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ABSTRACT 

This Ph.D. dissertation presents a classification scheme for User Interface Development 

Environments (UIDEs) based on the multiplicity of user interfaces and application domains that 

can be supported. The SISD, SIMD and MISD [S= Single, I= user lnterface(s), M= Multiple, 

D= appllcatlon Domaln(s)] generator classes encompass most of the UIDEs described in the 

literature. A major goal of this research is to allow any user to develop a personalized interface 

for any interactive application, that is, the development of an MIMD UIDE. 

Fundamental to the development of such a UIDE is the complete separation of the user 

interface component from the application component. This separation necessitates devising less 

tightly coupled models of the application and user interface than have been reported to date. 

The main features of the MIMD UIDE model are as follows. 

[1] Interactive applications are modeled as editors providing a set of functions that manipulate 

2-dimensional graphical objects. 

[2] Interactive data structures are introduced for maintaining and manipulating both the 

internal and external representation(s) of application information as a single unit. These 

external representations form the basis for presenting internal information to the user. 

[3] Since interaction with the user must be the sole responsibility of the user interface com

ponent, function interaction is modeled as follows. Application functions are modeled as a 

set of services. Each service processes a (set of) parameter(s) independently. For each 

service in the application, a corresponding service Interface object is defined in the user 

interface component. The service interface object interacts with the user to specify the 

required (set of) parameter(s), calls the associated service within the application, and 

displays the result of the service to the user. 

Ii 



Using the above model, the user interface component is modeled to allow personalized 

specifications at all levels; including the internal entities of the interactive system, the charac

teristics of the display of information, and the interaction tasks, techniques and devices used for 

parameter specification. 

Ill 
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CHAPTER 1 

INTRODUCTION 

Since the dawn of computing, scientists have directed their research at the core of com

puter systems, in such topics as hardware and software. Research interest diminishes as we 

move outward from the core of the system to its boundary. Historically, the terminal was con

sidered as the boundary of the system. However, it is now widely recognized that the user forms 

the critical component of the computer system and determines whether the system as a whole -

the man-machine system - works or not. 

The evolution of computer science has followed a system-oriented trend. That is, scien

tists have always been concerned with making the system work, considering user-specific issues 

only when research on system issues has been completed. This system-oriented approach is 

typified by the history of editing systems in support of programming. Until recently, program edit

ing was supported by text editors, which consider programs as text or a sequence of characters. 

Text editors themselves have evolved from batch-oriented to interactive, from line-oriented to 

screen-oriented, and most importantly from providing no on-line assistance to providing sophisti

cated help features. However, from the programmer's viewpoint, text editors are a limited pro

gramming tool - they provide no support for the programming process itself. In fact, in conven

tional systems, the compiler is the first productive tool in support of the programming process -

the text editor is merely a tool for creating the input for the compiler. Once the technology of 

compilers was fully developed, concerns for the programming process shifted to the program

mer. This concern resulted in syntax-directed editors, a true program editor. A syntax-directed 

editor has knowledge of the programming language, and editing is done in terms of program 

constructs. Thus, a syntax-directed editor can always ensure syntactic correctness and is 
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capable of providing programming support to the user. Technology in syntax-directed editing has 

reached a point where facilities are provided in support of all aspects of programming (including 

semantic analysis, execution and debugging) as typified by the Cornell Program Synthesizer [1 ]. 

The design of such Interactive systems does not, however, consider user behavior. The 

approach has not been one of first understanding the user's model and then designing systems 

to suit this model. To take the editing example further, the design of a program editor was not 

carried out after a careful evaluation of the user's model of programming. Rather, an ad-hoc 

approach is employed - it would obviously be more productive if the editing and compilation 

phases were merged. This ad-hoc approach to the design of the user aspects can be attributed 

to the attitudes of the technologist and the designer. 

The attitude of the technologist is that the user is made more productive by massive tech

nological advances, such as bigger and faster machines. As an example, the advent of high 

resolution graphical devices have improved the interface for the user as opposed to the teletype

writer interface. However, as is currently being discovered, new technologies introduce their own 

problems. Currently there exists a new set of display problems with graphical devices that did 

not exist with teletypewrtters, e.g., what information should be displayed, how should it be 

displayed, how much should be displayed, how do we ensure that the user's attention is drawn 

to specific information, etc. 

The attitude of the systems designer is that, being human, he/she can rely on common 

sense and intuition to predict what will be easy for the user. However, the problems with this 

ad-hoc approach are twofold: designers cannot evaluate their intuition and the designer's intui

tion do not necessarily match the user's. 

Moran [2] describes the resulting state of affairs in harsh terms: 

The computer systems commonly available today are Indeed wonderful. ..... Yet, except 
for occasional examples of Inspired design, users find most of the systems they use to 
be arcane, Idiosyncratic, Inconsistent, and seemingly more difficult to learn and to use 
than necessary. 
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A common sight throughout the computer science community is that of a frustrated user pouring 

over a thick manual or in deep consultation with the local guru. 

In the last decade, the emphasis in computer systems has shifted from a systems-oriented 

view to a user-oriented view. The user is now accepted as being the most crucial component 

of the system and a large percentage of system design is based around the user. This dramatic 

shift in emphasis can be attributed to the following reasons. 

[1] Computer systems are ultimately employed by computer-naive users. To be productive, 

naive users require an effective user intertace. Initially, two major application areas brought 

the problems of designing effective user intertaces to the limelight. In database manage

ment systems, the primary concerns were in providing an effective dialogue intertace. The 

primary goal was to provide a dialogue system in which a user could converse naturally 

with the system. On the other hand, data-entry systems require an intertace that minimizes 

errors and guides the user for the entry of data through prompts and menus. More 

recently, and most importantly, personal computer users demand an effective user inter

face in general, covering every aspect of the computer system. 

[2] The tremendous advances made in the field of computer graphics in both hardware and 

software have provided the necessary technology for the production of sophisticated user 

intertaces. Current graphics technology is characterized by the following: 

[a] a wide range of input/output devices, e.g., joysticks, light pens, mouse, etc. as input 

devices; and a variety of high resolution graphical monitors as output devices; 

[b] support for a range of graphical attributes, e.g., color, intensity, highlighting, etc.; 

[c] routines for creating graphical images, e.g., lines, circles, boxes, etc.; 

[d] fast and efficient algorithms for graphics display; and 

[e] the ability to subdivide a screen into logical windows (or virtual output devices) and 

the associated screen management routines. 
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[3] The acceptance that interactive computer systems are more productive and effective for 

the user. Interactive systems are typified by 

[a] the screen always displays the current state of the information that the user is mani

pulating, e.g., the files available on a particular disk, a document being edited, the 

relations in a database, etc.; 

[b] the screen can also display the options available in the current context to the user, 

e.g., in the form of menus; 

[c] the screen is divided into logical areas or windows, each containing related informa

tion, e.g., an editing window; and 

[d] user interaction is typically as follows - the user selects a function from a menu and 

identifies parameters if necessary; the system processes the function and updates 

the information on the screen according to the result of the function. 

Current research is therefore concerned with graphical interactive user interfaces. The 

research has been mainly concerned with understanding the nature of interactive systems as a 

whole with the aim of aiding the interface designer. To depict the diversity of the area, the fol

lowing (reproduced from [3]) enumerates the keywords and phrases which describe the areas of 

concern: 

[a] Human Factors: comfort of the workstation, orientation of the display, continutty of 
conversation, correct pacing, user vs. machine control of flow, understanding the 
user's model of the process, semantics in terms of the user's domain, provision of 
feedback at appropriate times and in the user's terms, benefits of modeless com
mands, provision of friendly and forgiving systems, ability to recover from mistakes, 
confirmation of dangerous actions, choice of expression, extensible command 
languages, use of hierarchical languages, use of novice and expert modes for 
prompts; 

[b] Devices: terminal/satellite/stand-alone configurations of processors, buttons, tablets, 
light pens, joysticks, shaft encoders, virtual devices, locators, valuators; and 

[c] Techniques: use of menus, windows, dragging, motion, depth cuing, stereo pairs, 
color, feedback of input actions. 
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In the remainder of this introduction we attempt to clarify how human factors, devices and 

techniques relate in the design of modern interactive systems and in particular, the design of 

their user interfaces. The next section describes graphical interactive systems with the aim of 

developing appropriate models and methodologies for their development. The following section 

concentrates on the user interface component of graphical interactive systems. In particular, it 

focuses on the issues of developing user interfaces. A simple classification framework is 

developed in this section to differentiate between the various approaches to developing user 

interfaces. The final sections describe the goals of this research and the organization of this 

dissertation. 

1.1 Graphical Interactive Software Systems 

The advent of sophisticated graphical input and output devices has led to a proliferation of 

interactive graphical software systems as the medium of communication with a digital computer. 

The principal problem underlying the research in interactive systems is how can better interac

tive systems be built. The aim is to identify concrete guidelines (preferably as a formalism and 

its associated methodologies) that can aid the designer in building better interactive systems. 

The term better is interpreted by researchers in different ways, but the principal implication is 

better human factors. The above problem is in the domain of software engineering, the study 

of methodologies for building software systems. To date, software engineering has also adopted 

the system-oriented perspective. The formulation of the software life cycle has been one of its 

primary contributions. The software life cycle identifies individual manageable phases of the 

software, including but not restricted to requirements specification and analysis, high-level 

design, coding, testing and debugging, and maintenance. These phases are tied together 

through management and communication aspects, including documentation, budgeting, person

nel deployment, project review, scheduling and configuration management. Software engineering 

research has concentrated on developing software development methodologies to support the 

life cycle, and the implementation of automated systems to support the development methodolo-
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gies. 

Researchers are currently trying to shift the emphasis of software engineering to a user

oriented perspective. In this perspective the additional requirements and constraints imposed by 

highly interactive systems are considered. The main goal of the research is to develop suitable 

user-oriented technologies for effective and efficient interactive software engineering. Jurg 

Nievergelt [4] identifies the following three phases of any emerging technology for system 

development. 

[1] The Ad-hoc Phase: In this phase, researchers use ad-hoc approaches to build effective 

and efficient systems. The main emphasis of this phase is to understand the complexity of 

the system with the aim of identifying their desirable characteristics as well as defining 

their properties. 

[2} The Model Phase: This phase concerns itself with the development of suitable models of 

the system which form the basis for methodologies for building effective and efficient sys

tems. We can identify two radically different approaches to system modeling. The formal 

approach applies existing formalisms and theories to develop models and their associated 

methodologies. On the opposite end of the spectrum of possible approaches, the practical 

approach relies on the best engineering principles and techniques that have been proven 

in practice to develop suitable models and their associated methodologies. 

[3] The Theory Phase: The final phase is concerned with identifying ideal models and 

developing a solid theoretical foundation for these models and their associated methodolo

gies. The main focus of this theoretical foundation is to provide the necessary base for 

[a] proving the correctness of the model and its methodologies, 

[b] developing suitable formalisms to define system properties, 

[c] developing suitable formal frameworks for system development methodologies, and 
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[d] determining the complexity of the model, its methodologies and the system. 

The model and theory phases are dependent on each other as formalisms necessitate ideal 

models and models can only be ideal if they are supported by a solid theoretical foundation. The 

technology becomes mature when there exist abstract general models that are supported by 

effective and efficient formal development methodologies. 

The first step towards a mature technology for developing interactive systems is the 

definition of interactive systems with the aim of identifying their properties. A survey of the vast 

literature on interactive systems shows that no widely accepted definitions exist. One of the 

problems is that graphical interactive systems are complex creatures and their complexity is not 

very well understood yet. To understand the complexity of graphical systems, consider the 

Dynabook: Alan Kay's dream of a dynamic medium for creative thought [5]. The Dynabook 

can be considered as a technically sound vision of the ultimate potentialities of interactive com

puter graphics: 

Imagine having your own self-contained knowledge manipulator in a portable package the 
size and shape of an ordinary notebook. Suppose it had enough power to outrace your 
senses of sight and hearing, enough capacity to store for later retrieval thousands of 
page-equivalents of reference materials, poems, letters, recipes, records, drawings, ani
mations, musical scores, waveforms, dynamic simulations, and anything else you would 
like to remember and change. 

We envision a device as small and portable as possible which could both take In and give 
out Information In quantities approaching that of human sensory systems. Visual output 
should be, at the least, of higher quality than what can be obtained from newsprint. Audio 
output should adhere to similar high-fidelity standards. 

There should be no discernible pause between cause and effect. One of the metaphors 
we used when designing such a system was that of a musical Instrument, such as a flute, 
which Is owned by Its user and responds Instantly and consistently to the owner's 
wishes. Imagine the absurdity of a one-second delay between blowing a note and hearing 
It! 

We can look at our own world which is filled with interactive systems and interactive com

munication for some metaphors that illuminate the desirable properties of interactive graphical 

systems. Some of the more useful metaphors are described below. 
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[1] Instruments: As is noted by Kay, good instruments provide Immediate feedback to the 

user. They must be crafted with care and precision and must be redesigned as com

ponents and techniques evolve and change. Consider the relationship of the harpsichord to 

the clavicord to the piano; a progression which is characterized by changes in the striking 

or plucking mechanism. 

[2] Tools: Kay has also noted the importance of power, flexibility and generality in tools. 

Tools should also be as adaptable as possible; consider the Swiss Army knife. They must 

also be robust, i.e. be able to handle user errors. 

[3] Vehicles: Vehicles must respond sensitively and repeatably; consider steering an auto

mobile and landing a plane. They must be engineered to provide adequate feedback; 

consider the design of the airplane cockpit display. Most importantly, vehicles must be 

suitable for the purpose; consider bicycling up Mt. Everest. 

[4] Games: Computer and video games provide examples of some of the best interactive 

graphical systems available today. Games must continuously captivate the Interest of the 

players. Therefore they must be engrossing and fun. Games must never allow the 

player to lose confidence or patience; thus they must be based on rules or structure. 

Finally, games must challenge the player, thereby encouraging mastery and growth. 

[5] Human-to-human dialogues: Many researchers (e.g., [6]) have attempted to define the 

characteristics of user-computer dialogues through a careful examination of human-human 

conversation. The attributes of human-human conversations that need to be emulated are 

[a] human responses are appropriate and sensitive to the current context of the 

conversation and are based on intelligent processing and interpretation of the other 

person's messages and behavior, and 

[b] human dialogue is multi-dimensional and multi-level allowing the communication to 

proceed along a number of paths and a conversational context to be started and re-



started at will. 

Thus, as summarized in [7] 

Interactive graphics systems can be Instruments for expression or measurement, tools to 
cause effects, vehicles for exploration, games for challenge or amusement, and media for 
communication. 

9 

In the search for a more formal definition and models of interactive systems, a workshop 

on the methodology of interaction was set up in 1979 (8]. This workshop comprised the principal 

researchers in the area of interactive graphical systems. As far as defining interactive systems, 

the workshop indicates that 

The search for a formal definition of the term 'Interactive system' was given up at a very 
early stage. 

However, a list of desirable properties of an interactive system were enumerated, and is repro

duced below. 

[1] There must be a priori general understanding of the application domain common to both 

man and machine. 

[2] There must be a closure in the common understanding of the current context and goal. 

[3] This closure must be maintained as the discourse proceeds. 

(4] The responsibility for achieving goals must be shared between man and machine. 

[5] Initiative should be balanced between man and machine. 

[6] The system should be adaptive in a variety of senses to the user, the current context, the 

available inpuUoutput devices and communications, and the application domain. 

[7] The system must have the capability to explain its assertions. 

[8] The system should have the ability to transfer gracefully between query, explanation and 

knowledge acquisition modes. 
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The next step in the process of developing a mature technology for interactive systems is 

the search for ideal models. The important characteristics of an ideal model for interactive 

software systems are the following. 

[1] The model must be user-oriented, that is, it must allow end users to be intimately involved 

with the process of interactive software engineering. 

[2] The model must be general enough to describe any interactive software system. 

[3] The model must allow for efficient and effective development methodologies for interactive 

systems. 

Many approaches to the modeling of interactive systems have been proposed. The aim of 

an interaction model is to be able to develop guidelines for a design methodology of interactive 

systems. We have identified two approaches to system modeling; the formal and practical 

approaches. The next two subsections discuss these approaches to interactive system model

ing. 

1.1.1. Formal Interactive System Models 

The formal approach applies known formalisms and theories to model interactive systems. 

Specifically, it draws on the formalisms and methodologies of conventional system-oriented 

software engineering as the basis for developing interactive systems. This formal approach is 

characterized by the following 

[a] a division of the development process into a number of independent phases, 

[b] the use of formal notations as specification mechanisms within each phase, and 

[c] the use of formal verification procedures to validate the development of the system 

between phases. 

Some of the major formal models are surveyed briefly below. 
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[1] NETWORK MODELS. The network models treat user and system as equivalent elements 

in the overall process. The individual tasks performed by both the user and the system are 

described in terms of expected performance and logical relationships. The relationships 

define a network of tasks which is used as a performance model of the user-computer sys

tem. Thus, network models allow performance data about user and computer system to be 

integrated in a single model. However, performance data must be provided for each task, 

as must rules for combining performance data from individual tasks to obtain aggregated 

performance predictions. This is often difficult because of questionable or lacking empirical 

data, and because interactions between tasks (especially cognitive tasks or tasks per

formed in parallel) may be very complex. Therefore, network models are usually used to 

predict either the probability of failure or success, or the completion time of an aggregated 

set of tasks. 

[2] CONTROL-THEORY MODELS. These models are based on control theory, statistical 

estimation and decision theory; and are usually used to predict overall performance of the 

user-computer system in continuous control and monitoring tasks. In a dialogue system, 

this is a model of the control feedback between man and machine. The main factors to be 

considered are task difficulties, the constraints and facilities· of the environment, the dispo

sition and interest of the operator in the task being executed, the response time of the sys

tem and the way information is presented [9]. Figure 1.1 illustrates the relation of these 

factors. Control theory is used to describe the human response to external stimuli using 

models based on open-loop, closed-loop structures or a combination of these. As an 

example, compensatory control is a closed-loop structure as illustrated in Figure 1.2. 

Control-theoretic models are more quantitative than other performance models. They may 

address user-computer communication broadly, but they ordinarily do not deal with details 

of the interface, such as display design. Therefore, their utility as an aid to the interactive 

system designer may be limited. 
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[3] HUMAN INFORMATION PROCESS MODELS. In general, these models involve a char

acterization of 

[a] the task environment, including the problem and solutions available; 

[b] the problem space employed by the user to represent a problem and its evolving 

solution; and 

[c] the procedures developed to achieve a solution. 

The method used to develop such models involves intensive analysis of the problem to be 

solved and of protocols obtained from problem solvers during solution. As a particular 

example, the knowledge model [1 O] describes a system to support the user's problem 

solving task. The system includes a knowledge base, a database and a procedure base 

as basic information and a set of high-level procedures that manipulate these information 

bases. The procedures include algorithms to translate the external form of information to a 

suitable internal form, and to generate programs. The basic configuration of the system is 

illustrated in Figure 1.3. 

[4] COGNITIVE MODEL. The cognitive model [11] is a concept to organize flexible man

computer dialogues. This model achieves the interactive system design goals of ade

quate usability and ease of learning by applying two major principles 

[a] decomposition of user tasks as a tree structure, and 

[b] the separation of planning a task and performing it. 

The cognitive executive system is therefore divided into two parts, the superordinate sys

tem which is concerned with making a plan and a subordinate system which automatically 

performs the plan. This distinction between knowing and doing is incorporated into the 

dialogue model which allows for three kinds of tours: the direct way (i.e., the user's task is 

immediately performed), deviation (i.e., the user requests information and then his task is 

performed) and excursion (i.e., the user learns more about the system information). The 

,t 
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dialogue model is illustrated in Figure 1.4. 

[5] LANGUAGE MODEL. Interaction with a computer is typically described as a conversation 

between man and machine, implying that a language is used in the conversation. The 

language model [12, 13, 14] is therefore aimed at describing the structure of the conversa

tional language with the aim of understanding the interaction itself. This language consists 

of two components as depicted in Figure 1.5: the Input language LI and the output 

language LO. These languages are closely interrelated by a single conceptual model of 

the processes being performed by the system. The user communicates to the computer 

through the input language, which operates on the conceptual model. The machine com

municates to the user with the output language, which depicts the state of the conceptual 

model. Each language in turn has an associated semantic, syntactic and lexical com

ponent, all integrated together by the conceptual model of the system. Semantics is the 

set of meanings associated with the atomic units (i.e., words) and combination of units 

(i.e., sentences) of the language. The syntactic rules define the grammar that describes 

how words are combined into sentences, while the lexical rules determine how the 

system's basic primitives are combined into words. In the output language, the semantics 

is the displayed image, the syntax determines the organization of the image, and the lexi

cal rules determine the details of the image's appearance. For the input language, the 

semantics are the commands, the syntax are the words that form the commands and the 

lexical rules are the interaction techniques and devices that allow specification of the 

words. There is also an implied communication protocol defining the interconnection and 

sequencing of the user to computer and computer to user conversations at the lexical, syn

tactic and semantic levels. For example, lexical inputs are typically echoed; syntactic 

inputs lead to prompts and semantic inputs cause the displayed image to change. 

A synthesis of the most important features and capabilities of all the above models into 

one single comprehensive model was proposed at the methodology of interaction workshop [8]. 
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The model that was formulated was largely based on the language model. The input and output 

languages were elaborated on further as depicted in Figure 1.6 to arrive at a basic interaction 

model as illustrated in Figure 1.7. The interaction model was described from the viewpoint of the 

interaction process as follows. 

[1] A user interacting with the system (say via a display) inputs a command(s). 

[2] The command is processed lexically, syntactically and semantically and then appropriately 

routed to the inference processor, task performer or the filter. 

[3] With input from the command processor and using the structure of the task, the inference 

processor essentially builds up the knowledge bases. 

[4] The task performer analyzes the input commands, decides on the structure and the task to 

be performed, updates the application data base, supplies information for inference pur

poses and also for the filter process which does the feedback generation. 

[5] The filter essentially provides the feedback in the context of the command, application 

database, the user's knowledge database and the task to be performed. 

[6] The knowledge database models the user's behavior, is maintained by the inference pro

cessor and feeds into the feedback mechanisms. 

[7] The application database is updated when tasks are performed. 

[8] The feedback generation again goes through semantic, syntactic and lexical phases. 

To summarize, the interaction model consists of the following four components. 

[1] A user's model, i.e., the conceptual model of the information the user manipulates and of 

the processes applied to this information. 

[2] A command language with which the user expresses commands. 

[3] Feedback provided by the system in response to user actions. 
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[4] Information display which shows the user the state of the information that is being mani

pulated. 

Using the above model, the design of an interactive graphics system must cover every 

aspect of the user-computer interface. This ranges from the concepts (i.e., the conceptual 

model) that the user must deal with to the finer details of screen formats, interaction techniques 

and device characteristics (i.e., the lexical design of the input language). Most researchers (e.g., 

[13, 15, 16, 17, 18, 19]) have adopted a top-down approach to the design of interactive systems. 

As with the software life cycle, the first phase of the design is concerned with requirements 

definition with the aim of understanding the application area and prospective users. Since the 

approach is user-oriented, this phase is mainly concerned in defining the user's requirements. 

As is suggested in [20], 

Observing what man does normally during his creative efforts can provide a starting point 
for the ... designer. In particular, a mathematician does not manipulate equations at a 
typewriter, nor does a circuit designer prefer a keypunch. 

The advice given in [21] is even more direct: 

Know the User. Watch him, study him, Interact with him, learn to understand how he 
thinks, and why he does what he does. 

The requirements definition process results in the following 

[a] A set of functional requirements, or capabilities, which are to be made available by the 

interactive system. Other design objectives such as learning time, speed of use, error 

rates, user satisfaction and market appeal are also necessary. 

[b] Design constraints imposed by the existing equipment, compatibility with other computer 

systems, implementation time and available resources. 

[c] Identifying the types of users for which the system is to be designed. The main concern 

here is defining user characteristics such as personality (i.e., secure/insecure, bold/timid, 

adaptable/rigid), knowledge (both in skill (novice, intermediate or expert) and in intelligence 

(low, average or high)), work environment (i.e., defining the levels of stress and motivation) 
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and the adaptability to change. 

The results of the requirements definition phase is used as the basis for defining the input 

and output languages as defined by the interaction model. For example, defining the input 

language is also a top-down process, starting with the conceptual model, then the command 

structure, the syntax and finally the binding of physical devices and interaction techniques. Thus 

the ideal process of designing interactive systems is described as a top-down process consisting 

of five phases: requirements definition, conceptual model design, semantic design, syntactic 

design and lexical design. Each phase is dependent on the previous phase. Implicit in the pro

cess is the design of the dialogue between man and machine, as is verification, testing and 

debugging across all phases. 

Green [22] suggests three basic goals of an effective formal design methodology for 

interactive systems. 

[1] A formal notation for describing the user interface should be provided by the design 

methodology. A formal notation is important for two major reasons. It ensures that a 

description of a user interface is interpreted in a uniform manner by the users of the nota

tion, i.e., the personnel involved in the development of the user interface. More importantly, 

a formal notation serves as the basis for the implementation of the user interface from its 

description. 

[2] The methodology should provide mechanisms for validating the man-machine interface 

design. Here we are interested in determining the correctness of the design before its 

implementation. The experiences of the research on software engineering has shown that 

it is hard, if not impossible, to show that a design is error free. The major concern is there

fore the elimination of major bugs from the design before its implementation. 

[3] The methodology should provide an effective framework for evaluating the quality of the 

interactive system, that is, its effectiveness. However, very little is known about the factors 

that affect the quality of the interactive system. The methodology should at least provide a 
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• framework for measuring the human factors principles in the design. 

We present below two impressive formal design methodologies. 

The design methodology proposed by Green [22] is divided into two components, a formal 

description of the user's model and a formal specification of the user interface based on the 

user's model. The design methodology builds a separate user's model for every type of user 

that will be involved. 

The description of the user's model comprises two components: 

[1] a task model, which formally describes the user's view of the problem in terms of atomic 

tasks. The task model is obtained through an informal task analysis, i.e., the decomposi

tion of the problem into a number of tasks which are atomic from the user's point of view. 

[2] a control model, which describes the actions that the user can perform. 

Thus, the task model describes the tasks to be performed and the control model describes the 

commands that are provided to perform them, both from the user's viewpoint. Note that the con

trol model must be consistent with the task model. 

The notation employed for describing the task and control models is comprised of three 

components, object definitions, operator definitions, and invariants. Object definitions declare 

the properties (attributes) of the objects, similar to data structure definitions. Operator definitions 

describe the conditions for the application of an operator and the effects on the objects. Invari

ants describe the relations between the operators and objects in the model, and may vary 

greatly from user to user. 

As an example, consider the design of a user interface based on the screen layout dep

icted in Figure 1.8. The screen is divided into a menu area which depicts the geometrical 

shapes available to the user, and a work area, where the user creates pictures by arbitrary 

placement of the available geometric shapes. Three commands are supported: the place com

mand allows the user to use a digitizing tablet to select a geometric shape from the menu and 
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drag it into the work area; the move command which allows the user to move geometric shapes 

around the work area; and the remove command which allows any geometric shape to be 

removed from the work area. The corresponding task and control models describing this user 

interface using the notation described above is presented in Appendix A.1. 

The next step in the design is the specification of the user interface from the high-level 

description provided by the control model. The specification language is based on state

transition diagrams and is influenced by SAi's SPECIAL language [23]. The specification 

comprises several state machines (called modules), where each machine is a collection of V 

and O functions. The V functions represent the machine state while the O functions describe 

transitions that change the machine's state. The specification of the example user interface is 

provided in Appendix A.1. 

The following three tests are used to evaluate the user interface specification to determine 

its correctness. 

[1] The specification is consistent if each operator in the control model is implemented by the 

functions in the specification. 

[2] All the invariants in the task and control models must hold for the specification. 

[3] The behavior of the specification is tested under designer determined conditions. 

Probably the most impressive design methodology developed to date is Moran's Command 

Language Grammar (CLG) [24]. The basic premise of Moran's proposal is that 

to design the user Interface of a system Is to design the user's model. 

Thus a CLG representation of a system describes the user's conceptual model of the system. 

The description of a user interface follows a top-down design methodology. The user's 

conceptual model is described, then a command language that implements the conceptual 

model is designed, and finally a display layout is designed to support the command language. 

The CLG representation is structured as a number of levels with the aim of separating the con-
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ceptual model of the system from its command language and to show the relationships between 

them. The six levels, each being a refinement of the previous level, are organized into three 

components which describe the CLG structure. 

[1] The Conceptual Component: describes the organization of the system as abstract con

cepts. This component is comprised of the task level and the semantic level. The task 

level analyzes the user's requirements to specify the structure of the tasks which describes 

the system from the user's viewpoint. The semantic level defines the methods for accom

plishing task structures in terms of the objects and operations (that manipulate these 

objects) around which the system is built. The semantic level serves both the user and the 

system; it describes the conceptual entities and operations for the user, and correspond

ingly the data structures and procedures for the system. 

[2] The Communication Component: describes the command language and the dialogue of 

the user interface. The syntactic level and interaction level make up the communication 

component. The syntactic level is a further refinement of the semantic level, describing the 

command language with which the user communicates to the system. The methods of the 

semantic level are described in terms of the commands developed at the syntactic level. 

The meaning of the commands are defined in terms of the operations described at the 

semantic level. The command languages are described in terms of basic syntactic ele

ments: commands, arguments, contexts, and state variables. The interaction level 

specifies the syntactic level elements in terms of physical actions, i.e., primitive device 

techniques for input (e.g., keypresses) and display actions for output. The rules describing 

dialogue structure are also described at the interaction level. 

[3] The Physical Component: describes the physical devices of the user interface. The spa

tial layout level describes the nature of the system's display at each point of interaction. 

It therefore is concerned with the arrangement of input/output devices and the graphics 

facilities for displays. The device level describes the physical properties of input/output 
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devices and the underlying graphics primitives. These levels make up the physical com

ponent. 

The command language grammar is the specification mechanism used in describing the 

first four levels that make up the conceptual and communication components. The levels 

comprising the physical component have not been developed yet. The CLG notation, informally 

described in Figure 1.9, is based on the concepts of frames [25, 26], schemata [27], semantic 

nets [28], and production rules [29]. 

To depict the complexity of defining the user interface using the CLG framework, the 

description of a user interface for a mail system is presented in Appendix A.2. 

It is important to reiterate at this point that the above merely represents proposals of for

mal design methodologies for interactive system development. The formal interactive system 

model and its associated methodologies have the following serious drawbacks. 

[1] The models and more importantly the design methodologies have not been completely 

developed nor have their effectiveness been tested. 

[2] The formal model is as general as the expressive power of the underlying formalism used 

for the specification mechanisms. Most of the formalisms that have been used to specify 

user interfaces have not been very effective. Their use has either been applied to a res

tricted (textually based) set of user interfaces, or to only specifying the dialogue com

ponent of the user interface. Researchers have yet to develop a suitable formalism that 

can not only describe the complex behavior of user interfaces, but can also capture the 

inherently 2-dimensional nature of user interfaces. This lack of a suitable formalism may 

prove to be a serious drawback in describing the diverse nature of interactive systems, in 

general. 

[3] Formal descriptions of systems are inherently complex. It is usually difficult for human fac

tors experts, who are not computer scientists, to understand and effectively use these for-
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malisms. The example user interface specification presented in Appendix A.2 attests to the 

seriousness of this drawback. 

[4] A working system is usually available only after a very complete specification of the 

interactive system. Therefore, it is difficult to involve the end users and human factors 

experts throughout the development process. 

However, interactive systems are extremely complex and still not very well understood. There is 

need for more research to develop formalisms and methodologies suitable for interactive 

software engineering. 

1.1.2. Practical Interactive System Models 

Many researchers feel that the inherent properties of interactive systems - their complexity, 

their need to conform to many differing interfaces, and their frequent changes during their life

time - necessitate a radical departure from the rigid formal approach. Thus, the practical 

approach adopted by many researchers is based on software engineering principles and tech

niques that have been proven, in practice, to be efficient and effective for the development of 

interactive systems. This has led to informal and more flexible models and methodologies for 

interactive software engineering. 

What modern software engineering principles should be employed In building 

graphical Interactive software systems? 

As Brooks [30] points out, after almost two decades of software engineering research, the 

following principles have emerged as the most promising for interactive software development. 

[1] Rapid prototyping of software, that is, the development of methodologies and tools that 

simulate the major interfaces and functionality of the intended software system. Brooks 

describes this principle as 

the most promising of the current technological efforts, and one that attacks the 
essence, not the accidents, of the software problem. 
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[2] Incremental development, that is, software should be grown, not built. Note that incre-

mental development is tightly coupled with rapid prototyping. 

The underlying principle of this prototyping methodology is to rapidly prototype a skeleton of 

the interactive system with an emphasis on the interaction aspects, and then Iteratively 

develop or fine tune the interactive system. Such an approach has the following advantages 

over the more formal and rigid methodologies. 

[a] The end users can be involved throughout the development process as a prototype of the 

system is immediately available. 

[b] The prototype concept provides an appropriate framework to test out various approaches 

for the interaction aspect of the system quickly and efficiently. 

[c] Iterative development ensures a working system at an early stage of the engineering pro

cess, thereby making it possible for the designers to always deliver the interactive system. 

Modern software design techniques have provided the basis for the prototyping methodol

ogy. These design techniques can be summed up in two words: encapsulation and reusabil

lty. Encapsulation is a technique that minimizes the interdependencies between the modules 

that comprise the software system. Each encapsulated module. defines an external interface 

which serves as a contract between the module and its users. This external interface defines the 

set of operations that provide the modules' functionality. All users can access the services of 

modules only through their external interface. To maximize encapsulation, implementation details 

of the module are suppressed in its interface. This allows modules to be reimplemented without 

affecting any of its users. Reusability is a technique that allows components that have been 

built and tested to be reused in the development of software systems. This technique is the 

main factor in the tremendous progress that has been achieved in computer hardware engineer

ing. 
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One possible approach that combines the powers of encapsulation and reusability is the 

notion of abstraction. The behavior of an abstract object is described completely by a set of 

abstract operations defined on the object. Users of such abstract objects need not be concerned 

about how these abstract operations are implemented or on how the object is represented. 

Once these abstract objects have been defined, they can be implemented and integrated as part 

of the language (or more precisely the specification mechanism) that is used to design and 

develop software systems. Thus abstraction promotes both encapsulation as well as reusability. 

The base data types provided by high-level programming languages are the best examples of 

abstract objects. Programmers (re)use integers, reals, characters, strings, etc. solely on the 

basis of the operations define on them, with no concern for their implementation or representa

tion. The provision of data types as the only abstract objects is precisely the factor that limits 

conventional high-level programming languages as an effective specification mechanism for the 

design and development of software systems. 

The current emphasis of research in interactive software engineering is to identify, imple

ment and integrate a large set of abstract objects in the specification mechanism, thereby pro

viding software engineers with the necessary tools to effectively design interactive systems. 

A popular model for interactive software systems that supports the prototyping methodol

ogy is presented in Figure 1.10 (adapted from [31]). In this model, an interactive system is built 

as three separate layers: 

[1] the application layer implements the system's functionality, 

[2] the user interface layer implements the user interface to the application layer allowing for 

interchangeable interfaces, and 

[3] the virtual terminal layer implements the device-independent graphical primitives to facili

tate the presentation of information to the user on any physical output device. 
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The. relationships between the components of the interactive system model is presented in Fig

ure 1.11 (adapted from [31]). The important issues of this relationship are the following. 

[a] The application holds all the information to be interfaced to the user. 

[b] The interaction is controlled by the user through the user interface layer, that is the appli

cation is passive and the slave of the user interface. This allows the user interface to be 

detached and replaced as needed. 

Research in computer graphics has resulted in powerful techniques, tools and standards 

that facilitate the efficient development of the virtual terminal layer. The design and development 

of the application layer has been the major concern of software engineering for over two 

decades, and is not only better understood but more importantly supported by a host of design 

methodologies and tools. The user interface layer is the least understood component of interac

tive software systems. It is, however, the most crucial component, as the user interface of 

interactive systems is the main factor in determining the effectiveness of the system. 

It is important to point out that the interactive system model presented in Figure 1.10 sup

ported by the prototyping methodology satisfies all the requirements of the ideal model 

presented above. Note that the concept of interchangeable interfaces facilitates total end user 

involvement in determining the behavior of the interactive system. Therefore, this ideal user

oriented interactive system model and its associated prototyping methodology will be used as a 

blueprint for the rest of this dissertation. 

1.2. Developing Graphical User Interfaces 

Current research in user interfaces is directed at two major issues: 

[a] what properties constitute the best user interface, and 

[b] how can user interfaces be effectively designed and developed efficiently. 

The former issue falls in the realm of user psychology and human factors research. The latter 

issue is the current focus of software engineering, and is the main concern of this dissertation. 
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Following the model of interactive systems as presented in Figure 1.10, the functionality of 

the user interface component is defined by the following: 

(1] accepting user input, that is, function invocation and parameter specification, 

[2] communicating user requests to the application, and 

[3] displaying the application's internal information base to the user. 

Fundamental to the interactive system model is the complete separation of the user inter

face component from the application component. This separation not only facilitates the develop

ment of effective user interfaces, but more importantly provides the necessary basis for inter

changeable user interfaces. 

Why Is It necessary to facilitate Interchangeable user Interfaces? There exists two 

opposing models in any interactive software system. 

[a] The System's User Interface Model: This is the model that defines the underlying princi

ples on which the system's user interface is built from the perspective of the system (appli

cation) designer. 

[b] The User's System Model: This models the user's perception of how the system works. 

The effectiveness of an interactive system can be measured in terms of the distance between 

these models. For novice users, most interactive systems have a distance much greater than 

zero; that is, the tool does not behave as the user expects. Obviously, an effective interactive 

system achieves a distance that is much less than or equal to zero; that is, the system behaves 

exactly as the user expects, or better. 

There are two approaches to minimize this distance. 

[1] Force the user's model to move towards the system's model. That is, force the user to 

learn the particular user interface developed for the interactive system. This system

oriented approach is adopted by most of the currently available interactive systems. 
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[2] Allow the system's model to move towards the user's model. This user-oriented approach 

allows the user to define the behavior of the system. 

The above two approaches identify the extreme ends of the spectrum of possible 

approaches for developing user interfaces. The system-oriented approach provides facilities to 

the designer to develop the best interface for a given application. The user-oriented approach 

provides facilities to the end user to develop interfaces for a given application that are custom

ized according to the end user's working habits and experience. Note that interfaces developed 

with the system-oriented approach can be pushed towards the user-oriented approach through 

mechanisms that allow the interface to be altered. However, such flexibility is usually restricted 

to particular aspects of the user interface, and more importantly the choices for altering the inter

faces must usually be hard-wired into the interface. Most of the current interactive systems pro

vide flexibilrty in their interfaces at the level of color, key settings and user defined representa

tions of internal (application) objects. 

Since it is very difficult to generalize the peculiarities of a diverse user population to arrive 

at the best possible user interface, the user-oriented approach is better suited in building 

effective user interfaces. It is also important to note that the user's model of the system changes 

tremendously with experience, that is, as the user becomes an expert with the system. Thus, to 

maximize user productivity, it is very desirable to allow the user interface to evolve with the 

user's experience. The above has identified the ultimate goal of user interface research: allowing 

any user to develop a personalized interface for any interactive software system, thereby max

imizing both the effectiveness of the interactive system as well as the productivity of the user. 

A large percentage of user interface research is therefore aimed at building User Interface 

Development Environments (UIDE). UIDEs have the following characteristics. 

[1] They automate the development of a large portion of the interactive software. 

[2] They (usually) allow a declarative specification of the interactive system. 
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[3] They provide the necessary basis for rapid prototyping and incremental development of the 

system. 

[4] They provide a test-bed for comparing possible approaches to the development of the sys-

tem. 

Most of the UIDEs available today have been built to support the system-oriented approach, that 

is, the provision of facilities to allow the user interface (interactive system) designer to develop 

the best user interface for a given application. Minimal research has been directed at building 

UIDEs in support of the user-oriented approach. The major aim of the research presented in this 

dissertation is to develop a general-purpose user-oriented UIDE. 

There are several important differences between system-oriented and user-oriented 

UIDEs. 

[1] Single vs. Multiple Interfaces: The system-oriented UIDE provides facilities for the 

development of a single user interface for a given application. In contrast, the user

oriented UIDE must provide for the development of multiple interfaces for a given applica

tion. This results from the requirement of allowing end users to define the behavior of the 

interactive system. 

[2] Designer vs. End User Interface Definition: Interface definition in a system-oriented 

UIDE is performed exclusively by the interface designer. End users may be allowed to 

alter interfaces if the designer hardwires the possible alternatives in the user interface. The 

main goal of the user-oriented UIDE, on the other hand, is to provide to the end user, facil

ities similar to those provided to the designer by system-oriented UIDEs. 

[3] Static vs. Dynamic Binding: The user interface that is developed within a system

oriented UIDE is bound to the application to form the interactive system. This early binding 

of the interface to the application does not allow for interchangeable interfaces within the 

ideal interactive system model presented in Figure 1.10. However, a user-oriented UIDE 
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must provide for dynamic binding of the user interface to the application to facilitate 

definition and/or modifications by the end user. 

[4] Coupling vs. Complete Separation of Interface and Application: A system-oriented 

UIDE need not be concerned with the complete separation of the user interface from the 

application, since the major focus is to package these components into an interactive sys

tem. Such a complete separation, however, forms the basis for user-oriented UIDEs to 

facilitate interchangeable interfaces. 

The many user interface generators that have been developed to date employ radically 

different philosophies to user interface development. There exists, however, no general 

classification frameworks for UIDEs. Classification frameworks are an important vehicle in deter

mining the common characteristics of UIDEs as well as differentiating between UIDEs. The 

classification scheme that is proposed below draws an analogy from Flynn's classification of 

computer architectures [32]. Since the essential computer process is the execution of a 

sequence of instructions on a set of data, computer architectures can be classified into the fol

lowing four frameworks according to the multiplicity of instruction and data streams that can be 

handled: 

+ Single Instruction stream - Single Data stream (SISD) 
+ Single Instruction stream - Multiple Data stream (SIMD) 
+ Multiple Instruction stream - Single Data stream (MISD) 
+ Multiple Instruction stream - Multiple Data stream (MIMD) 

In the case of UIDEs, the essential process is the development of a user interface for an 

application domain. Thus, UIDEs can also be classified into the following four frameworks 

according to the multiplicity of user interfaces and application domains that can be handled: 

+ Single user Interface - Single application Domain (SISD) 
+ Single user Interface - Multiple application Domains (SIMD) 
+ Multiple user Interfaces - Single application Domain (MISD) 
+ Multiple user Interfaces - Multiple application Domains (MIMD) 
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It is important to note that the first two frameworks support the system-oriented approach while 

the latter two frameworks support the user-oriented approach to developing user interfaces. The 

following four subsections provide a discussion of each of the four frameworks for UIDEs. 

1.2.1. The SISD Framework 

The major emphasis of UIDEs within the SISD framework is the development of a single 

interactive system with its user interface and application components. All users interact with the 

system through the single user interface as depicted in Figure 1.12. This approach is currently 

popular as it allows good user interfaces to be built for existing applications to form interactive 

systems which can be immediately incorporated into the host operating environment. If, how

ever, the entire interactive system is built using the traditional approach of software engineering, 

then this approach is also the most costly. As pointed out in the introduction, such an approach 

is precisely what modern software engineering research is trying to avoid. 

Since the major concern of this class is the development of a particular user interface for a 

particular application, the role of a UIDE must be expanded to include facilities for the develop

ment of the interactive system as a whole. The major concern of SISD UIDEs is to extend clas

sical software engineering to provide mechanisms for the user interface component that are con

sistent with, and as powerful as, those provided for the application component. 

Since a large percentage of traditional software engineering is based on formal 

specification mechanisms for each phase of the life cycle, SISD UIDEs benefit most from the 

formal approach to interactive software engineering. The main focus of research in SISD UIDEs 

is therefore the development of suitable formalisms for the specification of the user interface 

component. Furthermore, to be cost effective, SISD UIDEs must also provide mechanisms that 

automate the generation of the user interface from the formal specification, as well as managing 

the user interface throughout the development process. 
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1.2.2. The SIMD Framework 

The major effort in the class of SIMD UIDEs is to provide a consistent user interface 

development framework for a variety of application domains. The effectiveness of the SIMD 

approach is due to the fact that users need only familiarize themselves with the user interface 

framework once. Thereafter, users can easily use all other interactive systems that present a 

similar user interface framework. This approach is currently the most cost effective as it makes 

an entire interactive operating environment immediately accessible to a large user population. 

The users' perspective of the SIMD environment is depicted pictorially in Figure 1.13. 

The SIMD approach has been popularized initially by the introduction of personal comput

ers and more recently by high powered graphical workstations. These personal environments 

necessitate consistent user interface frameworks to be cost effective. The standardized user 

interfaces provided by such environments are characterized by the following. 

[a] A bitmapped display screen contains one or more overlapping rectangular areas called 

views (windows) which presents information to the user. 

[b] Function invocation and parameter specification is performed exclusively by selection 

either through keys or a mouse, and extensive use of menus. 

[c] The keyboard is used to input textual information to the interactive system. 

The specification of the user interface usually consists of the description of the information that 

is displayed to the user and the function and parameter names that form user requests to the 

interactive system. The way in which the information is displayed and the manner in which user 

requests are input is usually predetermined and standardized. Therefore, the major emphasis of 

SIMD UIDEs is to provide the necessary environment and tools to rapidly prototype and itera

tively develop the user interface of an application. The practical approach to interactive software 

engineering is most appropriate to SIMD UIDEs. 
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Even though standardized consistent user interfaces give cost effective access to an entire 

interactive environment, they can also seriously hamper user productivtty and the effectiveness 

of the interactive systems as users become experts. Another major problem with the SIMD 

approach is that any major technological advances in user interface techniques would necessi

tate a redefinition of the entire interactive environment. In other words, what is considered as the 

best user interface today could very well be technologically obsolescent in a few years. Thus, 

some of the major concerns of SIMD UIDE research is to provide flexible mechanisms that allow 

[a] the user interfaces to evolve with the user's experience, and 

[b] newer techniques to be incorporated into the environment. 

1.2.3. The MISD Framework 

The main concerns of MISD UIDEs is to allow the generation of personalized user inter

faces for users interacting with a single application. The main advantage of MISD UIDEs is that 

they increase the effectiveness of the tool by (potentially) allowing each user to develop a user 

interface to suit his/her personal working habits thereby maximizing user productivity. The 

environment presented to the end users by the MISD approach is depicted pictorially in Figure 

1.14. 

The main difference between the SISD and MISD frameworks is that user interface 

development facilities are provided to the interface designer by the former and to the end users 

by the latter. Since both frameworks are concerned with a single interactive application, the 

MISD framework is also suited for the formal approach to interactive software engineering. That 

is, user interfaces are generated through formal specification mechanisms. However, the central 

theme of the user-oriented approach dictates that MISD UIDEs allow computer science naive 

users to specify user interfaces. This is the major drawback to the effectiveness of using formal 

specification mechanisms at the end user level. 
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The major problem with the MISD approach is cost, as it necessitates the development of 

an entire user interface generator system for every interactive application. The MISD approach 

could be cost effective only if user interface research progresses to a point that facilitates the 

development of a system that could generate MISD UIDEs. Such a system would accept a 

specification of the interactive application and generate a MISD UIDE for the particular applica

tion! However, such an approach is a special case of the MIMD approach presented below. 

1.2.4. The MIMD Framework 

The basic premise of the class of MIMD UIDEs is that both user productivity and the 

effectiveness of interactive operating environments can be maximized if users are able to 

develop personalized interfaces for any interactive system. The MIMD approach not only facili

tates the development of interfaces to suit the peculiarities of each user, but more importantly 

allows the user interface to evolve with the user's experience. The user environment resulting 

from the MIMD approach is depicted pictorially in Figure 1.15. 

It is obvious that the development of MIMD UIDEs is the ultimate goal of user interface 

research. However, the reality is that no MIMD UIDEs have been developed to date, attesting to 

the relative infancy of user interface research. The major problem in developing MIMD UIDEs is 

that it necessitates a complete separation of the user interface component from the application 

component. Note that UIDEs under the previous three frameworks tightly couple the two com

ponents. 

What are the main problems In facilitating this complete separation of the user 

Interface from the application? 

(1] Developing a model that generalizes interactive applications to allow the UIDE to handle 

multiple application domains. 

[2] Developing a model that generalizes function invocation and parameter specification within 

the application so that the user interface can communicate user requests to the application 
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in a consistent manner. 

[3] Developing a model that generalizes the flow of information (that is to be presented to the 

user) from the application to the user interface. 

Thus, the MIMD approach necessitates a radically different approach to the design of the 

entire interactive system, both the application component as well as the user interface com

ponent. This is the main reason why the MIMD approach has not occurred in practice. This 

dissertation develops a design framework that demonstrates the feasibil~y of MIMD UIDEs. 

1.3 The Alm of This Research 

A major goal of this research is to allow any user to develop a personalized interface for 

any interactive application, that is, the development of an MIMD user Interface development 

environment. Fundamental to the development of such a UIDE is the complete separation of 

the user interface component from the application component. This separation necessitates 

devising less tightly coupled models of the application and user interface than has been reported 

to date. The main features of the MIMD model developed in this dissertation to achieve the 

desired degree of separation are as follows. 

[1] Interactive applications are modeled as editors providing a set of functions that manipulate 

2-dimensional graphical objects. 

[2] Interactive data structures are introduced for maintaining and manipulating both the 

internal and external representation(s) of application information as a single unit. These 

external representations form the basis for presenting internal information to the user. 

[3] Since interaction with the user must be the sole responsibility of the user interface com

ponent, function interaction is modeled as follows. Application functions are modeled as a 

set of services. Each service processes a (set of) parameter(s) independently. For each 

service in the application, a corresponding service Interface object is defined in the user 

interface component. The service interface object interacts with the user to specify the 
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required (set of) parameter(s), calls the associated service within the application, and 

displays the result of the service to the user. 

Using the above model, the user interface component is modeled to allow personalized 

specifications at all levels; including the internal entities of the interactive system, the charac

teristics of the display of information, and the interaction tasks, techniques and devices used for 

parameter specification. 

1.4 Organization of the Dissertation 

The rest of this dissertation is organized as follows. Chapter 2 presents a survey of the 

literature on user interface software systems. This survey concentrates on user interface 

development environments under the SISD, SIMD and MISD frameworks. Chapter 3 develops 

an appropriate model for a user interface development environment under the MIMD framework. 

The main concern of this model is the complete separation of the application from the user inter

face. Appropriate models for both the application and user interface components to support such 

a complete separation are developed. The design of the MIMD UIDE is developed in Chapter 4. 

The design is carried out using the object-oriented paradigm, as this is currently the best avail

able paradigm that supports the methodology of rapid prototyping. The main focus is the design 

of objects involved in presenting information to the user as well as function invocation and 

parameter specification. A prototype implementation of the MIMD UIDE based on the design 

developed in the previous chapter is presented in Chapter 5. This implementation is carried out 

in the Smalltalk object-oriented environment. Finally, Chapter 6 concludes this dissertation and 

suggests possible further research. After presenting the major contributions of this research, it is 

shown how the framework that has been developed can be used as the basis for generating 

interactive tools which will ultimately lead to the automatic generation of interactive environ

ments. 



CHAPTER 2 

USER INTERFACE DEVELOPMENT ENVIRONMENTS 

The computing breakthroughs of the past such as high-level languages, time-sharing, and 

programming environments (e.g., Unix and Interlisp), and the current research efforts in Ada, 

object-oriented programming, artificial intelligence, expert systems, automatic programming and 

visual programming, attest to the continuing desire of researchers to find the sllver bullet that 

will defeat the software engineering monster [30]. In their quest for the silver bullet, researchers 

have directed their efforts in building Software Development Environments (SDEs), which 

provide an Integrated set of tools/facilities dedicated to the development of software systems. 

This chapter presents a survey of the research in building environments to develop user 

interfaces, that is, User Interface Development Environments (UIDEs). In the previous 

chapter, UIDEs were classified into four distinct categories based on two broad criteria. The first 

criterion distinguishes between the underlying approach for software development. The two 

extremes of possible approaches were identified as formal and practical. To reiterate, the for

mal approach relies on a (formal) specification language as the basis for software development. 

The intended software is described using this specification language. This description is vali

dated to ensure correctness and consistency, and then translated into a working prototype of the 

system. The environment provides the facilities to test, validate and fine tune the prototype into 

a working system. The practical approach relies on a set of tools that provide facilities to 

develop, test and validate separate modules of the intended software. These individual modules 

are then integrated into a comprehensive system. Additional facilities allow the system to be 

tested and modified as a whole. 
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Due to the inherent interactive nature of user interfaces, the second major criterion distin

guishes among the intended users of the development environment. If the environment is 

designed for the interactive system developer, then the UIDE is system-oriented. On the other 

hand, a user-oriented UIDE is concerned with providing development facilities to both the sys

tem developer and the end user of the interactive system. 

The UIDEs that have been developed to date fall into the first three categories; that is, the 

SISD, SIMD and MISD frameworks. The next three subsections present a detailed survey of the 

UIDEs that have been developed within each framework. 

2.1. SISD Framework: Language-Based Development Environments 

UIDEs within the SISD framework support the development of a single interactive system 

with its user interface and application components. The discussion that follows will, however, 

concentrate exclusively on the support that is provided for the user interface component. 

The major premise of UIDEs within the SISD framework is the provision of an appropriate 

formal specification mechanism to precisely describe the user interface: To be effective, the for

mal specification mechanism must have the following desirable characteristics: 

[1] The specification mechanism should be mainly concerned with describing the user's model 

of the system. Thus, its constructs should represent concepts meaningful to the user, e.g., 

replying to a message, editing a file, etc. 

[2] The specification must be precise, describing the exact behavior of the system for each 

user input. 

[3] The specification must be concise and easy to understand; that is, it must be a productive 

tool for the designer. 

[4] The specification must allow for verification of the user interface and also allow checking 

for consistency. 
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[5] The specification mechanism must be powerful enough to describe non-trivial user inter

faces with minimum complexity. 

(6] The specification should allow for automatic evaluation of user interfaces according to 

specified human factors. 

[7] The specification mechanism should allow for experimentation and verification of human 

factors principles to test different design alternatives. 

[8] The specification mechanism must separate the functionality of the system from its imple

mentation. It should describe the behavior of the user interface without containing the 

method of implementation. 

(9] The specification mechanism must allow a prototype system to be generated directly from 

the specif.ication. 

From the inception of user interface research in the late 60's, scientists have yet to 

develop a suitable formalism that can not only handle the complexity of describing user inter

faces but also have the desirable properties listed above. The formalisms that have been 

developed to date have been used either to describe textual interfaces or to describe a particu

lar component (usually the dialogue component) of the user int~rf ace. To get a good under

standing of the complexity of the problem, it is instructive to trace the progress that has been 

made in the quest for a suitable formalism. 

In the early 70's, the language model of interaction (presented in section 1.1.1) was popu

lar. To reiterate, the language model views interaction as a conversation between man and 

machine. This conversational language consists of two components, the input and output 

language. Each component has an associated semantic, syntactic and lexical component. These 

are integrated together by the conceptual model of the system. The popularity of the language 

model can be attributed to the vast knowledge that had been accumulated on formalisms (such 

as context-free grammars and finite-state diagrams) that were developed in support of language 
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and automata theory. The strategy was to extend these existing formalisms to make them suit

able for describing the input and output languages of interaction. 

In the next decade, it became obvious that these formalisms were not capable of handling 

the complexity of describing interaction. However, experience showed that they could be 

appropriately extended to describe the input language (that is, the dialogue) of interaction. By 

the mid SO's, it was realized that the language model needed modification to accommodate 

separate formalisms for each of the components of interaction. This effort resulted in the 

Seeheim model [33] of user interfaces, as presented in Figure 2.1. 

The Seeheim user interface model comprises the following three components. 

[1] The presentation component is the lexical level of the user interface and is therefore 

concerned with the physical representation. This includes input and output devices, screen 

layout, interaction techniques, and display techniques. 

[2] The dialogue control component is the syntactic level of the user interface, and is 

responsible for the structure of the commands and dialogue used by the user. 

[3] The application Interface model component is the semantic level of the user interface, 

which defines the interface between the user interface and the application. 

Within the context of the Seeheim model, the basic premise of UIDEs is to provide suitable 

formalisms to describe each component of the user interface. All of the formalisms that have 

been developed to date have been applied only to the dialogue control component. 

The next subsection provides an in depth discussion of the formalisms that have been 

developed for the dialogue component. The following subsection describes the UIDEs that have 

been developed based on these formalisms. These UIDEs are commonly known as User Inter

face Management Systems (UIMSs) in the literature. 
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2.1.1. User Interface Specification (Dialogue) Models 

The dialogue specification models that have formed the basis of most of the currently 

available UIMSs can be categorized into the following: 

[1) Grammar-based Models: These models are based on formalisms that were developed for 

the specification of textual programming languages. Most grammar-based UIMSs use 

modified context-free grammars that are appropriately augmented to facilitate interaction 

specification. 

[2] Finite-state Models: These models are based on state transition diagrams, and include 

simple, recursive and augmented transition networks. 

[3] Event Models: These models are based on the concept of events that have been formu

lated as a generalized facility to handle input processing within graphics packages. Input 

devices are viewed within such packages as event generators. These events are placed in 

a queue, and can be processed by the application. For example, a tablet generates an 

event every time it is moved and when its buttons are pressed or released. The event 

dialogue model extends the above basic idea to an arbitrary number of event types and an 

event handler for each type. When an event is generated, it is sent for processing to the 

appropriate event handler. 

The next three subsections present a detailed discussion of the above three dialogue 

models. The following subsection presents an analysis of the three models in an attempt to 

determine the best model, where best is measured in terms of descriptive power as well as usa

bility. 

To complete the discussion of dialogue models, it is important to point out another popular 

model that is based on the notion of data abstractions, which 

comprises a group of related functions or operations that act upon a particular 

class of objects, with the constraint that the behavior of the objects can be 
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observed only by the appllcatlon of operations. [34] 

Data abstractions are exemplified by the types provided by general purpose programming 

languages, e.g., integer, real, character, string, record, etc. Such data types are described pre

cisely by a well defined set of operations for manipulating objects of the type. This concept has 

also been applied to describe other data structures, such as lists, trees, tables, etc. Many 

specification techniques have been used for data abstractions [35]. A popular technique is the 

algebraic specification technique [36] that specifies the relationships between operations using 

algebraic equations. Algebraic specifications have two major advantages, their numerical appli

cability and the existence of heuristics for writing consistent and complete axiomatizations. The 

concept here is to specify the types of data needed to support user interfaces and describe pre

cisely the operations to manipulate the data. Examples of data that is relevant to user interfaces 

might be screens, windows, menus, message, etc. The designer is presented with a program

ming language or system that supports the user interface data types and their associated opera

tions. The designer creates instances of these data types and employs the operations provided 

to describe a user interface. 

However, axiomatic specification techniques have only been used for the paper 

specification of user interfaces to prove their completeness, and more importantly as the basis 

for precisely describing graphical programming languages [37]. Appendix B presents the relevant 

research on axiomatic models as concerns user interface specification. 

2.1.1.1. Grammar-Based Models 

The language model of interaction provides the motivation for using grammars to describe 

human-computer dialogues. The classical context-free grammar is augmented to allow for the 

specification of actions performed by the computer (that is, the application). Formally, a context

free grammar model, G, for dialogue specification, is a 5-tuple G = (N,T,R,P,S) where 

[1] N is a finite set of symbols called nonterminals; 



57 

[2] T is a finite set of symbols called terminals, and there is one symbol in T for each of the 

Input tokens produced by the presentation component; 

[3] R is a finite set of symbols that correspond to the actions attached to the productions; 

[4] P is a finite set of productions of the form 

n •·> x, r, 

where n is a member of N, x is a member of (N U T)*, and r is a member of R; and 

[5] S, a member of N, is the start symbol for the grammar. 

If G describes the dialogue control component of a user interface, then the language L(G) con

tains the legal sequences of user actions. A context-free grammar G can be used to produce a 

parser, which recognizes the user actions in L(G). 

In practice, UIMSs have used context-free grammars to describe only the input language, 

that is, the language used by the user to communicate with the computer. The output language, 

that is, the language used by the computer to present information to the user, is difficult to 

specify with context-free grammars and is usually described by some other means. 

The context-free grammar model was initially used to describe command languages for 

text-oriented interfaces. In [38], examples of using context-free ·grammars to specify two com

mands of a text-oriented interface are presented. Figure 2.2 illustrates the specification for a 

"login" command. This command requests the user's name, a password and a security level. 

The user is asked to reenter the name until recognized, is allowed two tries for a correct pass

word, and cannot enter a security level that is higher than the security clearance assigned to the 

user {the default security level "unclassified" is assigned if the user's request is not appropriate). 

In Figure 2.2, lower case symbols denote nonterminal symbols; upper case are terminal sym

bols; production rules are annotated with conditionals; system responses and actions are 

specified within square brackets. A condition must be satisfied at the input stream corresponding 

to its position in the production rule, for a production to match. When a match occurs, the 



Login::• 

badpw: :• 

goodpw: :• 
I 

loguser: :• 

getuser: :• 

baduser: :• 

onetry: :• 

9etseclevel:: • 

badsl::• 

badpv• goodpv (resp: •Enter security level•) getseclevel 

loguser onetry PASSWORD (cond: SPASSWORD,'GETPASSWD USER(SUSER) 
resp: •Incorrect password--start again•] -

loguser PASSWORD (cond: SPASSWORo-GETPASSWD USER(SUSER)] 
loguser onetry PASSWORD (cond: SPASSWOR!PaGETPASSWD_USER($USER)) 

LOGIN [resp: "Enter name") getuser [resp: •Enter password•] 

baduser• USER [cond: EXISTS_USER($USER)) 

USER (cond: not EXISTS_USER(SUSER) resp: "Incorrect user name--reenter it•] 
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PASSWORD (cond: SPASSWORo,rGETPASSWD_USER(SUSER) resp: •Incorrect password--reenter it"] 

badsl• [resp: •Your security level is Unclassified" 
act: CREATE SESSION($USER,$PASSWORO,Unclassified)) 

badsl• s~CLEVEL [condi $SECLEVEL<sGETCLEARANCE USER($USER) 
act: CREATE_SESSION($USER,$PASSWORD,$SECLEVEL)] 

SECLEVEL [cond: $SECLEVEL>GETCLEARANCE USER($USER) 
resp: •Security level too high:-reenter it") 

Figure 2.2: Grammar Specification of a LOGIN Command 
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response (if any) is displayed and the specified action (if any) performed. The special token 

NULL represents no input, symbols followed by a "*" denote one or more instances of that sym

bol, and a symbol preceded by "$" denotes the current value for the specified input token. Fig

ure 2.3 presents a grammar specification of a "reply" command which allows the user to send a 

reply to a message that has been received. The reply command is made up of an optional mes

sage identifier (default is "CurrentMsg"), the text comprising the reply, and an optional list of 

additional addressees (which consists of the word "To" or "Cc" depending on how the reply 

should be addressed, followed by one or more addressees). 

The above examples use grammars to specify only the input language of the user inter

face. They do not however specify how the output language is formed, that is, how computer 

responses are generated. Thus, a more precise description uses grammars not only to parse 

the input but also to generate the system's output. The realization that at least two parties (for 

our purposes a human and a computer) are involved in a dialogue led Shneiderman to introduce 

the concept of multlparty grammars for the description of human-computer dialogues [39]. In a 

multiparty grammar, an augmented context-free grammar is used to describe the human input, 

machine response (i.e., acknowledgement or diagnostic} and some aspects of the interaction. 

Context-free grammars are augmented with three features: 

[1] Labeling of nonterminals with an identifier distinguishing the party. For example <H: 

VALID-ACCT> is a nonterminal for a user input of a valid account number, and <C: 

ACCEPT-ACCT> is a nonterminal denoting the computer's response when accepting a 

valid user account. 

[2] Assignment of currently parsed values to nonterminals, and correspondingly the use of 

square brackets to indicate that the value of the nonterminal is to be used in the genera

tion of output. As an example, the following describes a simple dialogue between two 

humans meeting for the first time: 



~: :• 

9etid::• 

extras::• 

extratos:: • 
toaddressee:: • 

extracca: :• 
ccaddresaee:: • 
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REPLY getid (resp: •Enter text field" act: replybuf:=OPENFOREDIT MSG(replyid)] 
TEXT (act: SETTEXT HSG($TEXT,replybuf)] -
extras• [act: UPDATE_HSG(replyid,replybuf)1 CLOSEEDIT_HSG(replyid)] 

HSGID (act: replyid:•REPLY_HSG(SMSGID)} I NULL (act: replyid:•REPLY_MSG(CurrentMsg)J 

extratos r extrraccs 

TO toaddressee toaddressee• 
ADDRESSEE (acti SETTO_MSG(replybuf,GE'M'O_MSG(replybuf)+SADDRESSEE)) 

CC ccaddressee ccaddreaaee• 
ADDRESSEE (act: SETCC_MSG(replybuf,GETCC_MSG(replybuf)+SADORESSEE)) 

BNP' Specification of the •Reply• Co!IIDland 

Figure 2.3: Grammar Specification of a REPLY Command 



<DIALOG> .. - <1: GREET> <2: RESPOND> 
<1: GREET> ::= GOOD MORNING MY NAME IS <1: NAME> 
<1: NAME> ::= <1: IDENTIFIER> 
<2: RESPOND>::= HELLO [<1: NAME>] 
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Note that the nonterminal [<1: NAME>] gets its value from the most recent parse, and is 

used to generate the response for party 2. 

[3] A nonterminal which matches any string, if all other parses fail. This feature allows the 

designer to cope with incorrect syntactic forms. 

An example of using the multiparty concept to describe a text-oriented logon procedure is illus

trated in Figure 2.4. 

The discussion so far has been limited to describing text-oriented interfaces. A large per

centage of current user interfaces are graphical in nature. To accommodate graphical features, 

Shneiderman [39] proposes the following additional tools to augment the multiparty grammars. 

[1] Including special markers (as nonterminals) to describe features which merely change the 

visual presentation of characters, including underlining, reversal, blinking, font, typesize, 

intensity and color. For example, to support underlining, two markers are necessary: 

UNDERLINE and OFFUNDERLINE. The following is an example of underlining a portion 

of the system's output. 

<C: RESPONSE> ::= <C: FIRSTPART> <C: UNDERLINE> 
<C: IMPORTANTPART> <C: OFFUNDERLINE> 

[2] Including a special facility to describe the layout of a screen as specific windows. For 

example, the declaration of a screen layout which includes a status, workarea and com

mand windows, is given below: 

DECLARE SCREEN CONTAINING 
(WINDOW STATUS (1 :4, 1 :72) WITH STATUS-INFO 
WINDOW WORKSPACE (5:34, 1 :72) WITH WORK-INFO 
WINDOW COMMANDS (35:40, 1 :72) WITH COMMAND-INFO) 



1. (LOGO~) : : == (START) (ACCT) 

2. (START) : : == (H: I~ITIATE) (c: R[.-\DY-ACCT) I 
(H: I?\\' AUD-INITIATE) ( C: CRLF-REQCEST, 

3. (H: ISITIATE) : : = I') 
4. (H: INVALID-I~ITIATE) : : == (H *)') 
5. ( C: READY-ACCT) : : = READY FOR ACCO CST 

r\C~l BlR 'J 
6. (C: CRLF-REQLTST) : : := TO SIG~,0); TYPE AS·•(' A~D 

HI I L:--.TER 

7. ( ACCT) : : :-= (H: \' ALID-.-\CCl) ( C: ACCEPT-ACCT) ! 
(H: *) (C: ACCT-REQLTST) 

8. (H: VALID-ACCT) : : = (H: f--;l'.~1) (H: SC~1; 

·'tJ · L'-TT~R \ r'\ 
\• • L.'. i... '/ I 

9. ( C: ACCEPT-ACCT) : : = LAST SIG NOS f-OR 

[ (H: VALID ACCT)] \VAS (L-\ST-SIG :\0~-I:\FO) 

10. (C: ACCT-REQCEST) : : = ACCOG~T ~C~1BERS ARE TWO 

DIGITS FOLLO\\:ED BY A LETTER() (c: READY-ACCT~ 

where ( H: *) is a pattern match nonterminal which 1s 
attempted only after other parses have failed. 

( H: N l 1 ~1) : : = 0 I l j 2 I 3 I 4 I 5 I 6 i 7 I 8 l 9 
( H : Lf rr ER) : : == A I n I c .. -I z 
') IS TH[ CARRIAGE RETl;R~ A:\D LI~E FHD CODE 

Figure 2.4: Multiparty Grammar for a LOGIN Command 
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where each window is described in terms of rows and columns and the name of the sym

bol describing the contents of the window. Provisions should also be made for describing 

overlapping and nested windows, and for multiple screen layouts. 

[3] Providing facilities to allow the information on the screen to be dynamically modified. The 

basis for this facility is the capacity to move a cursor to a specified position on the screen. 

Cursor movement can be described in various ways. For example, a cursor at position 

(3, 1) could be moved to position (1,6) of the WORKINFO window by the following com

mands 

[a] WORKINFO CURSOR TO (1,6) 

[b] WORKINFO CURSOR UP 2 LEFT 5 

[c] by hitting the keys { t ~ <--, <--, <--, <--, <-- } 

These three examples can be described by appropriate grammars as depicted in Figure 

2.5. Note that facilities must also be provided to handle illegal cursor movement. 

One of the major problems with associating computer actions/responses to output nonter

minals is that the order in which the output nonterminal is performed is dependent on the pars

ing strategy. In a bottom-up parse, the action is performed after all the symbols on the right

hand side of the appropriate production have been recognized. In the case of a top-down parse, 

the action is performed as soon as the symbols before the output nonterminal in the appropriate 

production have been recognized. Figure 2.6 illustrates a grammar description of a dialogue for 

entering rubber band lines. Note that this specification is dependent on a top-down parsing stra

tegy. 

In order to alleviate some of the above problems, grammar productions that are involved 

with interaction can be enclosed in an input-output tool ([40, 41]) or dialogue cell ([42, 43]). 

Each interactive production is augmented with facilities to describe actions specific to interaction, 

including: 



J) . Ii: CTRSOR ~10\'E) : : = 
H: ~ l.\R TI, G SY\iBOl. '.\'.-\.\1E) 

Cl . RS OR I O ( ( H : I~~ fT G FR ) • ( II : T"; T [ G FR> ) 

h) .ll: ( U~<.;(Jj( Wl\F;,:: -~-

/ H: ST.-\IU I, C, SY.\lBOL :--.; .,\\ff\ 

C l"RSOR (H: \ERTICAL) (H: IIORIZO'.'-,;TAL) 

Ii : \ I- R TIC:\ 1.) : : = 
l. P .:, H : 1, Tl GI:: R) I DO\\'~ ; H : I ~TE GE~) 

· ti · I I '1 : > I 7 0 '-: ·r ' L \ . . = [ . \...JJ., - • /"'\ / •• 

UH ::H: I);HGFR) I RIGHT (H: !~HEGER) 

·:) lI: (TR SOR \10\E ,:· : : = 
w s1,Gu ,1ovE) I 

(H: sI,GLE .\fOVE) (H: CTRSOR MOVE) 

·H: SI,GI.E.\10\·E):: = T: l /--1 - · 

Figure 2.5: Multiparty Grammar for Cursor Movement 
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line ➔ button di end _point 

end _point ➔ move d2 end _point 
I button d3 

di ➔ 

{ record first point } 

{ draw line to current position } 

{ record second point } 

Figure 2.6: Grammar for Entering Rubber-band Lines 
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(a] prompting and initialization of local variables, 

(b] the action to be performed at the end of the production, 

[c] the echo produced for the interaction, and 

[d] the value returned by the production. 

It is important to note that most of the grammar-based UIMSs augment context-free gram

mars further to handle error recovery, undo processing, and control over the parsing strategy. 

2.1.1.2. Finite-State Models 

As early as 1969, Parnas [44], recognizing the inadequacy of the available tools, sug

gested the use of state-transition diagrams to define interactive user interfaces. A state transi

tion diagram consists of states (represented by circles) and a set of transitions (represented by 

arrows) between states. Each transition is associated with an action; transitions correspond to 

user inputs and the associated action is performed by the system in response to the user input. 

One of the inherent problems with grammar-based models is that the concept of time sequence 

is implicit in the definition; that is, it is difficult to specify exactly when something occurs. State

transition diagrams, more commonly known as transition networks, override this problem as 

time sequences are explicitly defined. 

Formally, a simple transition network (STN) is a ?-tuple, M = (0,S,P,D,R,Oo,F), where 

[1] Q is a finite set of states corresponding to the states in the diagram; 

[2] S is a finite set of input symbols, which are the input tokens generated by the presentation 

component; 

[3] P is a finite set of actions, which are the actions labeling the states of the transition 

diagram; 

[4] D is a mapping from a x S to a, called the state transition function; 



67 

[5] R is a mapping from a to P, called the action function; 

[6] Qo, a member of a, is the initial state of M; and 

[7] F, a subset of a, is the set of final states of M. 

Note that this definition of a STN differs slightly from a finite-state machine in that the value of 

D(q,a) is the new state q', and the action p, a member of P, is given by R(q'). 

[38) provides examples of the use of state-transition diagrams to describe the "login" and 

"reply" commands that were presented in the previous subsection on grammars. Figures 2.7 

and 2.8 depict the specifications of the "login" and "reply" commands respectively. 

Action/responses generated by the computer can be attached to either the states or the 

transitions as shown in Figure 2.9, which depicts the specification of entering rubber band lines. 

Note that associating actions on arcs necessitates fewer states [45). 

There are two problems with using simple transition networks to describe dialogues; the 

descriptions can get large, and the power of STNs limits the range of dialogues that can be 

described. One way of alleviating the first problem is to partition the network into subdiagrams, 

resulting in a main diagram and a number of subdiagrams. A subdiagram is a complete network 

that can be invoked from another diagram, akin to procedures in high-level programming 

languages. Note that the use of subdiagrams allow the specification to be divided into logical 

units, thereby making the network easier to understand and manage. 

The power of transition networks can be increased in two ways. Recursive Transition 

Networks (RTNs) allow subdiagrams to call themselves recursively. Augmented Transition 

Networks (ATNs) augment RTNs with a set of registers that can hold arbitrary values, and a set 

of functions that can perform computations on the registers. Figure 2.10 uses RTNs to extend 

the rubber band example to describe entering polylines. A polyline is a sequence of rubber band 

lines, and the interaction allows for undoing (using backspace) the current (except the first) 

rubber band line. Note that it is not possible to describe entering polylines with STNs because 



( 1 ) resp: 

( 2) cond: 

( 3 ) cond: 

( 4) cond: 

( 5) cond: 

( 6) cond: 

( 7 ) cond: 

( 8) cond: 

( 9) resp: 

l_()_t'.: in 

"Enter name" 

not EXISTS_USER($USER) resp: "Incorrect user name--reenter it" 

EXISTS_ USER ($USER) resp: "E.'nter passw'Ord" 

$PASSWORD=GETPASSWD._ USER ($USER) resp: "Enter security level" 
$PASSWORD;'GETPASSWD_USER($USEF) resp: "Incorrect password--reenter it" 

$PASSWORD;'GETPASSWD _ USER ($USER) resp: "Incorrect passw'Ord--start again" 
$SECLEVEL>GETCLEARANCE _ USER ($USER) resp: "Security level too high--reenter it" 
$SECLEVEL<=GETCLEARANCE_USER($USER) act: CREATE_SESSION($USER,$PASSWORD,$SECLEVEL) 

"Your security level is Unclassified" act: CREATE_SESSION($USER,$PASSWORD,Unclassified 

Figure 2.7: State-Transition Diagram for LOGIN Command 

O> 
0) 
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extratos 

resp: •Enter text field• act: replyid:•REPLY MSG($MSGID); replybuf:=OPENFOREDIT MSG(replyid) 
resp: •E:nter text field" act: replyid:•REPLY-MSG(CUrrentMsg)7 replybuf:=OPENFOREOIT MSG(replyid 
act: SETTEXT MSG(STEXT,replybuf) -
act: UPDATE_MSG(replyid,replybuf); CLOSEEDIT_HSG(replyid) 
act: SETTO MSG(replybuf,GETTO MSG(replybufl+SADDRESSEE) 
act: SETCC=MSG(replybuf,GETCC=MSG(replybuf)+SADDRESSEE} 

Figure 2.8: State-Transition Diagram for REPLY Command 



button 

move 

move butt or. 

2: record first point 
3: draw line to current position 
4: record second point 

Example transition diagram with program actions. 

move/action2 

button/action1 button/action3 

action1: record first point 
action2: draw line to current position 
action3: record second point 

Example transition diagram with actions on arcs. 

Figure 2.9: Transition Diagram with Actions and Responses 
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butt an/action 1 command 

command: 

button/action3 

bac-kspace/action4 

action1: record first point 
action2: draw line to current position 
action3: record next point 
action4: erase last point 

Figure 2.1 O: Transition Diagram for Polyline Example 
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there is no mechanism for undoing lines. Figure 2.11 uses ATNs to describe the same polyline 

dialogue without the use of subdiagrams. To handle undoing lines, a register is used to record 

the number of lines entered and a function is used to check whether the number of lines entered 

is greater than one. Note that this ATN description also includes a cancel feature which ter

minates the dialogue with an empty polyline. RTNs cannot handle the cancel feature due to the 

nesting of subdiagram calls. 

Shaw [46] lists the following as reasons for the inadequacy of both grammar-based formal

isms and state-transition diagrams for defining interactive graphics systems. 

[1] The characterization of command languages as strings of symbols ignores the different 

techniques that are possible for the input sequence. 

[2] In an interactive graphical system, several different and independent graphical objects 

(each with their own command language) may be active at any given time. It is not 

sufficient to describe the language of each object independently, as there is generally 

some interaction between the languages. 

[3] It is frequently desirable to have several partially-specified command sequences active at 

the same time. String-oriented formalisms normally impose a strict ordering on command 

elements. 

[4] Most methods cannot effectively describe the interactions between user commands and 

the system that interprets these commands. 

The language of flow expressions [47, 48] is proposed to overcome the above difficulties. 

They describe the flow of system entities, such as resources, messages, jobs, commands and 

control, through sequential and concurrent software components such as programs, procedures, 

processes and modules. As an example, a line drawing command sequence can be described 

as 

(Line (x y U rd))* @ 



I 

button/action3 
fn2 

but to ntaction, 
tni 

backspacetaction4 
fn3 

backspace/action4 
fn3 

action1: record first point 
action2: draw line to current position 
action3: record next point 
action4: erase last point 
actions: erase polyline 
actions: return polyline 

fn1: count:=1; return(true); 
fn2: count:=count+1; return(true); 
fn3: if count = 1 then 

return(f alse); 
else 

count := count-1; 
return(true); 

Figure 2.11: Polyline Dialogue with Cancel 
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where Line, x, y, r, d, and @ are atomic elements. Thus, a line is represented by zero or more 

repetitions of the Line command followed by either an (x,y) pair or an (r,d) pair, and terminated 

by@. Figure 2.12 shows a finite state machine for recognizing the command. 

A more interesting example is one which describes the interactions between an interactive 

user, H, at a terminal and the underlying system. A user issues a command followed by a 

carriage-return (CR) and then waits for a system response (RES). The system is cyclic, allowing 

a new user to start a session when the terminal is free. The flows through both subsystems are 

depicted both as expressions and diagrams in Figure 2.13. In the figure, Wi and Ri represent 

semaphores and are interpreted as "wait on signal i", and "send signal i" respectively. As shown 

in the Figure, the T/H waits and signals ensure that both subsystems are properly synchronized 

at logoff. The other waits and signals are used to describe the handshaking protocols between 

the two subsystems. 

Finally, it is important to note that state-transition diagrams have also been used to 

describe non-trivial interactive systems, as demonstrated in [49, 50]. 

2.1.1.3. Event Mode Is 

The event dialogue model, developed by Green [51 ], is based on the idea of generating 

and handling events. Events are generated by input devices, and within the dialogue component 

by tokens sent from other components of the user interface, or from events that need to 

invoke/create/destroy other events. Generated events are sent to one or more currently existing 

event handlers that can handle the type of the event generated. The behavior of an event 

handler is described by a template similar to a procedure in high-level programming languages. 

Each template describes parameters, local variables, the event types that can be processed, the 

actual processing, and initialization code. Event handlers are created by specifying the template, 

and providing values for the parameters. 

Formally, an event is a 3-tuple, E = (i,m,d), where 
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Figure 2.12: Finite State Machine for Drawing Lines 
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l0;1 Off 

Hoo 

Figure 2.13: Flow Expressions for Multi-user System 
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[1] I is a member of I, where I is a finite set of symbols that are used as names for the event 

handlers in the event system; 

[2] m is a member of M, where M is a finite set of symbols that are used as event names: 

and 

[3] d is a member of D, where D is a domain (possibly infinite) that is used for event values. 

Event handlers are procedures written in a high-level programming language. 

Figures 2.14 and 2.15 depict the specification for entering rubber lines and polylines (with 

cancel) respectively, using events. 

The major power of using events is in the description of multi-threaded dialogues. Most of 

the interactive systems available today are window-based, allowing for concurrent dialogues. A 

good example of multi-threaded dialogues is a cut-and-paste operation in a window-based 

multi-file editor. A description of such a dialogue must allow for a section of a file in one window 

to be cut and pasted to another file in a different window. This involves communication between 

the dialogues running in the two windows, and can be simulated by sending an event from one 

window to the other. Note that the other dialogue models cannot describe such multi-threaded 

dialogues. 

2.1.1.4. Discussion on Dialogue Models 

This section is concerned with the descriptive power and usabiltty of the three dialogue 

models that have been presented, in an attempt to determine their relative strengths and 

weaknesses. 

Intuitively, the event model is most powerful as it can describe multi-threaded interfaces 

(such as the cut-and-paste example) that the others cannot. Note that transition networks are 

equivalent in power to deterministic push-down automata. The only difference between the two 

is the action function associated with transition networks. It is also important to note that the 

context-free grammars employed within UIMSs are usually restricted to a subset (deterministic 



EVENT HANDLER line; 

TOKEN 
button Button; 
move Move; 

VAR 
int state; 
point first, last; 

EVENT Button DO { 
IF state == 0 11-iEN 

first.= current position; 
state=l; 

ELSE 
last= current position; 
deactivate( self); 

ENDIF; 
}; 

EVENT Move DO { 
IF state== 1 11-IEN 
draw line from first to current position; 

ENDIF; 
}; 

INIT 
state= O; 

END EVENT HANDLER line; 

Figure 2.14: Event Handler for the Rubber-band Line Example 
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EVENT HANDLER polyline_canccl; 

TOKEN 
button Button; 
move Move: 
backspace Backspace; 
cancel Cancel; 
finish Finish; 

VAR 
point_count: integer; 
point_list: list of point; 
ints~te; 

EVENT Button DO { 
IF s~te .. 0 THEN 

point_list • current position; 
slate - 1; 
point_count • 1; 

ELSE 
add current position to point_list; 
point_count • point_count + 1; 

ENDIF; 
} ; 

EVENT Move 00 { 
IF state• 1 IBEN 
draw line from last position to current position; 

ENDlF; 
} ; 

EVENT Finish 00 { 
retum(p<?int_ list); 
deactivatc(self); 

} ; 

EVENT Backspace 00 ( 
IF point_ count > 1 rnEN 
remove last point from point_list; 
point_count • point_count - l; 

ELSE 
ouq>ut "can't delete fint point"; 

ENDIF; 
} ; 

EVENT cancel DO { 
rerum(empty _ list); 
deactivate(selt); 

} ; 

INIT 
state• O; 

Pm l:.Vf:NT HANOl.U. f'Ol)'linc_l.'a1Kcl, 

Figure 2.15: Event Handler for Polyline with Cancel 
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context-free grammars) that can be handled by popular parsing techniques (usually LL(1) or 

LALR(1 )) . It has been shown that the set of languages generated by deterministic context-free 

grammars and deterministic push-down automata are similar [45]. Practically, the event model 

has the power of the programming language that it is embedded in, giving it the descriptive 

power of a Turing machine. Furthermore, Green [52] has devised algorithms to convert descrip

tions in the transition network and context-free grammar models to the event model. This then 

shows that the event model is at least as powerful in describing dialogues as the other two 

models. 

As concerns usability, it is very difficult to identify characteristics that make a particular 

model usable. Usability of a dialogue model is dependent on the dialogue designer and the 

application. However, the conversion routines presented by Green makes it possible for UIMSs 

to support all three models. 

In conclusion, it is appropriate to develop UIMSs based on the event model as it allows 

dialogues to be specified in any of the three dialogue models. 

2.1.2. User Interface Management Systems 

A User Interface Management System (UIMS) provides a user interface designer with the 

facilities to specify, generate, validate, manage and evaluate user interfaces. The common 

characteristic of all UIMSs is the specification mechanism that is provided to describe all or part 

of the intended user interface. This specification mechanism is based predominantly on one of 

the three dialogue models presented in the previous subsections. 

The first UIMS that was built was Newman's Reaction Handler [53], which provided facili

ties to specify user interfaces through an interactive state-transition diagram editor. Since then, 

numerous UIMSs have been developed, both in commercial and educational environments. The 

UIMSs that have been built are categorized below, by reference, according to the specification 

mechanism that is used. 
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[1] Grammar-based UIMSs: [41], [43], [54), [55], and [56, 57, 58]. 

[2] Finite-state based UIMSs: [38], [44], [53), [59], [60], [61), [62], [63], [64], [65], [66], [67] and 

[68). 

[3] Event based UIMSs: [69], [70], [71], [72] and [73]. 

The following subsections present a representative UIMS from each category. 

2.1.2.1. The SYNGRAPH System 

The SYNGRAPH (Syntax directed GRAPHics) system [56, 57, 58] is a user interface gen

erator which has been developed as part of the Automated Human Interfaces (AHi) project 

being carried out at Arizona State University. This research applies the principles of syntax 

analysis, parser generation and data abstraction to automatically generate user interfaces. Fig

ure 2.16 depicts the basic architecture of interactive systems, which forms the model around 

which the research has been developed. The Interaction Specification forms the core of the sys

tem. It defines the valid commands in terms of their syntax and the legal operands and also 

describes the command's representation (i.e., their names or symbols) and the devices or tech

niques that are to be used. The interaction module is automatically generated from this 

specification. 

The specification of the user interface is made up of a lexical specification and a syntac

tic specification. The lexical specification describes the binding of input devices and interac

tion techniques to logical token symbols, which in tum are used in the syntactic specification. 

There are seven primitive input devices supported by SYNGRAPH: menu items, locators, valua

tors, function buttons, keys, characters and picks. Associated with each input device are the fol

lowing properties: the type of the value that is returned, whether an event or sampled device, 

the action to be performed when it is enabled, the prompt for its selection, the acknowledgement 

when it is selected, and the effect the device has on transitions. These properties are predefined 

and managed automatically by SYNGRAPH. An example of a lexical specification is given in 
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Figure 2.17. Here, LOC refers to the locator; PICK_POINT to the stylus tip switch; SCALE and 

ANGLE are real and integer valuators respectively: DRAW, MOVE and NEW_HOUSE are all 

menu items; and NEW_WINDOW is an iconic menu ttem (in the Figure "m" stands for a move 

command, and "d" for a draw command). Finally, the HOUSE and WINDOW tokens specify that 

a picture of the appropriate type is to be picked. 

The syntactic specification describes the prompts, echoes and sequencing of the tokens 

specified in the lexical specification which constitute valid inputs. The syntactic specification is 

expressed using a modified BNF notation, allowing for optional phrases, repeating phrases 

(between braces), as well as alteration (using "~'). Syntax processing also controls the manage

ment of display and input resources. The user interface is described in terms of sub-dialogues 

within which resources are allocated. Thus the specification mechanism allows the designation 

of nonterminals as defining a new level of interaction. When a new level is entered, all of the 

tokens used within that level (directly or indirectly) become enabled. Thus, a level defines a 

specific configuration of virtual input devices. An example of a syntactic specification is depicted 

in Figure 2.18(a), and the corresponding menu sets for each level are shown in Figure 2.18(b). 

To handle interaction semantics, the specification mechanism allows each nonterminal to have a 

semantic routine associated with it. The semantic specification is -described in terms of a Pascal 

parameter string (the semantic function) and a set of Pascal declarations (the semantic attri

butes). 

The specification is parsed to generate the user interface. Prompting, menu and device 

management, and error detection and handling are also automatically generated. Finally, SYN

GRAPH provides a CANCEL operation which allows the user to jump to a previous state in a 

single step. 

2.1.2.2. The Abstract Interaction Handler 

The AIH (Abstract Interaction Handler) system [63] is the user interface management sys

tem of the Information Display Systems project, being developed at the George Washington 



•~~·l: : : il..S 

(: . 

1~ le>c-0tcr; 
p:.c:(_poir.t butt c:1 1 ~ 
s2~le Vill~~~or RC. • I 

2ngle \ulu~to: IO, 360; 
d:-o.·,.; .: 
me·,·:- ; 
r.ew_hcuse; 
new_wirid~ iccn 

m(0,0) d(l.0,0) d(l.0,1.0) 
d(0,1.0) ci(O,O) 
m(0.5,0) d{O.S,1.0) 
m(0,0.5) d(l.0,0.5), 

hoose pick hoose_tYF€i 
wind~; pick windav_tyr:e; 

Figure 2.17: Lexical Specification In SYNGRAPH 

84 



r -----

1 interaction [newlcvel] : := 
I a· d , , c 1 t_,T.c e I draw_JTicd2 

! 
c-~i':._1:-:u:-~ (newleve:J : := m:T 

( Clli'~~E I U:SER'.i' I Df:LE.;.·.:: 
i 

i 
i 
I i drawy.cx3.e : : = k(I'.·,' ( LTh'E I CIRCLE ) I 
I 

[_ ------------ ______ _J 

(a) Syntax Example 

--------------------~ 

LHiE 
CIECI.E 

rxn:-1 for roit_Jt,cce = CHANGE 
!~SERT 
[,2IBfE 

(b) Menu Sets for Levels 

Figure 2.18: Syntactic Specification in SVNGRAPH 

85 



86 

University. The aim of this project is to apply the principles of top-down design and functional 

abstraction to the design of interactive graphical systems. 

The AIH environment is made up of several components: 

(1] an interaction language (IL), based on augmented transition networks, which allows the 

syntax of interactive dialogues to be described, 

[2] an interpreter for the interaction language (ILi), which activates appropriate application 

functions, passing to them the inputs acquired from the user. 

[3] a set of style modules which describe style-dependent attributes such as level of prompt-

ing, 

[4] a library of user profiles which contain information on personalized styles of interaction, 

[5] a screen handler which handles the output to different windows, 

(6] a library of interaction techniques which describe how devices are used for user input, and 

[7] an underlying device-irdependent graphics package based on the CORE standard (74], 

which provides the graphics support. 

A block diagram of the overall system configuration is given in Figure 2.19. 

The interaction language specifies the user actions, the sequencing of user actions and 

the semantic module to respond to user actions. The language presents seven task types: 

select-category, select-operation, select-entity, position, quantify-integer, quantify-real and text, 

which are elaborations of the interaction tasks developed in [14]. An interactive system is 

specified as a network of nodes, each node being one of the seven types above. The definition 

of an interaction node is presented in Figure 2.20(a). Figures 2.20(b) and {c) describe the node 

records and basic types needed in describing an interaction node. 

An example of the specification of a style module is presented in Figure 2.21. Style 

modules can invoke various interaction techniques to accomplish the types of task in the interac-
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type 
inter~ctio:, _ :-.od~ i:, 

record 

what_ kind: t:1sk_ type; 

prompt: prompt_help_ tr:plo; 

•-(now variable stuff depending on interaction ty;;e] 

case 1,•.:hat_kind of 

whon select_category ~ set of category_ reccds; 

when select_operation => set of operation_records; 

when select_ entity =;> sat of entity_ rc::'Jrds; 

whe:, po:,i!ion 

when quantify_ integer 

when quantify _real 

i.-.·hen text 

=> pos:t:on_~ecorc; 

=> integer _record: 

=> real_ re:::orj; 

=> t:::xt__ rcccrd; 

end cas~: 

cn:1 rc.'cod; 

(a) Interaction Node 

type 
task_ type is { 

select_category, select_operation, 

select _entity. position, 

quantify_ integer, quantify_ real. text,; 

prompt_ help_ triple Is 
record brief: text_string; 

full: tcxt_string: 

help: text_ string; 

end re~ord; 

action_item is 

record invokes: semantic_module_id; 

next: node_ id; 

end record; 

(b) Node Record 

Figure 2.20: Specifying an Interactive System in AIH 
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type 

category _records Is 
record which_one: keyword; 

description: display _info; 

what_to_do: action_items; 

end record; 

operation_records Is 
record which_one: keyword; 

description: display_ info; 

what_ to_do: action_ items; 

end record; 

entity _records is 
record which_one: identifier; 

description: display _info; 

wi-ia~ _ to _do: action_ items: 

end record; 

position _record is 
record x __ range: 

y __ range: 

wha: to do: 

end record; 

integer_ record is 

real_ range; 

real_ ran.ge: 

action_ items: 

record how_ big: integer_ range; 

what __ to_do: ac~ion __ items; 

end record; 

re~! . record is 
reco·d ho,•, big: rea! _ range: 

what_ to_do: action __ items: 

end record; 

text __ record is 
record how_ big: max __ string __ length. 

what_to_do: action_items; 

end record; 

(c) Basic Types in AIH 

Figure 2.20: Specifying an Interactive System in AIH 

89 



J>is pb i L c v e I 1 0 

. ·a:.~_ :oce. in Task_ Name; 

R~l _ rcs;::ionse: out Response_ Description); 

""Rcs;::;;.se_ Description is 
re-cord 

ca~e task_type of 
when select_ category. 

se!ect _ ope,3t ion, 

se!ect _ ent:ty 

when posit:on 

when quantify _integer 

when quantify _real 

when text 

end case 
tnd rocord; 

=> 
=> 
=~ / 

=> 

internal_ token; 

locator _pair; 

integer_ value; 

real_ value; 

text _record 

Figure 2.21: A Style Module In AIH 

90 



91 

tion Janguage. Figure 2.22 illustrates the available interaction techniques. The AIH enforces a 

set of predefined windows: prompt, response, help, error, results and concurrent. These win

dows are implemented and handled by the screen handler package. All the information needed 

by the AIH system is organized into a data base. Access to the information is through 

predefined routines. 

The description of the application specified by the interactive language is interpreted by the 

interactive language interpreter; that is, the interpreter traverses the network defined by the 

interaction language. The interpreter accepts the user input, determines the currently active 

interaction task, communicates the relevant information to the interaction techniques which do 

the actual interacting with the user. The style modules and the user profiles influence the selec

tion of the interaction techniques. 

2.1.2.3. The University of Alberta UIMS 

The University of Alberta UIMS (UAUIMS), [71]. is an attempt at evaluating the feasibiltty 

of using the Seeheim model (as presented in Figure 2.1) as the basis for UIMSs. The UAUIMS 

therefore provides tools to describe all three components of the user interface, that is, the 

presentation, dialogue control and application interface components. The UAUIMS is based on 

the event model, but provides facilities to the designer to describe the dialogue in the other two 

models as well. These grammar-based and finite-state based descriptions are translated 

automatically into an event based description. 

The UAUIMS is divided into two major components, the user interface design component 

and the run-time support component. The user interface design component provides the neces

sary tools to help the designer specifying the presentation, dialogue control and application inter

face components of the user interface. The run-time support environment converts the user 

interface specification into a complete executable user interface, and provides facilities to sup

port the execution of the user interface. 
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TASK TYPE TECH"IIQUE NAME INPUT Dr\'ICE fEEDBACI. 

Sclcc1 name of ca1e;ory from 
,,, Charae1crs arc rchocd al arrrorna1c lo.:auon as 

Ke,·board the) Jre lypcd in 
a menu. 

(11) The selecled ca1cgor)· bl,nk.s tn d1srlavcd menu 

Sclect..Ca!c;ory Sc!ccl ord,nal number of 
Kc,board 

(1) Ordinal number 1\ t,hoed ar Jt~!'opr1~11e loc:i:1vn 
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f',ck ca1e&NY fron, a menu Tablet The 1clee1::l ca:,p,- t>ltnl., in the d"r!a,cd menu 
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Figure 2.22: Interaction Techniques Supported by AIH 
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The design of the presentation component is supported by an interactive layout program, 

called IPCS (Interactive Presentation Component Specification), that allows a designer to 

interactively design the screen layout, interaction techniques and display techniques for a partic

ular user interface. Support for IPCS is provided by an underlying window system, WINDUS, 

which implements the basic graphics primitives and window management routines. 

The design of the dialogue control component is supported by a set of tools, one for each 

of the dialogue models supported by UAUIMS. The event model is supported by a programming 

language based on C. This language provides the facilities to define appropriate event handlers. 

Figure 2.23 presents the structure of an event handler. The finite-state model is supported by an 

interactive graphical transition diagram editor that is used to create and edit recursive transition 

networks. The UAUIMS provides no support for the grammar-based model in its current ver

sion, but plans to support it in future versions. 

The support for the application interface component is limited to a definition of the mapping 

between user interface tokens and their associated functions within the application. Future ver

sions of UAUIMS will extend this limited support. 

The specifications from each component of the user interface design are converted to a 

common base format, known as the Event Based Internal Format (EBIF). An assembler con

verts the user interface specification into a file of C routines and appropriate tables used by the 

run-time support component. The C routines are then compiled by a standard compiler to form 

an executable user interface. Figure 2.24 depicts the process of converting an event language 

program into a user interface. 

2.2. SIMD Framework: User Interface Construction Kits 

The major objective of UIDEs within the SIMD framework is to provide the system 

designer with facilities/tools to rapidly construct user interfaces for any application. Most SIMD 

UIDEs allow for the initial construction of standardized consistent user interfaces to facilitate 

rapid development. Additional facilities are then provided to refine or fine-tune these user 
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Figure 2.23: Structure of an Event Handler 
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interfaces to better suit the peculiarities of the particular application. 

We can identify the following four different types of construction kits depending on the 

ease in which user interiaces can be developed, that is, the sophistication of the user interface 

development environment. 

[1] Graphics Packages: Graphics packages provide the facilities to manipulate the basic ele

ments of graphical input and output. Graphical input is concerned with managing and 

manipulating input devices such as keyboards, mice, tablets, etc. Graphical output con

cerns the display of color, text and geometric shapes (such as lines, circles, rectangles, 

etc.). Note that conventional programming languages, such as Pascal, C, and Ada, depend 

entirely on graphical packages to develop the user interface component of interactive sys

tems. 

[2] Window Systems: Window systems extend graphics packages to provide facilities to both 

create and manage interaction of one or more applications. The base window system, a 

graphics package with some additional high-level facilities (such as menus), is the sub

strate on which sophisticated multi-application interactive systems are built. Window sys

tems provide two additional components to manage interaction. The window manager pro

vides facilities to manipulate overlapping windows. The input manager controls the inter

face between input devices and applications, that is, which applications get input from 

which devices. Note that the development of sophisticated interactive systems, such as 

software development environments, rely on window systems for building and managing 

interaction. 

[3] User Interface Frameworks: A framework provides facilities to construct the components 

of an abstract design for a particular application. For example, a compiler framework pro

vides facilities to construct a lexical analyzer, a parser, a symbol table, a type checker, and 

a code generator. Frameworks must also be concerned with defining and managing the 

interfaces between the components. User interface frameworks are concerned with the 
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construction of the following major components: the presentation of application information 

to the user, the acceptance of user input, and the invocation of application functions. 

Furthermore, user interface frameworks must be concerned with defining and managing 

the interface between the application and the user interface. Frameworks are akin to 

libraries that support conventional programming environments. 

[4] User Interface Toolkits: A user interface toolkit is a collection of high level tools that pro

vide facilities to conFigure and construct user interfaces. Ideally, toolkits are built on top of 

frameworks and allow the designer to interact with the underlying framework to construct 

new applications. 

Since this survey is concerned primarily with user interface development environments, the 

following discussion will focus exclusively on environments that support user interface frame

works and/or toolkits. These environments are usually built, however, on a underlying graphics 

package or window system. It is important to note that research on graphics packages and win

dow systems have developed to a point where standards are available. CORE [74] and GKS 

[75] are well established standards for graphics packages, while the X window system [76] is 

rapidly gaining popularity and acceptance as a standard for window systems. 

The following subsections present two popular user interface frameworks and two 

representative user interface toolkits. 

2.2.1. The MacApp Framework 

The MacApp framework [77] provides Apple Macintosh system designers, a prefabricated 

standard user interface for any application. The standard Macintosh user interface is depicted in 

Figure 2.25. The basic premise of MacApp is to provide a user interface that automatically han

dles characteristics that are common to all applications (such as resizing of windows), and to 

allow designers to plug in details specific to the application (such as the contents of each win

dow). Since the user interface code is provided by MacApp, designers have the flexibiltty of fine 

tuning the interface to suit the peculiarities of the particular application. 
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An abstract MacApp application consists of one or more windows, one or more docu

ments, and a single application object. A window is associated with each document and is con

cerned with displaying the state of the document. Each window consists of a set of views, where 

each view is concerned with displaying a part of the associated document. A new interactive 

system necessitates only the definition of the documents and the view objects that render 

images of the documents. Figure 2.26 presents the objects (and their relationships) for a typical 

Macintosh application. 

Specifically, the MacApp framework consists of the following six components. 

[1] The application component is the main controller of the interactive system. Its main pur

pose is to receive (input) events, classify the events, and invoke appropriate application

specific event handlers. It also provides a set of standard global functions such as opening 

documents and quitting the system. This component is also in charge of creating docu

ment objects. 

[2] The document component provides the hooks for describing the application. Documents 

manage and manipulate the application data structures, and are responsible for communi

cating their current state to view objects. Documents are also responsible with reading and 

writing their data from and to backing store. 

[3] The window component manages standard Macintosh windows and provides standard 

facilities for moving, resizing and scrolling. 

[4] The frame component is used to subdivide a window into independent parts. All Macintosh 

windows consists of at least two frames, a fixed pallette area and a scrollable drawing 

area. Frames can also be scrolled. 

[5] The view component defines the image to be drawn within a frame. This is the view of the 

application state within the appropriate document. 
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[6] The command component is used to interface between the application and the user inter

face. Commands are created by documents, are responsible for performing the command 

(that is, changing application data and updating views), and most importantly for undoing 

the command, if necessary. 

2.2.2. Smalltalk's Model-View-Controller Framework 

The Model-View-Controller (MVC) framework [78] facilitates the construction of standard

ized user interfaces for the Smalltalk environment [79]. A typical Smalltalk user interface is dep

icted in Figure 2.27. As with the MacApp framework presented above, the MVC framework con

structs a user interface with standard facilities common to all applications, and provides the 

necessary hooks to allow application-specific behavior to be attached. Once again, the availabil

ity of the code for the user interface allows designers to fine tune the interface to suit the partic

ular application. 

An abstract Smalltalk application consists of a model, which in turn consists of a set of 

related view-controller pairs. Views are used to display the state of the application while controll

ers manage interaction with the user. Controllers act as the interface between the user and the 

application, as well as the interface between the application and its views. The interaction 

between the three components is shown in Figure 2.28. The standard interaction cycle is as fol

lows. The active controller accepts user input and invokes the appropriate application function 

within the model. The model performs the requested action, and broadcasts the change to its 

dependents (that is, its set of view-controller pairs). Views update their displays through applica

tion (model) provided information. 

Specifically, the MVC framework consists of the following components. 

[1] The model component provides the facilities to define an application. It also facilitates the 

connection of view-controller pairs as dependents and the ability to broadcast changes to 

these dependents. 
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Figure 2.27: A Typical Smalltalk User Interface 
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[2] The view component is concerned with display. It is equivalent to windows in most sys

tems, allowing for the creation and management of subwindows (or subviews). Views pro

vide standard facilities for clipping, transformation and display. The top level view is a stan

dard system view that provides standard facilities for resizing, movement and scrolling. 

The actual display of application specific information is provided by the model component. 

Note that each view has exactly one model and one controller that it is associated with. 

[3] The controller component provides the basic facilities to coordinate the user with the 

appropriate view and application model. Standard controllers are provided to handle the 

standard system view, a menu controller for mouse-based pop-up menus, and a scroll 

controller to handle scroll bars for views. The active controller is in charge of obtaining 

user input and invoking the appropriate application specific function to handle the input. 

2.2.3. The Flair System 

The FLAIR (Functional Language Articulated Interactive Resource) system [80] developed 

at TRW allows a designer to rapidly prototype a system's user interface, independent of the 

application. Thus, the main aim is to allow designers to rapidly realize and manipulate conceptu

alized dialogues to test various approaches to the design of the user interface. This approach 

allows the end users to be involved early in the design process to define the "best" user inter

face that will be implemented in the real system. 

The FLAIR system, also called the Dialog Design Language (DDL), is a comprehensive 

software tool that allows system designers to describe human-computer interactions, as well as 

human factors researchers to evaluate the man-machine interface. DDL comprises the following 

tools. 

[1] An ACM Core standard graphics package which provides the basic primitives to manipu

late graphics objects. These primitives include drawing of lines, boxes, circles; writing of 

text in different sizes and fonts; color selection; area filling; pan and zoom of the screen; 

reading (writing) pixel images to (from) the screen; erasure of a single item or an entire 
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display; and cursor controlled free hand drawing. 

[2] A relational data base management system, INGRES, which manages system and user

defined data relationships. User defined data can be associated with a particular graphics 

symbol (on the screen) and can be queried at any time. 

[3] A workstation that provides a mix of the latest technology in inpuVoutput devices, as illus

trated in Figure 2.29, ranging from voice to high resolution color graphics monitors. 

The overall functionality of the DDL is shown in Figure 2.30. The DDL allows the designer 

to interactively build either a static frame or more importantly to create command menu hierar

chies for dynamic scenarios. The system is voice menu-driven, i.e., the list of operations that 

FLAIR can perform in any given context are provided as menus, and these operations are 

invoked by voice input. The commands of the DDL consists of 15 root words which in turn can 

activate 85 commands to accomplish a task, as depicted in Figure 2.31. The screen layout is 

divided into six windows located on two workstations, as illustrated in Figure 2.32. The computa

tional component in Figure 2.30 performs the various functions provided by the DDL. The result

ing output operations can be the display of objects on specified windows, requests for more 

information from the user, or synthesized voice-output to the user. A designer uses the FLAIR 

system to design the user interface, which can be saved, edited and played back. 

2.2.4. The MIKE System 

The Menu Interaction Kontrol Environment (MIKE) system [81] was developed at the Brig

ham Young University Interactive Software Systems Laboratory. MIKE is a toolkit for rapidly pro

totyping a default textual user interface, and for refining the default user interface into a highly 

graphical sophisticated user interface to suit the particular application. 

A MIKE user interface specification is made up of the following three components: 

(1] the functions that define the application, 
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[2] bindings between application functions and interaction techniques, and 

[3] viewport definitions to describe screen layout and visual presentation. 

All of the above components are specified using interactive tools. 
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The initial prototype definition for the user interface consists of a definition of a set of types 

relevant to the application, and a corresponding set of functions that can operate on objects of 

each type. For example, a user interface for a simple circuit layout program is concerned with 

the following types: Resistor, Capacitor, Wire and Connection. Figure 2.33 shows a list of possi

ble functions that can be defined for these types. This initial prototype definition is supported by 

an interactive interface editor. With this limited amount of information, MIKE generates a default 

user interface through the process shown in Figure 2.34. The interface editor generates an inter

face profile, which contains the description of the user interface. The interface editor also gen

erates Pascal code that defines the interface between the user interface and the application. 

This generated code is then compiled and linked with the application-specific code and MIKE's 

standard user interface code to produce the interactive program. 

After the default user interface has been generated, MIKE provides facilities to refine the 

presentation component in the interface profile. MIKE allows editing of three aspects of the 

presentation component. The first concerns menus and the mapping of input events to applica

tion specific functions. Menus can be divided into hierarchies; menu items can have external 

names or icons associated with it; function keys can be associated with menu manipulation, and 

special keys can be associated to handle global inputs such as rubout, cancel and quit. 

The second aspect of the presentation component that can be edited concerns prompts, 

echoes and help. The interface editor allows the designer to associate arbitrary prompt strings 

with every parameter that necessitates user input. Echoes can be defined to provide visual or 

textual feedback to the user, and finally help strings can be associated with every object of the 

user interface. 
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CreateResistor(Ohms: Integer; C 1: Connection; C2: Connection) 
CreateCapacitor(Farads: Integer; C 1 : Connection; C2: Connection) 
CreateWire(Cl: Connection; C2: Connection) 
PickConnection(Where: Point): Connection 

If Where is over an existing connection, then that connection is returned. 
Otherwise a new connection is generated at Where 

PickResistor(Where: Point): Resistor 
PickCapacitor(Where: Point): Capacitor 
PickWire(Where: Point): Wire 

DeleteResistor(R: Resistor) 
DeleteCapacitor(C: Capacitor) 
DeleteWire(W: Wire) 
MoveResistor(R: Resistor; To: Point) 
MoveCapacitor(C: Capacitor; To: Point) 
MoveWire(W: Wire; To: Point) 
ChangeResistance(Of: Resistor; Ohms: Integer) 
ChangeCapacitance(Of: Capacitor; Farads: Integer) 

ResistanceOf(R: Resistor): Integer; 
CapacitanceOf( C: Capacitor): Integer; 
SaveCircuit(FileN ame: InString) 
Discard Circuit 
LoadCircuit(FileN ame: In String) 

Figure 2.33: Types for a Circuit Layout Program 
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The final aspect of the presentation component that can be edited is the layout of the 

screen and the facilities for directly manipulating displayed objects. These facilities allow the 

designer to create a graphical user interface. 

2.3. MISD Framework: End-User Customizable Interfaces 

The main emphasis of UIDEs within the MISD framework is to provide facilities to end 

users to define personalized user interfaces for a single application. The major disadvantage of 

the MISD approach is cost, since it is necessary to develop user interface generators for every 

application. 

There has been only one implementation of a MISD UIDE in the literature. This system is 

described in the following subsection. 

2.3.1. The GIGL System 

GIGL (Generator of Interactive Graphical Languages) is a prototype system to generate 

graphical interfaces, developed by Bournique as part of his doctoral research at the University of 

Pittsburgh [82]. The basic premise is that a universal "virtual" interaction language can be 

developed for a particular application area. This predetermined virtual interaction language 

describes all the possible aspects of graphical interfaces that can be used for the application, 

enumerating all the alternatives that are possible. For instance, the universal language can 

describe a menu response as 

<menu response> ::= "chosen menu item is illuminated"! 
"chosen menu item is blinked" I 
"chosen menu item changes color" 

which indicates that visual feedback is provided by either brightening, flashing or changing the 

color of the chosen menu item. 

Once this universal language has been defined, the generation of personalized graphical 

interfaces is straightforward: choosing amongst a set of alternatives; or whether a feature is pro

vided or not; and the specification of some needed parameters (e.g., window size). 
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Context-free grammars are used to describe the universal interaction language. Terminals 

of the language describe system actions. Figure 2.35 depicts a (portion of a) universal interac

tion language developed for graphical interactions. GIGL itself is a syntax-directed translator of 

the universal interaction language. The language is compiled internally into a library of semantic 

routines. GIGL is an interpreter of these routines. 

The functional structure of GIGL is depicted in Figure 2.36. GIGL operates in two modes: 

Interrogate and Interact. The interrogate mode is used to generate a specific user interface. 

GIGL interactively presents queries from each syntactic class (or grammar production) defined in 

the universal interaction language. Some of these queries are parametric, i.e., a value must be 

specified. An example query is presented below 

SPECIFY PARAMETERS OF WORK AREA: 
LOWER LEFT COORDINATES? 0 100 
UPPER RIGHT COORDINATES? 800 1000 

Queries can be a selection from a list of options, e.g., 

CHOOSE A BUTTON PRESSING ACTION: 
"KEYBOARD", "FUNC_KEY", "MENU", "VALUATOR"? menu 

or attributes which are to be included or not included in the interface, as in 

CAN THE USER UNDO THE PREVIOUS TRANSFORMATION? 
"YES" OR "NO"? no 

Note that these queries correspond directly to productions in the universal grammar in Figure 

2.35. The interrogate mode creates a subset of the universal action language to describe a per

sonalized user interface. The interpreter for this language is also a subset of the semantic rou

tines already developed as part of GIGL. In the interact mode, a user interacts with the system 

with a particular personalized user interface specified in the interrogate mode. 
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<file response> ::= "systea locates file" l "system indicates 
no file loczted" <PECALL> 

<R01ATE> ::= <i1ic1'i:1'] action> C"systec ftor:pts for angle of 
rotation"J <valuatir.g actior.> [ 11 syst2rn prompts 
fo:r point of rotaticn"J <locating actj.on> 

<~OVE> ~== <~!eking acticn> <loc~ting action> 

<SCAL::> : ~= <ricking actior.> C"s;stcer ~roof ts for scale factor"J 
<valuating actio~> · 

<PARAN> ::= C"systen pro □ pts for line style~] <b.p.a.> 
C"~yste. prO;Jt)ts for intensi tyt J <b.p.a.> 

,LZ?LT> :~= <systec placebo> 

<UP>::= "systec identifies hi~hcr s~bficture in hierarc~y~ I 
"syste;u indicates no hi~her stibi)icture 0 

<DOWN)::= 0 syste~ identi!les lober sub~icture in hierarchy" t 
nsystem indicates no 1-~\;jer subpicture11 

<EXECUTE> : ::: "systen de act !'Vat es ex eel. te/ cane el primitives" 
".sjstec activates all ether conmands" 

<CANCEL> ::= "system deactivates exec\Jte/ cancel priaitives" 
nsystem activates all other commands 13 

<EAC'KUP> ··.. - "systeo identifies previO\JS state of system" 
"syste:s indicates backup li11it reached" 

Figure 2.35: Portion of a Universal Interaction Language 
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CHAPTER 3 

MODELING THE MIMD 
USER INTERFACE DEVELOPMENT ENVIRONMENT 

The effectiveness of an interactive software system is dependent on its usability. A 

software system has maximum usability if it maximizes the productivity of all its end users. The 

major goal of interactive software engineering is to develop effective software systems to max

imize both their usability as well as end user productivity. There are two features of an interac

tive software system that govern its effectiveness and the productivity of its end users. The first 

concerns the ability of the system to increase the productivity of end users according to their 

experience. The second concerns the speed and ease with which end users can utilize new 

technology that is introduced into the system. New technology is concerned with enhancing any 

part of the interactive system such as the efficiency of the algorithms and code, the functionality 

of the system, and the facilities for interaction. Note that both features are dependent on the 

ability to modify the user interfaces of interactive systems. 

The interactive systems that have been developed to date provide limited or no support for 

modification of user interfaces. Thus, end users are usually forced to learn and master the user 

interface of every interactive system that they use. Since these interactive systems provide only 

limited "hard wired" choices for user interface modification, end user productivity can never be 

maximized. Furthermore, the initial learning curve is high and costly and is the main factor that 

hinders users from embracing newer tools as well as newer versions of familiar tools. 

The basic premise of the MIMD framework is that maximizing user productivity and the 

effectiveness of interactive systems is entirely dependent on the ability of the end user to define 

and modify user interfaces. Thus, the major goal of UIDEs within the MIMD framework is to 

117 
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provide facilities that allow end users to develop personalized user interfaces for any interactive 

application, and to modify any aspect of these personalized interfaces at any time of their 

experience with the interactive system. Another perspective of the goal of MIMD UIDEs is that 

the facilities provided to end users are similar to those provided to user interface designers by 

SISD and SIMD UIDEs. However, MIMD UIDEs differ from UIDEs within other frameworks in 

the following major ways. 

[1] The facilities provided for user interface specification and modification must be usable by 

end users, who have no knowledge about the implementation of the particular application 

or the user interface. 

[2] The MIMD UIDE is independent of the environment that is used to develop the application 

component of interactive systems. 

Thus, the major problem associated with the development of MIMD UIDEs is that it neces

sitates a complete and clean separation of the application component from the user interface 

component of interactive software systems. Such a complete and clean separation facilitates 

the development of multiple personalized user interfaces for any application. MIMD UIDEs 

necessitate information describing the characteristics of the application for which the user inter

faces are to be constructed or modified. The MIMD UIDE specification mechanism uses this 

information to construct and modify user interfaces for the particular application. 

A clean and complete separation of the application from the user interface necessitates the 

development of appropriate models for both components. The following subsections develop the 

MIMD model for applications and user interfaces respectively. 

3.1. A Model for Interactive Applications 

The main emphasis of the application model is to generalize interactive applications to 

allow the MIMD UIDE to handle multiple applications in a consistent manner. The application 

model must also be concerned with modeling the interface between the application and user 
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interface components. This interface necessitates appropriate models for the flow of information 

from the application to the user interface, and for function invocation and parameter 

specification. 

The editor model is a popular and appropriate generalization for interactive applications. 

The editor model is defined as follows. 

[a] A set of objects defines the base entities of the application. These objects are combined 

to form a picture. The editor allows the manipulation of this picture in terms of these base 

objects. There are two types of pictures: unstructured and structured. An unstructured 

picture is made up of an arbitrary combination of the base objects. In a structured picture, 

only certain combinations of base objects are allowed. Note that the possible combinations 

of base objects can be defined appropriately by a language. Thus, in the case of a struc

tured picture the terminals and nonterminals of the language define the base objects of 

the editor, while the productions of the language define the manner in which these base 

objects can be combined to form the picture. 

[b] The editor maintains the picture internally within an appropriate data structure. This major 

data structure defines the combination of the base objects that describe the current pic

ture. For structured pictures, this major data structure is usually a syntax tree that must at 

all times conform to the language definition. 

[c] The editor provides a set of transformational functions for manipulating the picture. The 

base transformational functions are Insert and delete. These base functions allow for 

inserting an (a set of) object(s) into the picture and deleting an (a set of) object(s) from the 

picture, respectively. Note that all other manipulations (such as replication, substitutions, 

global deletion/insertion, etc.) can be defined in terms of these base functions. Thus, the 

base transformational functions must be defined for every editor. In the case of structured 

pictures, any manipulation of the picture must conform to the language definition. There

fore, the transformational functions must allow only operations that maintain the integrity of 
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the picture. 

[d] The editor also provides a set of operational functions that do not change the picture. 

These operational functions provide the facilities to allow the editor to operate smoothly. 

Typical operational functions are: 

[1] help: to provide information about the application's functionality, 

[2] save: to save the active picture on backing store, and 

[3] load: to load a previously saved picture from backing store into the editing environ

ment. 

It is important to note that a large percentage of currently available interactive systems can 

be defined using the above editor model. 

The next two subsections are devoted to developing models of the two entities of the 

editor involved in the interface between the application and user interfaces: data structures 

and functions. 

3.1.1. Modeling Interactive Data Structures 

The main source of communication between the application and user interface com

ponents is the information base of the application component. This information base is 

managed and maintained within the major data structure of the application component. The 

internal representation of these data structures must be translated into external forms suit

able for viewing by the user. For example, language-based editors maintain a program being 

edited as a syntax tree. This syntax tree must be translated into an appropriate textual or 

graphical representation for presentation to the user. Furthermore, the user manipulates the 

external form, thereby necessitating a translation from the external representation to the 

internal representation as well. Thus, in the realm of interactive software systems the exter

nal representation of data structures is as basic and crucial to the design as its internal 

representation. 
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In the conventional model for interactive systems, data structures form the major 

bottleneck in achieving a complete separation of the application from the user interface of 

interactive systems. Application information is managed and maintained within conventional 

data structures that do not provide any facilities to manage the external representations. 

However, interaction is done solely on the basis of external representations. This mismatch 

of representations has, to date, tightly coupled the two components leading to the following 

unresolved issues in user interface research [71]: 

[a] how should the user interface access the application's data structure, 

[b] should the user interface maintain its own copy of the application's data structure to 

handle error recovery and undo operations, 

[c] how are user picks translated to entities within the application's data structure, and 

[d] how is the application's data structure translated to appropriate external representations 

for presentation to the user. 

This dissertation takes the position that the above problems arise due to the inade

quacy of conventional data structures in handling the added complexity of interaction. 

The design of data structures for interactive systems is crucial as it forms the basis of 

communication between the two components and thus plays an important role in the separa

tion of the application and the user interface. Interactive data structures must be forced to 

play dual roles, their conventional role in the management and maintenance of data internal 

to the application, and their role in the management and maintenance of forms of the internal 

data suitable for processing by entities external to the application component. This duality of 

data structures, their Internal and external representations, is not a new concept; most 

software systems provide facilities to translate the internal representation of active data 

structures into a representation that is suitable for storing on secondary storage. However, 

managing and maintaining both representations as one abstract object is both an exciting 
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and powerful concept. Note that to be effective, it is desirable that these dual representa

tions be mirror images; that is, there exists an analogy between them such that manipula

tions of one representation directly translates to manipulations of the other. 

The power of such a concept is most evident when we consider the interactive data 

structure's role in the context of interactive software. Since both the internal and external 

representations are maintained and managed as a single unit, a complete separation of the 

user interface component from the application component is possible. The data structure is 

managed and maintained by the application component. The external representation of the 

data structure is the basis of communication between the two components. The user inter

face displays the external representation to the user. User interaction, particularly parameter 

specification, is in terms of this external representation. The application, through the data 

structure, can easily translate between entities in the external representation and entities in 

the internal representation. 

The following subsections develop an appropriate model for interactive data structures. 

The first subsection presents a model for the internal representation of abstract data struc

tures. The next subsection discusses the special requirements of data structures for interac

tive software, and develops a model for the external representation. The internal and exter

nal representations are combined to formulate a comprehensive abstract data structure 

model for interactive software in the following subsection. The last subsection presents an 

example of interactive data structures supporting multiple external views. 

3.1.1.1. The Internal Representation 

This section develops a model to describe the internal representation of abstract data 

structures. By internal representation we imply the form of data structures that are active 

within main memory during the execution of the software system. The framework that is 

employed to describe an abstraction describes the information local to the abstraction and 

the set of abstract operations that is provided. 
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As the term implies, data structures are composed of two objects, the data and the 

structure that is imposed on the data. The cell or node is the basic building block of data 

structures. Thus data structures are a collection of nodes connected according to the struc

ture definition. In its most general form, a node contains one or more fields. Each field is 

defined appropriately by a name that identifies the field and its corresponding type. Thus 

each node has the form 

{<field_ name> : <field _type>}+ 

where the '+' indicates one or more occurrences. 

The definition of a node describes the local information of the data abstraction. The set 

of operations defined for the data abstraction describe the behavior of nodes. We can iden

tify four basic operation types that must be defined for any node: 

[1] the assignment operation which allows values to be assigned to nodes, 

[2] the retrieval operation which allows values of fields to be retrieved, 

[3] the comparison operation to allow nodes to be compared, and 

[4) the attribute operation which allows queries on the attributes of the node (e.g., size, 

types of fields, etc.). 

Of course, a node may extend these base operations to define operations that are specific to 

its nature. For example, type coercion, that is the ability to change a given type to the node's 

type, is a special operation which can only be defined for certain classes of nodes. Another 

example are relational comparison operations (<, <=, >, >=) which can only be defined for 

nodes which have a definite ordering. Other operations are addition, concatenation, subtrac

tion, union, etc. However, the models developed for abstract interactive data structures will 

only consider those operations that are basic to every instance. 

The structure abstraction is concerned with defining the relation of data nodes and the 

set of operations that define the behavior of the structure, or more specifically the manner in 
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which data nodes are managed and maintained. The local information of the structure 

abstraction defines neighborhood relationships which describe how nodes are connected 

to neighboring nodes in the structure. The basic set of operations that must be defined for 

each structure are as follows. 

[1] Access operations to allow nodes in the structure to be accessed. Access operations 

can be further refined into the following two types: 

[a] a next operation which allows the neighbors of a particular node to be accessed, 

and 

[b] a traversal operation which uses the next operation to access all the nodes in the 

structure in a specific order. 

[2] Search operations that provides facilities to identify a node that meets certain criteria (e.g., 

a specific value of a field). Note that search operations are dependent on the comparison 

operation provided by data nodes in the structure. 

[3] Manipulator operations that allow the structure itself to be manipulated. In particular, 

manipulator operations allow for insertions and deletions of nodes to and from the struc

ture. Manipulator operations must ensure that the structure is always consistent. That is, 

the resulting structure does not violate the neighborhood relationships defined between 

nodes. 

Figure 3.1 summarizes the model for the internal representation of data structures. This 

model is general enough to describe most data structures. If the node information contains a 

single field of a base type (i.e., integer, real, character, string), then the operations are exactly 

those that are defined for these base types in any high-level programming language. For nodes 

that contain composite fields, the operations will depend on the nature of the fields. Most of the 

operations can be defined in terms of operations defined for the base types. For instance, a par

ticular field may be designated the key and the comparison operators defined in terms of the 
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comparison operators defined for the type of the key field. As examples of the structure abstrac

tion, consider the definition of lists and binary trees as depicted in Figures 3.2 and 3.3 respec

tively. 

3.1.1.2. The External Representation 

Before we present a model for the external representation, it is appropriate to outline our 

assumptions about the underlying graphics capabilities. In general, an external representation 

can be modeled as an arbitrary two-dimensional graphical display which is maintained in an 

internal display buffer. Conceptually, display buffers are infinite allowing the entire display of 

any given data structure, however large, to be generated. A graphics package provides the facil

ities (e.g., routines for drawing lines, curves, etc. and graphic primitives such as color, reverse

video, etc.) to allow an arbitrary two-dimensional picture to be generated in the display buffer. 

Thus, the model of each node of the data structure defines an appropriate display routine 

which describes its external form. Each display routine is passed entry coordinates into an 

appropriate display buffer on invocation and has the effect of generating its external image at 

the specified position in the display buffer. 

Due to the inherent duality of representations, conceptually it should be possible, and it is 

desirable, to model the external representation of data structures using the same framework that 

was used to model its internal representation as summarized in Figure 3.1. The model for the 

external representation is shown in Figure 3.4. Note the similarity between the two figures. The 

external representation model is also made up of a data abstraction and a structure abstraction. 

For each node in the internal representation, there exists a node in the data abstraction of 

the external representation. This node, which defines the local information of the data abstrac

tion, contains the display routine and its corresponding display attributes (e.g., width and height) 

of the external image of the node. The four basic operations defined for the internal representa

tion are redefined in the following manner. 
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[1] The assignment operation allows the display routine along with its display attributes to be 

associated with a node. 

[2] An important retrieval operation is the invocation of the display routine to facilitate the gen

eration of the node's image. 

[3] The comparison operation is used to determine whether a particular (x,y) coordinate lies 

within the display of the node. This operation facilitates the identification of a node through 

its external display. 

[4] The attribute operation allows for queries of display attributes (e.g. the width and height of 

the display). 

The structure abstraction defines the behavior of the display buffer which will contain the 

external representation of the data structure. The local information of this abstraction defines the 

relationship of each node's display to the displays of its neighboring nodes. That is, it describes 

the geometry of the display of the entire structure. More specifically, the neighborhood relation

ships define the necessary information to calculate the entry coordinates of each node's display 

in the display buffer. Note that this calculation necessitates knowledge of the width and height of 

each node's display which is readily available from the data abstraction. A similar set of opera

tions that were defined for the internal structure abstraction is provided. 

[1] The access operation is defined by the next and traversal operations. The next operation 

allows access of the displays of neighbors of a particular node's display. The necessity of 

such an operation is best described by the following scenario. The external representation 

of the data structure is presented to the user on some output device. A cursor is posi

tioned on some part of this external display, that is, within the display of some node in the 

external representation (which can easily be determined from the comparison operation 

provided by the data abstraction). The user now indicates that the cursor be moved to the 

next node's (vertically below the current node) display. This action is translated to a call on 

the next operation of the structure abstraction which calculates and returns the entry 



131 

coordinates of the display of the node directly below the current node. The traversal opera

tion allows an ordered access of each node's display in the buffer. 

[2] The search operation facilitates the identification of a node according to its external 

display. Specifically, the search operation accepts an (x,y) coordinate in the display buffer 

and identifies the node within whose display the (x,y) coordinates lie. The search operation 

is easily described in terms of an ordered traversal which accesses each node's com

parison operation. This is a useful operation to facilitate parameter specification. 

[3] The manipulator operations allow for quick insertions (draws) and deletions (erasures) of a 

node's display to and from the display buffer respectively. 

3.1.1.3. A Comprehensive Model 

It is important to note the similarity of the models that define the internal and external 

representations of data structures. This solidifies the concept of the close relationship between 

the two representations. However, to arrive at an effective comprehensive model for interactive 

data structures we must merge the internal and external models to allow the two representations 

to be maintained and managed as a unit. 

This comprehensive model of interactive data structures -is further complicated by the 

requirements of the more sophisticated interactive systems which rely on multiple external 

representations of an internal data structure to increase the bandwidth of communication 

between the user and the internal information maintained by the application. As an example, the 

popularity and effectiveness of the many language-based structured editors available today is 

based on the ability of allowing the user to view and manipulate a single program as a collection 

of external views, for example, a textual view, a programming language view (e.g. Pascal, C, 

Ada, etc.), a graphical view (e.g., Nassi-Schneiderman diagrams, flow charts, etc.), an execution 

view, etc. Figure 3.5 presents a typical example ([83]) of such an editor's interface. Note that the 

user can manipulate any of these views, and these manipulations must be translated automati

cally by the system to manipulations of the single internal representation of the program, usually 
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in the form of a syntax tree. Conversely, since all the external views are generated from the 

internal syntax tree, modifications of the syntax tree must be automatically and immediately 

reflected in all its external views. 

Therefore, the model for interactive data structures must allow for a single internal 

representation and its multiple external representations to be managed and maintained as a unit. 

Figure 3.6 presents such an integrated model for interactive data structures. Note that the struc

ture manipulator operations are redefined so that any changes made to the data structure 

automatically updates all its external representations. 

3.1.1.4. Example of Interactive Data Structures 

To close this section, let us consider an example of an interactive system and design its 

interactive data structure. Suppose we would like to build an interactive system, EMPSYS, to 

manage the employees of a company. The company is divided up into a number of depart

ments. Each department has a manager who is in charge of a number of employees. A Chief 

Executive Officer (CEO) sits on top of the employee hierarchy and is in charge of all the 

managers. 

EM PSYS allows the manipulation of employees of a company. The user of EM PSYS is 

allowed to access employees in the following three ways: 

[1] by their social security number, 

[2] by their name, and 

[3] by their position in the employee hierarchy. 

Since the design of the internal representation of the employee data structure is well 

understood, our objective in the following discussion is to concentrate on the design of the exter

nal representations and highlight the correspondence between the dual representations. To sim

plify the discussion, we use a list as the internal representation of the employee data structure. 
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The Internal representation of the data abstraction defines the following fields for each 

node in the data structure: 

[a] the name of the employee (NAME), 

[b] the employee's social security number (SS#), 

[c] the position of the employee in the company (POS) which can be one of {CEO, Manager, 

Employee}, 

[d] the name of the department where the employee works (DEPT), and 

[e] fields that describe the control hierarchy of employees within the company. 

This control hierarchy is described by the following fields for the employee (CEO or Manager) 

that is in control: 

[a] the number of employees that the controller is in charge of (CONTROLS), 

[b] the identifier of the first employee that is controlled (FIRSTEMP), and 

[c] the identifier of the last employee that is controlled (LASTEMP). 

To complete the description, the following fields are defined for employees that are controlled: 

[a] the identifier of the next employee in the control chain (NEXTEMP), and 

[b] the identifier of the controlling employee (BOSS). 

The structure abstraction, the list, contributes the PREV and NEXT fields that defines the 

neighborhood relationships of nodes in the list. Figure 3. 7 presents an example of the internal 

representation. The thick arrows in the Figure depict the control chain for the employees within 

the Computer Operations department of the company. 

According to the specification, the interactive data structure must maintain three external 

representations: name_ view, ss# _ view, and position _hierarchy_ view. The external represen

tation therefore contributes a set of three display functions (along with their associated attri

butes) to the definition of each node in the interactive data structure. These display functions are 
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I
NAME: Janet Black NAME: Sue Blue 
ss•: 222536780 ss•: 456905509 
POS: Manager POS: Employee 
DEPT: Computer Ops. DEPT: Computer Ops. 
CONTROLS: 2 CONTROLS: 0 

1FIRSTEMP: ode6 FIRSTEMP: NIL 
LASTEMP: ode2 -.-----~LASTEMP: NIL 
NEXTEMP: Node7 NEXTEMP: NIL 
PREV: NIL PREV: 
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2 
NAME: Bill Brown 
ss•: 678934568 
POS: Employee 
DEPT: Genetic Eng. 
CONTROLS: 0 
FIRSTEMP: NIL 
LASTEMP: NIL 
NEXTEMP: NIL 

---PREV: 

3 

NEXT: NEXT: ----+--....,.EXT: 

NAME: Robert Green 
ss•: 432768654 
POS: Employee 
DEPT: Computer Ops. 
CONTROLS: 0 
FIRSTEMP: NIL 
LASTEMP: NIL 
NEXTEMP: Node2 
PREV: 
NEXT: 

7 
NAME: Steve Gold 
ss•: 763765362 
POS: Manager 
DEPT: Genetic Eng. 
CONTROLS: 4 
FIRSTEMP: Node3 
LASTEMP: Nodes 
NEXTEMP: NIL 
PREV: 

6 
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FIRSTEMP: NIL 
LASTEMP: NIL 
NEXTEMP: NIL 
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NEXT: 
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ss•: 456873452 
POS: Emp I oyee 
DEPT: Genetic Eng. 
CONTROLS: 0 
FIRSTEMP: NIL 
LASTEMP: NIL 
NEXTEMP: Node9 

~--1PREV: 

5 4 
NAME: James Brown 
ss•: 785874309 
POS: CEO 
DEPT: GENTECH 
CONTROLS: 2 
FI RS TEMP: Node 1 
LASTEMP: Node7 
NEXTEMP: NIL 
PREV: 

~----1NEXT: 

8 
NAME: Peter White 
ss•: 123873456 
POS: Emp Joyee 
DEPT: Genetic Eng. 
CONTROLS: 0 
FIRSTEMP: NIL 

ASTEMP: NIL 
NEXTEMP: Nodes 

---PREV: 

9 

NEXT: --------NEXT: -------,f-----..NEXT: NIL 

Figure 3.7: The Internal Representation for EMPSYS 
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capable of generating the appropriate display of the node in each of the three external represen

tations that are maintained. Note that the interactive data structure must maintain three display 

buffers to hold the three external views. Figure 3.8 extends the example in Figure 3.7 by com

bining the internal representation with the three external representations resulting in a single 

interactive data structure. In the Figure, display functions are abbreviated to d _fi and display 

attributes to d _ al where "i" stands for the ith external representation. The Figure highlights the 

boundaries of nodes' displays within each butter. 

The neighborhood relationships of the structure abstraction of each external representation 

provides the information for calculating the entry coordinates of each node's display within the 

appropriate display buffer. For example, the following information calculates the entry coordi

nates for each node's display within the name_ view display butter 

(x,y) = previous node's entry coordinates; 

entry coordinates = (x, y + previous node's height + K); 

where K is a constant to allow for some space between displays. The first node's display is 

appropriately defined as 

entry coordinates = (0, display buffer's width I 2). 

As an example of interacting with the above data structure, consider the following 

scenario. The position_hierarchy display buffer has been passed by the application to the user 

interface to be presented to the user. The user interface presents a portion of the display buffer 

within a window on some output device. Say the user would like to delete a particular employee 

from the company. The user specifies the employee to be deleted by moving a cursor with a 

mouse to the desired node in the screen. These screen coordinates must now be translated by 

the interactive system to a particular node in the interactive data structure. The user interface 

has the necessary information to translate the screen coordinates to coordinates within the 

position_hierarchy display buffer. The search operation provided by the external representation 

is capable of determining the node within whose display these coordinates lie. Note that the 
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search operation uses the traversal operation to access each node's comparison operation. 

Finally the node is deleted from the interactive data structure through its manipulator operation 

which has the effect of updating all of the (three) external representations to reflect the change 

of the deletion. 

3.1.2. Modeling Application Functions 

The final issue that must be considered to achieve the total separation of the application 

from the user interface concerns function invocation and parameter specification. In general, 

each application function requires the specification of a set of parameters and the end result is 

either error feedback or some information depicting the effect of the function call. However, 

within an interactive environment, the function is capable of providing error feedback or some 

resulting information after the specification of each parameter. The error usually indicates an 

invalid parameter specification. The resulting information could either be help information to aid 

in specifying the next parameter or information that shows the overall effect of the function call. 

For example, consider the insert function that requires two parameters, the identification of the 

point of insertion and the specification of the object to be inserted. The specification of the first 

parameter could result either in an error indicating an invalid insertion point, or a list of valid 

objects that could be inserted at the specified insertion point to aid in selecting the second 

parameter. The second parameter could also result in an error indicating an invalid object for 

insertion, or the insertion of the specified object at the specified point. The resulting information 

is the update of the external representations showing the result of the insertion. Thus, each 

function necessitates interaction with the user. The conventional approach to interactive system 

design is to allow each function to be involved in parameter specification, that is, accepting user 

input and displaying intermediate results. The role of the user interiace is therefore subordinate 

to function invocation. Thereafter, the application takes over control of the interaction. 

To achieve a complete separation of the application from the user Interface, Interac

tion with the user must be the sole responsibility of the user Interface. This necessitates 
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a redesign of the functions provided by the application. An appropriate model of interactive 

functions that allows such a complete separation is as follows. 

[a] Each function is defined by a set of services, where each service is capable of processing 

its parameters independently. Usually, the function defines a service to handle each of the 

parameters that must be specified. On invocation, the function presents the set of services 

it can perform. The function can also define a default ordering of its services. 

[b] On invocation, each service accepts its parameter(s), an error buffer and a result buffer. 

Upon completion, the service presents information either in the error buffer indicating an 

error in parameter specification, or in the result buffer which describes the effects of the 

service. 

Note that such a model allows the specification of the action to be taken upon service comple

tion. This action is either the invocation of a particular service provided by the function or quit

ting the function. For example, the next action to be taken when an error is detected is usually 

to call the service again. This then allows the user interface to totally control the application's 

functions, and more importantly does not require the functions to be involved in user interaction. 

3.2. A Model for Customizable User Interfaces 

Given the model of interactive applications as presented in the previous subsection, the 

user interface model is mainly concerned with allowing customization of every object involved in 

interaction. Interaction can be divided into the following two categories. 

[1] Presenting Information to the user: This category encompasses the interfacing of infor

mation to the user. It is therefore concerned with presenting application specific informa

tion, as well as user interface information involved with interaction. The major types of 

information to be interfaced to the user include the external representations of the informa

tion base of the application, the base entities of the application, menus, help and error 

messages, and interaction feedback. 
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[2] Function Invocation and parameter specification: This category encompasses the main 

goal of interaction, that is, the invocation of functions and the specification of parameters. 

The following subsections develop models to allow customization of the above two categories of 

interaction respectively. The final subsection presents the overall user interface model. 

3.2.1. Presenting Information to the User 

Customization of the information presented to the user is provided by the following two 

objects of the user interface component. 

[1] Name-mapping objects provide facilities to define external user-defined representations 

for any internal entity involved in interaction. Thus, users can define personalized names 

for any name used in interaction, including function and parameter names. 

[2] Display objects provide facilities to customize the layout of the information presented to 

the user. 

Note that name-mapping objects are concerned with defining a one-to-one mapping 

between internal and external representations. They are therefore modeled in exactly the same 

manner as the internal and external representations of the data component of interactive data 

structures as presented in section 3.1.1. The following discussion ·is devoted to modeling display 

objects. 

Display objects control the presentation of information to the user. There are three types of 

information that the interactive system presents to the user. 

[1] The external representations of the major data structure maintained by the application. 

[2] Information maintained by the user interface to aid in function invocation and parameter 

specification. This information (usually) corresponds to menus of functions, services and 

application entities. 

[3] System messages that correspond to error messages or textual feedback about the 

current interaction. 
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Thus, display objects are concerned with presenting the above information on some physical 

output device for viewing by the user. The specification mechanism provides the facilities to 

allow the user to customize these display objects thereby personalizing the presentation of infor

mation. 

Any information that is to be presented to the user is maintained internally (either in the 

application or user interface components) within interactive data structures. Each interactive data 

structure defines the external representations of its internal form that is suitable for viewing by 

the user. It is these external representations, which are maintained within internal display 

buffers, that are interfaced to the user through display objects. In other words, display objects 

provide the facilities to map information within these display buffers to physical output devices 

for viewing by the user. 

The internal display buffers contain the image of the entire interactive data structure. 

Display objects provide the mapping from display buffer to output device through windows and 

vlewports. Windows define rectangular regions within display buffers describing the extent of 

the image that is presented to the user. Viewports map windows onto rectangular regions 

defined on physical output devices. [Note that these standard definitions for windows and 

viewports [84] conflict with the use of the term windows as defined by some current interactive 

systems (e.g., window managers) to designate an area on the screen (i.e., a viewport)]. Note 

that by adjusting the position or size of the window relative to the display buffer, the effects of 

panning and zooming can be produced. The interactive system can present the largest possi

ble picture of the image within the display buffer by defining a window that just surrounds the 

image within the display buffer. A smaller picture of the entire image is produced by defining a 

window larger than the image. Conversely specifying a smaller window forces clipping of the 

image allowing a larger scale of the portion of the image presented to the user. These effects 

are depicted pictorially in Figure 3.9 (a), (b) and (c) respectively. Note that the size of a viewport 

controls what portion of the window is depicted on the output device. The entire model of 
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presenting information to the user is depicted in Figure 3.10. 

3.2.2. Function Invocation and Parameter Specification 
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The most important and most crucial aspect of customizing user interfaces is the descrip

tion of how the user interacts with the functions provided by the application. Typically, user 

interaction is described as follows. The user initially activates a function within the application. 

Once the function is activated, the services provided by the function are called in some specified 

order. Each service necessitates the specification of some parameter(s), and produces either 

some error feedback or some information resulting from the service. This information is 

presented to the user. In either case, the next action to be performed is either a service pro

vided by the function or quitting the function altogether. 

The user interface model for functions resembles the application model for functions as 

presented in section 3 .1.2. For each application function a corresponding function Interaction 

object is defined within the user interface model. This function interaction object is concerned 

with function invocation and managing the services provided by the function. Each service of an 

application function is modeled by a corresponding service Interface object within the user 

interface. The service interface object is in charge of interacting with the user to specify the 

required (set of) parameter(s), calling the associated service within the application, and display

ing the results of the service to the user. Figure 3.11 depicts the relationships between function 

and service objects in the application model and their counterparts in the user interface model. 

The final aspect of the user interface model concerns parameter specification which is the 

major component of interaction. Parameter specification is an Interaction task which is 

appropriately specified in terms of Input techniques and the corresponding Interaction dev

ices. Foley, Chan and Wallace [14] have identified six fundamental interaction tasks that are 

application and device independent. These tasks can be mapped onto many different techniques 

and devices. The fundamental tasks are: 
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Figure 3.11: Function Interaction Objects 
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SELECT: select from a set of alternatives (usually) in a menu; 

POSITION: indicate a position ( (x,y) coordinate) on a output device; 

ORIENT: orient an entity in 2-d or 3-d space; 

PATH: generate a time sequence of positions or orientations; 

QUANTIFY: specify a value to quantify a measure; and 

TEXT: enter a text string as data. 

The model of interactive applications as graphical editors mainly concerns itself with three tasks: 

SELECT, POSITION, and TEXT. The user interface model therefore defines Interaction task 

objects to handle the select, position and text tasks. 

We can identify three basic input techniques which provide the basis for describing the 

three interaction tasks. 

[1] Coordinate-Input: this technique allows the specification of an (x,y) coordinate. It is used 

to define both the SELECT and POSITION tasks. 

[2] String-Input: this technique allows a text string to be input, and is used to define the 

SELECT and TEXT tasks. 

[3] Function-Key-Input: this technique allows a function key to be associated with a particu

lar choice and is used to define the SELECT task. 

The user interface model defines a corresponding set of Input technique objects to handle 

coordinate, string and function-key inputs. 

Each of these input techniques can be realized by many physical input devices. As 

described in [84], input devices can be classified into five logical categories: picks (e.g., light

pen), locators (e.g., tablet, mouse, trackball, joystick, touch tablet, sonic tablet), valuators (e.g., 

potentiometer), keyboard, and buttons (e.g., programmed function keyboard, chord keyboard). 

Note that the examples provided for each category are currently available physical input devices 
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that are natural to the category. However, most computer systems available today provide only 

a keyboard with function keys and a locator such as a mouse. It is necessary to have the capa

bilities of all logical categories to provide a rich mix of parameter specification possibilities. It is 

possible, however, to simulate the logical function of any category with any input device. Some 

of these simulations are extremely awkward and can therefore be ignored (for example consider 

simulating a keyboard). Our design model therefore allows any physical input device to be used 

for the three input techniques outlined above. The physical input device is mainly concerned 

with accepting input signals from the user and returning these signals for processing by the user 

interface. The model defines action table objects that are used to translate these input signals 

into meaningful internal actions that can be operated on by the appropriate input technique 

object. As an example, the actions associated with the Coordinate-Input technique are UP, 

DOWN, LEFT, RIGHT and ENTER. The first four actions correspond to cursor movement, while 

the ENTER action designates the current (x,y) coordinate as the parameter which is passed to 

the appropriate interaction task object to process. If a joystick is used as the input device, then 

the signals corresponding to joystick movement would be translated by an appropriate action 

table object to the corresponding LEFT, RIGHT, UP, or DOWN action. The signal that is 

returned by the joystick when the button is pressed will be translated by the action table object 

to the ENTER action. If a keyboard is used as the input device then certain key signals (for 

example t <--, -->, ~ would be translated as cursor movement actions while a designated key 

(e.g., ENTER or RETURN) signal would be translated by the action table object to the ENTER 

action. Note that allowing the user to customize action table objects greatly personalizes param

eter specification. 

To complete the specification of interaction task objects, the input value returned by the 

input technique object needs to be mapped to appropriate internal values. Note that the input 

technique object returns a value in terms of the specified user interface. These values need to 

be transformed into internal values that can be operated on by the application. Mapper objects 
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transform input values from input technique objects into entities that can be operated on by 

interaction task objects. Interaction task objects in turn pass these parameter values to the 

appropriate service interface object. Figure 3.12 depicts the overall model for interaction show

ing the data flow through the model. Figure 3.13 shows the associations of the tasks, mappers, 

input techniques, action tables and input devices supported by the model. 

An important measure of the effectiveness of a model for user interfaces is the speed and 

ease with which new interaction tasks, input techniques and interaction devices can be incor

porated. The model for parameter specification presented above is very flexible, and allows new 

interaction tasks, input techniques and interaction devices to be easily added. The inclusion of a 

new interaction task necessitates the definition of a new interaction task object and a 

corresponding mapper object that provides the facilities to map all possible inputs acceptable by 

the task. The inclusion of a new input technique necessitates the definition of a new input tech

nique object (and possibly a set of corresponding action table objects), and the definition of a 

new mapping function in each of the mapper objects that can process the input. Finally, new 

interaction devices necessitate only the definition of appropriate action table objects. 

3.2.3. The Overall User Interface Model 

To summarize, the user interface model comprises the following six objects. 

[1] Function Interaction Objects: These objects control the interaction between the user and 

a particular application provided function. They control their associated service interface 

objects, which perform the actual interaction with the user. 

[2) Service Interface Objects: These objects are in charge of the actual interaction with the 

user. Specifically, these objects receive a parameter from the user through associated 

interaction task objects, call the associated service within the application, and display the 

results of the service to the user through display objects. 
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[3] Name-Mapping Objects: These objects provide a one-to-one mapping between user 

defined external representations and internal representations of any entity involved in 

interaction. These objects facilitate the translation of parameters from user defined 

representations to application specific representations, and also any internal entities 

involved in the information to be presented to the user. 

[4] Interaction Task Objects: These objects facilitate parameter specification by the user. 

Each interaction task object comprises a mapper object to translate all acceptable inputs 

into forms operable on by the task object. Mapper objects in turn accept input from Input 

technique objects. Input technique objects control the interaction (input) devices that are 

used for parameter specification. Action table objects facilitate the translation of signals 

from these physical input devices into actions or values that are meaningful to the particu

lar input technique object. 

[5] Display Objects: These objects are in charge of presenting information to the user. This 

information is usually in the form of internal display buffers maintained by the user inter

face. 

[6] Device Objects: These objects are the physical input and output devices that are part of 

the interactive system. 

It is important to note that the user interface model also includes interactive data structures to 

model the internal structures maintained by the user interface to aid in interaction, for example, 

menus. 

Figure 3.14 is an operational snapshot of a typical interactive system depicting the major 

objects that are involved in both the application and user interface components. An interaction 

cycle is described as follows. The user uses the input devices to enter information into the sys

tem. User input is managed by interaction task objects. The final input value is transformed by 

name mapping objects into an internal value that is passed to the appropriate service interface 

object. The service interface object invokes the appropriate service within the application 
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component, passing it the appropriate user input. The results of the service are first transformed 

by name mapping objects into external user defined representations, and then passed to display 

objects. Display objects present the information to the user on a physical output device. 

It is important to note that the user interface component of interactive systems also pro

vides a set of functions to support interaction. These high-level user interface functions provide 

facilities for screen layout (such as defining, moving, resizing and scrolling viewports, resizing 

windows, etc.), manipulating menus, setting global interaction attributes (such as color, screen 

size, etc.), and invoking function interaction objects. These user interface functions are modeled 

exactly as application functions, thereby necessitating function interaction and service interface 

objects to be defined. The user is provided similar facilities to customize every aspect of interac

tion with these user interface functions. Thus, the MIMD model facilitates a total customization 

of every aspect of interaction within any interactive software system. 



CHAPTER 4 

THE DESIGN OF THE MIMD 
USER INTERFACE DEVELOPMENT ENVIRONMENT 

This chapter transforms the MIMD model developed in the previous chapter into a con

crete design. The presentation of the design is organized as follows. The first subsection 

presents an overview of the user interface generation process, and describes the information 

that is needed from the application component to form the basis of a specification mechanism 

for describing user interfaces. The next subsection introduces the object-oriented philosophy of 

system design and implementation. The design of the MIMD UIDE, using the object-oriented 

paradigm, is then presented in the following two subsections. The first of these subsections 

deals with the design of the objects involved in presenting information to the user. The second 

concentrates on the design of objects involved in function invocation and parameter 

specification. 

4.1. The User Interface Generation Process 

Figure 4.1 depicts the process of generating a user intertace using the MIMD approach. 

This process is comprised of two phases, specification and generation. The user specifies 

personalized interfaces for a particular application in the specificaton phase. This interface 

specification is used to build the intended interface in the generation phase. 

To facilitate the specification of personalized interfaces, the application component pro

vides application specific information. This information is used to define a specification mechan

ism for creating user interfaces that are appropriate only for the particular application. Users 

then employ this specification mechanism to define personalized, application specific interfaces. 

The next subsection describes the details of this application specific information. 
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The development of user interfaces requires, at a minimum, the following components: 

[a] a device-independent graphics kernel that provides support for the presentation of infor

mation to be interfaced to the user, 

[b] an Interface kernel that defines the data structures and routines common to all inter1aces, 

and 

[c] an Input/output device database that describes the characteristics of all input/output dev-

ices supported by the underlying operating environment. 

The generation phase merges the user interface specification with the above components to 

generate a personalized user interface for some particular application. 

4.1.1. Application Information for the Specification Mechanism 

The first issue to be considered in designing MIMD UIDEs is the information that must be 

provided by an application to form the basis for developing an appropriate specification mechan

ism. This information consists of three components: information describing the entities of the 

application, information describing the external representations of the major data structures, and 

information describing the functions provided by the application. 

As was pointed out in the previous chapter, the base entities of an application are depen

dent on whether the application manipulates a structured or unstructured picture. Throughout 

our model, we will assume a structured picture since unstructured pictures are just a special 

case. The possible forms that a structured picture can take are appropriately defined by a two

dimensional context-free language [85, 86]. The symbols, that is, the terminals and nonterminals 

of the underlying grammar define the base objects of the structured picture, while the produc

tions of the grammar, define the manner in which base objects can be combined. The entity 

information provided by the application is appropriately maintained in a language table. The 

language table contains the following data for each entity of the language: 
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[a] the internal name of the entity; 

[b] the type of the entity; that is, terminal, nonterminal or production; 

[c] the display routine for the entity; 

[d] a list of applicable productions for nonterminal entities; and 

[e] a description of the entity to aid the user in understanding its role within the application. 

(For example, a production's role is to define how its left-hand side nonterminal is 

expanded. It is therefore presented to the user as a possible substitution for the nontermi

nal entity. During interaction, nonterminal entities present their associated productions as 

selections for expansion.) 

The language table serves two purposes. It allows the user to understand the structure of the 

picture that is manipulated by the editor. It also provides the necessary information for the 

specification mechanism to facilitate user defined customizations of entity names. 

The information describing the external representations of the major data structures main

tained by the application is defined appropriately in a view table. The view table contains the 

following information for each external representation that is supported: 

[a] the identifier of the display buffer that contains the external representation, and 

[b] a description of the external representation including an appropriate example of its form. 

The information provided by the view table is used by the specification mechanism to allow the 

user to define customized layouts of the external representations. The view table also facilitates 

understanding of the manner in which the internal state of the application is presented. 

The function table contains the relevant information about the functions provided by the 

application. Each entry in the table contains the following information for each function: 

[a] the name of the function; 
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[b] a service table that contains information about the services provided by the function. An 

entry in the service table contains the following information: 

[1] the name of the service; 

[2] the name(s) of the parameter(s) that must be specified; 

[3] the type of the parameter(s), for example, a language entity, an (x,y) coordinate in an 

external representation, a function, a service, a boolean, a character, a string, an 

integer, or a real number; 

[4] the range of possible values for the parameter(s), if applicable; 

[5] the default value(s) for the parameter(s), if applicable; 

[6] information to aid in parameter specification; 

[7] the error feedback generated by the service for invalid parameter specification; and 

[8] the resulting information that the service provides after processing the valid 

parameter(s). 

[c] an ordering of services that define the (default) action (either a service call or quitting the 

function) that is taken after successfully completing the service (note that the default action 

for an error is to call the service again); and 

[d] documentation on the function, describing each service in detail. 

The specification mechanism uses the information provided by the function table to present the 

functionality of the editor to the user. This information also facilitates the customization of the 

entire interaction process, ranging from the names of functions and services to the manner in 

which they are invoked. 

Since the main objective of the MIMD UIDE is to allow end users to develop personalized 

interfaces, ideally the specification mechanism itself is an interactive system. The specification 

mechanism presents the application related information that is contained in the above tables to 
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the user and allows the user to specify the relevant aspects of the intended user interface. Since 

this application specific information is always available, customization of the user interface is 

possible at both the micro (for example, customization of entity names) and macro (for example, 

customization of interacting with a function) levels. This approach allows the user interface to 

evolve piece-meal with the user's experience. 

4.2. The Object-Oriented Paradigm 

The object-oriented philosophy of system design and implementation is being heralded as 

the structured programming of the 1980's. The term object-oriented was first used to 

describe the Smalltalk programming environment developed at Xerox PARC [79, 87]. Object

oriented programming is currently the hottest technological fad in software engineering as is 

evident from ongoing research in the area [31, 88, 89, 90, 91] and the enormous popularity of 

conventions and tutorials devoted to this topic. The major reason for its popularity can be attri

buted to the fact that it is one of the best available software engineering design methodologies 

that supports both encapsulation and reusability, the bases for modern software engineering. 

In this dissertation, the following model and terminology of object-oriented design is 

assumed. The design of an object-oriented system is described by a set of classes. Each class 

defines all the information necessary to construct and use its particular kind of objects. Each 

object is therefore an Instance of one class. Each class defines 

[a] how its instances are created, 

[b] a collection of Instance variables that describes the local storage for maintaining each 

instance's individual state, and 

[c] a set of operations (or methods) that can be performed on instances of the class, that is, 

methods that are generic and apply to any instance of the class. 

A class can be defined in terms of one or more other classes using Inheritance. If a 

class B is defined in terms of class A, then B inherits the instance variables and methods of 
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class A. Class A is the superclass of class B, and conversely B is the subclass of A. Class B 

can override or restrict any of the methods that it inherits from its parent class A. Of course, 

class B can also define its own instance variables and methods. Thus an object-oriented system 

is designed as a hierarchy of classes. 

An object-oriented software system is therefore a collection of objects. Communication is 

achieved through messages that invoke one of the set of operations defined on the object. 

Thus, objects in a object-oriented system are encapsulated modules since they can be 

accessed only through the set of operations that define their external interface. Classes and 

inheritance promote reusability since newer classes can be defined as derivations of existing 

classes. (Cox [31] aptly uses the term Software-lC's to describe the predefined classes of any 

object-oriented system.) 

Finally, it is important to note that most object-oriented systems define a class Object 

which is the root of the inheritance hierarchy of all classes within the system. The Object class 

is the most generic class, and is the only class that has no superclass. It defines how objects 

are managed by the system and describes a repertoire of behaviors that will be inherited by all 

other classes. It also provides the basic protocol for instantiating objects of any class. Since the 

Object class is dependent on the particular implementation environment of the object-oriented 

system, we will assume its existence for the purposes of our design without giving particulars 

about its specification. 

The presentation of the design for MIMD UIDEs employs the following framework to define 

classes. Each class definition describes its parent class, along with the instance variables and 

the set of methods that it provides. The class definition will not include how instances of the 

class are created, as these are implementation dependent and best decided during the detailed 

design and implementation phases. 
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4.3. Presenting Information to the User 

This section develops the design of objects involved with presenting information to the 

user. The first subsection presents the design of interactive data structures. The following sub

section discusses the design of display objects. 

4.3.1. Interactive Data Structure Objects 

Interactive data structures form the basis for managing and manipulating data within the 

application and user interface components of interactive systems. The external representations 

of interactive data structures, which are maintained within internal display buffers, describe the 

information to be interfaced to the user. 

The following subsections develop the design of interactive data structures. The first sub

section describes the design of the data component of these interactive data structures, while 

the second subsection describes the design of the structure component. These two subsections 

consider interactive data structures that support only a single external representation. The next 

subsection extends the design of interactive data structures to support multiple external 

representations. The final subsection describes the use of interactive data structures within the 

MIMD UIDE. 

4.3.1.1. Data Objects 

The design of the data component of interactive data structures is defined by three subc

lasses of Object: 

[1] the Internal Data class which defines the internal representation of data, 

[2] the ExternalData class which defines the external representation of data, and 

[3] the lnteractiveData class which merges the above classes to define the data component of 

interactive data structures. 

The following subsections present the design of these three data classes. 
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4.3.1.1.1. Internal Data 

The lnternalData class is an abstract class that is defined as the root of the internal 

representation of the data abstraction inheritance hierarchy. Its contribution to the design is not 

in the power of its instances, but in defining a template that describes the methods and local 

data that must be provided by any class that is derived from it. In other words, the lnternalData 

class defines the abstract external interface (or protocol) that must be provided by any internal 

data object. The actual definition of the methods is described at the subclass level. Each of the 

abstract methods defined at the lnternalData class level simply return subclassResponslblllty 

which is an error indicating that the subclass was responsible for providing the definition of the 

method. Figure 4.2 depicts the specification of class lnternalData. Note that the instance vari

able datalnfo is a dummy variable to facilitate the description of the methods. This instance vari

able will be appropriately redefined at the subclass level. 

Instance Variables: 

Class: lnternalData 
Superclass: Object 

[a] Object datalnfo; r the actual data */ 

Methods: 
[1] ASSIGNMENT OPERATIONS: 

assignData(Value); r Assign Value to datalnfo */ 

[2] RETRIEVAL OPERATIONS: 
retrieve Data(); /* return the value of data Info * / 

[3] COMPARISON OPERATIONS: 
isEqual(anObject); /* return TRUE if anObject is equal to datalnfo, 

FALSE otherwise */ 
(4] ATTRIBUTE OPERATIONS: 

size():/* return the size of datalnfo */ 

Figure 4.2: Class lnternalData 
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The base data types provided by any object-oriented system will be defined as subclasses 

of the lnternalData class. Thus classes Integer, Real, Character, and String will be derived from 

class lnternalData and will redefine the methods accordingly. Since the specification of these 

base type classes is straightforward (and is usually provided as part of the object-oriented sys

tem), their definitions will be assumed. The following discussion defines class EmployeeData 

which describes the information maintained for each employee for the example interactive sys

tem, EMPSYS. The datalnfo instance variable of class EmployeeData is appropriately 

described as 

datalnfo = { String Name; 
Integer SS#; 
Integer Pos; 
String Dept; 
Integer Controls; 
EmployeeData• FirstEmp, LastEmp, NextEmp, Boss; 

} 

Thus Name and Dept are objects of class String while SS#, Pos (0: CEO, 1: Manager, 2: 

Employee} and Controls are objects of class Integer. All the other fields signify identifiers of 

EmployeeData objects. Note that the syntax used throughout this design is based on the C pro

gramming language [92]. The methods for the EmployeeData class are described in terms of 

the methods provided by the classes of its subfields, as follows. 

[1] Retrieval Operations: We define retrieval methods for each field, as follows. 

retrieve<F _NAME>(); r return(<F _NAME>-->retrieveData()}; */ 

where <F _NAME> is substituted by the name of each field. Note that the terminology 

<Object_name>-•><method _ name>(<parameters>); 

is used throughout the design for invoking an object's method. 

[2] Assignment Operations: The assignData(Value) method assumes that Value is an object 

of class EmployeeData. Its definition follows. 



Name-->assignData(Value-->retrieveName()); 
SS# -->assignData(Value-->retrieveSS#()); 
Pos -->assignD ata(Value-->retrieve Pos()); 
Dept-->assig nData(Value-->retrieveDept()); 
* ... etc ... * 

165 

[3] Comparison Operations: Let us assume that two objects of EmployeeData are equal if 

their social security numbers are equal. Thus the method isEqual(anObject), where anOb

ject is a EmployeeData object, is defined as 

return( SS#-->is Equal( a Object-->retrieveSS#())) 

[4] Attribute Operations: The size() method of EmployeeData is just the addition of the size 

of its component parts (Name, SS#, Pos and Dept), and therefore can be described as 

return(Name-->size() + SS#-->size() + Pos-->size() + Dept-->size()) 

The assumption is that the size() method of any object returns an Integer object, and the 

'+' method is defined by the Integer class. Thus the expression "3 + 4" is an invocation of 

the '+' method of Integer object 3 which adds its value to parameter 4 and returns the sum 

7 as an Integer object. 

The above definition of class EmployeeData depicts the reusability aspect of object

oriented systems. The system need only provide the base type class definitions as appropriate 

derivations of the abstract class lnternalData. The designer of the interactive system reuses 

these base classes to define the data that is specific to the needs of the interactive system. 

4.3.1.1.2. External Data 

The definition of the ExternalData class is depicted in Figure 4.3. Note that lnternalData 

and ExternalData are parallel hierarchies, with the Object class as their common parent. The 

reason for separating these classes is due to the fact that the design of an interactive system 

will normally require the use of non-interactive data. That is, data that will never be interfaced to 

the user and therefore does not require a definition of its external representation. The design of 

the interactive system will create instances of class ExtemalData to describe the external image 
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of only those lnternalData objects that participate in the external representation of interactive 

data structures. 

As an example, consider the ss# _ view external representation of the example interactive 

system EM PSYS. Each node will declare an object of External Data that is capable of generating 

the node's display in the ss# _ view display buffer. The instance variable display Function contains 

the necessary information to convert the Integer object SS# of the internal representation to its 

appropriate display in the buffer. For example, if SS# has the value 593142618, then the 

Instance Variables: 

Class: ExternalData 
Superclass: Object 

[a] Function displayFunction; r the display routine */ 

[b] Object displayAttributes; r the attributes of the display, i.e., 
its width and height • / 

[c] Object entryCoords; r the entry coordinates of the node's display 
in some display buff er • / 

Methods: 
[1] ASSIGNMENT OPERATIONS: 

- assignDisplay(dispFunc, dispAttr); r sets displayFunction to dispFunc and 
displayAttributes to dispAttr*/ 

- assignEntry(xyPair); r sets entryCoords to xyPair * I 

[2] RETRIEVAL OPERATIONS: 
- display(dispBuf); r displays node in buffer dispBuf at coordinates 

entryCoords by invoking displayFunction * / 
- retrieveEntry(); /* returns entryCoords */ 

[3] COMPARISON OPERATIONS: 
contains(xyPair); r return TRUE if xyPair lies within the boundaries 

of the node's display, FALSE otherwise */ 

(4] ATTRIBUTE OPERATIONS: 
displayAttr(); r returns displayAttributes */ 

Figure 4.3: Class ExternalData 
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displayFunction might display it as follows: 

I593-14-2618 I 
4.3.1.1.3. Interactive Data 

To complete the design of the data abstraction of interactive data structures, the external 

and internal representations must be merged into a single unit. In systems that support multiple 

inheritance, the class lnteractiveData is defined as a child of both the lnternalData and External

Data classes. However, since many of the current object-oriented systems do not support multi

ple inheritance, a more practical design of class lnteractiveData combines the two representa

tions by declaring instance variables of each class. Its methods must be designed to provide 

access to the internal and external representations respectively. Figure 4.4 depicts the 

specification of class lnteractiveData. Note that class lnteractiveData could include methods to 

expose the methods defined for the lnternalData and ExternalData classes. For example, the 

method lsEqual(anObject) to compare two lnteractiveData objects can be defined as: 

return( data Part-->isEqual( anObject-->accesslnternal())). 

Class: lnteractlveData 
Superclass: Object 

Instance Varlables: 
[a] lntemalData dataPart; r the internal representation*/ 

[b] ExternalData displayPart; /* the external representation */ 

Methods: 
(1] access Internal(); r returns data Part * I 

[2] access External(); r returns display Part */ 

Figure 4.4: Class lnteractlveData 



Figure 4.5 summarizes the inheritance hierarchy of the data classes. 

4.3.1.2. Structure Objects 
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The design of the structure component of interactive data structures follows the same prin

ciples used in the design of the data component. Specifically, the design must allow for both 

conventional structures as well as interactive structures. The development of interactive systems 

will include internal structures that need not be interfaced to the user, and therefore do not 

require any external representations. To exploit reusability, our design of interactive data struc

tures must take advantage of the internal structures. Thus the design defines two parallel inheri

tance hierarchies, the structure hierarchy which describes the internal structure abstraction, and 

the interactive structure hierarchy which extends the internal structure abstraction to include 

external representations. 

4.3.1.2.1. Internal Structures 

The Structure class is an abstract class that defines the root of the internal structure inher

itance hierarchy. This generic class defines the protocol that describes the behavior of any 

structure, such as lists, trees, tables, sets, etc. It defines the set of methods that must be pro

vided by any structure class that is derived from it. The implementation of these abstract 

methods within the Structure class is as subclassResponslblllty. This produces an error mes

sage indicating that the definition of the method is the responsibility of the subclass. 

Figure 4.6 summarizes the specification of the Structure class. The following points are 

worth noting about the specification. 

[1] The data contained in each node of the structure is defined as an instance of class Object 

to allow structures of any data object to be defined. Note too that such a design allows for 

the definition of both homogeneous as well as heterogeneous structures. It is obvious 

that the design allows homogeneous objects of a particular class in a structure. Homo

geneity can be achieved as a side effect of inheritance. A structure specified in terms of a 
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Figure 4.5: The Data Abstraction Hierarchy 



Instance Variables: 

Class: Structure 
Superclass: Object 

(a] nodelnfo = { Object nodeData; /* the data in each node of the structure*/ 
Links nodeNeighbors; /* a node's neighborhood relationship*/ 

} ; 

Methods: 
[1] ACCESS OPERATIONS: 

- nextNode(aNode, alink); r returns alink neighbor of aNode * I 
- eachNodeDo(codeBlock); r accesses each node in the structure and 

makes each node perform codeBlock */ 

[2] SEARCH OPERATIONS: 
searchNode(aObject); /* uses traversal method each Node Do to determine 

if aObject exists in the structure. Returns 
identifier of node if found, NULL otherwise*/ 

[3] MANIPULATOR OPERATIONS: 
- addNode(aNode, alink, aObject); r adds a new node aObject as alink 

neighbor of aNode */ 
- deleteNode(aNode); r deletes node aNode from the structure */ 

Figure 4.6: Class Structure 
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particular class can hold objects of any class derived from that class; that is, it may be 

heterogeneous. For example, assume a structure that is defined to maintain objects of 

class A. Suppose classes B and C are derived from class A. The structure can also hold 

B and C objects, since their behavior is compatible with A objects. 

[2] The iterator method eachNodeDo accepts a block of code, codeBlock, that each node in 

the structure is asked to perform. The nature of codeBlock is dependent on the particular 

implementation style of the object-oriented system. Systems like Smalltalk [79] and 

Objective-C [31] allow an actual block of statements (enclosed between square brackets) 

to be passed as an argument (or selector of a message). In other systems, codeBlock 

could be defined as a function that contains the statements that each node will perform. 

(Refer to [94] for a further discussion on iterators for abstract data structures.) We will 

assume the former style. 
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[3] As an example of using the iterator, the method searchNode can be described as follows. 

codeBlock = [ [eachNode do: 
Boolean isFound; 
isFound = eachNode-->isEqual(aObject}; 
if (isFound} 

return(eachNode); r Node is found•; 
] 
return(NULL); r Node was not found•; 

] ; 
return(eachNodeDo(codeBlock}); 

The description of specific structures is defined as derivations from class Structure. As 

with the design of the data component, it is useful to identify a set of basic structures on which 

other structures can be built. It is widely accepted in computer science education that the list 

and tree structures are the basic structures. Figure 4.7 presents an appropriate inheritance 

hierarchy for internal structures which represent most of the major data structures that are 

employed in designing software systems. Note that even though lists and trees are the base 

structures, class Set and Graph have parallel inheritance hierarchies. This allows their definitions 

to be based on any of the base structures. 

Figure 4.8 presents the specification of the list structure. Note that nodes within a list are 

accessed by their position in the list. Thus class List provides additional methods to facilitate 

processing of nodes based on their position in the list. 

The queue structure restricts access to only the first and (currently) last element of the list. 

Thus class Queue can be simply derived from class List by overriding the following methods. 

[1] The access methods are redefined as access First() and access Last() which provide 

access to the first and last nodes in the queue. These can easily be defined in terms of 

the methods provided by List as accessNode(1} and accessNode(numberNodes) respec

tively. 

[2] The addNode method of class Queue adds a node always to the front (or the end} of the 

queue, and can be described using List's method addElement(1, a Object}. 
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Figure 4.7: The Structure Abstraction Hierarchy 



Class: List 
Superclass: Structure 

Instance Variables: 
[a] nodelnfo = { Object nodeData; r the data in each node of the structure */ 

Link next; /* each node has a next neighbor*/ 
Link previous:/* and a previous neighbor*/ 

} ; 
[b] Link firstNode; /* access to the first node in the list */ 
[c] Link last Node; r access to the last node in the list * / 
[d] Integer numberNodes; r the number of nodes (currently) in the list */ 

Methods: 
[1] ACCESS OPERATIONS: 

- nextNode(aNode, alink); r returns next or previous neighbor of aNode */ 
- accessNode(aPos); r returns node at position aPos in the list*/ 
- eachNodeDo(codeBlock); r traverse list from firstNode to lastNode */ 

[2] SEARCH OPERATIONS: 
searchNode(aObject); r uses traversal method eachNodeDo to determine 

if aObject exists in the structure. Returns 
identifier of node if found, NULL otherwise*/ 

[3] MANIPULATOR OPERATIONS: 
- addNode(aNode, alink, aObject); r adds a new node aObject as previous 

or next neighbor of aNode * I 
- addElement(aPos, aObject); r adds aObject as aPos element of list*/ 
- deleteNode(aNode); /* deletes node aNode from the structure */ 
- deleteElement(aPos); r deletes node at position aPos in list*/ 

Figure 4.8: Class List 
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[3] Correspondingly the deleteNode method of class Queue always deletes the node at the 

end (or the front) of the queue, and can be described using List's method 

deleteElement(numberNodes). 

Note that class Queue must restrict access to the other methods provided by List. This is done 

by overriding each method to return an error message. Through the rest of this discussion we 

assume that classes invalidate superclass methods that violate their behavior by returning an 

error message. 
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A stack is a list with access restricted to one end only, usually the front. Its methods 

accessFirst, addNode and deleteNode apply to only the first node of the stack. Here again, 

class Stack is derived as a subclass of List and its new methods are easily described in terms 

of methods in class List. 

Finally, the table structure is a special kind of List wherein access to nodes is provided by 

the application of a hash function. The three base methods of list that access a node (nextNode, 

addNode, and deleteNode) are overridden in the specification of class Table so that a hash 

method of each data object is invoked to determine its position in the list. It is the responsibility 

of the data objects to provide this hashing method. An abstract hash method is therefore defined 

at the Object class level which forces the subclasses derived from it to provide their own 

definitions. 

Figure 4.9 depicts the specification of the BinaryTree class, as binary trees are the most 

common tree structures used in the development of software systems. The description of the 

methods provided are self explanatory. 

Finally, we close this section with a discussion of class Set. A set can be based on any of 

the structures we have discussed, as its only requirement is that it cannot contain any duplicate 

elements. The Set class declares an instance variable SetStruct to be an object of class Struc

ture, thereby allowing a set to be based on a list, table, or tree structure. To ensure that no 

duplicate elements are added to the set, the Set class defines its own addElement(aObject) 

method. This is defined in terms of the methods provided by the structure SetStruct and can be 

accomplished as follows: 

if (SetStruct-->searchNode(aObject) == TRUE) 
return(error("Node aObject already exists, cannot add")); 

else 
(SetStruct-->addNode(aObject)); 

The Set class will also define methods that are specific to sets, such as set union, difference 

and intersection. 



Instance Variables: 

Class: BlnaryTree 
Superclass: Tree 

[a] nodelnfo = ( Object nodeData; r the data in each node of the structure */ 
Link parent;/* link to parent*/ 
Link leftChild r link to left child */ 
Link rightChild r link to right child */ 

} ; 
[b] Link root;/* the root of the binary tree */ 

Methods: 
[1] ACCESS OPERATIONS: 

- nextNode(aNode, alink); /* returns parent, left or right child of aNode*/ 
- eachNodeDo(codeBlock); /* an inorder traversal of the binary tree*/ 
- eachNodeDoPre(codeBlock); /* a preorder traversal of the binary tree */ 
- eachNodeDoPost(codeBlock); r a postorder traversal of the binary tree*/ 

[2] SEARCH OPERATIONS: 
- searchNode(aObject); r uses one of the traversal methods above to find 

aObject. Returns identifier of the node if found, 
NULL otherwise*/ 

- isLeaf(aNode); /* returns TRUE if aNode is a leaf node (no left or 
right child), FALSE otherwise*/ 

[3] MANIPULATOR OPERATIONS: 
- addNode(aNode, alink, aObject); /* adds a new node aObject as left or 

right child of aNode */ 
- deleteChild(aNode, alink); i deletes left or right child of aNode */ 
- deleteNode(aNode); /* deletes aNode (must be a leaf node) from tree*/ 

Figure 4.9: Class BinaryTree 

4.3.1.2.2. Interactive Structures 
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Class lnteractiveStruct extends the Structure class by providing facilities to maintain and 

manage the external representation. The main assumption is that objects of the Structure class 

have as their node's data, objects of the lnteractiveData class. This ensures that data objects 

Include both their internal and external representations. 

The lnteractiveStruct class is specified in Figure 4.10. The following points serve as an 

explanation of the specification of the lnteractiveStruct class. 



Class: lnteractlveStruct 
Superclass: Object 

Instance Variables: 
[a] Structure internalStruct; r the internal representation of interactive 

data structures */ 
[b] DisplayBuffer dispBuf; r the buffer wherein the external representation 

of the data structure is generated */ 
[c] Function displayGeometry(); /* a function that calculates the entry 

coordinates of nodes' displays in dispBuf */ 

Methods: 
[1] ACCESS OPERATIONS: 

- nextDisplay{aNode, alink); /* returns entry coordinates of the display 
of alink neighbor of aNode * I 

- eachDisplayDo{codeBlock); /* accesses the external representation of 
each data node; makes it perform code Block* I 

[2] SEARCH OPERATIONS: 
searchDisplay(xyPair); /* uses traversal method eachNodeDo to search 

for a node whose display contains xyPair. Returns 
identifier of node if found, NULL otherwise*/ 

[3] MANIPULATOR OPERATIONS: 
- addlnteractive(aNode, alink, aObject); /* adds a new node aObject into 

the interactive data structure 
as alink neighbor of aNode */ 

- deletelnteractive(aNode); /* deletes node aNode from the interactive 
data structure */ 

Figure 4.10: Class lnteractlveStruct 
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[1] displayGeometry is a function that is capable of calculating the entry coordinates (within 

dispBuf) of the display of every node's external image. This function is called whenever 

the interactive data structure is changed through additions or deletions of nodes. display

Geometry could employ either a brute-force method wherein every node's entry coordi

nates are recalculated whenever a change is made, or an incremental method wherein the 

function accepts the identifier of the node that affected the change and recalculates the 

entry coordinates of only those nodes in the structure that were affected by the change. 

For simplicity, we will assume the former design of displayGeometry. 
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The deletelnteractive method is similarly described. 

As an example, consider a modification of EMPSYS which maintains only a single external 

representation, ss#_view. The data structure for EMPSYS is an object of class lnteractiveStruct. 

The instance variable internalStruct defines the list of nodes, dispBuf defines the display buffer 

ss# _ view, and the displayGeometry function contains the necessary information to calculate the 

entry coordinates of each node's display in dispBuf. The displayGeometry function can be 

defined in terms of the list's iterator as follows: 

/* Assume that DWI DTH defines the width of dispBuf * / 
codeBlock = [ eachNode do: 

] 

/* If 1st node then entry= (0, DWIDTH/2) */ 
If (eachNode-->isEqual(internalStruct-->accessNode(1 ))) 

(eachNode-->accessExternal())-->assignEntry((O,DWIDTH/2)); 
Else [ 

/* access previous node * I 
prevNode = ( eachNode-->accesslnternal() )-->retrievePrev(); 
/* extract entry coordinates * I 
xyPair = (prevNode-->accessExternal())-->retrieveEntry(); 
/* adjust y coordinate * I 
xyPair.y += ((prevNode-->accessExternal())-->displayAttr()).height + K; 
/* assign entry coordinates * / 
( eachNode-->accessExternal() )-->assignEnt ry(xyPair); 

] 

internalStruct-->eachNodeDo(codeBlock); 

4.3.1.3. Supporting Multiple External Representations 

The following two new classes extend the design of interactive data structures to allow for 

multiple external representations: 

[1] class MultiData, which is derived from class lnteractiveData, that associates a list of exter

nal representations of data with its single internal representation, and 

[2] class MultiStruct, which is derived from class lnteractiveStruct, that associates a list of 

display buffers with a single internal representation to hold its multiple external representa

tions. 
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Figure 4.11 depicts the specification of class MultiData. The multiple external representa

tions are maintained in variable displayPart which is defined as an object of class List. The 

accessExternal method provides access to the ith display in the list displayPart, and is suitably 

described by 

return(displayPart-->accessNode(i)); 

Class: MultlData 
Superclass: lnteractiveData 

Instance Variables: 
[a] lnternalData dataPart; /* inherited from lnteractiveData */ 

[b] List displayPart; /* a list of ExternalData objects, i.e., multiple 
external representations of data Part • I 

Methods: 
[1] accesslnternal(); r return dataPart */ 

[2] accessExternal(i); r returns ith external display; i.e., node i of 
List displayPart */ 

Figure 4.11: Class MultlData 

Finally, Figure 4.12 shows the specification of the MultiStruct class. Note that the lnternal

Struct variable is assumed to hold data elements which are objects of class MultiData. The 

description of methods nextDisplay and eachDisplayDo is similar to the descriptions of these 

methods for the lnteractiveStruct class. The only change is the use of 

accessExternal(i) 

to access the ith external representation of the data node. Any manipulation of the data struc

ture must update all of its external representations. Thus, the manipulator methods are redefined 

in class MultiStruct to change all the external images. As an example, the redisplay of all exter

nal representations within the addlnteractive method is described as follows. 



Class: MultiStruct 
Superclass: lnteractiveStruct 

Instance Variables: 
[a] Structure internalStruct; I* inherited from lnteractiveStruct */ 

[b] List dispBufs; /* a list of display buffers to hold the multiple 
external representations * I 

[c] List displayGeometry; r a list of geometry functions, one for each 
external representation * I 

Methods: 
[1] ACCESS OPERATIONS: 

- nextDisplay(iPos, aNode, alink); r returns entry coordinates within 
iPos display buffer of the display 
of alink neighbor of aNode * I 

- eachDisplayDo(iPos, codeBlock); r accesses each data node's iPos 
external representation and makes 
it perform code Block * / 

[2] SEARCH OPERATIONS: 
searchDisplay(iPos, xyPair); /* searches for a node whose iPos external 

representation contains xyPair */ 

[3] MANIPULATOR OPERATIONS: 
- addMulti(aNode, alink, aObject); r adds a new node and updates all 

its external representations */ 
- deleteMulti(aNode); /* deletes a node from the structure and updates 

all its external representations */ 

Figure 4.12: Class MultiStruct 

codeBlock = [ Integer i; 
i-->assignData(0); r i = o */ 
eachNode do: 

i-->increment 1 (); /* i = i + 1 * / 
eachDisplayDo(i, [eachDisplay do: 

eachDisplay-->display( each Node)]); 
] 

dispBuf s-->eachNode Do( code Block); 
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4.3.1.4. Using Interactive Data Structure Objects 

The following user interface objects that are involved in the presentation of information to 

the user necessitate the use of interactive data structures: name-mapping objects, the applica

tion specific information that is used to define the user interface specification mechanism, and 

menus. 

Name-mapping objects are used to define mappings between user defined representations 

and the internal representations of those entities that are interfaced to the user. Thus, name

mapping objects are merely instances of class lnteractiveData or MultiData, allowing for both a 

single representation or multiple representations of internal entities. 

The information provided by interactive applications that form the basis for defining an 

appropriate specification mechanism (the language, view and function tables) are merely 

instances of class List or Table. The data that describes the contents of each table is defined by 

an appropriate class which is derived from class lnternalData. 

User interfaces require the definition of menus to aid in function invocation and parameter 

specification. Menus maintain names of entities known to the application (function names, ser

vice names, and language entity names), which describe possible parameter choices. For per

sonalized user interfaces, menu entries correspond to name mapping objects that describe the 

user defined representations of internal entities. Menu objects are appropriately defined as 

instances of class lnteractiveStruct or MultiStruct which maintain name mapping objects in an 

appropriate structure (usually a list or tree (for hierarchical menus)). Figure 4.13 depicts an 

example of a user defined menu for function invocation. The menu supports three external 

representations to allow selection of the function according to its iconic representation, its asso

ciation with function keys and its textual representation. The Figure also depicts the objects 

involved in a typical interactive data structure that maintains multiple external representations. 

User defined name mapping objects correspond to the MultiData objects shown in the Figure. 

Each MultiData object is made up of an lnternalData object that defines the function name, and 
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a List object that maintains three ExternalData objects that are capable of generating the 

appropriate external images of the function name in each of the three display buffers. The Fig

ure highlights the boundaries of the external images generated by these ExternalData objects. 

The external representations are defined as a List object that maintains three DisplayBuffer 

objects. Finally, the menu itself is a MultiStruct object that maintains the internal representation 

along with its three external representations. 

4.3.2. Display Objects 

Display objects are concerned with interfacing information internal to the interactive system 

to the user. The information to be interfaced to the user is maintained as suitable external 

representations within display buffers. These external representations are displayed on appropri

ate physical output devices for viewing by the user. The transformation of the image within the 

display buffer to an image on the output device is achieved through windows and vlewports. 

Windows define rectangular regions within display buffers describing the extent of the image to 

be interfaced to the user. Viewports define rectangular regions on the physical output device 

wherein a portion (according to the viewport dimension) of the image defined by the window is 

depicted to the user. 

The design of display objects is defined by the following classes. 

[1] Class DisplayBuffer defines the characteristics of internal display buffers, providing the 

facilities to generate and maintain external images. 

[2] Class DisplayDevice defines the characteristics of the final display providing the facilities to 

maintain and manipulate viewports. 

[3] Class View defines the transformation of images from display buffers to output devices 

through windows and viewports. 

The following subsections describe the design of the three classes. 
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4.3.2.1. Display Buffer Objects 

It is appropriate to maintain the image within internal display buffers as a display file of 

graphical display commands, for the following reasons. 

[a] This approach allows any image, however large, to be maintained. 

[b] The image maintained within the display buff er must be transformed from world coordi

nates to device coordinates before being presented on the output device. It is more 

efficient to apply this transformation on display commands rather than on the actual image 

itself. 

[c] The actual image to be displayed is generated once before being presented to the user. 

[d] Changes to the image are accomplished by manipulating (that is, deleting and inserting) 

display commands. This approach is more efficient than erasing and redrawing images. 

[e] Most of the graphics kernels currently available provide image generation facilities only at 

the viewport level. 

Thus, the major concern of the DisplayBuffer class is to provide facilities for manipulating 

the display file of graphics commands and for extracting an appropriate portion of the image as 

defined by windows. The specification of class DisplayBuffer is depicted in Figure 4.14. Note 

that the graphics display commands supported will correspond to similar facilities provided by 

any graphics standard such as Core [74]. We have included only a few of the possible com

mands in Figure 4.14. The getWindow method will only return those display commands that are 

involved in generating the image within the window specification. In other words, getWindow 

clips the image to the specified window. 

4.3.2.2. Display Device Objects 

Each display device can have many viewports associated with it. All of these viewports 

may not be visible at the same time. Therefore display devices provide the facilities to maintain 

these viewports and their displays. The specification of the DisplayDevice class is shown in 



Instance Variables: 

Class: DlsplayBuffer 
Superclass: Object 

[a] List displayCommands; r the display file of graphics commands defining 
the external image*/ 

[b] XyCoords curXy; r the current (x,y) coordinates updated by every 
display command * I 

[c] Integer numEnt; r the number of entries in displayCommand */ 

Methods: 

(**** GRAPHICS PRIMITIVES ****) 

[1] moveAbs(xyPair); r set curXy to xyPair */ 

[2] moveRel(xyPair); /* add xyPair to curXy */ 

[3] lineAbs(xyPair); /* generate line command from curXy to xyPair */ 

[4] lineRel(xyPair); /* generate line command from curXy to (curXy+xyPair) */ 

[5] circle(xyPair,radius); r generate circle command*/ 

[6] text(aString); /* generate aString text command*/ 

(**** DISPLAY FILE MANIPULATION****) 

[7] clearDisplay(); r set numEnt to zero * I 

[8] deleteDisplay(aPos); r deletes aPos entry from displayCommands */ 

[9] addDisplay(aCommand,aPos); r adds display command aCommand at aPos 
position in displayCommands */ 

(**** WINDOW INTERFACE****) 

[1 O] getWindow(winEntry,winDim); r return list of display commands 
corresponding to window specification*/ 

[11] getCurXy(); /* return curXy * / 

Figure 4.14: Class DlsplayBuffer 
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Figure 4.15. Viewports are maintained in viewStruct which contains the following information for 

each viewport: the identifier of the viewport object, the dimensions of the viewport, a flag indicat

ing whether the viewport is visible or invisible, and the position of the viewport on the display 

device. Note that the DisplayDevice class defines display devices at a logical level. The actual 

association with a physical output device supported by the underlying operating environment is 

achieved by the physicalDev instance variable. Such a design strategy allows separate 

instances of DisplayDevice to handle different types of physical output devices. It also makes it 

easy to handle different emerging technologies by merely deriving subclasses from DisplayDev

ice to describe the characteristics of the newer technologies. 

Instance Variables: 

Class: DlsplayDevice 
Superclass: Object 

[a) String devName; /* the internal name of the display device*/ 
[b] XyCoords devDim; /* the lower right coordinates of the device, assuming 

that (0,0) is upper right coordinates */ 
[c] List viewStruct; /* a list of viewports maintained by the device*/ 
[d] Objld physicalDev; /* the identifier of the physical output device */ 

Methods: 
[1) identifyView(xyPair); r returns the top most viewport within whose 

display xyPair lies */ 
[2] clearArea(aView); /* clears the area of the display device affected by 

the display of aView */ 
[3] ctearDevice(); r erases the entire display * I 
[4] displayView{aView); /* display aView viewport */ 
[5] displayAII(); /* displays all viewports */ 
[6] viewlnvisible(aView); /* makes aView invisible and erases its display*/ 
[7] viewVisible(aView); /* makes aView visible and draws its display*/ 
[8] addView(aView,aPos); r adds aView at position aPos in viewStruct */ 
[9] deleteView(aView); /* deletes aView from viewStruct */ 
[10] circulate(aView); /* brings a View's display to the top*/ 

Figure 4.15: Class DisplayDevice 
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Viewports must be allowed to overlap to facilitate multiple viewports to be displayed simul

taneously and to allow the space allocated to viewports to intersect. To facilitate overlapping 

viewports, it is necessary to define an ordering of their displays. This ordering is defined as their 

position in the List object viewStruct. Thus, if the space occupied by two viewports A and B 

intersect, and the position of A in the list is less than that of B, then the display of B will hide the 

intersection portion of A's display. Figure 4.16 depicts four overlapping viewports and their 

corresponding position in list viewStruct. In the Figure viewA is the bottom most display while 

viewD is the topmost display. The following serve as an explanation of the methods provided by 

class DisplayDevice. 

[1] The identifyView method determines a viewport given an (x,y) coordinate on the device. 

This is done by a reverse traversal of viewports maintained in viewStruct, starting at the 

top most viewport. The viewport method identifyXy is called to determine whether xyPair 

lies within its display. This method returns the identifier of the viewport if found, NULL oth

erwise. 

[2] The clearArea method is used to clear the portion of the device that is affected by aView's 

display. This method returns the identifier of the bottom most viewport whose display was 

affected. Note that redisplay starts from this viewport. 

[3] The clearDevice method clears the entire display space. 

[4] The displayView method causes the display of viewports starting with aView and terminat-

ing with the top most viewport. This method is described as follows. 

r determine position of aView in viewStruct */ 
startPos = veiwStruct-->searchNode(aView); 

codeBlock = [eachNode do: 
eachNode-->displaylmage(); 

r call iterator method of viewStruct * I 
viewStruct-->eachNodeDo(codeBlock, startPos); 
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Li st vi ewStruct 

View A View B View C View D 

Position 1 Position 2 Position 3 Position 4 

Figure 4.16: Overlapping Viewports 
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where searchNode and eachNodeDo are methods provided by class List. 

[5] The displayAII method causes the display of all viewports. This is done in a similar fashion 

to displayView, setting startPos to 1. 

[6] The viewlnvisible method is used to erase a viewport's display, and is described by the fol-

lowing. 

r clear area affected by aView */ 
bottomView = clearArea(aView); 
I* set aView's visible flag to FALSE */ 
aView-->assignVisible(FALSE); 
/* redisplay affected area * I 
displayView(bottomView); 

[7] The viewVisible method makes a viewport visible and causes its display to appear on the 

output device. This method is similar to the viewlnvisible method, except that the visible 

flag is set to TRUE. 

[8] The addView method allows a viewport to be associated with an output device. The 

relevant information of the viewport is described in aView and the viewport is inserted at 

position aPos in viewStruct. Note that if the viewport is visible, then it must be displayed 

on the output device. The following describes the method. 

/* add aView to viewStruct */ 
viewStruct-->addElement(aPos,aView); 
/* if viewport is visible, display it */ 
If (aView-->retrieveVisible() == TRUE) 

viewVisible( a View); 

[9] The deleteView method causes a viewport to be disassociated from the output device. 

Note that if the viewport was visible, then a redisplay is necessary. Therefore, the method 

is described by the following. 

/* If visible, redisplay * I 
If (aView-->retrieveVisible() == TRUE) 

view Invisible( a View); 
I* delete from viewStruct * I 
viewStruct-->deleteNode( a View); 
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[1 O] The circulate method allows a viewport's display to be the top most display on the output 

device. This necessitates both a shift from its current position in viewStruct to the top most 

viewport, and a redisplay. The method is described by the following. 

r clear area affected by viewport's display */ 
bottomView = clearArea(aView); 
r delete viewport from current position */ 
viewStruct-->deleteNode(aView); 
r add viewport to last position * / 
viewStruct-->addElement(aView ,last); 
r redisplay * / 
displayView(bottomView); 

The effect of the circulate method is depicted in Figure 4.17 which shows the result of 

making viewB of Figure 4.1 6 the top most display. 

4.3.2.3. View Objects 

The View class defines the characteristics of viewports and their corresponding windows. 

Its specification is depicted in Figure 4.18. The relationships between display buffers, windows, 

viewports, and output devices in interfacing internal information to the user is depicted pictorially 

in Figure 3.1 O (presented in the previous chapter). Note that windows are defined by their entry 

coordinates within the display buffer and their corresponding width and height. The description of 

viewports necessitate two entry coordinates, one into the associated window and the other in 

the display device. Note that scrolling is achieved by moving the window relative to the virtual 

image defined within the display buff er. The new window is mapped onto the viewport for 

redisplay. The display of the viewport on the display device is made up of the viewport display, 

which produces the boundaries of the viewport, and the image display. 

The resizeWin method allows the redefinition of the window. Note that both the entry coor

dinates of the window within the display buffer and the dimensions of the window can be 

changed. As was pointed out earlier, resizing of windows is useful in obtaining the effects of 

zooming. Panning or scrolling within the image is achieved by changing the entry coordinates of 

the window in the display buffer, as defined by the moveView method. The resizeView method 
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Figure 4.17: Effect of Circulating View B 



Instance Variables: 

Class: View 
Superclass: Object 

[a] String viewName; /* the internal name of the viewport */ 
[b] Dimension viewDim; /* the width and height of the viewport */ 
[c] Dimension winDim; /* the dimension of the window*/ 
[d] XyCoords win Entry;/* the entry coordinates of the window in the 

display buffer*/ 
[e] XyCoords viewEntry; /* the entry coordinates of the viewport in the 

window*/ 
[f] XyCoords devEntry; r the entry coordinates of the viewport in the 

display device */ 
[g] Function dispView; /* the display routine that generates the viewport 

boundaries*/ 
[h] Object viewAttrs; /* the display attributes of the viewport used by 

dispView */ 
[i] Objld bufld; r the identifier of the associated display buffer*/ 
Li] Objld displayDev; /* the identifier of the associated display device*/ 

Methods: 
[1] resizeWin(xyPair,newDim); /* sets win Entry to xyPair and winDim to newDim*/ 
[2] moveView(xyPair); /* set viewEntry to xyPair */ 
[3] resizeView(newDim); /* sets viewDim to newDim */ 
[4] displaylmage(); /* generate viewport image on displayDev */ 
[5] identifyXy(xyPair); /* determines whether xyPair lies within the 

viewport's display*/ 
[6] viewToWin(xyPair); r transforms xyPair from device coordinates to 

world coordinates */ 

Figure 4.18: Class View 
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allows the dimensions of the viewport to be changed. The displaylmage method causes the 

display of the internal image on the display device. This is achieved as follows. First bufld's 

method getWindow(winEntry, winDim) is called to extract the display commands corresponding 

to the image defined by the window. This image is clipped to the viewport specification and 

transformed from world coordinates to device coordinates to generate the appropriate image on 

the display device. The other methods are self explanatory. 

Let us close this subsection by discussing how a user (x,y) coordinate input is translated 

into an internal object. The input coordinates are passed to the controlling DisplayDevice 
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object's identifyView method which returns the View object in charge of the (x,y) coordinates. 

The View object's viewToWin method is called to transform the coordinates from device coordi

nates to world coordinates. Finally, the lnteractiveStruct object that defines the interactive data 

structure which controls the display buffer is passed the world coordinates to determine the 

internal object within whose display the coordinates lie. 

4.4. Function Invocation and Parameter Specification 

The user interface component's main role is to control user interaction with the functions 

provided by the interactive software system. Therefore, the major and most crucial part of per

sonalizing user interfaces is the specification of how the user interacts with the system's func

tions. User interaction is described as function invocation, parameter specification, displaying 

results and the specification of the next action to be performed. The previous subsection 

presented the design of the classes concerned with displaying information to be interfaced to the 

user. This subsection defines the classes that control function invocation, parameter 

specification and action specification. 

To reiterate, the underlying model for function interaction defines application functions as a 

set of services that can process their parameters independently. To simplify the design without 

loss of generality, each service handles the specification of exactly one parameter. On invoca

tion, each service accepts the parameter value, an error buffer and a result buffer. These 

buffers are merely instances of class DisplayBuffer as presented in the previous subsection. On 

completion, the service returns the result of processing the parameter in one of the buffers and 

designates the next action to be performed. The contents of the returned buffer are presented to 

the user. The specification of the next action to be performed is either a service provided by the 

current function or quitting the function altogether. Control is therefore passed to the specified 

service or the user interface's main interaction function which controls the entire interaction pro

cess. The above interaction step is repeated by allowing the user to invoke a function provided 

by the main interaction function until the user quits the interaction function itself, thereby 



194 

terminating the session with the interactive system. 

Service interaction needs an interaction task that will be used for parameter specification. 

Interactive software systems are mainly concerned with three interaction tasks, selecting a 

choice form a set of alternatives, designating an (x,y) coordinate in a specified display buffer, 

and entering text. The user interface specification allows the personalization of parameter 

specification by describing how user input is translated into an appropriate parameter value 

required by the interaction task. The model for parameter specification is presented in Figure 

3.13 (in the previous chapter). The user specifies the physical Input device that is used to 

specify the parameter. The input signals returned by the physical input device are translated into 

internal actions or values by appropriately specified action tables. The action/value is pro

cessed by an appropriate Input technique which controls the input process. When the parame

ter has been input, its value is passed to a specified mapper. The mapper transforms user 

defined values to internal values. The transformed parameter value is then passed to the 

appropriate service by the interaction task. 

Therefore, function interaction is described by input device objects, action table objects, 

input technique objects, mapper objects, interaction task objects, service interface objects and 

function interaction objects. The following subsections present the object-oriented design of 

these components. 

4.4.1. Input Device Objects 

The lnputDevice class is mainly concerned with the physical aspects of user input; waiting 

for user input, sensing the input signal, and returning the input signal. The logical classification 

of input devices into valuators, picks, locators, keyboard and buttons is defined at higher levels 

by action table objects and input technique objects. 

The specification of the lnputDevice class is depicted in Figure 4.19. The methods provide 

facilities to activate and deactivate the input device, as well as to get the signal input from the 

user. The getlnput method waits for the user input and returns the signal to the caller. 



Class: lnputDevice 
Superclass: Device 

Instance Variables: 
[a] String in Dev; r the internal name of the input device * / 

[b] Objld outDev; /* the associated physical output device */ 

Methods: 
[1] activate Dev();/* activates the input device * / 

[2] deactivateDev(); /* deactivates the input device*/ 

[3] getlnput(); r waits for user input and returns the signal*/ 

Figure 4.19: Class lnputDevlce 

4.4.2. Action Table Objects 
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Action table objects are used to translate signals returned by physical input devices into 

actions or values operable on by the associated input technique object. The main facilities pro

vided by action table objects are allowing the definition of associations between input signals 

and the corresponding action/value, as well as searching for an action/value given an input sig

nal. Thus, action tables can be defined as instances of an appropriate data structure provided 

by the system. Figure 4. 7 shows the inheritance hierarchy of the classes that define the data 

structures supported by the MIMD UIDE. In most cases, action tables would be instances of 

class List. 

Following the model of parameter specification, three types of tables can be identified. 

[1] Coordinate Table: This table is used to maintain associations related to coordinate input. 

The actions necessary for coordinate input are LEFT, RIGHT, UP, DOWN and ENTER. 

The first four actions designate cursor movement, while the ENTER action designates the 

current cursor coordinates as the desired input value. The input signals that are associated 

with these actions are dependent on the physical input device and defined by the user. 
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[2] Character Table: This table maintains associations related to string input. As pointed out 

earlier, the keyboard is the sole input device for string input as all other simulations are 

awkward. Therefore, the associations define relations between keyboard keys and 

corresponding actions. The actions necessary for string input are the following: 

[a] MOVE: to move a character cursor UP, DOWN, LEFT or RIGHT; 

[b] ADD: to add a character to the string; 

[c] DELETE: to delete a character from the string; and 

[d] ENTER: to designate the completion of the string input. 

The input signals corresponding to these actions are user defined. The following presents 

the default associations: 

[a] t <--, -->, J.key signals for the MOVE action; 

[b] alphabetic, numeric, punctuation and white space key signals for the ADD action; 

[c] BACKSPACE and DELETE key signals for the DELETE action; and 

[d] RETURN and ENTER key signals for the ENTER action. 

Note that the action associated with each signal is a token which is a (type.value) pair that 

defines the type of the action and the value of the action. Thus, the action returned by the 

·t signal would be (MOVE.UP) while the action returned by the 'a' signal would be (ADD, 

'a'). 

[3) Key Table: This table is used to maintain associations related to function key input. Each 

physical input device designates the number of function keys supported. The associations 

define relationships between the function key signals and their corresponding actions. The 

actions will usually correspond to identifiers of internal objects (function objects, service 

objects, name mapping objects, etc.). 
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4.4.3. Input Technique Objects 

Input technique objects control the input aspect of interaction. Their major concerns are to 

control the input process and return the designated value to the associated interaction task 

object. The design strategy defines a class lnputTech which is the parent of all the input tech

nique objects supported by the system. The subclasses Coordinatelnput, Stringlnput and 

FuncKeylnput are defined to handle coordinate, string and function key inputs respectively. 

The specification of class lnputTech is depicted in Figure 4.20. It describes the instance 

variables common to all techniques and the inAction method that obtains the user input. Note 

that curAct is made up of two fields: Type and Value, which designate the type of the action and 

the corresponding value respectively. The inAction method is described as follows. 

Class: lnputTech 
Superclass: Object 

Instance Variables: 
[a] Objld viewld; /* the viewport associated with user input */ 
[b] Objld bufld; /* the display buffer associated with viewld */ 
[c] Objld outld; /* the associated display device object */ 
[d] Objld inld; /* the associated input device object */ 
[e] Objld actld; /* the associated action table object*/ 
[f] Signal curln; /* the current input signal*/ 
[g] Action curAct; /* the action associated with curln */ 

Methods: 
(1] inAction(); /* gets user input, sets curAct */ 

[2] processAction(); r processes the action in curAct */ 

Figure 4.20: Class lnputTech 



/* get input signal * / 
curln = inld-->getlnput(); 
/* search for curln in action table */ 
actNode = actld-->searchNode(curln); 
/*retrieve action from actNode, if found*/ 
if (actNode != NULL) 

cur Act = actNode-->retrieveAction(); 
else r ERROR * / 

curAct = ERROR; 

198 

The processAction method must be provided by any class derived from class lnputTech to con

trol the processing of input. It is defined in class lnputTech to force every subclass to define the 

method. 

Figure 4.21 depicts the specification of class Coordinatelnput. The processAction method 

is described as follows. 

Class: Coordinatelnput 
Superclass: lnputTech 

Instance Variables: 
[a] Objld cursorld; /* the associated cursor object*/ 
[b] Dimension curDim; /* the dimensions of the cursor*/ 
[c] XyCoords curEnt; r the entry coordinates of the cursor on the 

display device * / 
[d] String errMsg; /* the message indicating an error in input */ 
[e] Objld errBuf; /* the DisplayBuffer object in charge of error messages */ 
[f] Objld errView: /* the View object associated with errBuf */ 

Methods: 
[1] processAction(); /* the controlling method for coordinate input*/ 

Figure 4.21: Class Coordinatelnput 



for (EVER) 
{ 
r get input action * / 
inAction(); 
switch(curAct.Type) 
{ 

case MOVE:/* set entry coordinates of cursor*/ 
switch(curAct.Value) 
{ 

case LEFT: curEnt.X -= curDim.Width; break; 
case RIGHT: curEnt.X += curDim.Width; break; 
case UP: curEnt.Y -= curDim.Height; break; 
case DOWN: curEnt.Y += curDim.Height; break; 

/* redisplay cursor by calling moveCursor method */ 
cu rso rld-->moveCu rsor( cu rEnt, out Id); 
break; 

case ENTER: return(curEnt}; 

default:/* ERROR */ 
/* Add error message to display buffer*/ 
errBuf-->elearDisplay(}; 

errBuf-->text( errMsg}; 
/* Display errBuf * / 

out Dev-->displayView( errView); 
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The specification of the Stringlnput class is exactly the same as the Coordinatelnput class, 

except that it includes the following instance variables: 

[a] String inStr; r the input string */ 

[b] Integer curPos; r the current character position in inStr */ 

[c] Objld strBuf; /* the display buffer wherein inStr is displayed */ 

[d] Objld strView; /* the viewport associated with strBuf */ 

and its processAction method is described as follows. 



for (EVER) 
( 
I* get input action * / 
inAction(); 
switch(curAct.Type) 
{ 

case MOVE: /* set entry coordinates of character cursor*/ 
switch(curAct. Value) 
{ 

case LEFT: curEnt.X -= curDim.Width; curPos--; break; 
case RIGHT: curEnt.X += curDim.Width; curPos++; break; 

} 
/* redisplay cursor by calling moveCursor method*/ 
cursorld-->moveCu rsor( curEnt,outld); 
break; 

case ADD: /* add character to string * / 
inStr-->addCharacter( cur Act. Value); 
curPos++; 

/* echo print character * / 
strBuf-->text(curAct. Value); 

outDev-->displayView(strView); 
break; 

case DELETE: r delete current character*/ 
inStr-->deleteChar(curPos); 

/* redisplay string */ 
strBuf-->clearDisplay(): 
strBuf-->text(inStr); 

outDev-->displayView(strView); 
break; 

case ENTER: return(inStr); 
default: r ERROR * / 

r Add error message to display buff er * / 
errBuf-->clearDisplay(); 

errBuf-->text( errMsg); 
/* Display errBuf * / 

outDev-->displayView( errView); 
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The specification of class FuncKeylnput is also similar to class Coordinatelnput, except 

that it does not require any cursor related instance variables and that its processAction method 

is redefined as follows. 



4.4.4. Mapper Objects 

for (EVER) 
{ 
I* get input action * I 
inAction(); 
if (curAct.Type == ERROR) 
{ 

} 

I* Add error message to display buffer * / 
errBuf-->elearDisplay(); 
errBuf-->text( errMsg); 
/* Display errBuf */ 
outDev-->displayView( errView); 

else 
return(curAct.Value); 
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Mapper objects transform user input returned by lnputTech objects to internal values oper

able on by the interactive system. The design of the parameter specification aspect of user inter

faces requires three types of mappers, SelectMapper, PosltlonMapper, and TextMapper, for 

each of the interaction tasks supported by the MIMD UIDE. Each mapper provides the facilities 

to map all possible user inputs returned by lnputTech objects to values known to the interaction 

task objects. For example, SelectMapper accepts any of the three possible user inputs (coordi

nate, string and function key) and maps them to the corresponding selection, returning the 

choice to the interaction task object in control. Figure 3.13 (presented in the previous chapter) 

depicts the role of the three mappers in parameter specification. 

The class Mapper which is the root of the mapper inheritance hierarchy, specifies the pro

perties common to all mappers. The following instance variables are common to all mappers: 

[a] Objld viewld; r the viewport wherein user input is made*/ 

[b] Objld structld; /* the interactive data structure associated with viewld */ 

Class SelectMapper is derived from class Mapper and defines the following methods to 

convert user input into an internal entity. In the following, it is assumed that structld contains 

user defined name mapping objects which define at least two fields, lntName and ExtName, the 



internal and external names of selections, respectively. 

[1] xyToSel(xyPair); /* map xyPair to selection*/ 

described as follows: 

/* map xyPair from device coordinates to world coordinates*/ 
intXy = viewld-->viewToWin(xyPair); 
/* identify node in structld * / 
nodeld = structld-->searchDisplay(intXy); 
/* access internal name of nodeld and return it */ 
return( ( node ld-->access Internal() )-->retrieve lntName()); 

[2] strToSel(aString); r map aString to selection*/ 

defined as follows: 

/* search for node in structld with lntName equal to aString */ 
codeBlock = [eachNode do: 

] 

if ((eachNode-->accesslnternal())-->retrieveExtName == aString) 
return( eachNode); 

/* call iterator method of structld * I 
node Id = structld-->eachNode Do( code Block); 
I* access internal name of nodeld and return it */ 
return( ( node ld-->accessl nte rnal() )-->retrieve I ntName()); 

[3] lblToSel(lblld); r map label identifier to selection* I 

described similar to the strToSel method. 
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Class Posit:onMapper contains the definition of method extTolnt(xyPair) which accepts an 

(x,y) coordinate in device coordinates, calls viewld's viewToWin method to transform xyPair to 

world coordinates, and returns these transformed coordinates. 

The specification of the TextMapper class is depicted in Figure 4.22. The main aim of this 

class is to tokenize a string (usually a command) input by the user into internal entities. The 

string is broken down into components corresponding to internally known entities (or keywords) 

such as function name, service name, language entity name, etc. The tokenized string is main

tained in variable keyTknTbl as {keyword.value) pairs. The lexAnalyzer method performs the lex

ical analysis, returning the next token within inStr. This method uses lexStruct to determine the 



Class: TextMapper 
Superclass: Mapper 

Instance Variables: 
[a] String inStr; /* the input string to be tokenized * / 
[b] Objld tokenSet; r the structure that defines associations between 

keywords and tokens * / 
[c] Objld lexStruct; r the structure used by the lexical analyzer to 

tokenize inStr */ 
[d] Obj Id keyTknTbl; /* the structure which holds the result of tokenizing 

inStr as (keyword.value) pairs*/ 
[e] Token curTkn; r the current token defined as (Type.Value) pair*/ 
[f] Integer curPos; r the current position within inStr * / 

Methods: 
[1] lexAnalyzer(); /* the lexical analyzer*/ 

(2] tokenizeStr(aString); /* the controlling method that tokenizes aString */ 

Figure 4.22: Class TextMapper 

next token which is returned in curTkn. The method tokenizeStr is described as follows. 

inStr = aString; 
curTkn = lexAnalyzer(); 
while (curTkn.Type != END) 
{ 
r search for associated keyword for token type */ 
keyword = tokenSet-->searchNode(curTkn.Type); 
r add keyword and token value to keyTknTbl * / 
keyTknTbl-->addNode(keyWord,curTkn.Value); 

} 
return(keyTknTbl); 

4.4.5. Interaction Task Objects 
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The preceding sections have developed the classes that form the basic building blocks 

necessary to define interaction task objects. As depicted in Figure 3.13 (presented in the previ

ous chapter), interaction task objects control an lnputTech object and a corresponding Mapper 

object. The lnputTech object is in charge of getting user input. The user input is then passed to 

the Mapper object which transforms it into an appropriate internal value. This value is returned 
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to the service interface object to process. 

The design of interaction tasks defines class lnteractTask as the root of the inheritance 

hierarchy which describes the properties of interaction tasks. The instance variables defined by 

class lnteractTask are the identifiers of the associated lnputTech and Mapper objects, inTechld 

and mapld respectively. The method userlnput is used by all subclasses to get the user's input 

and is defined as 

userlnp = inTechld-->processAction(). 

The userlnp variable contains the user input. Class lnteractTask also defines a method proces

slnput (as subClassResponsibility) to force its subclasses to define an appropriate method to 

process the user's input. 

The specification of classes SelectTask, PositionTask and TextTask redefine the proces

slnput method to describe the manner in which the class processes the user's input. The 

SelectTask class defines an instance variable selType which identifies the type of selection; that 

is, one of COORDINATE, STRING and FUNC_LABEL. Its processlnput method is described as 

follows. 

r get user input * / 
userlnput(}; 
/* call appropriate mapping function * I 
switch (selType) 
( 

case COORDINATE: return(mapld-->xyToSel(userlnp)); 
case STRING: return(mapld-->strToSel(userlnp)); 
case FUNC LABEL: return(mapld-->lblToSel(userlnp)); 

} -

The PositionTask class defines its processlnput method as follows. 

r get user input * / 
userlnput(); 
r call mapping function*/ 
retum(mapld-->extTolnt(userlnp)); 



Finally, class TextTask's processlnput method is defined as 

I* get user input • / 
userlnput(); 
/* call mapping function*/ 
return( mapld-->tokenizeStr(userlnp)); 

4.4.6. Service Interface Objects 
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The Service class defines the properties of objects that interface with a particular service 

provided by the associated function. The main objective of service interface objects is to allow 

users to specify parameters through interaction task objects, call the appropriate service, and 

designate the next action to be performed. Figure 4.23 depicts the specification of class Service. 

Its serve method is appropriately described as follows. 

Instance Variables: 

Class: Service 
Superclass: Object 

[a] String serviceName; /* the internal name of the service */ 
[b] Function seviceld; /* the actual internal function providing the service*/ 
[c] Object parmStr; /* the actual parameter passed to service Id • I 
[d] Objld errBuf; /* the error buffer passed to serviceld */ 
[e] Objld infoBuf; /* the result butter passed to service Id */ 
[f] Objld errView; /* the viewport associated with errBuf */ 
[g] Objld infoView; /* the viewport associated with infoBuf */ 
[h] Action errAct; /* the action to be taken on error*/ 
[i] Action nextAct; /* the next action to be performed*/ 
[j) Objld taskld; /* the associated interaction task */ 

Methods: 
[1] serve();/* the controlling method that provides the service*/ 

Figure 4.23: Class Service 



r get parameter specified by user*/ 
parmStr = taskld-->processlnput(); 
r call actual service */ 
is Error = serviceld(parmStr,errorBuf ,infoBuf); 
r process error*/ 
if (isError == TRUE) 
( 
r display errorBuf * / 
errView-->displaylmage(); 
r return error action*/ 
return( err Act); 

} 
else 
( 

} 

r display infoBuf • / 
info View-->di splay Image(); 
r return next action */ 
return(nextAct); 
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Note that both err Act and nextAct designate the next action to be performed, which is either the 

identifier of a service provided by the function or quitting the function. 

4.4.7. Function Interaction Objects 

Function interaction objects control the services provided by functions of the interactive 

system. The specification of class Function is depicted in Figure 4.24. The serviceTbl lists the 

Instance Variables: 

Class: Function 
Superclass: Object 

[a] String funcName; r the internal name of the function */ 
[b] Constant quitCmd; r the action to quit the function */ 
[c] List serviceTbl; r a list of services provided by the function*/ 
[d] Obj Id curService; r the current service object in control • / 

Methods: 
[1] doService(); /* controls services of the function*/ 

Figure 4.24: Class Function 
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identifiers of the service interface objects associated with the function. The main method doSer

vice is described as follows. 

/* get first service */ 
curService = serviceTbl-->accessNode(1); 
for(EVER) 
{ 
r call service's serve method */ 
nextAct = curService-->serve(); 
/* if next action is QUIT, return */ 
if (nextAct == quitCmd) 

return; 
else 

curService = serviceTbl-->accessNode(nextAct); 

The overall inheritance hierarchy of the classes that define display objects and function 

interaction objects is depicted in Figure 4.25. 
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Figure 4.25: User Interface Class Hierarchy 



CHAPTER 5 

IMPLEMENTING A PROTOTYPE MIMD 
USER INTERFACE DEVELOPMENT ENVIRONMENT 

This chapter describes our experiences in implementing a prototype of the MIMD UIDE 

developed in the previous chapters. Initially, the major concern of this implementation phase was 

the quest for an ideal development environment. We realized that implementing an MIMD UIDE 

would be extremely difficult, if not impossible, without the right set of development tools. 

Our requirements for the development environment were straightforward: an object

oriented environment with an appropriate base graphics and windowing system (hereafter 

referred to as the windowing system). Specifically, the object-oriented environment should pro

vide the necessary support to develop the classes presented in the previous chapters. The win

dowing system needed for a MIMD UIDE should provide basic facilities for graphics input/output 

as well as tools to easily build higher level interface objects, such as menus. The development 

environment should not impose its own philosophy on data structures and the windowing kernel. 

Object-oriented development environments can be divided into two broad categories: true 

object-oriented environments and environments that extend conventional languages (such as 

Ada, Pascal, Lisp and C) with object-oriented features (e.g., classes, inheritance, etc.). We 

evaluated a typical environment from each of the categories in an attempt to determine the 

feasibility of using them to implement the MIMD UIDE prototype. Smalltalk [79, 87], currently the 

most popular true object-oriented environment, is highly interactive and includes state-of-the-art 

tools for object-oriented software development. C++ [94] is built as a preprocessor for the popu

lar C programming language [92], and provides conventional programming tools (editor, com

piler, linker, debugger) for software development. Smalltalk and C++ represent the two extremes 

209 
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among the existing environments for object-oriented software development. 

The next section contrasts these two environments with the aim of showing their strengths 

and weaknesses as suitable environments for developing the MIMD UIDE. This section substan

tiates our implementation plans, that is, attempting to modify Smalltalk's SIMD user interface 

philosophy to achieve a MIMD UIDE. 

The rest of the sections within this chapter describe experiences with modifying the very 

heart of the Smalltalk environment. The second section concerns implementing interactive data 

structures within Smalltalk. The following section is devoted to our attempts in modifying 

Smalltalk's Model-View-Controller user interface framework towards an MIMD framework. 

5.1. Contrasting Smalltalk vs. C++ 

In the previous chapter, the object-oriented philosophy was introduced in terms of the 

basic components: objects, classes, methods and message passing. Inheritance was also intro

duced as the basis for object-oriented software development. It is important to note that every 

object-oriented development environment must provide the above basic components as well as 

inheritaoce. 

There exist, however, other features and techniques that _determine the effectiveness of 

the support provided by an environment for object-oriented software development. Johnson and 

Foote (95] identify the following features and techniques as crucial to effective object-oriented 

software development: polymorphism, standard protocols, frameworks and tool-kits. Each 

of these features has a profound effect on the reusability and extendibility of the object-oriented 

system. The following discusses each of these in detail. 

Conventional typed languages, such as Pascal and C, are monomorphlc in the sense 

that every object (function, variable, constant, etc.) has a unique type. Statically typed languages 

impose a further restriction by requiring that the types of all objects be known at compile time. 

Such a strong restriction is a double-edged sword for software development. On one hand it 
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allows type inconsistencies to be discovered at compile time and can guarantee that executed 

programs are type consistent. Furthermore, strong static typing facilitates efficient code genera

tion and also imposes a strong discipline on programming. Conversely, static typing decreases 

flexibility and expressive power by prematurely constraining the behavior of objects. In contrast, 

polymorphlsm increases flexibiltty and expressive power by deferring the determination of the 

type (behavior) of objects to execution time. Thus, a polymorphic operation can be viewed as 

having multiple behaviors depending on the type of its operands [96]. A popular example of a 

polymorphic operation is sorting which should be applicable to a wide range of types. Thus, 

polymorphism facilitates the development of generalized abstract operations, which in turn pro

duce software products that promote extensibility and reusability. 

Through the years many techniques have been developed to allow limited polymorphism in 

conventional languages. Overloading function names allows the same function name to be 

developed for a large number of types. For example, the operation a + b would invoke an 

appropriate + function depending on the type of the operands. Furthermore, type coercion allows 

operations to be more polymorphic, that is, applicable to a variety of compatible types. Gener

ics [97] facilitate the definition of a template of a general operation which is not bound to any 

type. Specific instances of the general operation can be instantiated by providing type informa

tion. 

Polymorphism is the cornerstone for developing effective object-oriented software. Note 

that in an object-oriented system, operations are pertormed by message passing. Messages in 

turn determine the correct method (operation) in the receiver's class and invokes that method. 

This implies that messages are dynamically bound procedure calls. Thus message sending 

causes polymorphism. Another perspective of object-oriented polymorphism is that the type of 

an object is determined by the set of messages it understands, that is, its behavior. 

This general object-oriented polymorphism is an integral part of the development of 

interactive systems. Data structures depend on polymorphism to maintain and manipulate 
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heterogeneous objects. Windowing systems in general depend on polymorphism to allow 

different types of objects to be displayed. The only requirement in both cases is that the objects 

understand some common set of messages. 

The underlying basis of abstract types and hence object-oriented systems is the separation 

of the specification from the implementation of the object. The specification of the object defines 

its behavior or protocol. Developing generalized abstract behavior requires standard proto

cols. Objects with standard (or identical) protocols are interchangeable or plug compatible. 

That is, objects can be substituted or changed only with objects that have an identical protocol. 

Note that this is more general that allowing substitutions only between objects derived from simi

lar classes. Standard protocols allow complex classes to be built by interconnecting a set of plug 

compatible objects. Note that the MIMD UIDE is built as complex classes that interconnect com

patible objects. Furthermore, standard protocols promote a standard vocabulary for communica

tion between object-oriented programmers. This is extremely important in the realm of object

oriented programming, since it facilitates easy learning and reuse of classes. 

Abstract classes provide an important vehicle for representing standard behaviors or pro

tocols [95, 98]. Abstract classes were used extensively in the design of the MIMD UIDE 

presented in the previous chapter. The major characteristics of abstract classes are as follows. 

Abstract classes never define data (or instance variables) but the standard behavior (or 

methods) of classes that are derived from it. Note that abstract classes never have instances. 

However, concrete classes derived from it have instances (or objects). Thus, the roots of class 

hierarchies should always be abstract, while the leaf classes are always concrete. It is important 

to note that inheriting from an abstract class can never violate encapsulation. A good example of 

an abstract behavior is enumeration for data structures. A number of standard protocols can be 

defined for data structures dependent on an iterator. For example, Figure 5.1 shows standard 

protocols for enumeration provided by Smalltalk's Collection class that depend on a do: (itera

tor) method that is defined at the concrete subclass level. As an example, the iterator method 



enumerating 

do: aBlock 
self subclassRespons1b1l1ty 

collect: aBlock 
I newCollect1on I 
newCollection - self species new. 
self de [ each I newCollection add: (a8 1 Jck value: each)] 
1 newCollect1on 

detect: aBlock 
1 self detect a Block if None: [self errorNotFound] 

detect: aBlock lfNone: exceptionBlock 
self do: [ :each I (aBlock value: each) ifTrue: [Teach]]. 
rexceptionBlock value 

Inject: thisValue Into: binaryBlock 
I nextValue I 
nextValue - thisValue. 
self do: [ :each I nextValue - binaryBlock value: nextValue value: each]. 
TnextValue 

reject: aBlock 
Tself select: [ :element I (aBlock value: element) = = false] 

select: aBlock 
I newCollection I 
newCollection - self species new. 
self do: [ :each I (aBlock value: each) ifTrue: [newCollection add: each]]. 
tnewCollection 

Figure 5.1: Collection's Enumeration Protocol 
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for the concrete class Set is shown below: 

do: aBlock 

1 to: self baslcSlze do: 
[:Index I 

(self basicAt: Index) lsNII 
lfFalse: [aBlock value: (self baslcAt: Index)]] 
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Note that the abstract classes correspond closely to the conventional notion of program skele

tons which require certain parts to be defined to generate the concrete program. 

The discussion so far has concentrated on features and techniques for developing general 

abstract classes and their immediate descendents. However, effective software development is 

mainly concerned with developing general abstract designs. Thus, the design of software is usu

ally defined in terms of the major components and how they interact. The abstract design of an 

object-oriented software system is called a framework. Ideally, a framework is a set of abstract 

classes, one for each major component of the design. A set of messages defines the interfaces 

between the components. Two examples of frameworks, Macintosh's McApp and Smalltalk's 

MVC, were presented in Chapter 2 as examples of SIMD UIDEs. Note that frameworks facilitate 

reuse at the highest level of granularity and are therefore desirable. 

The effectiveness of a framework is dependent on the ease with which it can be (re)used. 

Frameworks can therefore be classified as white-box or black-box [95]. A white-box framework 

necessitates knowledge about how it is constructed (that is, its implementation), to be (re)used. 

A white-box framework provides the top level control and sequencing of activities and can there

fore be viewed as an extendible skeleton. Using white-box frameworks requires the creation of 

many additional (sub)classes to tailor the framework for the particular application. In contrast, a 

black-box framework only requires the provision of components that define the behavior specific 

to the application. The black-box framework uses these application specific components to 

automatically generate the object-oriented software. Thus, black-box frameworks require under

standing of only the external interface of the major components. It is important to note that there 
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are only a few examples of frameworks currently available. Most of these available frameworks 

are white-box and, as we shall show later, very difficult to use. 

Frameworks provide the basis for developing toolkits, which provide users with a collec

tion of high-level tools to automatically configure and construct new applications. The main 

advantage of black-box frameworks is that they provide an ideal foundation for developing tool

kits. Note that the MIMD UIDE is a toolkit that allows end users to configure and construct user 

interfaces for interactive applications. It is important to point out that currently there exist only a 

few instances of object-oriented toolkits. Two that have been discussed in the literature are Gla

zier [99] and ARK [100]. Both of these are built on top of white-box frameworks. 

5.1.1. The Smalltalk Object-Oriented Development Environment 

Smalltalk js the most popular true object-oriented environment. A true object-oriented 

environment implies an everything-is-an-object philosophy, message sending as late bound pro

cedure calls, and general polymorphism as described in the introduction to this section. Thus, an 

expression such as a + b is a message + with argument b that is sent to object a. Even simple 

arithmetic such as "3 + 4" is implemented as above. 

Smalltalk provides the standard programming syntax availc3:ble in most conventional pro

gramming languages, including assignments, conditionals and loops. However, everything in 

Smalltalk is implemented in an object-oriented manner. A particularly useful construct is the 

block object, which represents a deferred sequence of actions. For example, the block below is 

used within a loop to initialize the contents of an array. 

[Index <· Index + 1. 
array at: Index put: O]. 

A block is not executed immediately. The block must be requested to execute itself by passing it 

the message value. Furthermore, blocks can have a maximum of two arguments associated 

with it and can be passed actual arguments during execution by using the value: or 

value:value: messages. For example the following code defines a block that determines the 



size of any array, and is then used on a specific array instance. 

slzeAdder <·· [:array I total <·· total + array size]. 
total <·· o. 
slzeAdder value: #(ab c) 

where #(a b c) creates an array with values a, b, and c. 
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Loops are implemented as messages in separate classes. For example, a simple Pascal

like for loop is implemented in the Integer class by the method tlmesRepeat. Thus, the expres

sion 

4 timesRepeat: [amount<-- amount + amount] 

invokes the method timesRepeat in object 4's class passing it the block [amount <·· amount + 

amount] as an argument. The method tlmesRepeat: aBlock is implemented as 

I count I 

count <·· 1. 
[count <= self] 

whlleTrue: [aBlock value. 
count <·· count + 1 ]. 

Note that the whlleTrue: message is part of the protocol for blocks. 

The above discussion on blocks serves two purposes. One is to show the complete 

object-orientedness of the Smalltalk system. The other is to show the power of blocks as 

objects. Note that the MIMD UIDE design presented in the previous Chapter made extensive 

use of such a block concept. 

The standard Smalltalk environment consists of a large class hierarchy which includes 

classes that define its data structures and user interfaces. For example, Smalltalk-BO version 2.0 

has more than 250 classes with over 2000 methods. To use Smalltalk to develop object-oriented 

software requires a good understarding of these classes, since a large percentage of develop

ment time is spent in reusing or modifying existing classes. 
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As pointed out in Chapter 2, the Smalltalk environment imposes a consistent interaction 

style that Is depicted In Figure 5.2. Smalltalk is window oriented, presenting many simultaneous 

contexts. A three-button mouse is used exclusively for selection, usually from pop-up menus that 

depict the choices for selection. Keyboard input is used only to get names (for example for filing 

purposes), and for entering text within editors. Note that text editor functions, such as selecting 

text for replacement within an editor, is also done using the mouse. 

Smalltalk is equipped with state-of-the-art tools for object-oriented software development. 

Browsers allow navigation through the class hierarchy. Inspectors permit the state of instances 

to be inspected. Editors allow pictures and classes to be edited. Finally, debuggers allow mani

pulation of the runtime state. The system also provides functions that aid reusability. The 

senders function when applied to a method collects all methods in the system that send that 

method as depicted in Figure 5.3. This allows the implementor to determine how a particular 

method is used within the system. The Implementors function provides a list of all classes that 

implement similarly named methods, as shown in Figure 5.4. This allows the implementor to 

determine how standard protocols are implemented within the system. 

Thus, Smalltalk is definitely the state-of-the-art in object-oriented development environ

ments. The major drawback, however, in using Smalltalk to develop the MIMD UIDE is its 

enforcement of a consistent interaction style. Note that the MIMD UIDE requires a redesign of 

the entire foundation of Smalltalk including data structures, the graphics kernel, the windowing 

environment and the interaction style. Since Smalltalk's entire class hierarchy is based on its 

implementation of these base components, reusability is minimized. In fact, building an MIMD 

UIDE using a SIMD UIDE is futile since we are using an enforced consistent style to break the 

system to a more generalized style. Such an attempt is possible only if the SIMD UIDE is built 

on top of a very general abstract foundation. As we shall show later in this chapter, this is not 

the case in Smalltalk. 
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ChangelistYiew class open 
ChangeListYiew class recover ~ 

c copyView 

p 11 Crea te and schedule a list browser containing only the displayed items. 

e Accessed by choosing the menu command clone.• 

self controlTermina te. 

ChangelistYiew openOn: model filterCopy 

------------------------------.. ·. . 

Figure 5.3: Example of Sender's Function 
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Systa 

yello 

Integer + 
Colle LugePositivelnteger + 

Number + 

A+ ..... ..-
•Answer the sum of tht receiver a.nd the ugument, a.Number. 

Sum is a new Fr a.ct ion unless the argument is a. Float, in which 

case the sum is a Float.• 

I commonDenomina tor newNumer a. tor I 
( a.Humber isMemberOf: Fr action) 

ifTrue: 

[ denomina. tor • ~umber denominator 

ifTrue: [ 't(Fr action 

numerator: nu mer a tor + a.Number numerator 

denominator: denominator) reduced), 

commonDenominuor +- denominator 1cm: a.Number denominator, 

newNumerator .- numerator 

• ( commonOenomina tor / denominator) 

Figure 5.4: Example of Implementors Function 
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5.1.2. The C++ Object-Oriented Language 

C++ (94] extends the powerful software development programming language C [92] with 

object-oriented features. Bjame Stroustrop [94] aptly describes the power of both C and C++: 

A programming language serves two related purposes: it provides a vehicle for the pro
grammer to specify actions to be executed and a set of concepts for the programmer to 
use when thinking about what can be done. The first aspect ideally requires a language 
that is "close to the machine", so that all important aspects of a machine are handled sim
ply and efficiently in a way that is reasonably obvious to the programmer. The C language 
was primarily designed with this in mind. The second aspect ideally requires a language 
that is "close to the problem to be solved" so that the concepts of a solution can be 
expressed directly and concisely. The facilities added to C to create C++ were primarily 
designed with this in mind. 

In the last decade, C has become the language of choice for software development due to its 

simplicity, its closeness to the machine, its portability, and most importantly, its ability to directly 

access the powerful UNIX operating system [101]. Consequently, C++ has access to thousands 

of library functions and utility software code that have been written in C. 

Most C++ implementations are built as preprocessors that translate the object-oriented 

extensions into C text. The object-oriented features make C++ a superset of C, allowing C++ to 

be similar to C syntactically, and maintains its simplicity and power. The major disadvantages of 

C++ are the limited support for polymorphism and the conventional environment for developing 

object-oriented software. 

The ANSI standard C (on which C++ is built) is statically typed. This implies that sending a 

message to an object requires knowledge about the type of the function that implements the 

method, as well as the types of all the parameters. C++ supports polymorphism in two ways. 

The first is by overloading function names. Figures 5.5 and 5.6 show the specification and 

implementation respectively, of class Complex. Arithmetic on complex numbers is achieved by 

operator overloading. Another feature that supports both standard protocols and polymorphism 

is vlnual functions. A function defined as virtual in a class allows subclasses derived from it to 

provide their own version. The system guarantees that the correct function is applied according 

to the type of the object. As an example, an abstract class DisplayObject could provide a virtual 
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class complex { 
double realPart, imagPart; 

public: 

} 

complex{double x = 0.0, double y = 0.0) /*constructor*/ 
{ realPart = x; 

imagPart = y; 
} 

double real() {return realPart;} 
double imag() {return imagPart;} 

complex operator+ {complex&); /*overload*/ 
complex operator* {complex&); /*operators*/ 
complex operator+ (double&); /* if double is added*/ 

Figure 5.5: C++ Specification of Class Complex 



complex complex::operator + (complex& aComplex) 
{ double newReal, newlmag; 

} 

newReal = real Part + aComplex.real(); 
newlmag = lmagPart + aComplex.lmag(); 
return complex{newReal, newlmag); 

complex complex::operator * (complex& aComplex) 
{ double newReal, newlmag; 

} 

newReal = (realPart * aComplex.real()) -
(imagPart * aComplex.imag{)); 

newlmag = (realPart * aComplex.imag()) + 
(imagPart * aComplex.real()); 

return complex(newReal, newlmag); 

complex complex::operator + (double& aNumber) 
{ double newReal; 

} 

newReal = realPart + aNumber; 

return complex(newReal, lmagPart); 

Figure 5.6: C++ Implementation of Class Complex 
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function draw, indicating that all displayable objects must be able to draw themselves. Any class 

derived from DisplayObject is therefore forced to provide (define) their draw function. 

Note, however, that the above features do not support polymorphism between objects in 

different class hierarchies. This type of polymorphism is essential in developing heterogeneous 

data structures and windowing systems. The major problem is that C++ does not support 

dynamic binding. However, it is possible to simulate dynamic binding in C++ essentially by forc

ing each class to provide its own massager. Thus, invoking a method (function) of a class is 

achieved by invoking the massager and providing it with the name of the method, an argument 

list and a return list. The template of the messager is provided below. 

void massager (char * methodName, void ** argumentllst, void ** returnllst) 

( Int methodlndex = "Search for methodName In Class's list of methods", 
If ("Not Found·) then 

return error, 
switch (methodlndex) { 

case METHODONE: 
"Extract the parameters needed for the method from 
argument List and cast It to appropriate type", 

"Call method with arguments", 
"Cast returned value Into (void *) and attach to 
returnllst", 
break, 

case METHODTWO: ........ 

Note that (void *) is a typeless pointer and is extremely useful in deferring the determination of 

type to execution time. Its use as a general argument list is similar to the standard C facility of 

using argv and argc to accept program arguments for the main function. The messager concept 

was used successfully in developing a prototype implementation of the data structure of the 

MIMD UIDE. 

Another deficiency in C++ is that it does not support the powerful Smalltalk concept of 

blocks of statements as objects. As is evident from the design of the MIMD UIDE, such a 
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concept is extremely useful in the design of generalized abstractions. In C++, such blocks were 

implemented as stand alone functions and passed as parameters. 

The only class that is provided with C++ is Stream, which implements type secure, flexible 

and efficient methods for standard (non-graphical) input and output. This classless property of 

C++ is extremely attractive for developing an MIMD UIDE since there are no biases imposed by 

the underlying system. It is also important to note that C++ provides no graphics/windowing 

support. This is again an advantage as far as developing the MIMD UIDE is concerned 

because it allows any available graphics/windowing system to be used with the system. 

Finally, the development environment of C++ is conventional, that is, an editor, compiler, 

linker, and symbolic debugger. There are no special tools/functions provided to support object

oriented programming. While this is clearly a negative incentive, it is important to point out that 

in the recent OOPSLA'88 conference, numerous vendors were exhibiting C++ development 

environments that were similar to Smalltalk. 

5.1.3. Discussion 

The crucial aspect of implementing the MIMD UIDE according to the design presented in 

the previous chapter is the underlying graphics and windowing system. An ideal 

graphics/windowing system provides generalized components (e.g., input/output devices, points, 

text, windows, etc.) and most importantly does not impose any style of interaction. It should also 

provide facilities to build higher level components (e.g., menus, editors, icons, etc.). 

Smalltalk is therefore extremely unsuitable as a development environment for the MIMD 

UIDE. Its base graphics/windowing system imposes a strict adherence to a consistent style, 

which is reflected throughout the class hierarchy. Moreover, the underlying graphics kernel is 

specific to this style and does not support generalized components. Thus, creating a MIMD 

UIDE using a Smalltalk-like SIMD environment requires the replacement or modification of core 

classes which would invalidate a large percentage of the existing class hierarchy. In fact, as 

shall be shown later, such massive reorganization is extremely difficult and is not supported by 
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current object-oriented technology. 

C++ on the other hand is classless and provides no support for graphics and windowing. It 

provides the base facilities for object-oriented development and allows any graphics/windowing 

system to be attached to it. This makes C++ a double-edged sword for the development of the 

MIMD UIDE. On one hand, it presents an ideal environment since it imposes no biases. On the 

other hand, building an entire MIMD UIDE from scratch has many disadvantages. 

The major disadvantage is in finding an ideal graphics/windowing system. Most of the 

currently available graphics/windowing systems impose their own biases, and are not general 

enough to implement a MIMD UIDE according to the design presented in the previous chapter. 

In fact, many graphics/windowing systems were evaluated including Starbase [102], Meta Win

dows [103], and Domain Graphics [104]. None of these systems were found to be suitable as a 

base for the MIMD implementation. In Chapter 2, however, it was noted that X windows [105] is 

gaining rapid popularity as a standard due to its generality. X may prove to be an ideal choice 

for the underlying graphics/windowing system for the MIMD UIDE. 

The other disadvantage of using C++ is its conventional development environment. Such 

an environment makes a large object-oriented implementation extremely tedious and time con

suming, mainly because of the lack of support for rapid prototyping, reusability and interactive 

debugging. 

We realized that developing the MIMD UIDE in C++ requires a substantial investment in 

building the base line classes. With our limited experiences in building object-oriented software 

systems, we felt that much more could be learned by attempting to modify an existing, fully 

operational UIDE. Furthermore, if the fully operational UIDE employed a SIMD framework then 

its modification would present an invaluable basis for determining the effectiveness of our MIMD 

UIDE design. 

Smalltalk's Model-View-Controller (MVC) user interface framework is currently the most 

popular and most effective UIDE. We briefly presented the MVC framework in Chapter 2 as an 
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example of a SIMD UIDE. Attempting a modification of the MVC framework presented a golden 

opportunity to contrast and evaluate our MIMD UIDE. The major goals of this attempt were: 

[a] to understand the complexity of building object-oriented user intertace development 

environments, 

[b] to determine the characteristics of an ideal graphics/windowing system suitable for an 

MIMD UIDE implementation, 

[c] to contrast MIMD UIDEs with SIMD UIDEs, and 

[d] to determine the strengths and weaknesses of the MIMD UIDE design. 

The rest of this chapter discusses the efforts in making Smalltalk an MIMD UIDE. 

5.2. The Interactive Data Structures Prototype 

Smalltalk's data structure hierarchy is shown in Figure 5.7. Class Collection provides the 

standard protocol for all data structures, as shown in Figure 5.8. Class Collection is an abstract 

class, and some of its methods (such as iteration (do:), adding elements (add:) and removing 

objects ( remove:ifAbsent:)) must be provided by the subclasses derived from it. 

Figure 5.9 shows a map for distinguishing between the various data structures provided by 

the system. Note that all the data structures provided are essentially lists, and the differences 

between them depends on the implementation of the data elements or the structure. Smalltalk's 

data structure hierarchy is not suitable as a basis for interactive data structures within the MIMD 

UIDE because of the following reasons. 

[1] The major advantage of using an object-oriented implementation is the separation of the 

implementation from the specification. The user of a list structure should not be concerned 

with the internal representation of a list, e.g., whether an array or linked list. Thus, the Col

lection class is not general enough to model the well established conventional abstract 

data structures [106]. Note that the user of Smalltalk's data structure hierarchy must have 

intimate knowledge of the implementation of the internal representations. 
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[2] The data structure hierarchy provides no support for other types of structures, such as 

trees and graphs. The class hierarchy does not have support for queues or stacks, even 

though these are just specialized lists. The incorporation of queues or stacks within the 

hierarchy requires a new subclass that specializes each of the concrete structure classes. 

[The abstract Collection classes are SequencableCollection and ArrayedCollection.] This 

again indicates a malformed general data structure abstraction. 

[3] The data structure hierarchy provides no support for external representations. Its main 

purpose is to model the internal representation of the basic data structures based on lists. 

[4] There are other indications that the Collection hierarchy needs reorganization. For 

instance, consider the size method which is used to return the size of the data structure. 

This method is implemented in class Collection as follows. 

I tally I 
tally <·· 0. 
self do: [:each I tally <·· tally + 1]. 
Atally 

This indicates that the default size for each structure is the number of elements it contains. 

However, all of Collection's immediate subclasses (that is, SequencableCollection, 

Arrayed-Collection, Bag, MappedCollection and Set) redefine the size method. Since Col

lection is an abstract class, its default size behavior is never used in any data structure 

objects. Taking this inconsistency one step further, the abstract class SequencableCollec

tion redefines the size method as subClassResponslblllty forcing all of its subclasses to 

provide a size method. Note that SequencableCollection is ensuring that none of its subc

lasses can access the default behavior defined in Collection. However, 

SequencableCollection's subclass Linkedlist provides a size method that is exactly the 

same as the default behavior in Collection!! This simple example of inconsistency shows 

the need for reorganizing Smalltalk's data structure hierarchy. 
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The interactive data structure prototype was therefore developed parallel to the Collection 

class. It is important to note that it was necessary to use Smalltalk's data structures in the 

implementation. The prototype followed the design exactly. Smalltalk's graphics kernel provided 

the basis for developing the external representations. These classes were used as follows. 

[1] The XyPair type used throughout the MIMD design was replaced by Smalltalk's Point 

class. The protocol for class Point is shown in Figure 5.10 Note that the methods match 

the requirements for XyPair perfectly. 

[2] The Dimension type used throughout the MIMD design was replaced by Smalltalk's Rec

tangle class. The protocol for class Rectangle is shown in Figure 5.11 Again there was an 

exact match between Dimension and Rectangle. 

[3] The external representation of the interactive data structures was developed using classes 

from Smalltalk's graphics kernel. Smalltalk images are represented as instances of class 

Form. An example of a Form is presented in Figure 5.12. A Form has a rectangular struc

ture that defines its width and height, and a bitmap which stores the pattern of pixels that 

define the contents of the form. Any graphical object, including text, can be displayed on a 

Form. Forms can be combined into a single larger Form as depicted in Figure 5.13. Since 

the basic representation of Forms is a bitmap, many sophisticated operations can be per

formed. Forms can be copied between source and destination Forms with different combi

nation rules (replace, over, under, etc.), can be clipped to a particular rectangular area, 

and can be filled with patterns defined by a mask Form. 

Forms were used to represent the DisplayBuffer class within the MIMD UIDE design. 

Thus, the external representations of interactive structures are maintained as Forms. Since 

Forms can be made up of smaller Forms, it is appropriate to represent the display of each 

ExternalData object as a Form. These ExternalData Forms are then displayed on the 

DisplayBuffer Form to create the external representation of the interactive structure. 

Finally, the displayGeometry instance variable was implemented as a Smalltalk block 



Point instance protocol 

accessing 
X 

x: aNumber 

y 
y: aNumber 

comparing 
< aPoint 

< = aPoint 

> aPoint 

> = aPoint 

max: aPoint 

min: aPoint 

point functions 
dist: aPoint 

dotProduct: aPoint 

grid: aPoint 

normal 

transpose 

truncatedGrid: aPoint 

Answer the x coordinate. 

Set the x coordinate to be the argument, 
aNumber. 

Answer the y coordinate. 

Set the y coordinate to be the argument, 
aNumber. 

Answer whether the receiver is above and to 
the left of the argument, aPoint. 

Answer whether the receiver is neither below 
nor to the right of the argument, aPoint. 

Answer whether the receiver is below and to 
the right of the argument, aPoint. 

Answer whether the receiver is neither above 
nor to the left of the argument, aPoint. 

Answer the lower right corner of the rectan
gle uniquely defined by the receiver and the 
argument, aPoint. 

.Answer the upper left corner of the rectangle 
uniquely defined by the receiver and the argu
ment, aPoint. 

Answer the distance between the argument, 
aPoint, and the receiver. 
Answer a Number that is the dot product of 
the receiver and the argument, aPoint. 

Answer a Point to the nearest rounded grid 
modules specified by the argument, aPoint. 

Answer a Point representing the unit vector 
rotated 90 deg clockwise. 
Answer a Point whose x is the receiver's y and 
whose y is the receiver's x. 
Answer a Point to the nearest truncated grid 
modules specified by the argument, aPoint. 

Figure 5.10: Point Class Protocol 
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Rectangle instance protocol 

accessing 
topleft 

topCenter 

topRight 

rightCenter 

bottom Right 

bottomCenter 

bottom Left 

leftCenter 

center 
area 

width 
height 
extent 

top 

right 

bottom 

left 

Answer the Point at the top left corner of the 
receiver. 

Answer the Point at the center of the receiv
er's top horizontal line. 

Answer the Point at the top right corner of 
the receiver. 

Answer the Point at the center of the receiv
er's right vertical line. 

Answer the Point at the bottom right corner of 
the receiver. 

Answer the Point at the center of the receiv
er's bottom horizontal line. 

Answer the Point at the bottom left corner of 
the receiver. 

Answer the Point at the center of the receiv
er's left vertical line. 

Answer the Point at the center of the receiver. 

Answer the receiver's area, the product of 
width and height. 

Answer the receiver's width. 

Answer the receiver's height. 
Answer the Point receiver's width @ receiver's 
height. 
Answer the position of the receiver's top hori
wntal line. 

Answer the position of the receiver's right 
vertical line. 
Answer the position of the receiver's bottom 
horizontal line. 
Answer the position of the receiver's left ver
tical line. 

origin: orig,nPoint corner: cornerPoint 
Set the points at the top left corner and the 
bottom right corner of the receiver. 

origin: originPoint extent: extentPoint 
Set the point at the top left corner of the re
ceiver to be originPoint and set the width and 
height of the receiver to be extentPoint. 

testing 
contains: aRectangle 

containsPoint: aPoint 

intersects: aRectangle 

Answer whether the receiver contains all 
Points contained by the argument, aRectangle. 

Answer whether the argument, aPoint, is 
within the receiver. 
Answer whether the receiver contains any 
Point contained by the argument, aRectangle. 

Figure 5.11: Rectangle Class Protocol 
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object which contained the necessary instructions to calculate the entry coordinates of 

each ExternalData's display Form on the DisplayBuffer Form maintained by the lnterac

tiveStruct (or MultiStruct) object. 

5.3. The User Interface Prototype 

As presented in the survey of SIMD UIDEs in Chapter 2, Smalltalk provides a Model

View-Controller (MVC) framework to develop its consistent user interfaces. This section is 

devoted to a detailed discussion of the MVC framework with the aim of showing how it could be 

modified to realize a MIMD framework. 

The discussion is divided into three major parts. The first completes the description of 

Smalltalk's graphics kernel by presenting how input/output devices are handled. A detailed 

description of the MVC framework and its weaknesses are then presented. Finally, modifications 

to the MVC framework are presented that generalize it to a MIMD framework. 

5.3.1. Smalltalk's Graphics Kernel 

The previous sections have introduced most of the important classes that make up 

Smalltalk's graphics kernel. The major pieces missing from the discussion are graphical input 

and output. Input is concerned with how input devices (mouse, keyboard, tablet, etc.) are han

dled, as well as how user input through these devices is modeled. Output is mainly concerned 

with how graphical output is presented on the display device. Each of these categories is dis

cussed be low. 

A three-button mouse is Smalltalk's primary input device. All other input devices are 

relegated to secondary status. In fact, interacting with Smalltalk without a three-button mouse 

can be slow and extremely difficult. This was most evident when the University of Central 

Florida acquired a Smalltalk site license for its Local Area Network (LAN). Most of the PCs on 

the LAN were not equipped with mice and users found it very difficult and cumbersome to 

interact with Smalltalk through keyboards, and eventually gave up their efforts in using Smalltalk. 
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In contrast, the Computer Science department runs Smalltalk on single SUN workstations that 

are equipped with three-button mice. These machines are probably the most popular within the 

department. 

Smalltalk's (over)use of the mouse is reflected throughout the system design and imple

mentation. The consistent interaction style imposed by Smalltalk designates the left or red but

ton exclusively for selection, the middle or yellow button for invoking a pop-up menu of choices 

(of functions or methods) that are context dependent (that is, associated with the active view or 

portion of display within which the cursor lies), and the right or blue button for global functions 

available from any context (in Smalltalk this corresponds to window functions, such as move, 

frame, open, close, etc.). 

The keyboard is used only when it is impossible to use the mouse, that is, for entering 

text. Even within text editors, the mouse is used to invoke all editor functions (such as selecting 

blocks, copying, pasting, etc.). The keyboard is used only to enter text within the editor. 

The implementation of input devices is defined by three classes in Smalltalk: lnputSensor, 

lnputState and KeyboardEvent. Class lnputSensor represents the top level interface to the input 

devices in the system. The system creates a global instance Sensor which represents all user 

input devices, that is, the mouse and keyboard. Its protocol is divided into three categories: 

mouse, keyboard and cursor. The mouse behavior allows for the determination of 

[a] the current coordinates of the mouse (mousePoint), 

[b] the state of the buttons (redButtonPressed, blueButtonPressed, yellowButtonPressed, 

noButtonPressed, anyButtonPressed), and 

[c] the ability to wait for some user action on the mouse (waitButton, waitNoButton, and 

waitClickButton). 

Note that lnputSensor provides a polling mechanism to detect mouse location. Thus the cursor 

always follows the mouse. 
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Keyboard actions are event initiated. Each key press generates a keyboard event that is 

represented as an instance of class KeyboardEvent. Basically, each keyboard event is 

represented by a key character (the character representation of the key stroke), as well as a 

meta state which indicates whether a special key was also pressed (e.g., control and shift 

keys). Keyboard events are maintained in an event queue within class lnputState which 

represents the state of the input devices. The keyboard behavior within lnputSensor provides for 

[a] determining whether the keyboard has been pressed (keyboardPressed), 

[b] getting the character representation of the key that was pressed (keyboard) [note that this 

does not include the meta state], 

[c] determining whether the control or leftshift key were pressed (ctrlDown, leftShiftDown) 

[note that methods are not provided to determine other meta states such as right shift and 

alternate keys], 

[d] accessing the keyboard event itself (keyboardEvent), and 

[e] manipulating the keyboard event queue (flushKeyboard, keyboardPeek). 

Finally, the cursor behavior allows for accessing and setting 

[a] different types of cursor shapes (e.g., up, down, left and right arrows, crosshair, hand, 

etc.), and 

[b] the current cursor position (cursorPoint and cursorPoint:). 

Thus, Smalltalk's implementation of input devices is extremely biased towards the mouse, 

in keeping with its consistent style of interaction. It is important to note that the mouse location 

can be determined by an event-based mechanism (through behavior provided in class Input

State). However, since this behavior is not supported by primitives (similar to assembly 

language routines in conventional environments), the interaction becomes awkward and cumber

some. Note too that the keyboard behavior is not general, and is biased to its limited use within 

Smalltalk's interaction style. In trying to implement action tables (that is, tables that associate 
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keyboard characters with mouse actions), we discovered that printable keys perform differently 

than non-printable keys (e.g., function and arrow keys). Associating mouse actions with printable 

keys allowed the cursor to move smoothly, while non-printable keys produced a jerky motion. 

The display screen is represented by a single global instance Display of class DisplayS

creen. DisplayScreen is a subclass of Form to distinguish it from all other forms. Class Form 

has already been presented in the previous section. 

5.3.2. Smalltalk's Model-View-Controller User Interface Framework 

The Model-View-Controller (MVC) framework is used throughout Smalltalk to develop con

sistent user interfaces. The MVC framework was briefly described in Chapter 2 as an example 

of a SIMD UIDE. This section presents the MVC framework in greater detail. To reiterate, the 

MVC framework comprises the following three components: 

[1] the Model represents the application domain, 

[2] the View displays the state of the model, and 

[3] the Controller handles user interaction with the application and manages flow of control. 

This three-way factoring of user interfaces is conceptually general enough to model any style. 

However, its realization in Smalltalk does not enforce this generality and is specific to the con

sistent user interface style of the system, resulting in a loose SIMD UIDE framework. 

The discussion that follows starts by describing the MVC framework from the general con

ceptual viewpoint, and moves progressively toward the concrete Smalltalk implementation. It is 

important to point out that the MVC framework is supported by very little documentation. The 

only major reference is a cookbook for the MVC that is published by Xerox PARC [78]. The 

ensuing discussion is mainly based on actual use of the MVC implementation within Smalltalk 

and discussions with other Smalltalk programmers. 

The MVC framework is supported by three abstract classes: Model, View and Controller. 

Conceptually a MVC triad contains an instance of a Model along with numerous view/controller 
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pairs. Models maintain their associated views and controllers as dependents but do not have 

direct access to them. Views must be able to access their associated model to obtain the appli

cation state for display. Controllers need access to both the associated model and view. They 

access the model to invoke its functionality and the view to facilitate interaction with the user. A 

basic interaction cycle is depicted in Figure 5.14. The user interacts with the active controller to 

specify the action to be performed. The controller notifies the model to perform the desired 

action. The model performs the action which (probably) changes the application state. The 

model then broadcasts a message to all its dependents that it has changed. Views could access 

the model to inquire about the new state to update their displays. 

The rest of this section is organized as follows. The first subsection presents the three 

abstract classes: Model, View and Controller. The next subsection presents some user interface 

components that aid in building Smalltalk user interfaces. The most important component is 

menus which form the major interaction technique used consistently throughout Smalltalk. The 

other tools that are described include Prompters to elicit textual input (such as names), 

Confirmers to elicit boolean (yes/no) input, and Lists that model a list of textual strings and form 

the basis for selection from a list of items. The following subsection presents complete MVC 

examples with the aim of showing how to build the MVC triad and.more importantly to show how 

the MVC framework works. This section also includes a brief description of the system's main 

view and controller classes (StdSystemView and StdSystemContoller) which provide the basis 

for developing MVC triads. The final section discusses the strengths and weaknesses of the 

MVC framework. 

5.3.2.1. The Model, View and Controller Abstract Classes 

The only behavior required of models in the MVC framework is the ability to have depen

dents and to broadcast changes to these dependents. This behavior is implemented in class 

Object, the root of the entire class hierarchy. In fact, some Smalltalk implementations do not 

provide a separate Model class. The protocol of the Model class provides the following behavior: 
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Figure 5.14: Basic Model-View-Controller Interaction Cycle 
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[1] Manipulating dependents, that is the ability to access, add and remove dependents 

(dependents, addDependent:, removeDependent:) which are maintained as an 

OrderedCollection. 

[2] Broadcasting change messages to dependents to indicate that the state of the application 

has changed. This behavior is defined in class Model by the protocols changing and 

updating. However, the methods provided within these protocols (e.g., broadcast:, 

broadcast:with:, changed:with:, etc.) are never used in any of the existing MVC triads 

within Smalltalk. One of the reasons is that none of the existing MVC frameworks use the 

powerful concept of associating multiple view/controller pairs with the model. All of the 

MVC frameworks use the changed:aParameter or changed methods provided in class 

Object. These methods send an update message (update:aParameter or update) to all the 

dependents maintained by the Model. View and Controller classes provide their own 

specific versions of update methods. 

The View class is an abstract class that manages the display of structured pictures. A 

structured picture is organized as a hierarchy of views. This implies that all views, except the 

root or top view, have a superVlew, and can have subVlews (maintained as an OrderedCollec

tion). A view along with its subviews are treated as a single unit in many of class View's 

methods. For example, displaying a view causes its subviews to be displayed as well. Each view 

maintains its own coordinate system. To allow mappings between coordinate systems, each 

view has two transformations associated with it. The local transformation allows for mapping 

between the view and superview coordinate systems. The dlsplayTransformatlon allows for 

mapping between the view and display screen coordinate systems. All transformations are 

instances of class WindowTransformation. 

The region of the display screen occupied by the view is called its dlsplayBox, an 

instance of class Rectangle. The displayBox can include a border which is defined by its width 

(borderWidth, an instance of Rectangle) and color (borderColor, an instance of Form). The 
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region of the displayBox excluding the border is called the view's boundlngBox (a Rectangle). 

Finally, a view has an associated window (a Rectangle) which defines the visible part of the 

view, and a vlewport (a Rectangle) which defines the view's area in its superview. Note that the 

view does not maintain a display file or display buffer of its image. The actual image is created 

by subclasses of View. 

A view is connected to its model and controller by actually maintaining them as instance 

variables. Therefore, a view has complete access to its associated model and controller, and 

more importantly must know about their behavior. Note that this is in sharp contrast with the 

model which does not require any knowledge about the behavior of its view/controller pairs, and 

accesses them through a well defined interface. 

The abstract View class's protocol and methods are depicted in Figure 5.15. Besides 

operations that access various aspects of the view, the behavior of views allow for manipulating 

its subviews (adding and removing), displaying the view (display, deemphasizing, clearing, indi

cating, scrolling), transforming the view, and testing whether the view area contains a particular 

point. 

Controllers coordinate the associated model and view with the input devices and handle 

interaction. Class Controller provides the abstract behavior for all controllers. It contains three 

instance variables: model to access the associated model, view to access the associated view, 

and sensor (an instance of lnputSensor) to access the associated input device. 

Before we present the behavior of controllers, it is important to understand the scheduling 

mechanism. A global object ScheduledControllers, an instance of class ControlManager, is the 

scheduler. On creation, each controller is added to ScheduledControllers list of controllers. Only 

one controller and its associated view are active at any given time. The scheduling of the active 

controller is achieved by the method searchForActiveController, which asks each controller if it 

wants control (implemented as method isControlWanted in Controller). The default behavior for 

wanting control is implemented in Controller as determining whether the associated view has the 



51111■ llrow1;;J 

ICemtl-Mttnodl 
1Cem1t-,r-o01nu Controlllr ini!ldn-,..u, 

1,1:"ci-=,1r1:r.':-,c:c~~~-r.,,, ... =.,::c,.,..::z--------f~==·-- =.::..tntll:tlll 
.. urlaca•l<ipport t-'~.:;:..::."'~---~-----~ ICCt1S 
.. ,.rl&et·IC- Willf-W1gTr1nsf11f1Htlon sullVlew ICCUS 
.. ,.rlace·i..111 -----·--· c;,on,,.... ICCl1J 
.,,trl1ce·Tu1 llulc contral s..,..,ai 
l11ttrlac1·Tu1Eoltor .....,_ ICCISS 
.. ttrl&e1·lllenu1 vitwpG,t IC0111 
.,t1rl1c:1•~1/Con1lnl ctspl&y tt1 1ccass 
11urt1c1•lrow,er i.et eccus 
.,t,rlacr.,1pec1or M\llew in~ifti 
.,,trl1c:1·°""'9tr MYltw rMO-Ant 
.. ltrl&e.11-f,lt Molli .,,..yr,g 
.,,ert101·Tru1cn,t tllE■,lluizint 

.,,ertaca-~jecu t-------------1tl1play trusfllraltlon 
111ert1e1-c111nge1 I tra•sfllrwng 
.,,trfaee•Teniinal ns11rc1 cl&Js Dordng 

CHti.lln·,..1M' IIIRIIIIN ,_,.) 
('tndftt' ... 11,,,dbillt:) 

('- ICCHI' ■--1 •llll) 
('s...,V- acce,s' kT111Yllw rwsatM\IIN,, ~ t~V•w) 

('1.alVltw ICCIII' llrst&.tVlew IUtSullllltw u\lle..Con11lnlng: 1UD\lltw1) 
('cOlllr..., ICCl11° CllltrOIV conuolltr: CllftlitConttofler dll11ilControNarClu1 ■odel:controllar.) 
("btsle COft[ral 11..-nc,• lublliewWl'ringCOllt,01) 

('--• ICCIII' "11UltWlftdow IIINtWlnaow wlnotw wlftfow:) 

('ril•PG" acc11t' filw,art) 
f.,pily NI acca,s' ...,._vec,, ca■putt!_.,gllo, ,bpi1y801 ~1110lspl1y8o1) 

('IOCl &cell!' IILocLld ISUNocuf loel WMCk) 

('subVn lnMnint' 1ddSIIOVllw: allc!Sj)\llew:tbo-ft: UdSuh'i.-r.lli9n:wirn: UdSuoVII~ 1ddSl.tVitwffCycic: &dtlSIAIVltwirtbordl~ ~Vlew:tol.eftOt. 

1Heu11Vllw,t~~10t &llc!lubVitw~: lddllull'-'IN:whlow:vltwpon: ln1artllub\litw-.&IIOl'S lnstn&e\llewNflll"clfCydic:) 
('subVltw ,_..,.. l'll11MSul!Vllw: rt111116uiVltws ,..--,~.,View re■ov.su&Vllw: reMvl&ubVlews) 

C'••pllylnf' -.,io 11Jp11y9onllr dispt1ySl'9: OiJpl1ySue\llew1 dospilyVitw) 

('Hf ... slzint' tla(.,,.aslN d1f111p1111lzel!U0Vllw1 de!11p11&sln\lltw 1"9'11slzt tllpll&sillM'w'llws l■llf\tslnVltw) 
('fispily lnllSfWW>ldln' ~yTraM,.,,.: tllpllyTrus'-"Nt.., lnver,tOlspl&yTraftffllfl'l!) 

('trlNfatlliftt' lllp.'Wltll. scllt:tranJlatitn: sclltlly: transf9nl: tr&MfiorNtioll transtonHtlln: trwattlly; wlndtw:-ritwport;) 
c~· ~ w,arColar: barll~111t11 ~c11: IIOnllrWl4tN.•ttrlflt:toixbottOtt lmldlCGlar tnsldeColor.J 
('scnllftg'--y.) 
('cll&rlll( ...., div. cllll1MIIII Clltnuidt:) 

C""-&tillf' fllSII lliflll!t) 
("upt&tlftt' --t• .,.,.,, 
('pnnte' ~tlOl,p&yTrantflnl&tNIII C'OllpUtlttHl0ispl&ylox fllContrgle, 91t't'lewplrt gttWiNow ilspact '1Cydc: ll(Translffll&tillt N!Wlndow: ~;) 

Figure 5.15: View Protocol and Methods 

245 



246 

cursor ( Implemented by method viewHasCursor which is defined as view contalnsPolnt: Sen

sor cursorPolnt). 

The basic control sequence protocol, defined in method startup, is described by invoking 

the three methods controllnltlallze, controlLoop and controlTermlnate. The controllnitialize 

and controlTerminate methods are redefined in subclasses of Controller to allow for specialized 

initiation and termination behavior. For example, most controllers highlight their associated view 

on initialization and unhighlight the view on termination. The controlLoop method describes the 

actual controlling mechanism as follows: 

[self lsControlActlve] whlleTrue: [Processor yield. self controlActivity]. 

Therefore the method controlActivity is carried out as long as the controller is active. The default 

control activity is to pass control to the controller associated with a subview of the current view, 

allowing the lowest subview in the hierarchy to gain control. This method, controlToNextLevel, 

is implemented as follows: 

laVlewl 
aVlew <·· view subVlewWantlngControl. 
a View - - nll lfTrue: [a View controller start Up]. 

The subViewWantingControl, defined in class View, determines if ~my of its subviews wants con

trol as follows: 

sub Views reverse Do: 
[:aSubVlew I aSubVlew controller lsControlWanted lfTrue: rasubVlew]]. 

Anll 

Finally, the default behavior for a controller being active (method isControlActive) is that the view 

has the cursor and the blue button is not pressed. Note that the blue button is used exclusively 

to initiate global windowing functions (such as moving, framing, collapsing) and is handled by a 

system controller, StdSystemController, which will be described later. 
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5.3.2.2. Smalltalk User Interface Components 

The Smalltalk system includes a large number of classes that provide the components to 

rapidly build standard user interiaces. Most of these classes are subclasses of the three abstract 

classes: Model, View and Controller. Figures 5.16, 5.17 and 5.18 present an overview of the 

entire hierarchy for the three abstract classes respectively. Each Figure presents the class 

names and the instance variables they define. Note the convention that is used consistently to 

name related classes involved in a MVC triad. The View's name is the Model's name con

catenated with the word View, and the controller's name is the model's name concatenated with 

the work Controller. For example, Switch, SwitchView and SwitchController form a MVC triad 

that implement buttons or switches which can be on or off. 

The major component of the standard Smalltalk interface that is defined independent of the 

MVC abstraction are menus. All menus within the Smalltalk interface are dynamic and pop up 

at the current cursor position when activated by a specific button press on the mouse. The 

menu component hierarchy allow for both simple and hierarchical menus as shown in Figure 

5.19. 

Class PopUpMenu is the root of the menu component hierarchy, and provides the entire 

behavior for pop-up menus. Typically a pop-up menu consists of a list of items (strings) from 

which the user makes a selection. The style of interaction with pop-up menus is standardized. 

The pop-up menu is activated by a mouse button press. On activation the pop-up menu displays 

its items in a rectangular region on the screen with a selection highlighted. The user uses the 

mouse (with the button still depressed) to move over the desired selection. As the mouse moves 

over any selection, it is highlighted. When the button is released over a highlighted selection, the 

pop-up menu returns the selection and removes its display from the screen. Therefore class 

PopUpMenu bundles the model (the list of items), view (the rectangular area on the screen), 

and controller (the standard mouse behavior for menus) into a single class. 
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context receiverlnspector 
contextlnspector shortStack sourceMap 
sourceCode processHandle 
methodlist methodName 
class selector instance context 
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filter removed filterlist filterKey 
changeDict doltDict checkSystem 
field list 
actionBlock actionTaken 
projectWindows projectChangeSet 
projectTranscript projectHolder 
entryStream 
displayProcess serialPort localEcho 
ignorelf characterlimit 
on onAction off Action 

connection 
class badText processHandle 

Figure 5.16: Model Class Hierarchy 



View -=--

BinaryChoicaViaw 
DisplayTextViaw 
FormManuViaw 
FonnView 

formHolderView 
lconViaw 
ListView 

model controller superView subViews 
transformation viewport window 
displayTransformation insetDisplayBox 
borderWidth borderColor insideColor 
bounding Box 

rule mask editParagraph centered 

rule mask 
displayed Form 
iconText isReversed 
list selection topDelimiter 
bottomDelimiter lineSpacing isEmpty 
emphasisOn 
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ChangelistView 
SelectionlnlistView itemtist printltems oneltem partMsg 

initialSelectionMsg changeMsg listMsg 
menuMsg 

StandardSystemView 

AClockView 
BrowserViaw 
FilalistView 
GClockView 
lnspectorViaw 
NotifierView 

StringHolderView 
FilllnTheBlankView 
ProjectView 
TextCollectorView 

TerminalView 
Switch View 

Boolean View 

labelframe labelText 
islabelComplemented savedSubViews 
minimumSize maximumSize iconView 
iconText lastframe cacheRefresh 
myProject date 

cacheform cacheBox myProject date 

contents 
displayContents 

complemented label selector 
keyCharacter highlightform arguments 
emphasis On 

TextView partMsg acceptMsg menuMsg 
Code View initialSelection 

OnlyWhenSalactedCodaView sele~tionMsg 

Figure 5.17: View Class Hierarchy 



model view sensor 
250 Controller 

BinaryChoiceController 
FormMenuController 
MouseMenuController redButtonMenu redButtonMessages 

yellowButtonMenu 
yellowButtonMessages blueButtonMenu 
blueB uttonMessages 

AClockController 
BitEditor 
form Editor 

GClockController 
Icon Controller 

ProjectlconController 
Screen Controller 
Scroll Controller 

listController 
LockedlistController 

ChangelistController 
SelectionlnlistController 

Paragraph Editor 

TextEditor 

clockProcess 
scale squareform color 
form tool grid togglegrid mode 
previousTool color unNormalizedColor 
xgridOn ygridOn toolMenu 
underToolMenu 
clockProcess 

scrollBar marker 

paragraph startBlock stopBlock 
beginTypelnBlock emphasisHere 
initialText selectionShowing 

StringHolderController islockingOn 
ChangeController 
FilllnTheBlankController 

CRFilllnTheBlankController 
Proj ectControll er 
TextCollectorController 

Terminal Controller 
TextController 

CodeController 
AlwaysAcceptCodeController 
OnlyWhenSelectedCodeController 

StandardSystemController status labelform viewform 
NotifierController 

NoController 
SwitchController selector arguments cursor 

Figure 5.18: Controller Class Hierarchy 
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restore pay 
garbage collect 

e,clt ro et 

ete 
uncMtete 

move 
hardcopy 

ardeopy below 
save 

Figure 5.19: Examples of Simple and Hierarchical Menus 
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Class ActionMenu is a subclass of PopUpMenu that adds the ability to associate selectors 

with the list of items. Therefore, when the user makes a selection from the list of items, its 

associated selector is returned. This allows methods to be associated with choices, and can be 

performed immediately when its corresponding item is selected. Class HierarchicalMenu com

pletes the menu component hierarchy. It allows entire pop-up menus to be associated with the 

list of items. 

The use of pop-up menus within the MVC triad is achieved by class MouseMenuController. 

This class provides the behavior for associating pop-up menus along with a corresponding set of 

messages to be connected to the three mouse buttons. The messages correspond to methods 

to be performed when the corresponding item is chosen. The control activity behavior is defined 

as follows: 

sensor redButtonPressed & vlewHasCursor lfTrue: rself redButtonActlvlty]. 
sensor yellowButtonPressed & vlewHasCursor lfTrue: ["self yellowButtonActlvlty]. 
sensor blueButtonPressed & vlewHasCursor lfTrue: ["self blueButtonActlvlty]. 

For example, the blueButtonActivity method is defined as follows: 

I Index I 
blueButtonMenu -- nil 

lfTrue: [index <·· blueButtonMenu startup. 
Index -= O lfTrue: [self menuMessageRecelver 

perform: (blueButtonMessages at: Index)]] 
lfFalse: [super controlActlvlty]. 

This method checks to see if a menu has been attached to the blue button. If not, it calls its 

parent's control activity. Otherwise, the pop-up menu associated with the blue button takes con

trol (by sending it the message startUp), and the user makes a selection. If a selection is made 

then the receiver of the menu is asked to perform the corresponding method stored in the mes

sage list for the blue button. 

Prompters and confirmers are MVC triads that are used to elicit simple user input. They 

are created (and take control immediately) by providing the prompt string and the action to be 

taken on selection. They return a string value and a boolean value, respectively. Figure 5.20 
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shows examples of prompters and confirmers. 

Another important MVC triad component provides the ability to make a selection from a list 

of strings. This is the MVC counterpart of the pop-up menus presented earlier, and can be 

viewed (sic!) as providing facilities for static (always visible) menus. They are implemented by 

the triad classes List, ListView and ListController, and are used extensively throughout Smalltalk. 

Figure 5.21 shows Smalltalk's system browser which allows the user to browse (and manipulate) 

the class hierarchy. The four views at the top of the browser are ListViews. The bottom view 

shows the code associated with the method redButtonActivity (defined in class ListController) 

which describes the behavior for selecting an item from the list. Note that the code does not 

include scrolling behavior. The scroll bar appears automatically when the cursor moves into the 

view. 

So how is scrolling achieved? Controllers of views that can be scrolled are defined as 

subclasses of class ScrollController (a subclass of MouseMenuController) which provides 

Smalltalk's standardized scrolling behavior. Whenever a scrollable view's controller is activated, 

its controllnitialize method displays a scroll bar at the left of the view. The scroll bar represents 

the length of the information in the view. The marker or slider inside the scroll bar depicts the 

amount of the information that is currently shown relative to the total length. ScrollController pro

vides the behavior for scrolling by taking control whenever the cursor is inside the scroll bar 

area, as defined in its controlActivity method: 

self scrollBarContalnsCursor 
lfTrue: [self scroll] 
lfFalse: [super controlActlvlty]. 

Scrolling is achieved either by predefined (up/down) increments, or by grabbing the marker and 

moving it to the desired position. The calculation of the marker's extent is done by dividing the 

associated view's window (the portion being shown on the screen) height by its boundingBox 

(the total area of the view) height. Note that no provision is made in Smalltalk for horizontal 

scrolling. 
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Figure 5.20: Examples of a Prompter and a Confirmer 
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Figure 5.21: The System Browser 

255 



256 

5.3.2.3. MVC Examples 

The root of any MVC triad is an instance of class StdSystemView, which along with its 

associated controller, an instance of class StdSystemController (a subclass of MouseMenuCon

troller), define the behavior of the window system. StdSystemView provides an (empty) window 

with a label on top. MVC triads are created as subviews of a StdSystemView. StdSystemView 

contains the behavior for manipulating the label, the view as a whole (for example, moving, 

reframing, and collapsing), and the size of the view on the display. Its associated StdSystem

Controller defines the default behavior for invoking windowing functions associated with the blue 

button of the mouse. The specifics of the behaviors of both these system classes will be 

described in the following examples. 

The general (undocumented) rule for building a MVC triplet is to build the model, and then 

the view, and then the controller. The view is built before the controller to allow the functionality 

of the triad to be tested immediately. The following presents two complete examples of MVC 

triads. 

The Counter example is the simplest demonstration of a full MVC triad. Very simply, the 

model is a numerical value that can be incremented/decremented, the view shows the value of 

the counter, and the controller implements a pop-up menu allowing the user to increment or 

decrement the counter's value. The model for the counter is shown in Figure 5.22 and is self 

explanatory. The CounterView class is defined as a subclass of View and is responsible for 

displaying the state of its model, Counter. The definition of CounterView is shown in Figure 5.23. 

It includes a method displayView for displaying the value maintained in its associated Counter 

model. Note the update: method which is used to update the view when the model changes. 

The defaultControllerClass defines the type of controller for the view and is automatically 

created when the view is created. The CounterController class is depicted in Figure 5.24 and its 

behavior is self explanatory. The only aspect missing from the definition is how the MVC triplet 

is created. This is shown in Figure 5.25 and is implemented as a class method in CounterView. 



Model subclass: #Counter 
instanceVariableNames: 'value ' 
classVariableNames: '' 
poolDictionaries: '' 
category: 'Demo-Counter' 

Counter methodsFor: 'lnHlallze-release ' 
lnHlallze 

·set the initial vah.Je too.· 
self value: O 

Counter methodsFor. 'accessing ' 
value 

• Answer the current value of the receiver.· 
ivalue 

value: aNumber 
•initialize the counter to value aNumber. • 
value +- aNumber. 
self changed "to update displayed value• 

Counter methodsFor: 'operations' 
decrement 

•subtract 1 from the value of the counter.• 
self value: value •1 

Increment 
•Add 1 to the value of the counter.• 
self value: value + 1 

Counter class methodsFor: 'Instance creation ' 
new 

• Answer an initialized instance of the receiver.• 
isuper new initialize •return a new instance of the receiver-

Figure 5.22: The Counter Model 
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View subclass: #CounterVlew 
instanceVariableNames: • • 

· dassVariableNames: ' ' 
pool Dictionaries: ' ' 
category: 'Demo-Counter ' 

CounterView methodsFor: 'dlaplaylng ' 
dlaplayVlew 

•Display the value of the model in the receiver's view.• 
I box pos displayText I 
box +- sett insetDlsplayBox. •get the view's rectangular area for displaying" 

•Position the text at the left side of the area, 
1/3 of the way down• 

pos +- box origin + (4 @ (box extent y / 3)). 
"Concatenate the components of the output 

string and display them" 
displayText +- ('value: ', sett model value printString) asDlsplayText. 

displayText dlsplayAt: pos 

CounterView methodsFor: 'updating · 
update: aParameter 

·s1mp1y redisplay everything.· 
self display 

CounterView methodsFor: 'controller access • 
defauHControllerClass 

•Answer the class of a typically useful controller.• 
f CounterController 

Figure 5.23: The Counter View 
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MouseMenuController subclass: #CounterControllar 
instanceVariableNames: • • 
classVariableNames: ' • 
pool Dictionaries: ' • 
category: 'Demo-Counter • 

CounterController methodsFor: 'lnltlallze-release ' 
Initialize 

·initialize a menu of commands for changing the value of the model. • 
super initialize. 
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self yellowButtonMenu: (PopUpMenu labels: 'lnaement\Decrement' withCRs) 
yellowButtonMessages: #(increment decrement) 

CounterController methodsFor: menu messages ' 
decrement 

"Subtract 1 from the value of the counter.• 
self model decrement 

Increment 
•Add 1 to the value of the counter.· 
seH model increment 

CounterController methodsFor: 'control defaults ' 
lsControlActlve 

'7ake control when the blue button is not pressed.· 
fsuper lsControlActive & sensor blueButtonPressed not 

Figure 5.24: The Counter Controller 
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CounterView class methodsFor: 'Instance creation ' 
open 

•Open a view for a new counter.· 
•seled and exearte this comment to test this method" 

·eounterView open.· 

I aCounterVlew topVlew I 

aCounterVlew +- CounterView new 
model: Counter new. 

aCounterView borderWidth: 2. 
aCounterVlew insideColor: Form white. 

topView +- StandardSystemView new 
label: 'Counter'. 

topView minirrumSlze: 80@40. 

topView addSubView: aCounterView. 

topView controller open 

·create the counter display view■ 
•a new CounterVlew instance" 
"With a Counter as Its moder 

"give it a borderWidth• 
"and white insides· 

ihe top-level view"-
•a new system window■ 
iabelled 'Counter' • 

•at least this big" 
•actd the counterView as a subView• 

·start up the controller" 

Countar 

valua: O -----.... -4 lncramant 
acramant 

Figure 5.25: Creating the Counter MVC 
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Figure 5.26 shows the interfaces between the MVC components for this example. 

The basic steps of the MVC triad creation is as follows [note that the ordering of the steps 

is not relevant]. 

[1] Create the views of the MVC triad with their corresponding model. 

[2] Create a top view, an instance of StdSystemView. 

[3] Attach each view of the MVC triad as a subview of the top view, defining the layout of 

these subviews within the top view. 

[4] Perform any initializations. 

[5] Schedule the top view's controller. 

The last step invokes the open method defined in StdSystemController which allows the user to 

define the area for the view, displays the top view (and its corresponding subviews), and then 

assigns itself as the active controller with the control manager, ScheduledControllers. It is impor

tant to note that the MVC framework does not enforce where the MVC creation should take 

place. In fact, the Smalltalk system has examples of the creation process done by the model 

(e.g., Filelist's openOnPattern:), the View (e.g., ProjectView's open:) and the controller (e.g., 

FormEditor's createOnForm:). Conceptually, the creation message should be carried out within 

the view, because it has direct access to both the model and the controller, and more impor

tantly because the creation message mainly concerns setting up the view within a top StdSys

temView. 

The next example is a simple editor to manipulate the contents of a list of strings. Such an 

editor could be used, for example, to maintain a list of message names for browsing. The MVC 

triad for such an editor is implemented by classes ListHolder, ListHolderView and ListHolderCon

troller. The ListHolder model contains an ordered collection that represents the list. The func

tionality of the editor is defined by standard editing facilities such as undo, edit, copy, cut and 

paste. Many of these functions implicitly use a Macintosh style clipboard. The class definitions 
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value: 0 - ·model: a Counter 
dependents: --- Vscontroller: a CounterController 

OrderedCollection (a CounterView)•-- superView: a StandardSystemView 

Counter · / 
subViews: OrderedCollection O 
insetDisplayBox: 421@34 comer: 569@104 
borderWldth: 2@2 comer: 2@2 
borderColor: a Form 

model: a Counter0 insideColor: a Form 
view: a CounterView-
yellowButtonMenu: a Po8iUpMenu Counter View 
yellowButtonMessages: increment decrement) 

Interaction devices sensor: an lnputSensor~ 
l User \ CounterController 

·~ 

(mouse, keyboard) I 

Figure 5.26: Interfaces of the Counter MVC 
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for the model, view and controller are presented in Appendix C. 

5.3.2.4. Weaknesses of the MVC Framework 
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The major strength of the MVC framework is that it provides a large number of prefabri

cated components that allow designers to very rapidly create standardized Smalltalk user inter

faces. It is also extremely flexible (in the confines of building consistent interfaces) because any 

of the classes can be modified or extended very easily. However, its weaknesses far outshadow 

its strengths. The rest of this section discusses its weaknesses. The discussion starts with the 

weaknesses of the MVC framework in general and gradually describes specific weaknesses. 

The major drawback of using the MVC framework is that it requires intimate knowledge of 

the structure and implementation of all its components. As was pointed out in the introduction to 

this chapter, this makes the MVC framework a white-box framework. This drawback is made 

worse by the lack of decent documentation. This implies a large learning curve, which is exacer

bated by the numerous undocumented and non obvious protocols, guidelines and subtle rules 

that are necessary to gain a complete understanding of the MVC framework. Note that the 

recent OOPSLA conference included an entire tutorial dedicated to MVC programming, support

ing the difficulty of mastering it. 

As a white-box framework, the MVC is poorly organized and designed. Kent Beck [107] 

puts it aptly: 

The people who wrote It had an Incomplete understanding of what their code was 

supposed to do and where It would fit with the rest of the system. 

Conceptually, the MVC framework is a powerful concept. However, its realization and extension 

is extremely weak. 

The major criteria for a well-designed white-box framework is as follows [95]. 

[1] The major components of the design are represented within the framework as abstract 

classes which have well defined interfaces between them. 
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[2] The entire hierarchy that implements all aspects of the framework should be narrow and 

deep, that is, the abstract classes should be the roots of the entire class hierarchy. 

[3] All the subclasses should adhere to the major principles of the overall design abstraction. 

The following shows that the MVC framework does not meet any of the above criteria. 

The Model abstract class is the weakest link in the design. It does not provide any 

behavior or structure for implementing applications. The only behavior that is provided is for 

maintaining the associated view/controller pairs as dependents which is used to broadcast appli

cation state changes. This behavior, however, defines a particular aspect (change manage

ment) of the interface between the model and its associated view/controller pairs. 

The View abstract class provides a well defined behavior for its interaction with the screen 

and its subviews. However, it does not define any behavior or structure for its interaction with 

the associated model. The manner in which the view interacts with the model is defined in sub

classes of View, thereby losing the generality of the design abstraction. More importantly, class 

View does not define any interface between itself and the corresponding model. This interface 

is achieved by maintaining the model object itself as an instance variable. This is a poorly 

designed interface between components of a framework, and is the major reason why each view 

subclass is mainly concerned with defining this interface with the model. Note that the sub

classes of View are implementing an application behavior, that is, how the external representa

tion of its state is created. These subclasses require an intimate knowledge of the actual imple

mentation of the model which is highly undesirable in abstract components. The model, on the 

other hand, requires no knowledge of its corresponding views. 

The interface between the view and its controller is much better. The defaultController

Class method is a good example of automatic connection between components, as it allows a 

view to instantiate an appropriate controller to control itself. Views only provide behavior to 

return their controllers and never actually access the controller itself. However, the view actually 

maintains its controller object as an instance variable and therefore could potentially access the 
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internals of the controller. This is again an example of a poorly designed interface between com

ponents. 

The same philosophy is also used in defining the interfaces between the controller and its 

associated view and model. Once again, controllers are forced to have intimate knowledge of 

structure and implementation of the view and model. The major weakness of the Controller class 

(and of the entire MVC framework in general) is that the three-button mouse is bound as the 

interaction device very early in the design. This does not provide for any other devices to be 

used. 

The entire class hierarchy that implements the user interface components basically falls 

under the three abstract MVC classes. The major exception is the implementation of pop-up 

menus. Class PopUpMenu is a subclass of Object, and includes its own view and controller. It is 

interesting to note that static menus, implemented by the MVC triplet List, ListView and ListCon

troller, present the same functionality as pop-up menus. The only difference is that one is static 

(always visible) and the other dynamic. Thus, their only difference is in the viewing facilities. 

Since displaying a view causes all its subviews to be displayed, class PopUpMenu is defined 

separately only because of the inability of class View to dynamically display some of its sub

views. 

The major goal of a framework is to divide a design into a specific number of components 

which carry out well defined functions within the design. Therefore the framework should enforce 

where each function of the overall design should be performed. The conceptual functionality of 

the abstract MVC classes is not enforced in their implementations. This non-enforcement of 

functionality within each component is probably the gravest problem with the effectiveness of the 

MVC framework. This major problem with the MVC framework is best described by Sam Adams 

[108]: 

A simple analogy of MVC is a computer system where the Model is a database manager, 
the View is a terminal display, and the Controller is the application program running the 
whole show. While this analogy is useful at times to explain the basic divisions of labor in 
MVC, it presents a poor example of the fact that in Smalltalk, the "application program" is 
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typically scattered over the behaviors of several objects. 

And that is exactly the reason why many programmers have a difficult time learning how to 
use an MVC. I am constantly being asked the question, "which methods should I put in the 
View and which should I put in the Controller or Model?". 

In my experience I have observed that only the most simple applications of MVC's in 
Smalltalk applications adhere strictly to the general guidelines. In fact, in the standard 
image of Smalltalk-BO, there are several examples where a View has a built-in Model or 
has no Controller ....... 

The previous subsections have presented numerous examples of the inconsistency of the MVC 

framework. For example, the MVC triad can be created in any component of the MVC triplet. 

Another important inconsistency is the scrolling behavior for views which is defined within class 

ScrollController. Scrolling exemplifies the ad-hoc manner in which the MVC framework has 

evolved. Object-oriented framework evolution should be reflected within the root abstract classes 

of the framework. It should not be achieved by destroying the design abstraction at lower levels 

in the hierarchy. 

We end this section just as we began it, on a positive note. There exist examples of some 

black-box frameworks within the MVC framework implementation, known as pluggable views. 

Experience with the MVC implementation revealed that the views and controllers of MVC triads 

dealing with lists, text and code were essentially similar. Pluggable views factor out this com

mon behavior and allow them to be specified as parameters in a creation message. The major 

pluggable views within Smalltalk-BO are SelectionlnlistView, TextView and CodeView. 

SelectionlnlistView is a black-box framework built from the MVC triad List, ListView and 

ListController, which were presented earlier as (basically) an implementation of static menus. 

The SelectionlnlistView provide a parameterized instance creation method 

on:aspect:change:llst:menu:lnltlalSelectlon: that automatically creates an instance of a static 

menu. For example, the list of classes presented by the system browser (as the second view on 

the top of Figure 5.22) can be created as follows: 

ClassllstVlew <·· SelectlonlnllstVlew "an Instance of SelectlonlnllstView· 
on: aBrowser "model of the SelectlonlnllstVlew" 
aspect: #className "message to get the selected Item" 
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change: #className: "message sent on Item selection" 
11st: #classLlst "message sent to generate 11st" 
menu: #classMenu "message sent to get menu" 
lnltlalSelectlon: 

#className "message sent to get Initial selection" 

The messages indicated by #<symbol> is implemented by the corresponding model aBrowser. 

Figure 5.27 shows the classMenu method (in the lower view) which provides functions for mani

pulating classes as shown in the pop-up menu in the second view on the top. 

Appendix D presents a complete example of the use of SelectionlnlistView for creating 

class Notebook which manages a two-level topic hierarchy, each with associated text. Some 

examples of notebooks might be a calendar organized by month and day or a university course 

catalogue organized by department and course title. 

5.4. Generallzlng the MVC Framework 

This section discusses modifications to the MVC framework in order to 

[a] make it into a generalized white-box framework, and 

[b] push it towards a flexible MIMD framework. 

The modifications that are suggested are aimed at the basic components for creating user inter

faces_ within Smalltalk. That is, the MVC abstract triplet Model, View and Controller. The discus

sion will also focus on important features of user interfaces such as menu, scrolling, support for 

inpuVoutput devices, and scheduling (and managing) controllers. 

The major goal of these modifications is to ensure that the conceptual abstract design of 

the MVC framework is maintained in its implementation. The first step in this generalization is to 

determine the exact behavior of each of the major components in the MVC framework. The next 

step builds well-defined interfaces between these components. The final step ensures that the 

protocol (or behavior) defined in the root abstract classes is followed by all its subclasses. 

Therefore, none of the subclasses should be allowed to break or combine the behavior of the 

abstraction. However, the design should allow black-box frameworks to be developed to 
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Figure 5.27: The classMenu Method 
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facilitate the automatic generation of standard components. For example, the design should 

allow the development of classes such as Selectionlnlist (presented in the previous section) 

which automatically creates the view/controller pair for selecting from a list of items. 

The discussion on generalizing the MVC framework is presented from the perspective of 

its three major components, that is the Model, View and Controller. The following subsection 

presents an overview of the modifications that are suggested. The final subsection summarizes 

the generalization process by comparing it to the MIMD UIDE design, and draws some conclu

sions about the development of object-oriented user interface development environments. 

5.4.1. A General MVC Framework 

Conceptually, the MVC framework separates the application (Model) from its user interface 

(View/Controller pair). In its current implementation, the Model is the weakest component. This 

weakness forces the associated View/Controller pair to be involved in application behavior, 

thereby tightly binding the user interface with the application. To achieve a general MVC frame

work, it is necessary to ensure a clean separation between the Model and its View/Controller 

pair. 

This separation forces all application behavior to be define9 within the Model component. 

The major behavior of the Model that is involved in user interaction is the external 

representation(s) of its internal state. Thus, the Model is modified to generate its external 

representation on a Form. This Form (or an array of Forms for multiple external representations) 

defines the interface between the Model and its View. The View accesses its application Form 

to present to the user. Whenever the application's state changes, it regenerates its external 

representation(s) and informs its View(s) to update themselves. This causes the View to access 

the application's Form for redisplay to the user. 

The other important behavior of the Model is its functionality. Since the Model is the only 

component in the MVC triplet that has knowledge about application functionality, it should create 

the interface to access its functionality. This functionality is interfaced to the outside world 
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through two objects: a list of items and a corresponding list of selectors (hereafter referred to as 

the application's Item/selector pair). The list of items are strings corresponding to names of 

functions provided by the application, and the list of selectors are the actual application methods 

to be invoked when its corresponding item is accessed. 

An application is presented to the user within a single window on the screen. This window 

contains a set of subviews corresponding to external representations presented by the applica

tion. The top level view behavior is similar to that described for StdSystemView. That is, it pro

vides an empty rectangular region with a label, handles windowing functions (such as move, 

frame, close) and contains the top level controller for the entire application. All other views are 

associated with the application through a Form that represents the application's state. The main 

behavior of such application view allows for manipulation of this Form, including scrolling and 

zooming. 

In keeping with the design of maintaining View/Controller pairs, it is appropriate to associ

ate the application's functionality (that is, its item/selector pair) with the View. This results in 

well-defined interfaces between the three components. The View is the only component that 

communicates with the application, accessing it through a well-defined interface (the Form that 

defines the application's external representation and the item/selector pair that defines the 

application's functionality). The View is also the only component that communicates with the 

Controller. 

The Model's item/selector pair, maintained by the View, forms the basis for generating 

menus. Thus, menus are associated with Views. Menus are also represented by an MVC triplet: 

the Model is the item/selector pair, the View is the rectangular region displayed on the screen to 

present the menu to the user, and the Controller allows the user to a make a selection. The 

selection is passed by the Controller to its associated View, which in turn invokes the appropri

ate action in the Model (corresponding to the entry in the selector). The Model performs the 

associated action, creates its new external representation and informs the View that it has 
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changed. The View updates itself by accessing the Model's Form and redisplaying it. Note that 

menu views are registered as subviews of the associated view. Subviews can be designated as 

visible or invisible, to allow for both static and dynamic views. Besides being a good model for 

static and pop-up menus, this feature allows any view to be dynamically displayed when 

activated. This is helpful in allowing the user to manipulate the information that is presented by 

the application. Note that such a feature also generalizes scrolling, supporting both Macintosh

like static scroll bars and Smalltalk-like dynamic scroll bars. The actual scrolling behavior is 

standardized in class View, since scrolling is always achieved by moving a window on the Form 

maintained by the View. 

The Controller component needs modification to reflect the modifications in the other two 

components. There exists a single instance of a scheduler or control manager. Its main behavior 

is to determine which application wants control. This can be achieved either by asking each top 

level view whether the cursor is in their associated view's area, or by registering all top level 

controllers with the scheduler (and using the method isControlWanted to determine which con

troller wants control). Note that the default behavior for isControlWanted in the current MVC 

implementation is viewHasCursor. Therefore, the former approach is preferable. If the cursor lies 

outside all application windows, a screen controller is given control to allow global Smalltalk 

functions (such as save, quit, refresh, etc.) to be accessed. If the cursor lies within an applica

tion window, the corresponding view is activated. The default behavior for activating windows is 

to give control to its top level controller. When the user moves the cursor outside the confines of 

the current active application window, control is returned to the scheduler. 

This view-oriented control scheduling is followed throughout the generalization. The top 

level controller determines if any of its subviews want control by invoking the isActivation 

method. Note that this message is sent to all subviews, including those that are not visible. This 

is to allow dynamically activated views to take control on a button or key press. Menu, scroll 

and editing controllers specialize this general behavior to suit their particular functionality. 
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Finally, each controller should indicate the input devices that are needed. Ideally, the sys

tem should provide low level behavior for all input devices (mouse and keyboard), and then 

allow the class lnputSensor to be used to provide access to these devices. Thus, instances of 

lnputSensor could provide access to only the mouse or keyboard, or to both. This allows 

interaction to be based on any (combination of) input device(s). Note that only the input 

device(s) defined by the instance of lnputSensor are active, all others are deactivated. 

5.4.2. Remarks on Generalizing the MVC Framework 

It is interesting to compare the current MVC implementation with the MIMD UIDE 

developed in the previous Chapters. The major weakness of the MVC is that it fails to cleanly 

separate the application from the user interface. This is mainly due to the fact that the Model 

component does not define any structure or behavior for the application. In contrast, the MIMD 

UIDE imposes a strict separation, by developing the necessary models that define the exact 

behavior of the application. Interactive data structures model a well-defined interface between 

the application and the view presented to the user. The operations defined for interactive data 

structures provide for smooth translations between the view and the internal state of the applica

tion. Furthermore, function interaction and service interface objects model a well-defined inter

face between the controller and the application's functionality. 

Furthermore, the Controller component of the MVC implementation is very specialized to 

the input device and interaction style imposed by Smalltalk. The MIMD UIDE develops a layered 

approach to the controller through the input device, action table, input technique, mapper and 

interaction task classes. This layered approach facilitates easy modification at every level, and 

more importantly supports a wide range of styles and techniques. 

The modifications that were suggested in the previous section were basically to augment 

the MVC framework with the strengths of the MIMD UIDE. We would like to point out that some 

of these modifications (with the notable exception of modifications to the Model) have been 

incorporated into a version of Smalltalk that was ported to the Macintosh. We are not sure 
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whether these modifications to the MVC framework in SmalltalkN-MAC [109] were made to 

reorganize a weak framework, or to take advantage of the powerful user interface toolbox [11 O] 

provided by Macintosh. However, this reorganization of the MVC framework brings out an 

important problem with current object-oriented development environments: the lack of tools to 

reorganize the class hierarchy [95]. When a weakness is encountered in a framework, it should 

be strengthened in reorganizations/modifications at the highest abstract class level. The lack of 

reorganization tools filters weaknesses to the lower concrete classes thereby making the prob

lems worse. Currently, the only way to enhance a framework is to totally reorganize the entire 

class hierarchy, which is infeasible due to time and economic considerations. 



CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

A large percentage of software engineering is devoted to the development of interactive 

software systems. Interactive software systems are comprised of two components: the applica

tion component defines the system's functionality and the user interface component defines the 

behavior of the system. It is widely accepted that the user interface component is more impor

tant since it determines the effectiveness of the interactive system. User interface software 

engineering research can be divided into two broad categories. The first is concerned with 

developing new technologies for interactive styles, techniques and devices. The second is con

cerned with building User Interface Development Environments (UIDEs) to aid in the construc

tion of user interfaces. The research presented in this dissertation falls into the latter category. 

Current research in UIDEs focuses on models, techniques and tools that allow the system 

designer to rapidly develop user interfaces for interactive applications. A major contribution of 

this research is that it develops a new perspective of UIDEs. This perspective views the end 

user of interactive systems as the only person capable of determining what constitutes an 

effective user interface. Thus, the emphasis of developing the user interface has shifted from 

the system designer to the end user. The main goal of this research has been to develop UIDEs 

that provide the end user with facilities to construct user interfaces, similar to those provided to 

system designers by currently available UIDEs. That is, end users should be able to customize 

every aspect of the user interface for any interactive application. 

Besides maximizing user productivity and therefore system effectiveness, such a perspec

tive has the following advantages. 
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[a] A UIDE that supports interface construction by the end user, automatically supports con

struction by the system designer as well. Thus, system designers can initially create a 

default user interface that defines their interpretation of the most effective way of using the 

interactive system's functionality. The end user can use this default interface to gain an 

understanding of the interactive system, and then modify it to suit his/her own personal 

behavior to maximize productivity. 

[bl Since the user interface can be modified at any time, it can evolve incrementally with the 

user's experience. This is probably the most important advantage of end user customiz

able user interfaces. Current interactive systems present the same interface throughout 

their lifetime. After an initial gain in end user productivity, such an approach does not allow 

the user interface to increase productivity continuously by taking advantage of the growing 

expertise of end users. 

(c] A non-changing interface is prone to technological obsolescence. Thus, any major shift in 

interaction styles, techniques and devices would render the entire interactive system 

obsolete. Furthermore, this would require a costly rebuilding of the user interface com

ponent for all the interactive systems built on an obsolete user interface style. More impor

tantly, such an approach introduces these technological advancements at a very large 

granularity. That is, the new interactive system presents a completely different behavior 

from the previous system, and therefore requires users to relearn behavior for accessing 

functionality that is well understood. This retraining and relearning is extremely expensive 

and usually hinders the use of newer technologies. Modern interactive software engineer

ing has failed to adequately address the problems associated with technological change. 

However, a user modifiable interface can accommodate the introduction of newer technolo

gies without affecting user productivity, and more importantly does not render the entire 

system obsolete. Thus, users can incorporate these new technologies incrementally into 

their user interfaces according to their own pace of learning. 
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In the ever changing world of interaction technology, it is imperative to build UIDEs that 

support continuous modification of every aspect of user interfaces. This research is the first 

attempt at developing such a user-modifiable UIDE. 

The rest of this Chapter is organized as follows. Section 6.1 presents the specific contribu

tions of this research and summarizes results. One of the most exciting results of this research 

is that it has provided a platform for future interactive software engineering research. However, 

to be effective as a platform, it is necessary to build a fully operational and efficient UIDE. Sec

tion 6.2 outlines immediate future plans for building a complete user-modifiable UIDE. Finally, 

section 6.3 discusses how the experiences in developing such a UIDE can be applied to gen

erating entire interactive tools and ultimately environments. 

6.1. Research Summary and Contributions 

This dissertation developed a classification scheme for UIDEs, based on the multiplicity of 

user interfaces and applications that can be supported. This is the first attempt at developing 

such a classification. Classification schemes are important in any research area as they provide 

the basis for contrasting and evaluating different approaches and models. The classification 

scheme for UIDEs has been helpful in identifying the characteristics of UIDEs, and more impor

tantly has aided in understanding their strengths and weaknesses. Most of the UIDEs that have 

been developed to date fall in the SISD, SIMD, and MISD [S= Single, I= user lnterface(s), M= 

Multiple, D= application Domaln(s}] classes, and were surveyed in Chapter 2. 

Current user interface development efforts are directed at the popular SIMD class. SIMD 

UIDEs support the generation of a single consistent interface style for many applications. The 

many disadvantages of such an approach has been presented in the introduction to this 

Chapter. The major goal of this research was to develop a MIMD UIDE, capable of generating 

multiple user interfaces for many applications. 

It is widely accepted that a complete separation of the user interface from the application 

is necessary to support the development of flexible UIDEs. This dissertation has shown that 
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UIDEs in the SISD, SIMD and MISD classes do not achieve a clean separation, which is the 

major reason for their inflexibility. In Chapter 3, models were developed for both the application 

as well as the user interface components that provide a clean and well defined separation. 

Interactive applications were modeled as general editors capable of manipulating an arbi

trary 2-dimensional (structured) picture. The internal state of the picture, along with its external 

representations, are maintained within Interactive data structures. These external representa

tions are intertaced to the user by the user interface component, and form a well-defined inter

face between the two components. Furthermore, the model generalizes the functionality of the 

editor to allow the user interface component to be solely responsible for interaction. The model 

developed for the user interface component generalizes both the presentation of information to 

the user, as well as interaction with the application. The layered interaction framework allows 

for modification at a very fine level of granularity. Thus, the model facilitates the development of 

customizable interfaces. 

The design of the MIMD UIDE presented in Chapter 4 provides a robust set of object

oriented classes. These object-oriented classes form the basis for an MIMD UIDE that is easily 

extensible to accommodate an ever changing technological environment. 

Finally, Chapter 5 presented the experiences of implementing the MIMD UIDE prototype 

by generalizing Smalltalk's Model-View-Controller (MVC) user interface framework. The MVC 

framework, introduced in Chapter 2 as an example of an SIMD UIDE, is used within Smalltalk to 

develop consistent interfaces. Conceptually, the MVC framework is a general three-way factor

ing of interactive systems, with the Model representing the application, the View presenting the 

application's internal state to the user, and the Controller managing interaction with the user. 

However, its realization within Smalltalk results in a rigid, inflexible class hierarchy that only facil

itates the creation of specific interfaces. Furthermore, the exact boundaries between the three 

components are neither enforced nor maintained. One of the major problems with the implemen

tation is that the exact nature of the behavior of the Model (or application) is not specified. This 
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leads to interactive systems whose user interface is tightly bound to the application, resulting in 

inflexible Interfaces. 

Implementing the MIMD UIDE made it clear that a general graphics/windowing platform is 

crucial for the development of flexible UIDEs. Unfortunately, SIMD UIDEs, such as Smalltalk, 

do not provide such a general graphics/windowing subsystem. This implementation also vali

dated the claim that a clean separation of the user interface from the application component is 

necessary for the development of flexible UIDEs. The modifications that were made to general

ize Smalltalk's SIMD UIDE represent an attempt at defining such a complete separation. 

In conclusion, the experiences with implementing a prototype of the MIMD UIDE has 

strengthened the validity of the models and design that were developed for the MIMD UIDE. It 

has also shown that current object-oriented environments are not suitable for developing flexible 

UIDEs. It is therefore necessary to build an MIMD UIDE from scratch, on top of a flexible, dev

ice independent, general-purpose graphics/windowing subsystem that does not impose any 

biases on interaction styles, techniques and devices. It is important to note that standards for 

graphics/windowing systems do not currently exist. However, the current indication is that such 

general-purpose, object-oriented graphics/windowing systems will be marketed in the very near 

future. 

6.2. Further Research In MIMD UIDEs 

The major aim of further research in the immediate future will be to develop a complete 

MIMD UIDE. This development will be carried out on two platforms. The first platform is 

Smalltalk/Von the Macintosh, which has added the necessary modifications to Smalltalk's sup

port for user interfaces to make it more suitable as a development environment. The second 

platform will be based on C++. Since C++ is classless, it presents a platform that facilitates an 

MIMD UIDE implementation that exactly follows the design. X windows will be used as the sup

port for the underlying graphics/windowing system. 
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The prototype will then be converted into a fully operational, effective MIMD UIDE. Such 

an attempt will require further research into the following three areas: interactive data structures, 

interaction technologies, and the development of efficient user interfaces. Each of these areas is 

discussed below. 

Interactive Data Structures 

The effectiveness and efficiency of interactive data structures is largely dependent on the 

specification and maintenance of neighborhood relationships for both the internal and especially 

the external representations. Our design of the neighborhood relationships for the external 

representation used an ad-hoc block that (re)calculated every node's display geometry. When

ever a change occurred in the data structure, this brute-force recalculation was applied. 

Furthermore, certain natural extensions of interactive data structures also require the 

definition and maintenance of dependencies. The following extensions would enhance the gen

erality of the interactive data structure model. 

[1] This research was concerned with developing user interfaces for interactive systems that 

comprise a single application. The current trend, however, is to develop sophisticated 

interactive environments that integrate multiple application.s which are presented to the 

user as a single system. To accommodate such complex interactive systems, it is neces

sary to extend the model to include many applications implying multiple interactive data 

structures. The major problems will be in defining dependencies between these structures, 

and maintaining these dependencies whenever any data structure changes. 

[2] The design of the data structure hierarchy included only the standard base data structures 

(lists, trees, sets, graphs) and their variants. However, sophisticated interactive applica

tions and environments require more complex structures. One possible way to extend the 

interactive data structure model is to allow the base structures to be pasted (combined) 

together to form complex structures. Once again, the major issue to be resolved is the 

definition and maintenance of dependencies between the components of the complex data 
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structure. 

There exist three models for specifying and maintaining dependencies that are worth con

sidering: Smalltalk's dependencies, semantic attributes and constraints. Each of these models is 

discussed below. 

Smalltalk's model for dependencies was presented in the previous Chapter. To reiterate, 

every object can maintain a list of objects that are dependent on it. Whenever an object 

changes its internal state, tt can broadcast a (parameterized) change message to its depen

dents. These dependent objects react to the change through locally defined updating schemes. 

The major advantage of such a loose model is its simplicity for defining the dependencies. The 

major disadvantage is that the maintenance of these dependencies must be provided by the 

designer and is therefore carried out in an ad-hoc manner. 

In the initial wor1< for this research, context-free grammars were extended to 2-dimensions 

in order to develop a formalism for defining graphical applications [85]. Figure 6.1 shows an 

example of using an attributed graphical grammar to define the language of D-Charts [111]. 

The major problem with defining such graphical languages is the specification of the display 

geometry. This problem was solved by defining a rectangular region (width, height and entry 

point) representing the minimum area necessary to display each terminal and nonterminal. 

Each production in the grammar defines a set of equations that specify how the rectangular 

region of the left side nonterminal can be computed in terms of the rectangular areas associated 

with symbols on the right. As an example of these display equations, consider the expansion of 

a <D-Chart> nonterminal by applying production 1, as shown in Figure 6.2. The dimensions of 

the rectangular region enclosing the expanded <D-Chart> is given by 

W' = max (wldth(ENTRV), wldth(<Body>), wldth(EXIT)); 
H' = helght(ENTRV) + helght(<Body>) + helght(EXIT). 

Thus, the geometric attributes for the display attributes for <D-Chart> are synthesized from the 

geometric attributes of symbols on the right side of production 1. However, not all geometric 
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attributes can be synthesized. For example, the display of 0-Chart conditional structures (given 

by productions 4, 7, 8, 9 and 10) must ensure that the vertical dimension of the <Default> be the 

same as the vertical dimension of <Cases>. To force this alignment, both <Cases> and 

<Default> inherit their height attribute from their common parent, <Body> in production 4. Thus, 

synthesized attributes pass information up the associated syntax tree while inherited attributes 

pass information down or across the tree. Reps [112] has devised incremental algorithms to 

ensure the consistency of these (semantic) attributes whenever a change is made to the tree. 

When applied to defining dependencies within interactive data structures, the semantic attributes 

model has the advantage of automatically maintaining the dependencies. The major disadvan

tage is that such semantic equations are difficult to specify. 

Constraints specify relationships that must be maintained. A constraint that A = B + C 

could be used to determine A given B and C, but could also be used to determine B given A 

and C, and C given A and B. That is, constraints are multi-directional. A set of constraints are 

transformed into executable procedures that automatically maintain the specified relations. Fig

ure 6.3 shows an example of a constraint MidPointLine which consists of a line and a point and 

the constraint that the point is always in the middle of the line. Constraints are versatile as is 

evident from their use in a wide variety of applications including geometric layout [113], physical 

simulation and algorithm animation [114], document formatting [115], design and analysis of 

mechanical devices and electrical circuits [116], jazz improvisations [117], and user interfaces 

[118]. The major advantages of using constraints to maintain relationships is that they are 

declarative in nature, and particularly suited to graphical techniques. Figure 6.4 shows a graphi

cal definition of MidPointline (119]. The major disadvantage of constraints is that the algorithms 

for maintaining them are complex, and for a large set of constraints extremely slow. However, 

ongoing research on constraints may remedy this disadvantage in the very near future. 

Another important extension of interactive data structures is how they can be animated. 

Animation of data structures and algorithms are very useful in simulating interactive systems and 
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in manipulating the runtime state of the system for debugging. Two approaches for animating 

interactive data structures are worth considering. The first is the use of temporal constraints 

[114] to specify the evolution of data structures and their external views by discrete time incre

ments. Figure 6.5 shows three examples of animation using temporal constraints. The second 

approach concerns the maintenance and manipulation of temporal data within databases. A 

temporal data is a triplet, (0, T, A) where 0 is the identifying object, T is the time, and A the 

attribute value of 0 at time T. To capture the evolution of 0 through a period of time, it is neces

sary to define a time sequence for 0 as (0, <T,A>*). Such temporal data can be subjected to 

temporal queries such as "get values for 0 in the time range from ta to tb." A survey of over 70 

articles devoted to research in temporal databases can be found in [120]. 

Note that both the temporal approaches presented above are mainly concerned with main

taining and manipulating the history of evolution for a particular structure. In the realm of animat

ing interactive data structures, the main concern is with maintaining and manipulating the history 

of changes to the data structure. Thus, the initial state of the interactive data structure is copied 

to a transcript file. Every operation (along with its parameters) applied to the data structure is 

recorded in the transcript file. It would then be necessary to develop tools that can execute the 

transcript file, allowing the user to start and stop the animation at any point, reverse execute the 

transcript, etc. Such a facility would require the definition of methods that reverse (or undo) the 

effect of every method provided to manipulate the interactive data structure. Note that the dis

cussion so far has concentrated on animating a single interactive data structure. To facilitate 

animation of the entire interactive system would require that all operations entered in a particular 

interactive data structure's transcript file be time stamped relative to the start of the session. 

This would provide the necessary information to synchronize the simultaneous animation of 

many interactive data structures. 



LC ., 
L,r,1S.9~111 
Man 
M1cP1a11lca!No •at1,1u 
M1cPlal'ica"'o •••••••••••• 

------
l. 

Or.cillatin& 11um11,on1 The 11umbcr1 
iadicatc 1h1 dlarp on rht capaciaor. and the 

currcnr ahrouJh ahc inductor. The mass on the 
spr1111 01eill11u in tll'O dimt1111on1. 

C, 

IDrt 
!ortQ1,11u1 
Spring 

.. ! ~ . .;'I .. _ '--· .. -~ -.•. ;- ... 

510 &cin.Qwau1 
.. ,., IIHSS&SI !pring 
td:t TextTtlln; 

t 

Aa 1aima11on of 1 1elee1io11 aon cau1t11 
ill 111id-s...,1p. 

Poillt 
PTilcAC 
Proc,S 
~QA 
~HDW 

LJ 
IIIPX:: 

DD L..J -~ 
O HOWX:: 

u u \t u 
WOl:: MM.K:: 0.t.x::e3 ACX:: 

AD opcra1iDI IJIU• 111im1tio1. A Hardware 
ffOGIII ta procs•dia& fro• 1M r11d,-
l1&. to wak oa ka a1111p 1act.111p, 

Hd 1 ••--• 11 ... , ••• to the procua 
OA (Oeaeral ACCNllill&) 

Figure 6.5: Animation Using Temporal Constraints 

287 



288 

Interaction Technologies 

There currently exist a large number of interaction styles, techniques and devices. To be 

effective, the MIMD UIDE must incorporate as many of these interaction technologies to provide 

the user a rich mix of possibilities for developing user interfaces. The modifications that will be 

necessary to incorporate these interaction technologies have already been outlined in Chapter 3. 

Initially, the MIMD UIDE will incorporate more interaction devices including joysticks, trackballs 

and voice. The next step is to complete the interaction tasks to include path, orient and quantify. 

Newer interaction technologies, such as three-dimensional graphical interaction, may require 

extensions to the model. 

Efficiency 

Finally, the MIMD UIDE must be concerned with efficiency. The main problem with graphi

cal interaction is speed. This problem is more acute in the design of the MIMD UIDE due to the 

complete separation of the application from the user interface. This requires the user interface 

to communicate with the application for most of the information needed for interacting with the 

user. For example, since the user interface only maintains the display buffer of the external 

representation, it must communicate with the application to facilitate movement between objects 

in the display buffer. However, the more sophisticated workstations available today support 

graphical algorithms that are done entirely in hardware. These graphical architectures may be 

the solution to most of the speed problems. 

6.3. Tool and Environment Generators 

This dissertation has been mainly concerned with generating the user interface component 

of interactive systems. It defined a general model for the application component as a basis for 

developing a well-defined interface between the two components. To be an effective tool, it is 

necessary to expand and strengthen the application model to allow the automatic generation of 

applications. Such an application generator when combined with the user interface generator 

would result in a Interactive tool generator, as depicted in Figure 6.6. Note that all the 
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applications that are generated are maintained in a database. This tool database would also 

maintain the set of user interfaces that were generated for each application. Such a system 

would provide an ideal basis for sharing and reusing at a very high level of granularity, that is, 

entire interactive tools! 

The major issue to be resolved for developing such a tool generator is a 2-dimensional for

malism that can be used to define the graphical language that describes the application. The 

previous section introduced the notion of attributed graphical grammars that extends conven

tional context-free grammars . The major problem of extending inherently 1-dimensional formal

isms is that they result in poor specification mechanisms and more importantly increase the 

complexity of the design. 

Arefi (86] uses the formalism of graph grammars to develop a general framework for the 

specification of graphical languages and their syntax-directed editors. The major contribution of 

her work is that the editing operations that manipulate the graphical language are defined within 

the specification of the language being edited . In other words, the specification of the graphical 

language includes the editing operations that can be performed on it. Figure 6. 7 depicts the 

definition of a Petri-net editor using this formalism. Note that <del-place> and <del-trans> are 

delete operations applied to the places and transitions of the Petri-net, respectively. 

The major problem with developing a practical formalism is the lack of a suitable 2-

dimensional structure to represent the grammar that specifies the language. Note that syntax 

trees are perfect representations of context-free grammars as they provide a one-to-one map

ping between the grammar and any string in the language. This strong representation is the 

main reason for the massive advancement in 1-dimensional language technology, which 

includes compiler generators, syntax-directed editors, editor generators, and environment gen

erators. To be effective, formalisms for interactive graphical systems must also model a struc

ture to represent the language that provides a one-to-one correspondence with the underlying 

grammar used to define it. It may be possible to use the interactive data structure model as the 
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basis for developing such a representation based on Arefi's formalism. It is important to note 

that formalisms developed for 2-dimensional graphical languages would provide an important 

theoretical foundation for the entire tool, including the user interface component. 

Finally, the tool generator along with the theoretical formalisms would provide an ideal 

foundation for the development of an environment generator. An environment generator would 

be mainly concerned with specifying the combination of tools for the environment. For example, 

a typical programming environment consists of editors, linkers, and debuggers. The important 

aspects of generating an environment is the definition of interfaces and dependencies between 

these tools. Furthermore, an environment necessitates the definition of procedures to manage 

(e.g., version and change management) and control (e.g., access and version control) the 

environment as a whole. 

When a truly evolvable and extendible environment generator has been developed, 

modern software engineering can ensure that software can progress at the same pace that 

hardware has in the last few decades. This research developed tools for the user interaction 

component of this environment generator. Hopefully, this work will motivate others to contribute 

to this new and important area of research. 
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A first and crucial step towards the development of effective user interfaces must be the 

formulation of design methodologies which provide the basis for building interfaces. Central to a 

user-oriented design methodology is the definition of a user's model of the interactive system. 

The user's model provides the basis for designing the rest of the interactive system. This appen

dix reviews the research on developing effective design methodologies for the development of 

user interfaces. 

What are the goals of an effective user interface design methodology, and what are its 

desirable features? Green [22] suggests three basic goals. 

[1] A formal notation for describing the user interface should be provided by the design 

methodology. A formal notation is important for two major reasons. It ensures that a 

description of a user interface is interpreted in a uniform manner by the users of the nota

tion; i.e. the personnel involved in the development of the user interface. More impor

tantly, a formal notation serves as the basis for the implementation of the user interface 

from its description. 

[2] The methodology should provide mechanisms for validating the man-machine interface 

design. Here we are interested in determining the correctness of the design before its 

implementation. The experiences of the research on Software Engineering has shown that 

it is hard, if not impossible, to show that a design is error free. The major concern is there

fore the elimination of major bugs from the design before its implementation. 

[3] The methodology should provide an effective framework for evaluating the quality of the 

user interface; that is, its effectiveness. Very little is known about the factors that affect 

the quality of the user interface. The methodology should at least provide a framework for 

measuring the human factors principles in the design. The following subsections present 

two impressive design methodologies for user interface development. 
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A.1 Green's Design Methodology For User Interfaces 

The design methodology proposed by Green [22] is divided into two components; a formal 

description of the user's model and a formal specification of the user interface based on the 

user's model. The design methodology builds a separate user's model for every type of user 

that will be involved. 

The description of the user's model comprises two components 

[1] a task model, which formally describes the user's view of the problem in terms of atomic 

tasks. The task model is obtained through an informal task analysis, i.e. the decomposition 

of the problem into a number of tasks which are atomic from the user's point of view. 

[2] a control model, which describes the actions that the user can perform. 

Thus, the task model describes the tasks to be performed and the control model describes the 

commands that are provided to perform them; both from the user's viewpoint. Note that the con

trol model must be consistent with the task model. 

The notation employed for describing the task and control models is comprised of three 

components; object definitions, operator definitions, and invariants. Object definitions declare 

the properties (attributes) of the objects, similar to data structure definitions. Operator definitions 

describe the conditions for the application of an operator and the effects on the objects. Invari

ants describe the relations between the operators and objects in the model, and may vary 

greatly from user to user. 

As an example, consider the design of a user interface based on the screen layout dep

icted in Figure A.1. The screen is divided into a menu area which depicts the geometrical 

shapes available to the user, and a work area, where the user creates pictures by arbitrary 

placement of the available geometric shapes. Three commands are supported: the place com

mand allows the user to use a digitizing tablet to select a geometric shape from the menu and 

drag it into the work area; the move command which allows the user to move geometric shapes 
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Figure A.1: A Simple Graphical Editor 
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around the work area; and the remove command which allows any geometric shape to be 

removed from the work area. The corresponding task and control models describing this user 

interface using the notation described above is presented in Figure A.2. 

The next step in the design is the specification of the user interface from the high-level 

description provided by the control model. The specification language is based on state

transition diagrams and is influenced by SAi's SPECIAL language [23]. The specification 

comprises several state machines (called modules), where each machine is a collection of V 

and O functions. The V functions represent the machine state while the O functions describe 

transitions that change the machine's state. The specification of the example user interface is 

provided in Figure A.3. 

The evaluation of the user interface specification to determine its correctness is described 

by the following three tests: 

[1] the specification is consistent if each operator in the control model is implemented by the 

functions in the specification, 

[2] all the invariants in the task and control models must hold for the specification, and 

[3] testing the behavior of the specification under designer determined conditions. 

A.2 Moran's Command Language Grammar 

Probabty the most impressive design methodology developed to date is Moran's Command 

Language Grammar (CLG) [24]. The basic premise of Moran's proposal is that 

to design the user Interface of a system Is to design the user's model. 

Thus a CLG representation of a system describes the user's conceptual model of the system. 

The description of a user interface follows a top-down design methodology. The user's 

conceptual model is described, then a command language that implements the conceptual 

model is designed, and finally a display layout is designed to support the command language. 

The CLG representation is structured as a number of levels with the aim of separating the 
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conceptual model of the system from its command language and to show the relationships 

between them. The six levels, each being a refinement of the previous level, are organized into 

three components which describe the CLG structure. 

[1] The Conceptual Component: describes the organization of the system as abstract con

cepts. This component is comprised of the task level and the semantic level. The task 

level analyses the user's requirements to specify the structure of the tasks which describes 

the system from the user's viewpoint. The semantic level defines the methods for accom

plishing task structures in terms of the objects and operations (that manipulate these 

objects) around which the system is built. The semantic level serves both the user and the 

system; it describes the conceptual entities and operations for the user, and correspond

ingly the data structures and procedures for the system. 

[2] The Communication Component: describes the command language and the dialogue of 

the user interface. The syntactic level and Interaction level make up the communication 

component. The syntactic level is a further refinement of the semantic level, describing the 

command language with which the user communicates to the system. The methods of the 

semantic level are described in terms of the commands developed at the syntactic level. 

The meaning of the commands are defined in terms of the operations described at the 

semantic level. The command languages are described in terms of basic syntactic ele

ments: commands, arguments, contexts, and state variables. The interaction level 

specifies the syntactic level elements in terms of physical actions; i.e. primitive device 

techniques for input (e.g. keypresses) and display actions for output. The rules describing 

dialogue structure are also described at the interaction level. 

[3] The Physical Component: describes the physical devices of the user interface. The spa

tial layout level describes the nature of the system's display at each point of interaction. 

It therefore is concerned with the arrangement of input/output devices and the graphics 

facilities for displays. The device level describes the physical properties of input/output 
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devices and the underlying graphics primitives. These levels make up the physical com

ponent. 

The command language grammar is the specification mechanism used in describing the 

first four levels that make up the conceptual and communication components. The levels 

comprising the physical component has not been developed yet. The CLG notation, informally 

described in Figure A.4, is based on the concepts of frames [25, 26], schemata [27], semantic 

nets [28], and production rules [29]. 

To understand the complexity of defining the user interface using the CLG framework, Fig

ures A.5 to A.17 depicts the descriptions of a user interface for a mail system, at the four levels. 

Each message of the mail system consists of a header and a body. The header specifies the 

sender, receiver, data and subject; while the body contains arbitrary text. Every message that is 

created is put in a message file for the specified user. The user interface described in the Fig

ures is for a system, EG, that helps the user manage the message file. Figures A.5 and A.6 

specifies the entities and tasks at the task level. Figures A.7, A.8 and A.9 describe respectively 

the conceptual entities, operations and methods of the semantic level. The corresponding enti

ties, commands and methods of the syntactic level are developed in Figures A.10, A.11 and 

A.12, and A.13 respectively. Finally, the command interactions, rules for commands and argu

ments, and a description of methods specified at the interaction level are depicted in Figures 

A.14, A.15 and A.16, and A.17 respectively. 
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CLG is a symbolic notation for describing systems as conceptual structures. The basic objects of 
ClG notation arc symbols and symbolic expressions. An expres~ion, which is a structure of 
symbols, represents a concept by describtng it, that is, by ha·,ing its constituent symbols represent 
constituent aspects of the concept. An expression can be associated wllh a symbol as its 
def mi ti on The symbol can then stand for the express.ion and hence for its concept: 

symbol -+ expression -+ concept 

Notationally, symbols are arbitrary strings of characters, indicated by being in I sans serif typefont, 
like THIS. An expression i5 a list of symbols or subexpressions in parentheses. For c>- .npkl, Q : 

(X Y (W Z)) defines the symbol O by an expression with three elements-two symbols, X and Y, 
and a sube:w:press,on, (W Z), with two symbols. The syntax of expressions is not arbitrary. There 
are three forms of expression in CLG. 

The first form is the bas.ic CLG expression, a hierarchic description. It describes a concept by 

declaring that it is an instance of another concept. plus some modifications. For example, CHAR 
: (AN ENTITY CODE : (A NUMBER)) defines CHAR to be en instance of ENTITY with a 
companent called its CODE, which is a NUMBER. A descriptive expression thus consist3 of a 
prefix symbol, • type symbol, and a list of components. A component of an expression may be 
thought of as a symbol definition Within the localized context or the expression. Tho symbol 
naming • component may also be used in olher expressions. A component CODE of an 
e:w:pression CHAR can be unamt>cguousJy referred to by the expression (THE CODE OF CHAR). 
The pretax symbols A or AN indicate thal an e,cpression is a pattern describing a class concept. 
The pret,x THE indicates that the expression descnbeS a unique referent. 

There are some minor variations to the syntax of this form of expression: The prefixes A or AN 
may be dropped. The symbol "=" is everywhere optional. A component may be unnamed. There 

is a special component, named OBJECT, that implicitly follows the type symbol. For example, 
(MOVE X FROM Y TO Z) has three components, the first of which, X, is the OB-JECT of the 

MOVE. 

The second form of exprcs:.ion is for representing collections of elements. 
colon after tho first !:ymbol, which indicate the type of collection. For example: 
(SEO: X v Z) repre---..,cnt. respectively, a set end a sequence of three eJement3. 
X Y Z) define:; X Y Z to be \he disjunction of the three items. 

It is indicated by a 
(SET: X Y Z) and 

XYZ = (ONE-OF: 

The third form of expreS5ion, ( • •• .), contains any English st.itement. ft is usually used '13 a 
sube:w:pression, allowing inform~I descriptions to be inserted anywhere within an expression 
structura. 

An exprt-~sion reprcscnt!l o concept, and ib components represent the parts or esr.,ect3 of that 
concept. Component.5 can also rcpre--....ent the relations between e:w:pressions. For example, tf T = 
(A TASK). P : (A PROCEDURE), and M : (A METHOD FOR T 00 P), then M $hows lhe 
relation bctwc~n T and P There are ,mplacit rel31ions between D'1 expression and its component 
exprcss,ons. For c:w:.1mplc. tho dclin1t,on of P above 5hould be (A PROCEDURE OF M). but tho 
OF component doe:; not need to be stated. since it is ,mpticil. Tho other ,mplicit relation is IN. 
For e:w:ample, if S : (SIT: X Y Z), then X, Y, and Z implicitly have the component IN S. 

Figure A.4: CLG Notation 
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Tll~ Body conlJ1n:; .'.lrb1lrary IC:itl.)) 

MESSAGE-rlLE~ : (A TEXT-FILE 

NAME : "Mc~5ago File"' 

OWNEn : (I\ USER) 

(•There,~ only one r-.11:!'JSf,G[ f-lL[ for t!-'lcll USEf;) 

( • Althcuuh tt,e u5,., m:iy w.1nt tu thin:, ol ti 11::, Lie J:; h.:ivina a 

sequence or SEND ~.tE:.SSI\GEs. tilt? opcr.1tH1CJ :;,~tr.rn or.11 trcJ'.'.i ,! 

n~ ~ texl l1lc, ic, .'.l~ .'.l ~c:quc;ncc uf cllJr.1c;lr..:r:; ) ) 

Figure A.5: Task Level Description of Entities 
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GET-INFORMATION : (A TA Sit(• Gelo pieco of information from tho l.l5t SEND MESSt,GE 

from a given p~..on and delete the SEND-MESSAGE from 

MESSAGE-FILE.)) 

NC:\•/.f.1AIL • TUIN-OUT = (A TASK DO (SEQ: {NEW-MAIL) 

(THIN•OUT -MESSAGE$))) 

NEW-MAIL : (A TASK(• Check for new SENO-MESSAGEs and, if any. rc:1d them.) 

(• This i:; the most frequent ta$k.) 

DO (SEQ: (CHECK-FOR-NEW-MAIL) 

(nEAO-NEW•MAIL))) 

CHECK -FOR-NEW-MAIL : (A TASK(• Check to sec if there are any ne.-...rS £N~ MESS.AGE!l) 
FAILURE : (• if no new S:::NO-MESSAG::s 61rc found)) 

REAO-NEW•MAIL : (A TASK(• Rc.ld all new SEND-MESSAGES, deleting these thol aro 

not of f ur&her Interest. )) 

THIN-OUT-MESSAGES : (A TASK(• While in EG, thin out a long MESSAGE-FILE b1deletino 

lhe SEND-MESSAGEs tMI are no longer important. )) 

Figure A.6: Task Level Description of Tasks 
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CG-SYST[M = (A SYSTEM 

NAME = "EG" 

ENTITIES : (SET: MESSAGE SUW.1AAV 

MAILOOX DIRECTORY scnf.fN) 

OPrnA TIONS : (SCT: SUOW DELETE)) 

MESSAGE -: (AN [tJTITV 

REPnESENTS (A SnJD-Mf:SSACE) 

N/IME : "Mc5,.3go .. 

AGE : (ONE-OF: OLD NEW) 

(• /\ MES:.;AGE h.J5 J Hr.adcr .1ncJ il Oody. 

The HCJtJcr cont.1111::; l~c r1cld~ To, from. O.ilc, Time, =,,cJ Subject. 

l he Ondy cont;1in:. ,..,, !litr Jry text. ) 

(• The AGE is .1 timc-dcpcndcnf m:lrlr: s.ec MAILUOX.)) 

!;Ur.H.1An',' : (AN ENTITY 

MAIL0O.lC = (A LIST 

Cr (A r.,cSSAGE) 

NAMC: = "Summc>ry'' 

(• This summ.irizcs .i MESSAGE in enc lino 

by givinn ils AGE mark and its Header fields.)) 

nEilRESEtJTS (A MESSACE• FILE) 

OWNER : (A USER) 

MEMBER : (A MESSAGC!) 
NAME : "M.3ilbox" 

(• This CO!'llilins all e•isling MESSAGEa. EG-SVSTEM puts all inc::mino 

M[SSAGEs al the end of the MAIL0OX ~nd mork:; them NEW. 

All MCSSAGEs from p
0

rcv1ous EG-SYSTEM scss,ons arc marked OLD.)) 

DIRECTORY : (A LIST 

FOR (A MAIL0OX) 
Mf.MOER : (A SUMMARY) 

NAME : "Oircclory") 

SCRCEU = (AN ENTITY(• This i:l :l!',Sumcd lo be l.1roc cnoul)h lo di!iplJy the ulnECTORY 

or any MESSAGE.)) 

Figure A.7: Semantic Level Description of Entities 
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DtLETE = (I\ SYSffM-Or>fnATION 

OBJCC T = (A PMlAMETEn 

VALUE = (A MESSAGE)) 

(• ·1 Ill' 00.WCT 1<; rt•rnovcd r,om MAILOOX Jnd ,rs SUMMt,nY is removed 

l1om Oln[C:OnY.)) 

SHOW : (A SYSl EM OPCnl\TION 

OrlJCCT = (J\ PflnAMETEn 

VALUE = (AN ENTITY)) 

IN (J\ Pi\nM,1ETEn 

VALUE = (A PLACE ON scntEN) 

OCFJ\ULT·VI\LU[ = UNKNOWN) 

(· The O0J[CT IS shown to th~ uscn JI some pLJCC on the .SCREEN. 

l hC' OUJECT m.:iy be .'.l MCSS/\GE. a SU1'.1:v1ARY, or lhc DIRECTORY)) 

LOOK = (A usrn. OPEnA TION 

li·J (A PARAMETER 

VALUE = (A PLACE ON SCRECN) 

DEFAULT-VALUE: UNKNOWN) 

AT (A PARAMETER 

VALUE = (AN ENTITY)) 

FOR (A PARAMETER 

VALUE : (PATTERN ENTITY)) 

ncsuL T : (AN (NTITY (• !hell SJtisfics the FOn p3trcrn)) 

FA JLUnE = (• 11 no!l11ng c:m be rounr1 that sJlt511cs the Fen pattern) 

(· The U!:ifll looks IN some pl:ic:c /\T 5omc entity Fon something, 

which is another entity. ) ) 

READ = (A USEn,OPEnATION 

OOJCCT : (A PARAW:TCR 

VALU~ : (AN CN rlT't')) 

IN (A PARAME:TEn 

VALUE : (A PLACE ON SCRF:EN) 

OCFAlJLT,VALUE = UNKNOWN) 

Figure A.8: Semantic Level Description of Operations 
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SEM -M 1 : (A SEMANTIC -METHOD 

Fdn GET •INFORMATION 

DO (SEO: (STAnT EG -SYSTEM) 

(SHOW Dlnt'.CTOnv) 

(LOOK AT DIRECTORY FOR (A MESS.'\G!::)) 

(SHOW (THE RESULT OF LOOK)) 

(REA O (THE RE~UL T OF LOOK)) 

(OELCTE (THE RESULT OF LOOI()) 

(STOP EC · SYSTEM))) 

SEM-M2 = (A SCM/\NTIC-METHOO 

FOR CHECK-FOR -NEW-MAIL 

DO (SEO : (START EG-SYSTEM) 

(SHOW OIRECTOOY) 

(LOOK AT 0I11ECTORY FOR (A Mf:SSAGE AGE = M.:'N}J}) 

~EM -MJ = (A SEMMJTIC-METHOD 

roR HEAO-NEW•MAIL 

DO (REPEAT 

OINOING m TO (EACH MESSAGE AGE : NEW) 

DOING (SEO: (SHOW m) 

(r:EA D m) 

(OPT (OELETE m)}))) 

SEM-M4a = (A SEMANTIC -METHOD 

Fon THIN-OUT-MAILBOX 

DO (REPEAT 

OINOING m TO (EACH MESSAGE) 

DOINO (SCO: (SHOW (SUMMARY OF m)) 

(RCAD (SUMMAnv OF mi) 

(OPT (SEO~ (SHOW m) 

(READ m))) 

(OPT {DELETE m))))) 

5EM-M4b : (A SEMANTIC -MC:THOO 

f-"On TtflN -OUT •MAILOOX 

DO (nCPEAT 

UNTIL FAILURE 

DOING (SF.Q ; {SII0\1
/ DIRECTORY) 

(LOOK AT OIRECTOllY FOR (A MESS,,GE)) 

(OPT (SEO: (SHOW (THE OESUL T OF LOOK)) 

(READ (TtiE RESULT OF LOOK)))) 

(OPT (DELETE (THE RESULT OF LOOK)))))) 

Figure A.9: Semantic Level Description of Methods 
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E~ COrHF.X T = (fl COMMAND-CONTEXT 

STATE-VAnl~OL~S = (SET; cunnrnT -MCSSAGE) 
DESCRIPTORS :: (SET: MESSAGE -NO) 

DISPLAY-AREAS : (SET: OIRECTORY -AF:G1 MESSAGE -ARE'.A . 

COMMAND-AR[A) 

COMMANDS : (SET: SHOW-MESSAGE SHOW-NEXT-MESSAGE 

DELETE-Cun nENT-MES SAGE OUIT -EG) 

ENTRY-COMMANDS : (SET: [NTER -EG CNTEn -CG -1;:.NEW -MAIL)) 

CURRE'NT-t.1ESSAGE = (A STATE-VARIAOLE 

CONTEXT : EG-CONTCXT 

VALUE : (A MESSAGE) 

NAME = "Currant Mc~sngo") 

MESSAGE-rm = (A OESCnf PTOn 

NAME : "Message Number" 

FORM : (AN INTEGER) 

VALUE : (A MESSAGE) 

OCFAULT-VALUE = (THE cunRENT-MESSAGC) 

(· The M[SSAG[ -tJO for each MESSAGF. is its ~equcntial posi! ion in 

t.1/\ILBOX upon cnterinn EG-CONTEXT MESSAGE-NO::. do not 

ch,111ua when M[SSAG[s .:ire OCLETEcJ from M/\ILSOX. ) 

DOES ,CASE: (IF(• the FOR~! of MESSAGE -NO less lhc'.ln 1 or grc~lcr 

than the number of ,.1ESSAGEs in MAILOOX) 

THEN (REPORT(• Mf:SSAGE -NO out cf bound~) 

IN COMMANO -AHEA)) 
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(IF(• the Fom.t of Mf.SSAGF-NOcorrcspond:; lo J cf~letcd r/ESS~GE) 

TltCN (JlCr>OnT (• clrh•!f:d M[SSAGU IN COMMANO-AnEA)) 

(nETurm (• the M[SSAC,E corrcspondina tu lllP. rom .. 1 ot 

M[SSAGE -NO)))) 

tG-DISPLAY-AllEA :: {A DISPLAY-AREA ON SCREEN CONTEXT: CG-CONTEXT) 

nrncc1onv . .'\rl[/\: (,\NfG DISPLAY-AREA 

NJ\ME : "Directory Window .. ) 

Mf.SSAGf. hf.£: ,'\ ~ (Ml CG lllSPL,\ Y-AREA 

NJ\M( = "Mr.ss~gc Window") 

C(H.1MMIC ,'\nrA. (MJC:G OISPt.AV-AREA 

fJf\MC -: "Comm.\nd Window .. ) 

Figure A.10: Syntactic Level Description of Entities 



ENtER·EG ;_ U\ cmn.1/\NO 

,.:or; rr x r = os cc:HEXT 
tJ,\ r.~f -: "[(.; .. 

DOCS (IF (THEnc.. IS (A MESSAGE) IU MAILOOX) 

THEN (SCO . (CtJTEn EC -CONTEXT) 

(SHOW DIHECTORY IN OIRECTOnY-AREA) 

(SHOW-MCSSAGE (THE RCS ULT OF THERE-15))) 

r.LSE (REPORT(• No ~IESS/\GEs 1n M/\ILDOX)))) 

ENiER-EG -IF-NE:W-MAIL = (A COMr.1MJO 

CONTrXT = OS -CONTEXT 

tJ/\t.1E : "CG New" 

OOfS (IF (THt:n(-1S (/\ MCSSAGE AGE : NF.W) IN MAILOOX) 

THCtJ (SEQ : (HITER EG-CONTEXT) 
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(SHOW OlnF.CTOflY IN DIRECTOflY-AHEA) 

(SHOW-MESSAGE (TtlC nESULT 
OF THERE -IS))) 

fLSr. (nr::ronr (· No Nf ';V t.l[SSAG[~ ,n Mf\lLF,OX)),) 

Figure A.11: Syntactic Level Description of Commands to Enter Context 



EC-COMMAND : (A COMMAND 

CONTEXT : EG-CONTEXT) 

SHOW-MESSt,G[ : (AN EC-COMMAND 

NAME : "Mc~silgo" 

OOJt:CT : (AN ARGUMENT 

FORM = (A P,1ESSAC2-NO)) 
DOES (~ET: (SHOW (SUMMARY OF {THE OOJECT)) 

IN OfRECTORY-AREA) 

(StlOW (MCSSAGE-NO OF (THE O0JCCT)) 

IN OlnECTORY·AAEI",) 

(SHOW (THE OOJECT) IN MESSAGE-AREA)) 

SIDE-EFFECT : (DINO CURRENT-t'1ESSAGE TO (THE ODJECT)) 

(· D1:.p!Jys the SUMMARY by h1ghl19htinu the SUM~lARY of OOJ(CT 

in !ht! DU'':EC.TORY in DIRECTORY-AREA.)) 

DELCTE-CURnrnT-MCSSACE = (AN CG-COMMAND 

NAME : "Oolc-to" 

DOES (SEQ: (DELETE (THE CUAi1ENT-PI.ESSACE)) 

(IF (THt:nE- IS(" MESSAGE) IN MAILflOX) 

THW (SHOW-NEXT-MESSAG[) 
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ELSE (SEO: (REPORT(• No more MESSACE3 

in MAILBOX) 

SHOW-NEXT-MESSAGE : (AN EG·COMMAND 

IN COMMAND-AREA) 

(EX IT FROM EG-CON ,-EXT))))) 

NAME : .. Next Mossago" 

DOES (IF (THERE-IS (A MESSAGE) IN MAIL0OX 

OUIT-EG : (AN EG-COMMAtJO 

NAME : "Quit" 

AFTCR (THE CURRENT-MESSAGE)) 

THEN (SHOW-MESSAGE (THE RESULT OF THERE-IS)) 

-ELSE (SEO: (REPORT(• End of MAILBOX) 

IN COMMAND-AREA) 

(SHOW-MESSAGE 1)))) 

DOES (EXIT FROM CG-COUTEXT)) 

Figure A.12: Syntactic Level Description of Context Commands 



SYN-M 1 = (A SYNTACTIC-METHOD 

Fon GET-INFOHMATION 

00 (SEO: (ENTER-EG) 

(LOOI< IN DlnE:CTOR't'-AnEA AT DIRECTORY 

FOn (/\ MESSAGE-NO)) 

(SHOW-MESSAGE (THE RESULT OF LOOK)) 

(READ (THE CURRErJT-MESSAGE) IN MESSAGE-AREA) 

(DELETE-CUR RENT-MESSAGE) 

(OUIT-EG))) 

SYN-M2 : (A SYNTACTIC-METIIOO 

Fon CHECK-Fon-NEW-MAIL 

DO (Er.JTER-EG-IF-NEW-1,1AIL)) 

SYN-M3 : (A SYNTACTIC-METHOD 

_FOil nEAD-NEW,MAIL 

DO (i,EPEAT UNTIL(• [ncJ of M,'\IL80:-') 

DOING (SEQ: (nEAD {THE CUAf~ENT-MESSAGE) 

5'. rJ M4~ = (A SYNTACTIC-METHOD 

trJ MESStiGE-AREA) 

(CHOICE: (SHOW-Nl:XT-MESSAGE) 

(DELETE-CURRENT-MESSAGE))))) 

FOR TH!N-OUT-MAILOOX 

DO (SEO: (IF (NOT-EQUAL (MESSAGE-NO OF (THE CURRENT-M[$St.CE)) 

TO 1) 

THEN (SHOW-MESSAGE 1) J 
(REPEAT UNTIL(• End of MAILBOX) 

DOING (SEO: (READ (SUMMARY 

SYN-M4t) = (A SVNTACTIC-M:::THOO 

OF (THE CURRENT-MESSAGE:;) 

IN DIRECTOWf-AREA) 

(OPT (READ (THE CURRENT-MESSAGE) 

IN MESSAGE-AREA)) 

(OPT (DELETE-CU ARENT-MESSAGE)) 

(SHOW-NEXT-MESSAGE)))}) 

FOR THltJ-OUT-MAILOOX 

DO (nCPC:J\ T UNTIL FAIi.URE 

OOING (SEO: (LOOI, IN orm:cronY-AnEA AT Ol~ECTCnY 

·FOn (J\ t.1ESSAGE-~JO)) 

(SHOW-MESSJ\GC (THC nrsuLT OF l.001<)) 

(Or>T (nEAO {THE c-unnENT-MESSACE) 

IN MESSAGE-AREA)) 

(OPT (DELETE-CURRENT-MESSAGE)) J) J 

Figure A.13: Syntactic Level Description of Methods 
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Non -terminal Constih:cnts: 

S = ''the Specification" 
n c ''the □ody of" 

D = "the Dcsign3tion of/in" 
F a ''Iha Form of/in" 
T = ''the Termination of" 
I = "the lntcrpretcltion of" 

Tcrmi,:ial Constituents: 

W ::1 "When is" 
P = ''the Prompt for" 

A = "the Action for /in" 
R • "the Response to" 

1 (W .S OF SHOW-MESSAGE) .... (ANYTIME IN EG-CONTEXT) 

2 (P.S OF SHOW -MESSAGE) .... (OISPLA Y "Command: ") 

3 (W.0.0 .S OF SHOW-MESSAGE) -+ (FIRST IN (B.S OF SHOW-MESSAGE)) 

4 (A.0 .0 .S OF SHOW-MESSAGE) -+ (KEY: "M") 

5 (R .0.0 .S OF SHOW-MESSAGE) .... (DISPLAY "Messo90 ") 

6 (W.S OF (OOJECT OF SHOW-MESSAGE)) 
_,. (AFTER (O.S OF SHOW -MESSAGE)) 

7 (r>.S OF (A MESSAGE -NO)) ..... (OISPLAV .. II "i 

8 Ct\ n.s OF (AN INTfGEn)) .... (KEV : (THE INTEGER)) 

9 (A.T.S OF (A MESSAGE-NO)) -+ (KEY : nETurm) 

10 cn .s OF (A MESSAGE-NO)) -+ CDISPLA Y (THE MESSAGE -NO)) 

11 (W.I.S OF (OOJECT OF $HOW-MESSAGE)) 

.... (OEF'ORE (I OF SHOW -MESSAGE)) 

12 (W .I.S OF SHOW-MESSAGE) .... (AFTER (S OF SttOW-MCSSAGE)) 

Figure A.14: Interaction Level Description of Show-Message 



r~n 1 = (n111.r: ron (\'/ .S Of- (AM CG-C0f,1MANO}) 

._ (/\NYl 1:.,c IM EG-CONTEXT)) 

cn2 = :nuu: ron (P.S OF (AN EG-COW,1ANO;) 

- (DISPLAY "Commc)nd:" IN COWAAND-AFH~A)) 

c:11 ~ (nUI.( ron (\'/ 0 0 S OF {MJ CG COMMA'''" 

-+ (FlnST liJ m.s OF (THE cor\1MANu)i)) 

U~-• .: (HULE FOfl (;\,O.U.$ OF (AiJ EG-COi-.1MMJD)) 

._ (KEY:(• ttr~.1 lc!t~r ol the COMMAND N/\MF))) 

CIIS : <nu LE fOfl (n.o.o.s GF (ArJ CG-COMMt.NO)) 

- (DISPLAY(• Full NAME of lhr~ COMMJ\ND) ltl COMM,\NO-/\REA)) 

C~G :: (nULE r-cn ('r'✓ .I.S OF (MJ re-COMMAND)) 

-• (/\FHll (S OF (TH[ COMMAND)))) 

Figure A.15: Interaction Level Description of Command Rules 
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AAl : (RULE FOR (W.S OF (AN ARGUMENT 

OF (AN EG·COMMANO) 

VALUE : (A MESSAGE))) 

-+ (AFTEn (0 .O.S OF (THE COMMAND)))) 

AR2 = (OULE Fon (P.S OF (AN ARGUMENT 

OF (AN EG-COMMAND) 

FOOM = (A MESSAGE-NO))) 

- (OISPLAV "II" IN COMMANO-AREA)) 

ARJ : (RULE Fon (A.0.5 OF (AN INTEGER)) 

--+ (KEV: (THE INTEGER))) 

AR4 : (RULE FOR (A.T.S OF (A MESSAGE-NO)) 

-+ (KEY: RETUPN)) 

AAS : (RULE FOR (R.S OF (A MESSAGE-NO)) 

--+ (015PLA Y (IF (DEFA UL TEO (A .S OF (THE MESSAGE-NO))) 

THEN (MESSAGE-NO OF (THE CURRCNT-MESSAGE)) 

F.LSE (THE MESSAGE-NO)) 

IN COMMAND-AREA)) 

AR6 .: (RULE Fon (W.t.S OF (AN ARGUMENT OF (AN EG·COMMANO))) 

--+ (0CFORE (I.S OF (THE COMMAND)))) 

Figure A.16: Interaction Level Description of Argument Rules 
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1/\-M 1 : (AN INTEnACTION-METHOO 

Fon GET-INFORMATION 

DO (SEO: (l<C:Y: "EG •• AeTunN) 

(LOOK IN DIRECTORY-AREA AT DIRECTORY 

FOR (A MESSAGE-NO)) 

(KEY: "M" (A MESSAGE-NO) RETURN) 

(RE/\ D (THE CU rt RENT-MESSAGE.) IN MESSAGE-AREA) 
(l<EY: "O" "O"))) 

I.'\ M2 : (AN INTEnACTION-MEnlOD 

ron CH[CK-F0fl Nf:W-P.1/\IL 

0 0 (t( r V : "r G / N " H ET Un N) ) 

l~-M3 : (AN INTERACTIC'"! t.1ETHOD 

Fon flCAD-NEW-MAIL 

00 (n(P[ AT UtJTIL (• Enc or MI\ILOOX) 

oorr:r tc-,:-:a: (AL'\0 (THE CUHR(NT-MESSAGE) 

IN MESSAGC-Ar1EA) 

(CHOICE. {l<EY: "N") 

IA-t.14.J : (AN INTE:~ACTION-METHOO 

ron THIN-OUT-MAILOOX 

(l<EY: "O"))))) 

00 (SEO: (IF (NOT-EQUAL (MESSAGE-NO OF {THE CURRENT-MESSAGE)) 

TO 1) 

THEN (KEV: "M" "1" RETURN)) 

(REPEAT UNTIL(• End of MAILOOX) 

DOING (SCQ: (READ (SUMMA RV 

IA-M<1b : (AN INTEnACTION-METtiOO 

FOR THIN•OUT-MAILOOX 

OF (THE CURRENT-MESSAG~)) 

. IN DIRECTORY-AREA) 

(OPT (READ (THE CURRENT-MESSAGE) 

IN MESSAGE-AREA)) 
(OPT (KEV: "0")) 

(KEV: "N"))))) 

DO (REPEAT UNTIL FAILURE 

DOING (SEO: (LOOK IN DIRECTORY-AREA AT DIRECTORY 

FOR (A MESSAGE-NO)) 

(KEY: "M" (A MESSAGE-NO) RETURN) 

(OPT (READ (Ttit; CURRENT-MESSAGE) 

tN MESSAGE-AREA)) 

(OPT (tCEV; "'O"))))) 

Figure A.17: Interaction Level Description of Methods 
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APPENDIX 8 

AXIOMATIC MODELS FOR USER INTERFACE SPECIFICATION 
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Most axiomatic specification techniques are based on algebraic axioms [36) . The alge

braic specification approach describes a class of objects by defining the set of functions which 

operate on the class. The syntax of each function is described by its name, domain and range. 

The semantics of the function is defined by a set of algebraic axioms which must be finite, and 

can only contain operations of the given type or other previously defined types, global variables 

and conditional tests. The functions are grouped into two categories: generator functions and 

Inquiry functions. Generator functions have ranges of the given object class, while inquiry func

tion have ranges outside the object class. The advantages of using an algebraic specification 

technique are described below. 

(a] It provides a simple notation which is easy to comprehend; promoting clarity and concise

ness. 

[b] It is easy to construct a specification which is complete and usually consistent. A 

specification is complete if every inquiry operation applied to every object of a given type is 

defined by the axioms. This requires that axioms be defined for each application of an 

inquiry function to a generator function. Consistency implies that each inquiry operation 

associates at most one value with each object of the type. 

[c) The specification is extensible, in the sense that minor changes in concepts result in minor 

changes in the specification. 

[d] The specification allows for formal reasoning about the design of the user interface before 

its implementation. Such reasoning, usually through theorems, can prove properties of the 

specification. 

(e) Most importantly, the specification allows the user interface to be implemented directly, 

and exactly matches the behavior of the specified system. 

Chi [121] compares and evaluates four axiomatic approaches to the formal specification of 

user interfaces. All the approaches are used to define the user interface of a commercial line 
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editor, which has an 80 character edit buffer, a 24 character window into the buffer, and keys for 

activating editing commands and for entering text; as illustrated in Figure B.1. The algebraic 

specification of the editor is given in Figure B.2. 

One of the approaches compared in [121] was proposed by Guttag and Horning [122], 

which extend the algebraic axioms with routines which are specified using predicate transform

ers proposed by Dijkstra [123]. The idea here is that the axioms are more appropriate to specify 

abstract operations, while routines are better suited to specify concrete operations which are 

capable of handling system constraints (e.g. the limit of the buffer size). Figure B.2 provides the 

Guttag and Horning specification of the line editor. 

Probably the most impressive work on data abstraction is the work carried out by Mallgren 

[37, 124]. This work was aimed at describing graphic data types to precisely describe graphical 

programming languages. One of the aspects of this research was describing interaction primi

tives whose semantics are precisely specified, making it possible to write and prove assertions 

about user interfaces and interactive programs. User interfaces necessitate the specification of 

concurrent operations, as it involves two parties - the human and the computer - which can 

attempt concurrent operations. Traditional algebraic specifications provide no facilities for the 

specification of concurrent operations. Mallgren developed an event algebra approach for the 

specification of concurrency. As described in [121], 

an event algebra augments an existing algebra by defining a second algebra whose 

objects are states of the shared objects In the first algebra and whose operations 

are the state lnltlallzatlon, event, and characteristic functions associated with the 

shared objects and Its operations In the first algebra. 

Mallgren views the user interface as containing a single shared object with associated opera

tions for handling user and program interaction. As Mallgren [37] indicates, the resulting inter

face contains 



h
cursor position 

rend-of-line 
j,_character 

[x~~--~~xJ-r-x-x-.-.-. -.-.-_-__ x__:x1...,x_x_ s- ---7 
-·---------~--------~ 
4--displJy w1ncow~ 

~----..rurront linc----
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Figure B.1: The User Interface of a Line Editor 
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(i,ntr,rH>r Fulfclions 

I . cl::1r: - - > li11c 
"' mnvckft : li111! --> line 
3. 1:1:i\Cri.:,ht : line - -> line 
4 . iu;z rt : lin-:: x i;hJ rJ.:!Cr x µosilive __ intcgcr - -> line 

5. Jel e te: line x po:.:tivc_intcger - -> line 
6 . rc: ..: rJ : line x {.:Ir, move , insJcl, type}--> line 

Inquiry F1111ctio11s 

7. i:urpo;: line - - > p1)sitive _ integer 
8. ~11.;:: line--> nu11ncg:itiv.:_1ntcgcr 
9. elil.:hr: line--> ch:irJctcr 

10. content : line x positive __ intcger --> ch:irJctcr 
11. w111stJ.t: line--> positive _ _ intcgcr 

,Auxiliary F1111ctio11s 

12. mJxsiz : --> positivc_intcger 
13. winsiz : --> p0sitive_integer 

Axio"'S 
I . .:11it ' '"lc111p1yl111 1: \= I 

,11d..:111pl~ iln..:)-:: 11 

cul..hr(c:111p1yl1nc)" ">" 

cu111.:111(.:111p1yli11c , t) ="" 
wi11stJrt(..:1nptyli11c) = I 

curp11s(111 ·. 1·.-ck'1 (/, )) = curpos(/.) -

wi11;tJrt(1110vdd't(/.)} = 
IF ,~inslarl(/,J> I 
TIii :-4 \,i11:.1:ir1(/,)- I t-:LSt -: winstart(/,) 

cttrj)llS(111ovcri;,;h1(/,)) = curpos(/, ) + I 
winst1r,(.111r,crii;ht(L)) :a 

IF CJrpos(/.) _, winsiz . 
rm~ ,, :nst:irt(L) + I ELsr. winstart(l) 

MZC(ins:rt(/,,c,p))•site(l)+ I 
cont en: (insert(/,, c, p)) = C,\SE 

i<p: eontent(l,i) 
i=p: C 

i>µ: content(l,i- I) 

site(Jclcte(l,p)) a sitc(L)- I 
co11,l'il: (dcl::tc(/,, p)) =- CASE 

I <p: contcnt(l, i) 
/ ";iii p: content(L, i + I) 

cokh r; re-cord(/,. Of')) = CASE 011 OF 
cir:">" 
move : eolchr(/,) 
iusd.::I : ir eolchr(L) = ">" 

THEN .... ELSE eolchr(l) 

type:"_" 

1J..outincs 
. PROCEDURE Cle:u(VAR line) 

SUCH THAT WP(Clc3r{L), Q) = Q(record(clcar, clr)/l] 

., PlZOCEDURE Movclcf1(VAR lint?) 

SUCH THAT WP~fovcleft(l), Q) = 
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[ curpos(L) > I ==> Q[rccord(movclcft(/, ), 
M~D curpos(L) = I ==> Q[rernrd (!,, move)/!, I 

move)//,j 

I 
3. PROCEDURE Moven~ht(V AR line) 

SUCII TIIAT WP(M ovc righ t (L), Q) = 
[ (i:urpos(L) ~ m:(l) AND curpos(/. ) < 111:ixsiz) ==> 

. Q(rwJrd(movcriglit(/. ), move)//, I 
AND (curpns(/,) > size(/,) 0lt rnrpos(/.)), 111:ax:;iL) "' "'> 

Q[rccord(L, 111 11vc)//. J ] 

4. PROCEDURE lnsert(VAR line) 
SL'CH Tl IAT WP(lnscrt (I.), Q) = 

I (si'le(/, ) < m:1xsi1 ANIJ curpu,(/.) ·';size:(/.))==> 
(J[record(ins..:rt(/ . . "[ ]", curplistl)), insdcl)/LI 

\Nil (si1.e(/,) = 111Jxsiz ANU curpos(/,) <site(/, ))==> 
(![rt:cord( 

insi:rt(ddetc(/. , 111:ixsiz), "I J", curpos(/.)), i11sdcl)//.j 
:\Nil cnrpus(/.) > si1c (/,) ==> 

(}lrc,.:ord(l. , insd,:1)/ /. I 

5. l'llOC'l.Ll\_il{E Ocll:tc(Vi\R line) 
SLICl I Tll:\J' Wl'(I kh:tr (/, J. Q) _. 

[ bile(/. )> . . /\NII rnrpu,(/, )1<".sizc(/.))==> 
(!(1ccorJ(tlclctc(/,, curpos(/,)), i11sd.:IJ,'/, J 

ANt> (size(!. )= 0 Olt curplls(/,) > siz,:(/, }) ==> 
Q[recurJ(l, insJd),'L. j 

6. PROCEDURE Type(V AR line, char) 
SUCll TIIAT WP(Type(/., c), Q) = 

( (curpos(L) < m:ixsil ANL> curµos(L) ~ size(l)) ==> 

Q(record( 
moveright( 

insert( 
Jclete(L , curpos(/, )), c, curpos(/,))), type)//.) 

AND (curpos(/, ) = lllJXSil AND curpus(/. ) :-:; size(/.))==> 

Q(rccord( 
insert ( 

dclcte(L. curpos(L)), c, curpos(l)), type)//,) 
AND (curpos(L) < mJxsiz AND curpos(L) > size(L))==> 

Q(record(movcright (insert (l, c, curpos(l ))), type)/ l J 
AND (curpos(L) = maxs1z AND curpos(L) > size(L)) ==> 

Q[record(insert(l ,c ,curpos(L)), type)/ L J l 
7. FUNCTION Display{VAR line, position) 

Sl/CII THAT PRE(Displ:iy(L,p)) = I <. p,;;; winsiz 
V.\LUE Disp!Jy(/,,p)= 

[ (winstart(l) + p - I < size(l) + I) 
==> cont..:11 t (L ,\vinstJrt (L) + p - l) 

ANO (winstart(L)+p- I =size(l)+ I AND cu,pos(L)=si,c(l)+ I) 
==> colchr(l) 

AND ( (winst:irt(l.) + 11 - I= sizc(L) + I AND curpos(/,) < siz::(/.) + I) 
Olt (winstart(l)+11- I >size(/,)+ I)) 

==> .. " 

8. lTNCTIUN Ulink(VAR line) 
V,\LUE lllink(/,) = 

[ i:urpos (/,) ~ sizl?(/,) ==> curpn,(/,) - winstart (L) + I 
AND i:urpos(/,) >size(/.)==> NO:\E I 

.Votes 011 Nntari,m: Q!x/yl ~lands for the prcdi.:ate Q with 
x s11 bsti1111cJ fo, all fri!I! n.:currcni:,s ufy [IOJ . 

Figure B.2: Algebraic Specification of the Line Editor 
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the complete history of operation calls (and their parameters) since Initialization. 

Thus, Information Is added to the Interface whenever any of Its operations Is 

Invoked. The Interface provides Information In two ways: by returning a value to an 

operation call and by controlllng the time at which the operation returns. 

The event algebra specification of the line editor is presented in Figure B.3. 



!'~am Acti11n5 

I girlt.cy: -:-- drna ,: t.:r 
2. puthne: lu,c - ·> 

J. kcystrukc : chJrJCl<:r -~> _ 
4 . rcadlinc : --> arrJy_ut_d1Jractcrs(l. .w11mlj 

G,·11,ra:or F1111ctinns (E1•c•11t F1111c!ic111s of 

th:: A boVL' Four Actio11s) 

5. Sinit : --> Ulstate 
6. gctkeyScatl : Ulstate --> Ulstate 
7. gctkeySreturn : Ulstatc --> Ulstatc 
8 . putlin.:Scall : Ulstate x line--> Ulst:Hc 
9. putlincSrcturn : Ulstatc x hue--> lllstatc 

IO. k:ystrol--cSi;:ill : Uistatc x clmac1cr --> Ulstatc 
11. keystrokcSrcturn : Ubt:it..: x character--> Ulstatc 
!:. rcadl111eScall : Ulst:ltc --> L'lstatc 
13. rcaulineSrcturn : Ulstatc --> Ufst:.it:.: 

b1.711iry Operations (Char:ictrristic Fu11crio11s 
of th.: Four Actiom) 

14. getk.-y:wait : Ulst:ue --> boole:rn 
15. gctkey:value: Ulstate --> charactrr 
16. put line : wait: UlstJte x line--> boolean 
17. putline:value: Ulstatcx line--> 
J 8 . keystroke : wait: Ulstate x character - - > boolean 
19 . keystroke: value: Ulstate x character--> 
:o. readline : wait: Ulstate - - > boolean 
21 . re:idline : value : Ulstate --> 

arr:iy _of_ characters[ I .. winsizJ 

Axioms 

I. ;ctkey 
3. :wait(Sinit) = true 
b. :wait(getkcySreturn(S)) = true 
c. : wJit(keystrokcSreturn (S, c)) = false 
d. : v:ilue(Sinit) = unucfincJ 
c. :value(keystrokeSreturn(S,c)) = 

IF getkcy:wail(S) 
THEN C 

USE :v:i!uc(S) 

2, readlinc 
a. :w:iit(Sinit) = true 
h. :wJit(putlincSreturn(S, L))= false 
... :wait(readlincSreturn(S)) = true 
d. :v:iluc(Sinit) :s undefincJ 
e. : valuc(putlineSreturn(S,l))= 

1 F rc:idline: w:iit (S) 

THEN display(/,, I) .. display(/,, winsi.:) 
rt.SE :value (S) 

Sample u.~c, lnrcrfac'! lnrcractim1 

PROGRAM lJI 
VAR c: char.icier;/,: line; 
HECIN 
L ~ clclr: p1111inc(l. ); c <- gcrkcy; 
WHILE 7 (c = 0ftkcy) 110 

BE(;[N 
lF c = cnrcrkcv 
THEN L <- i,;,c,prct(L) 
£LS€ CASE c OF 

dc:irkcy: /, <- clear 
lcftkcy: /, <- rnovclcft(I,) 
rightkey: /, <- movcright(/,) 
inscrrkcy: L <- insert(/,) 
di!lctckcy: L <- dch:tc(L) 
OTHERWISE : /,<- type(L,c) ; 

put line(/,); 
c <- get key 
E'JD 

END 

usrn u1 
CO:-JSTANT winsiz:: 24; 
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VAR c: dur:icter; r: array of char:icters[ I .. wiusi.l}; 
DEG!N 
t <-· rcadlinc; 
WHILE true DO 

BF.GIN 
keystroke (c ); 
r <- readlinc 
END 

END 

Figure B.3: Event Algebra Specification of the Line Editor 



APPENDIX C 

THE MVC TRIAD: 

LISTHOLDER, LISTHOLDERVIEW AND LISTHOLDERCONTROLLER 



Model subclass: #ListHolder 
instanceVariableNames: 'list selection clipboard undoAction 

undoClipboard undoSelection oldentry' 
classVariableNames; 11 

poolDictionaries: 11 

category: 'Interface-Lists' 

I am a model for manipulating lists represented as ordered collections. 

ListHolder methodsFor. 'initialize-release' 

initialize 
·initialize the ListHolder· 

selection +-0. 
clipboard+-· --- ·. 
undoClipboard +-nil. 
undoSelection +-nil. 
undoAction +-nil 

UstHolder methodsFoc 'accessing' 

list 
·Answer the list currently held by the receiver. 
(Message is sent by ListViewccupdate:.r 

i1ist 

list: anOrderedCollection 
·set anOrderedCollection to be what the receiver holds. ■ 

list +-anOrderedCollection. 
selection +-0. 
self changed: #list 

listlndex . 
·Answer the index into the receiver's list of the current selection. 
(Message is sent by ListView«update:.r 

iselection 
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togglelistlndex: anlnteger 
·user selected or deselected anlntegerth element of the list -
record it for use by ListHolder operations. 
(Message is sent by ListController•changeModelSelection: -

therefore, its name is forced even though inaccurate.)· 

selection = anlnteger 
ifTrue: [selection +-0} 
ifFalse:[selection +-&nlnteger). 

self changed: #listlndex 

UstHolder methodsf:oc 'actions' 

copySalection 
clipboard +-list at selection 

editSelecti on 
self undoAction: #restoreSelection. 
oldentry+-list at selection. 
list at selection 

put (FilllnTheBlank request: 'edit entry:' 
initialAnswer: (list at: selection)). 

self changed: #list 

newAfter 
selection +-Selection + 1. 

·turns out add:beforelndex: works with index one past end· 
self newBefore 

newBafore 
self undoAction: #removeSelection. 
list add: (FilllnTheBlank request 'new entry:') beforelndex: selection. 
self changed: #list 

pasteAfter 
selection +-Selection + 1. 

·turns out add:beforelndex: works with index one past end· 
self pasteBefore 
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pasteBefore 
self undoAction: #removeSelection. 
list add: clipboard beforelndex: selection. 
self changed: #list 

removeSelection 
self undoAction: #pasteBefore. 
self copySelection. ·put selection on clipboard· 
list removeAtlndex: selection. 
selection > list size ifTrue:[selection +-list size]. 
self changed: #list 

restoreSelection 

undo 

·undo last entry edit or entry edit undo 
by swapping current entry and oldentry· 

lcurl 
cur +-list at: selection. 
self undoAction: #restoreSelection. 
list at selection put oldentry. 
old entry +-Cur. 
self changed: #list 

·undo the last action by executing the inverseAction block.■ 

I clip I 
undoAction = nil 

ifTrue: [inil] 
ifFalse:[clip +-undoClipboard. 

selection +-undoSelection. 
self perform: undoActipn. 
clipboard +-Clip] 

undoAction: aSymbol 
·record undo selector plus current selection and clipboard· 

undoClipboard +-Clipboard. 
undoSelection +-Selection. 
undoAction +-&Symbol 
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UstHolder class 
instanceVariableNames:" 

UstHolder class methodsFoc 'instance creation' 

new 
isuper new initialize 

onlist: a list 
·create a new ListHolder for alist· 

I alistHolder I 
alistHolder ~self new. 
alistHolder list alist. 
ialistHolder 

UstView subclass: #ListHolderView 
instanceVariableNames: 11 

classVariableNames: 11 

poolDictionaries: 11 

category: 'Interface-Lists' 

I view a list stored in a ListHolder. 

UstHolderView methodsf:or: 'controller acam' 

defaultControllerClass 
ilistHolderController 

UstHolderView methodsFor. 'updating' 

update: a Symbol 
super update: aSymbol. 
aSymbol == #list 

ifTrue: [super update: llistlndex] 
·11 list has been redisplayed, restore list index. 
Warning: redisplay moves list back to top; 
selection may be out of view.■ 
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UstHolderView class 
instanceVariableNames: " 

UstHofderView class methodsf:or; 'instance creation' 

openOn: alistHolder 

self openOn: alistHolder named: 'List' 

openOn: alistHoldernamed: aString 
·schedule a List editor· 

I topView alistHolderView I 

·create the list view: 
top View +-StandardSystemView 

model: alistHolder 
label: aString 
minimumSize: 100@ 150. 

·Add the list view to the top view.■ 

alistHolderView +-Self new. · 
alistHolderView model: alistHolder. 
alistHolderView insideColor: Form white. 
alistHolderView borderWidthlelt 1 right 1 top: 1 bottom: 1. 

• Add the list view to the top view.· 
topView addSubView: alistHolderView. 

·initialize the list view with the list.· 
alistHolderView list alistHolder list 

·schedule the top view's controller.■ 
topView controller open 
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UstController subclass: #ListHolderController 
instanceVariableNames: 11 

classVariableNames: 'ListHolderVellowButtonMenu 
ListHolderVellowButtonMessages • 

poolDictionaries: 11 

category: 'lnterf ace-Usts' 

I am used to manipulate ListHolders and their views. 

UstHolderControUer methodsFor; 'initiaUze-release' 

initialize 
super initialize. 
self initializeYellowButtonMenu. 
iself 

UstHolderController methodsfor. 'private' 

cantDo 
view flash flash 

initialize YellowButtonMenu 
self yellowButtonMenu: ListHolderYellowButtonMenu 

yellowButtonMessages: ListHolderYellowButtonMessages 

modelDo: a Symbol 
·send model the message aSymbol bracketed 
by controlTerminate/controllnitialize to avoid 
various scroll bar confusions· 

self controlTerminate. 
model perform: aSymbol. 
self controllnitialize 
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UstHolderController methodsFor: 'menu mmages' 

copySelection 

view selection = 0 
ifTrue: [self cantDo] 
ifFalse: [model copySelection) 

cutSelection 

view selection = 0 
ifTrue: [self cantDo] 
ifFalse: [self modelDo: #removeSelection] 

editSelection 
view selection= 0 

ifTrue: [self cantDo] 
ifFalse: [self modelDo: #editSelection] 

insertAfter 

view selection = 0 
ifTrue: [self cantDo] 
ifFalse: [self modelDo: #pasteAfter] 

insertBefore 

view selection = 0 
ifTrue: [self cantDo] 
ifFalse: [self modelDo: #pasteBefore] 

newAfter 

view selection = 0 
ifTrue: [self cantDo] 
ifFalse: [self modelDo: #newAfter] 

newBefore 

view selection= 0 
ifTrue: [self cantDo] 
ifFalse: [self modelDo: #newBefore] 

333 



undo 

self controlTerminate 
·otherwise scroll bar gets confused __ 
handled here instead of using modelDo: 
because need value of model message· 

model undo = nil 
ifTrue: [self cantOo]. 

self controllnitialize 

UstHolderController class 
instanceVariableNames: 11 

ListHolderController class methodsf":or; 'class initialization' 

initialize 
·initialize the menu for the yellow mouse button.■ 
·ustHolderController initialize· 

ListHolderYellowButtonMenu +-
PopUpMenu labels: 

'undo\edit\copy\cut\paste before\paste after\new before\new after' withCRs 
lines: #(1 4). 

ListHolderYellowButtonMessages +-
#(undo editSelection copySelection cutSelection 

insertBefore insertAfter newBefore newAfter) 

UstHolderController class methodsfor; 'instance creation' 

new 
isuper new initialize 
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APPENDIX D 

CLASS NOTEBOOK: USING SELECTIONINLIST 



Model subclass: #Notebook 
instanceVariableNames: 'changed filename sections section 

entries entry• 
classVariableNames: 'Delimiter EntryDelimiter EntryMenu 

NoEntryMenu NoSectionMenu 
SectionDelimiter SectionMenu TextMenu • 

poolDictionaries: 11 

category: 'lnterface-N otebook' 

A generic two-level mechanism which organizes chunks of arbitrary 
text into named entries which are themselves organized into named 
sections. Uses would include phonebooks (category/person), 
notebooks (topic/title), and course catalogues (department/name). 

Instance Variables: 

sections 
section 
entries 

entry 

dictionary of dictionaries 
key of current section 

dictionary of current section 
(for convenience of entry methods) 
key of current entry in current section "s dictionary 

Notebook methodsFoc 'initialize-release' 

initialize 
sections +-Dictionary new. 
section .-0. 
entry +-0. 
filename.-". 
changed .-false 

Notebook methodsFor; 'changing' 

changeRequest 
·1s change, in particular closing the interface, OK?· 

changed ifTrue: [(self confirm: 'Changes have been made since last put 
do you really want to close?') iffalse: [ifalse]]. 

fsuperchangeRequest 
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Notebook methodsfoc 'sections' 

add Section 
·Add a new section.■ 

lnamel 
name +-FilllnTheBlank request: 'Name of new section?' initialAnswer: ". 
[sections includesKey: name] whileTrue: 

[name +--FilllnTheBlank 
request: 'Name of new section?' initialAnswer: name. 

(name = ") ifTrue: [iself] ·abort· 
]. 

[sections includesKey: name] whileTrue: 
[name +-FilllnTheBlank 

request 'A section with that name already exists; 
name of new section?' 

name=·· ifTrue: [iself]. 
self addSection: name. 
self setSection: name. 
changed +-true. 
self changed: #section 

currentSection 
isection 

currentSection: aString 
self setSection: aString 

removeSecti on 

initialAnswer: name]. 
·abort· 

·Remove current section, prompting for confirmation.■ 

(BinaryChoice message: 
'Do you really want to remove section 

··, section, ··r) ifTrue: 
[sections removeKey: section. 
self setSection: nil. 
changed +-true. 
self changed: #section] 
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renameSection 
·Rename current section.■ 

lnewnamel 
newname +-FilllnTheBlank 

request 'New name for section 
•· ,section,"7' 

initialAnswer: section. 
newname = section ifTrue: [iself]. ·abort if unchanged· 
[sections includesKey: newname] whileTrue: 

[newname +-filllnTheBlank 
request 'A section with that name already exists; 

new name for ··,section,"'?' 
initialAnswer. newname]. 

newname = " I newname = section ifTrue: [iself]. 
sections at newname put (sections at: section). 
sections removeKey: section. 
self setSection: newname. 
changed +-true. 
self changed: #section 

1ectionMenu 
·the menu of section commands· 

section == nil 

section Names 

ifTrue: [iNoSectionMenu] 
iffalse: [iSectionMenu] 

isections keys asSortedCollection 
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Notebook methodsFoc 'entries' 

addEntry 
·Add a new entry: 

lnamel 
name +-FilllnTheBlank request: 'Name of new entry?' initialAnswer: ". 
[entries includesKey: name] whileTrue: 

[name +-FilllnTheBlank 
request 'Name of new entry?' initialAnswer: name. 

(name=") ifTrue: [iself] ·abort· 
]. 

[entries includesKey: name] whileTrue: 
[name +-FilllnTheBlank 

request 'A entry with that name already exists; 
name of new entry?' 

initialAnswer: name]. 
name= "ifTrue: [iself]. ·abort· 
self addEntry: name to: entries. 
self setEntry: name. 
changed +-true. 
self changed: #entry 

currentEntry 
ientry 

currantEntry: aString 
self setEn~ry: aString 

entryMenu 
"the menu of entry commands· 

entry== nil 

entryNames 

ifTrue: [iNoEntryMenu] 
iff alse: [iEntryMenu) 

entries== nil ifTrue: (inil]. 
ientries keys asSortedCollection 
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remove Entry 
·Remove current entry, prompting for confirmation.■ 

(BinaryChoice message: 
'Do you really want to remove entry··, entry, ··n ifTrue: 

[entries removeKey: entry. 
self setEntry: nil. 
changed ~true. 
self changed: #entry] 

rename Entry 
·Rename current entry: 

lnewnamel 
newname ~ FilllnTheBlank request: 'New name for entry 

•· ,entry,··7· 
initialAnswer: entr-y. 

newname = entry ifTrue: [iself]. ·abort if unchanged· 
[entries includesKey: newname] whileTrue: 

[newname ~FilllnTheBlank 
request 'A entry with that name already exists; 

new name for ··,entry,··1· 
initialAnswer: newname]. 

newname = " I newname = entry ifTrue: [iself]. 
entries at newname put (entries at entry). 
entries removeKey: entry. 
self setEntry: newname. 
changed ~true. 
self changed: #entry 

Notebook methodsfor; 'text' 

acceptText aText 
·enter a Text at current entry.■ 

entry== nil ifTrue: [1false]. 
self put aText copy at entry in: entries. 
changed +-true. 
1true 
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text 
·the text of the current entry· 

entry== nil ifTrue: [inil]. 
ientries at entry 

textMenu 
rTextMenu 

Notebook methodsFoc 'private' 

addEntry: a String to: a Dictionary 
·Add a new section named aString· 

aDictionary at aString put Text new 

addSection: aString 
·Add a new section named aString· 

sections at aString put Dictionary new 

put aString at: anEntryName in: a Dictionary 
·Make a String be the current text for anEntryName in aDictionary.■ 

aDictionary at anEntryName put aString 

setEntry: aString 
·Make aString be the current entry.■ 

entry +-aString. 
self changed: #text 

setSection: aString 
·Make aString be the current section.■ 

section +-8String. 
section== nil 

ifTrue: [entries +-nil] 
iffalse: [entries +-Sections at a String]. 

self setEntry: nil. 
self changed: #entry 
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Notebook methodsfor: 'fileln/Ouf 

get 
·Add entries from notebook stored on a file.■ 

I filnam I 

filnam +-(FilllnTheBlank request 'Name of file to get notebook from?' 
initialAnswer: filename). 

self getFrom: filnam. ·should check to see if it exists· 
self changed #section 

getEntryln: aDictionary From: aStream 
·Read entry from stream. 
The stream starts positioned at first character of entry name· 

lent textl 

ent+-aStream upTo: Character er. 
Transcript show: ' ',ent er. 
text+-(aStream upTo: Delimiter) asText. 
self add Entry: ent to: aDictionary. 
self put text at ent in: aDictionary 

getfrom: aFileName 

·upTo: stops normally at EDF' 

·add entries from notebook file to this notebook, overriding any 
text already stored for duplicated section/entry pairs.■ 

lstrml 

filename=" ifTrue: [filename +-&FileName]. 
·rt getting several, keep first name· 

strm+-(FileStream oldFileNamed: afileName). 
strm skipTo: Delimiter; next ·skip any header info in file· 

[strm atEnd] whilefalse: 
[self getSectionFrom: strm]. 

strm close 
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getSectionfrom: aStream 

put 

·Read section and its entries from stream. 
The stream starts positioned at first character of section name· 

1sec secdictl 

sec +-aStream up To: Character er. 
aStream next ·gobble next delimiter· 
Transcript show: sec; er. 
(sections includesKey: sec) ifFalse: [self addSection: sec]. 
secdict+-sections at sec. 
[aStream atEnd I (aStream peekFor: Delimiter)] whileFalse: 

[self getEntryln: secdict From: aStream] 

·File notebook out putting 1'No delimiter characters in front of section 
heads and one in front of entry heads. Delimiter character cannot 
be used in headings or entry text: 

I strm I 

strm +-FileStream fileNamed: ·should check to see if it exists· 
(filename +-(FilllnTheBlank 

self putTo: strm. 
changed +-false 

request 'Name of file to put notebook to?' 
initialAnswer: filename)). 

putEntry: anAssoc on: a Stream 
•file out the entry named aName on aStrearn· 

ltextl 

text+-anAssoc value. 

aStream nextPut: Delimiter, 
nextPutAII: anAssoc key; er; 
nextPutAII: text. 

text isEmpty iffalse: 
[(text last= Character er) iffalse: 

[aStream er]] 
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putSection: anAssoc on: aStream 
·tile out the section named a Name on aStream· 

aStream nextPut Delimiter, nextPut Delimiter, 
nextPutAII: anAssoc key: er. 

anAssoc value associationsDo: [:assoc I self putEntry: assoc on: aStream] 
·Dictionary enumeration is arbitrary order; 
if want alphabetical, must sort keys and access each: 

putTo: aStream 
·File notebook out using .markers for section heads and entry heads· 

aStream nextPut: Character er. ·could put a header here· 
sections associationsDo: [:sec I self putSection: sec on: aStream]. 

·oictionary enumeration is arbitrary order; 
if want alphabetical, must sort keys and access each: 

aStream shorten; close 

Notebook class methodsFoc 'class initiafization' 

initialize 
·initialize Notebook with appropriate menus and fileln/Out delimiters: 

·Notebook initialize· 

Delimiter+.-$\. 

SectionMenu +-ActionMenu 
labels: 'add section\put to file\load from file\rename\remove· 

withCRs 
lines: #(3) 
selectors: l(addSection put get renameSection removeSection). 

NoSectionMenu +-ActionMenu 
labels: 'add section\put to file\load from file' 
selectors: l(addSection put get). 

EntryMenu +-ActionMenu 
labels: 'add entry\rename\remove' withCRs 
lines: #(1) 
selectors: l(addEntry renameEntry removeEntry). 

NoEntryMenu +-ActionMenu 
labels: 'add entry' 
selectors: #(addEntry). 

TextMenu +-ActionMenu 
labels: 'again\undo\copy\cut\paste\accept\cancel' withCRs 
lines: #(2 5) 
selectors: #(again undo copySelection cut paste accept cancel) 
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Notebook class methodsFor; 'instance creation' 

from: afileName 
·create a new notebook and get its contents from afileName.■ 

I notebook I 
notebook +-Self new. 
notebook getFrom: aFileName. 
inotebook 

new 
isuper new initialize 

Notebook class methodsfor: 'user interface' 

openfrom: aFileName 
·open an MVC interface on a new Notebook with contents from 
afileName.■ 

self openOn: (Notebook from: aFileName) named: afileName 

openNamed: aString 
·open an MVC interface on a new Notebook.■ 

·Notebook openNamed: 'Notebook'· 

self openOn: Notebook new named: aString 

open On: a Notebook named: a String 
·open an MVC interface on aNotebook. 
This could really be an instance method, but it is conventional 
to make MVC creators class methods.■ 

•style note: in general methods should be smaller than a page and do 
just one thing, so I would normally break this up into subfunctions. 
However, in this case I felt it would confuse the presentation. 
Also, I wanted this method to look like typical system MVC interface 
creation methods, which typically are in one piece.■ 
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I topView sectionView entryView textView I 

topView+-StandardSystemView 
model: aNotebook 
label: aString 
minimumSize: 275@350. 

sectionView+-SelectionlnlistView 
on: aNotebook 
aspect #section 
change: #currentSection: 
list #sectionNames 
menu: #sectionMenu 
initialSelection: #currentSection. 

entryView +-SelectionlnlistView 
on: aNotebook 
aspect #entry 
change: #currentEntry: 
list #entryNames 
menu: #entryMenu 
initialSelection: #currentEntry. 

textView +-TextView 

·moder 
·change symbol for section· 
·msg to select new section· 
·msg to get list of sections· 
·msg to get section menu· 
·msg to get initial section· 

·model· 
·change symbol for entry• 
·msg to select new entry· 
·msg to get list of entries· 
·msg to get entry menu· 
·msg to get initial entry" 

on: &Notebook ·model· 
aspect #text ·change symbol for new text· .. 
change: #acceptText ·msg to store new entry text· 
menu: #textMenu. ·msg for text menu· 

topView addSubView: sectionView 
in: (o@O extent 1@0.2) 1op 20% • 
borderWidth: 1. · 

topView addSubView: entryView 
in: (o@0.2 extent 1@0.25) ·next 25%. 
borderWidth: 1. 

topView addSubView: textView 
in: (o@0.45 extent 1@0.55) ·bottom 55% • 
borderWidth: 1. 

,here are many other messages for adding subviews; . 
addSubView:in:borderWidth: happens to be very convement 
for arranging multiple subviews.■ 

topView controller open ·activate the whole interface· 
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