface Paradigm in Smalltalk-SO," ParcPlace Systems, 2400 Geng Road, Palo Alto, CA
94303, January 1988.

[79] Goldberg, A. and D. Robson, Smalltalk-BO: The Language and Its Implementation,
Addison-Wesley, Reading, Mass., 1983.

[80) Wong, P. C. S. and E. R. Reid, "FLAIR - User Interface Dialog Design Tool," ACM Com
puter Graphics, vol. 16, no. 3, pp. 87-98, July 1982.

[81] Olsen, D. R., "MIKE: The Menu Interaction Kontrol Environment," ACM Trans. on
Graphics, vol. 5, no. 4, pp. 318-344, Oct. 1986.

(82] Bournique, R. F., "User-Oriented Features and Language-Based Agents: A Study of
Graphical Interaction Language Specification," Ph.D. Dissertation, Dept. of Computer
Science, Univ. of Pittsburgh, PA., 1981.

(83] Reiss, S. P., "Graphical Program Development with PECAN Program Development Sys
tems," ACM SIGPLAN Notices, vol. 19, no. 5, pp. 30-41, May 1984.

[84] Foley, J. D. and A. van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, Reading, Mass., 1982.

(85] Workman, D. A., F. Arefi and M. H. Dodani, "GRIP: A Formal Framework for Developing
a Support Environment for Graphical Interactive Programming," Proceedings of the
Conference on Software Tools, pp. 138-153, IEEE Computer Society, New York, NY.,
1985.

(86] Arefi, Farahangiz, 11Automatically Generating Syntax-Directed Editors for Graphical
Languages," Ph.D. Dissertation, Dept. of Computer Science, Univ. of Central Florida,
1988.

(87] Goldberg, A., Smalltalk-BO: The Interactive Programming Environment, Addison-
Wesley, Reading, Mass., 1984.

(88] 11Special Issue on Object-Oriented Programming, 11 BYTE, August 1986.

[89] OOPSLA '86 Conference Proceedings, ACM SIGPLAN Notices, vol. 21, no. 10, 1986.

[90] OOPSLA '87 Conference Proceedings, ACM SIGPLAN Notices, vol. 22, no. 12, 1987.

[91) OOPSLA '88 Conference Proceedings, ACM SIGPLAN Notices, vol. 23, no. 11, 1988.

(92] Kernighan, B. w. and D. M. Ritchie, The C Programming Language, Prentice-Hall,
Englewood Cliffs, NJ., 1987.

[93] Eckart, D. J., "Iteration and Abstract Data Types," ACM SIGPLAN Notices, vol. 22, no.
4, pp. 103-110, April 1987.

352

[94] Stroustrup, B., The C++ Programming Language, Addison-Wesley, Reading, Mass.,
1986.

[95] Johnson, R. E. and B. Foote, "Designing Reusable Classes," Journal of Object
Oriented Programming, vol. 1, no. 2, pp. 22-35, June/July 1988.

[96) Cardelli, L. and P. Wegner, "On Understanding Types, Data Abstraction and Polymor
phism," ACM Computing Surveys, vol. 17, no. 4, pp. 471-523, Dec. 1985.

[97] Booch, G., Software Components with Ada, Addison-Wesley, Reading, Mass., 1987.

[98) Goldstein, I. P. and D. G. Bobrow, "PIE: An Experimental Personal Information Environ
ment," Technical Report CSL-81-4, Xerox Palo Alto Research Center, Palo Alto, CA.,
1981.

[99] Alexander, J. H., "Painless Panes for Smalltalk Windows," in OOPSLA '87 Conference
Proceedings, ACM SIGPLAN Notices, vol. 22, no. 12, pp. 287-294, Dec. 1987.

[100) Smith, R. B., "Experiences with the Alternative Reality Kit: An Example of the Tension
Between Literalism and Magic," IEEE Computer Graphics and Appllcatlons, pp. 42-50,
Sept. 1987.

[101) Kernighan, B. W. and R. Pike The UNIX Programming Environment, Prentice-Hall,
Englewood Cliffs, NJ., 1984.

[102] Starbase Graphics Reference Manual, Hewlett Packard Company, Fort Collins, CO.,
1987.

[103) MetaWindow Reference Manual, MetaGraphics Software Corp., Scotts Valley, CA., 1986.

[104] Domain Graphics Reference Manual, Appolo Computer Corp., 1987.

(105) Birkhead, E., "X11 Toolkit Extensions," DEC Professional, pp. 92-95, July 1988.

[106) Aho, A. V., J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms, Addison
Wesley, Reading, Mass., 1983.

[107] Beck, K., "Smalltalk Programming," HOOPLA, vol. 1, no. 1, pp. 4-12, OOPSTAD,
Everett, WA., Feb. 1988.

[108) Adams, S. S., "MetaMethods: The MVC Paradigm," HOOPLA, vol. 1, no. 4, pp. 3-21,
OOPSTAD, Everett, WA., July 1988.

[109] Smalltalk/V Mac Tutorial and Programming Handbook, Digitalk Inc., Los Angeles, CA.,
Sept. 1988.

[11 O]

[111]

[112]

[113]

[114)

[115]

[116]

Apple Computer, Inside MacIntosh, Addison-Wesley, Reading, Mass., 1985.

Workman, D. A., "GRASP: A Software Development System Using D-Charts," Software
Practice and Experience, vol.. 13, no. 1, pp. 17-32, 1983.

Reps, T., "Generating Language-Based Environments," Ph.D. Dissertation, Dept. of Com
puter Science, Cornell University, Ithaca, NY., Oct. 1983.

Borning, A., "The Programming Language Aspects of Thinglab, A Constraint-Oriented
Simulation Laboratory," ACM TOPLAS, vol. 3, no. 4, pp. 353-387, Oct. 1981.

Duisberg, R., "Constraint-Based Animation: The Implementation of Temporal Constraints
in the Animus System," Ph.D. Dissertation, Computer Science Department, Univ. of
Washington, Seattle, WA., 1986.

Mittal, S., C. L. Dym and M. Morjaria, "PRIDE: An Expert System for the Design of Paper
Handling Systems," IEEE Computer, pp. 102-114, July 1986.

Henry, R. and P. Damron, "Code Generation Using Tree Pattern Matchers," Technical
Report 87-02-04, Computer Science Department, Univ. of Washington, Seattle, WA.,
1987.

353

(117] Levitt, D., "Machine Tongues X: Constraint Languages," Computer Music Journal, vol.
8, no. 1, pp. 9-21, Spring 1984.

[118] Ege, R. K., D. Maier and A. Boming, "The Filter Browser: Defining Interfaces Graphi
cally," in Proceedings of the European, Conference on Object Oriented Program
ming, Springer-Verlag Lecture Notes in Computer Science No. 276, Paris, France, June
1987.

[119] Borning, A. and R. Duisberg, "Constraint-Based Tools for Building User Interfaces," ACM
Trans. on Graphics, vol. 5, no. 4, pp. 345-374, Oct. 1986.

(120] Bolour, A., et al., "The Role of Time in Information Processing: A Survey," ACM SIGMOD
Record, vol. 12, no. 3, pp. 27-50, 1982.

(121] Chi, U. H., "Formal Specification of User Interfaces: A Comparison and Evaluation of
Four Axiomatic Approaches," IEEE Trans. Software Engineering, vol. SE-11, no. 8, pp.
671-685, Aug. 1985.

(122] Guttag, J. V. and J. J. Horning, "Formal Specification as a Design Tool," in Proceedings
7th Symposium Principles of Programming Languages, pp. 251-261, ACM, New
York, NY., 1980.

(123] Dijkstra, E. W., A Dlsclpllne of Programming, Prentice-Hall, Englewood Cliffs, NJ.,
1976.

[124) Mallgren, W. R., "Formal Specification of Interactive Graphics Programming Languages,"
Ph.D. Dissertation, Dept. of Computer Science, Univ. of Washington, Seattle, WA., Sept.
1981.

	Generating Multiple User Interfaces for Multiple Application Domains
	STARS Citation

	GENERATING MULTIPLE USER INTERFACES FOR MULTIPLE APPLICATION DOMAINS
	001

	ABSTRACT
	002
	003

	TABLE OF CONTENTS
	004
	005
	006
	007

	CHAPTER 1
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056

	CHAPTER 2
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123

	CHAPTER 3
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161

	CHAPTER 4
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214

	CHAPTER 5
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298

	APPENDICES
	299

	APPENDIX A
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324

	APPENDIX B
	325
	326
	327
	328
	329
	330
	331

	APPENDIX C
	332
	333
	334
	335
	336
	337
	338
	339
	340

	APPENDIX D
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352

	BIBLIOGRAPHY
	353
	354
	355
	356
	357
	358
	359

