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Not All Traces on the Circle Come from
Functions of Least Gradient in the Disk

GREGORY S. SPRADLIN & ALEXANDRU TAMASAN

ABSTRACT. We provide an example of an L1 function on the
unit circle that cannot be the trace of a function of bounded
variation of least gradient in the unit disk.

1. INTRODUCTION

Sternberg et al. in [3], and Sternberg and Ziemer in [4], consider the question of
existence, uniqueness, and regularity for functions of least gradient and prescribed
trace. More precisely, for Ω ⊂ Rn a Lipchitz domain, and for a continuous map
g ∈ C(∂Ω), the authors formulate the problem

(1.1) min
{∫

Ω

|Du| : u ∈ BV(Ω), u
∣

∣

∂Ω = g

}

,

where BV(Ω) denotes the space of functions of bounded varation, the integral is
understood in the sense of the Radon measure |Du| of Ω, and the trace at the
boundary is in the sense of the trace of functions of bounded varation. Solutions
to the minimization problem (1.1) are called functions of least gradient. For do-
mains Ω with boundary of non-negative curvature, and that are not locally area
minimizing, the authors prove existence, uniqueness, and regularity of the solu-
tion. Moreover, if the boundary of the domain fails either of the two assumptions,
they provide counterexamples to existence.

It is known that traces of functions f ∈ BV(Ω) of bounded varation are in
L1(∂Ω), and that conversely, any function in L1(∂Ω) admits an extension (in the
sense of trace) in BV(Ω) (in fact, in W 1,1(Ω)); see, for example, [1]. The question
we address here is whether solutions of the problem (1.1) exist in the case of traces
that are merely in L1(∂Ω) and not continuous. We answer this question in the
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1820 GREGORY S. SPRADLIN & ALEXANDRU TAMASAN

negative by providing a counterexample for the unit disk, which has a boundary
of positive curvature and which is not locally length minimizing.

Let D denote the unit disk in the plane, and S be its boundary. We prove the
following:

Theorem 1.1. There exists f ∈ L1(S) such that the minimization problem

min
{∫

D

|Dw| : w ∈ BV(D), w
∣

∣

S
= f

}

has no solution.
A renewed interest in functions of least gradient with variable weights ap-

peared recently because of its applications to current density impedance imaging
(see [2] and references therein). Our counterexample sets a limit on the roughness
of the boundary data one can afford to use.

2. PROOF OF THEOREM 1.1

We will call the L1(S)-function satisfying Theorem 1.1 “f∞”. This function is the
characteristic function of a fat Cantor set. Define C0 ⊃ C1 ⊃ C2 ⊃ · · · inductively
as follows:

C0 =

{

(cosθ, sinθ) |
π

2
−

1
2
≤ θ ≤

π

2
+

1
2

}

;

if Cn consists of 2n disjoint closed arcs, each with arc length

(2.1) θn =
1

2n

n
∏

i=1

(

1−
1
2i

)

(if n = 0, the “empty product” is interpreted as 1), then Cn+1 is obtained by
removing an open arc of arc length (1−1/2n+1)θn from the center of each of those
arcs. Then, Cn+1 consists of 2n+1 disjoint closed arcs, each with arc length θn+1.
For n = 0,1,2, . . . , with H 1 denoting one-dimensional Hausdorff measure,

(2.2) H 1(Cn) = 2nθn =
n
∏

i=1

(

1−
1
2i

)

≡ Kn.

Define C∞ =
∞
⋂

n=0

Cn. Then, C∞ is a compact and nowhere dense subset of S, with

H 1(C∞) =
∞
∏

i=1

(

1−
1
2i

)

= lim
n→∞

Kn ≡ K∞ > 0.

Note that K∞ is well defined and positive, since all the terms in the infinite product
are positive, and

∑∞
i=1 1/2i <∞.
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We define f∞ ∈ L1(S) to be the characteristic function of C∞:

f∞ = χC∞ ∈ L
1(S).

From [1, Theorem 2.16, Remark 2.17], we have that

inf
{∫

D

|Du| : u ∈ BV(D), u
∣

∣

S
= f∞

}

≤ ‖f∞‖L1(S) = K∞.

We will show that, for any u ∈ BV(D) with u|S = f∞,

∫

D

|Du| > K∞,

proving Theorem 1.1.
The idea of the proof is as follows: we construct a compact subset B∞ of D̄,

with empty interior, with the property that

If u ∈ BV(D) with u
∣

∣

S
= f∞ and

∫

D\B∞
|u|dx > 0,(2.3.i)

then
∫

D

|Du| > K∞,

and

If u ∈ BV(D) with u
∣

∣

S
= f∞ and

∫

D\B∞
|u|dx = 0,(2.3.ii)

then
∫

D

|Du| > K∞.

Theorem 1.1 obviously follows from this. B∞ has the form

(2.4) B∞ =
∞
⋂

n=1

Bn,

where B1 ⊃ B2 ⊃ B3 ⊃ · · · , and for each n ≥ 1, Bn is a compact subset of D̄
with 2n path components, with each path component the union of a polygon
and two circular segments (“circular segment” is the standard term for the region
between an arc and a chord connecting two points on a circle). That polygon
will be defined precisely as the union of at least one triangle with at least one
trapezoid. In Figure 2.2, B1 is the union of the two shaded regions. In Figure 2.3,
the two shaded regions constitute the upper portion of the right half of B2. The
four shaded regions in Figure 2.4 are indistinguishable from the top portion of B3

(the set S1 mentioned in the caption does not include eight tiny circular segments
that hug S and are so small they are not visible in the figure). The entire set B3 is
formed by extending the shaded regions in Figure 2.4 downward to the bottom of
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S, similarly to B1 (see Figure 2.2). In all four figures, the arclengths and lengths of
arcs and line segments are not necessarily scaled consistently with (2.1), but were
chosen to try to make the figures easy to read.

Unfortunately, defining each Bn precisely requires a slew of definitions. For
n ≥ 0, Cn is the disjoint union of 2n closed arcs. Call this collection of arcs An.
For example, A0 = {C0}. For each A ∈ An, we will define a set BA ⊂ D̄, then
define Bn as the disjoint union

(2.5) Bn =
⊔

A∈An

BA.

Each such BA is the connected union of the following: a closed circular segment,
n closed polygons (all of which are triangles or trapezoids), and a “bottom” piece
that is the connected union of a trapezoid and a (different) circular segment. (In
Figure 2.2, the arc in A1 in the right half of the x1-x2 plane is called “A”, and
BA is the shaded region in the right half of D̄. If we call the other arc in A1 “A′”,
then the shaded region in the left half of D̄ is BA′ . In Figure 2.3, the shaded region
on the left is the top of Bα, and the shaded region on the right is the top of Bβ,
where α and β are the two arcs in A2 in the right half of the x1-x2 plane. The
other notation used in Figures 2.2 and 2.3 will be defined momentarily). For an
arc A, let Cho(A) denote the chord connecting the endpoints of A, and W(A)
the closed circular segment enclosed by A and Cho(A). For A ∈ An with n ≥ 1,
define Par(A) (the “parent” of A) to be the arc in An−1 containing A:

Par(A) = A′ : A′ ∈ An−1, A ⊂ A
′.

More generally, for A ∈ An (n ≥ 0), define

Par0(A) = A, Par1(A) = Par(A), Par2(A) = Par(Par1(A)),

Par3(A) = Par(Par2(A)), . . . , Parn(A) = C0 ∈ A0.

For A ∈ An (n ≥ 0), define the two “children” of A, ChiL(A) and ChiR(A),
by

ChiL(A), ChiR(A) ∈ An+1, ChiL(A),ChiR(A) ⊂ A,

ChiL(A)∩ChiR(A) = 0,

ChiL(A) is “to the left” or counterclockwise from ChiR(A).

For an arc A of S of arc length less than π , let v(A) denote the unit vector
perpendicular to Cho(A) and pointing from Cho(A) toward 0 ∈ R2. ForA ∈ An

with n ≥ 1, let T(A) denote the unique closed right triangle whose longer leg is
Cho(A) and whose hypotenuse is a subset of Cho(Par(A)).
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Figure 2.1 shows an arc A belonging to An for some n ≥ 1, along with
Par(A), Cho(A), Cho(Par(A)), T(A), and v(A). The lengths of the segments
and arcs are not necessarily to scale, and the length of v(A) is definitely not to
scale, since v(A) is a unit vector and Par(A) is an arc of S.

A

Cho(A)

v(A)

Cho(Par(A))

Par(A)

T(A)

FIGURE 2.1.

We are finally ready to define BA (for A ∈ An with n ≥ 1). We will do
the n = 1 and n = 2 cases first, then the general case. Suppose A ∈ A1 (so
A = ChiL(C0) or ChiR(C0)). Note that BA is the union of W(A), T(A), and a
“bottom” piece that is the union of a trapezoid and a circular segment. To help
establish the pattern for general n, we introduce some notation that is not needed
here but will be necessary later. Define L1(A) to be Cho(A) (a line segment),
T0(A) to be T(A) (a triangle), and L2(A) (a line segment, of course) to be the
hypotenuse of T0(A), which can also be defined by

(2.6) L2(A) =

{

x ∈ ∂T0(A) | x2 = sin
(

π

2
−

1
2

)}

.

Define the “bottom” part of BA, Bot(A), to be the set of all points in D̄ on or
directly “below” L2(A); that is,

(2.7) Bot(A) =
{

x ∈ D̄ | x2 ≤ sin
(

π

2
−

1
2

)

, x1 = y1 for some y ∈ L2(A)

}

.

Bot(A) is the union of a closed trapezoid and a closed circular segment. Finally,
define

(2.8) BA = W(A)∪ T0(A)∪ Bot(A).

In Lemma A.1 in Appendix A, it is proven that, for any A ∈ An (for n ≥ 0),
T(ChiL(A)) and T(ChiR(A)) are disjoint (use θ = θn and α = θn/2n+1 ≥ θ2

n/2,
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A = Chir (C0)

W(A)

Bot(A)

v(A)

L1(A)

L2(A)

T0(A)

FIGURE 2.2. B1

with θn as in (2.1)). It follows that BChiL(A) and BChiR(A) are disjoint. Now, B1 is
defined as in (2.5). The two shaded regions in Figure 2.2 compose B1. The arc
ChiR(C0) is called A, and the parts of BA (which is the right half of B1) are labeled,
along with the vector v(A), which is perpendicular to Cho(A). The lengths of
the segments and arcs are not truly scaled, and the unit vector v(A) is drawn with
shorter than unit length in order to fit in the picture.

Next, suppose A ∈ A2. BA is the union of a chain of four sets: a closed
circular segment, followed by a closed triangle, then a closed triangle or trapezoid,
then finally a closed “bottom” piece which is the union of a trapezoid and a circular
segment, as in the n = 1 case. The intersection of any two consecutive sets in the
chain is a line segment.

Figure 2.3 shows the top of the right half of B2, so it shows the top portions
of the two rightmost of the four components of B2. As before, the lengths of seg-
ments and arcs are not necessarily scaled truly, and v(ChiR(C0)) is actually a unit
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vector, contrary to the picture. The arc aj is ChiR(C0). For brevity in notation,
we have defined α = ae = ChiL(ChiR(C0)) and β = fj = ChiR(ChiR(C0)). The
two connected gray regions are the upper portions of Bα and of Bβ. Also, Bα is the
union of W(α) (a very thin circular segment in the figure), the triangle △ade,
the trapezoid abcd, and a “bottom” piece Bot(α) consisting of all the points in
D̄ on or directly below the line segment bc. Finally, Bβ is the union of W(β) (a
very thin circular segment in the figure), the triangle △fgj, the triangle △ghj,
and a “bottom” piece Bot(β) consisting of all the points in D̄ on or directly below
the line segment hj.

a

b c

d

e
f

g

h

j

α

β
v(ChiR(C0))

FIGURE 2.3. The upper part of the right half of B2

Generally, for A ∈ A2, define the line segment L1(A) = Cho(A) (thus,
L1(α) = ae and L1(β) = fj ), and define the triangle T0(A) = T(A) (thus,
T0(α) = △ade and T0(β) = △fgj). Define the line segment

L2(A) = ∂T0(A)∩Cho(Par(A)).

Then, L2(A) can also be described as the hypotenuse of T0(A). In Figure 2.3,
L2(α) = ad and L2(β) = gj. Define T1(A) ⊂ T(Par1(A)) to be the set of
all points x in the triangle T(Par1(A)) with the property that, for some point
y ∈ L2(A), the vector x − y is parallel to v(Par1(A)) ≡ v(Par(A)). Note that
T1(A) is either a triangle (this occurs if A = ChiL(ChiL(C0)) or ChiR(ChiR(C0)))
or a trapezoid (this occurs if A = ChiL(ChiR(C0)) or ChiR(ChiL(C0))). In Figure
2.3, T1(α) is the trapezoid abcd, with α = ChiL(ChiR(C0)), and T1(β) is the
triangle △ghj, with β = ChiR(ChiR(C0)). T1(A) can be defined succinctly by

T1(A) = {x ∈ T(Par1(A)) : x− y ‖ v(Par1(A)) for some y ∈ L2(A)}.
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In a way similar to what was done in (2.6), define the horizontal line segment
L3(A) to be the set of all points in ∂T1(A) with x2-coordinate sin(π/2− 1

2):

L3(A) =

{

x ∈ ∂T1(A) | x2 = sin
(

π

2
−

1
2

)}

.

In other words, L3(A) is the side of the polygon ∂T1(A) that is a subset of the
horizontal line {x | x2 = sin(π/2− 1

2)}. In Figure 2.3, we have L3(α) = bc and

L3(β) = hj. As in (2.7), define the “bottom” part of BA, Bot(A), to be the set of
all points in D̄ on or directly below L3(A); that is,

Bot(A) =
{

x ∈ D̄ | x2 ≤ sin
(

π

2
−

1
2

)

, x1 = y1 for some y ∈ L3(A)

}

.

As before, Bot(A) is the union of a trapezoid and a circular segment. In a way
similar to what was done in (2.8), define

BA = W(A)∪ T0(A)∪ T1(A)∪ Bot(A).

As in the n = 1 case, by Lemma A.1 in Appendix A, the sets BA for the four
elements of A2 are disjoint. B2 is defined by (2.5). Clearly, B2 ⊂ B1.

Finally, we consider the n > 2 case. Let A ∈ An. Note that BA is the
union of a chain of n + 2 closed sets: a closed circular segment, followed by
n closed polygons that are all triangles or trapezoids, and finally a bottom piece
called Bot(A) (as before) that is the union of a closed trapezoid and a closed
circular segment. Either all n of the polygons are triangles, or (more likely), the
first k of them are triangles for some 1 ≤ k ≤ n − 1, while the remaining n − k
polygons are trapezoids. The intersection of any two consecutive sets in the chain
is a line segment. Also, BA has the form

BA = W(A)∪
n−1
⋃

k=0

Tk(A)∪ Bot(A),

where Tk(A) and Bot(A) will be defined precisely in a moment. To do so, we
must also name the intersections of consecutive sets in the chain, which are line
segments, and which we will call L1(A), . . . , Ln+1(A). We will also need to use
L1(A), . . . , Ln+1(A) to prove (2.3).

Define

L1(A) = Cho(A),(2.9.i)

T0(A) = T(A),(2.9.ii)

L2(A) = ∂T0(A)∩Cho(Par1(A)),(2.9.iii)

T1(A) =
{

x ∈ T(Par1(A)) : x− y ‖ v(Par1(A))(2.9.iv)

for some y ∈ L2(A)
}

,



Traces on the Circle 1827

L3(A) = ∂T1(A)∩Cho(Par2(A)),(2.9.v)

T2(A) =
{

x ∈ T(Par2(A)) : x− y ‖ v(Par2(A))(2.9.vi)

for some y ∈ L3(A)
}

,

...

Tn−1(A) =
{

x ∈ T(Parn−1(A)) : x− y ‖ v(Parn−1(A))(2.9.vii)

for some y ∈ Ln(A)
}

,

Ln+1(A) =

{

x ∈ ∂Tn−1(A) : x2 = sin
(

π

2
−

1
2

)}

,(2.9.viii)

Bot(A) =
{

x ∈ D̄ : x2 ≤ sin
(

π

2
−

1
2

)

, x1 = y1(2.9.ix)

for some y ∈ Ln+1(A)

}

.

As before, the BA are disjoint for all the 2n arcs A in An, and Bn is defined by
(2.5). Clearly, B1 ⊃ B2 ⊃ B3 ⊃ · · · . We define B∞ by (2.4).

Having defined B∞, we show that it has property (2.3), from which Theorem
1.1 follows. This requires three lemmas, followed by an easy proof of (2.3.i), then
a more involved proof of (2.3.ii).

Lemma 2.1. Let u ∈ C∞(D)∩ BV(D) with u|S = f∞, n ≥ 1, and A ∈ An.
Let T0(A), T1(A), . . . , Tn−1(A) and Bot(A) be as in (2.9). Then,

∫

W(A)
|∇u · v(A)|dx +

n−1
∑

k=0

∫

Tk(A)
|∇u · v(Park(A))|dx(2.10)

+

∫

Bot(A)
|∇u · j|dx ≥ cos

(

Kn
2n+1

)

K∞
2n
.

Here, j = 〈0,1〉, as usual, and Kn is from (2.2). There is a slight abuse of
notation in (2.10): the domain of u is D, not D̄, but W(A) and Bot(A) intersect
S ≡ ∂D, and Tk(A) may intersect S. In all cases, the intersection has H 2-measure
zero. It would be better formally to replace “W(A)”, “Tk(A)”, and “Bot(A)” in
(2.10) with their interiors, or with their intersections withD. However, this might
make the proof of Lemma 2.1 less readable, so we will keep the notation of (2.10)
in the proof of the lemma, and in the remainder of this section.

Proof. Define sn = 2 sin(Kn/2n+1), which is the length of Cho(A). Let
L1(A), . . . , Ln+1(A) be as in (2.9). For k = 1,2, . . . , n+ 1, let ϕk : [0, sn] → D̄

be the linear map with ϕk(0) the left endpoint of Lk(A) and ϕk(sn) the right
endpoint of Lk(A) (Lk(A) is not vertical). Define ϕ0 : (0, sn)→ A so that ϕ0(t)
is the projection ofϕ1(t) onto A in the direction −v(A) (the explicit formula for
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ϕ0(t) is fairly complicated; since we do not use it, we omit it here). Now, define
g0, g1, . . . , gn+1 ∈ L1((0, sn)) by

g0(t) = f∞(ϕ0(t)), gk(t) = u(ϕk(t)) for 1 ≤ k ≤ n+ 1.

Now, H 1(C∞ ∩ A) = K∞/2n, so
∫

A
f∞ dH 1 = K∞/2n. Recall θn from (2.5).

Since the angle between A and Cho(A) is at most θn/2 = Kn/2n+1, we have

(2.11) ‖g0‖L1((0,sn)) ≥ cos
(

Kn
2n+1

)∫

A
f∞ dH 1 = cos

(

Kn
2n+1

)

K∞
2n
.

Obviously,

g0 = (g0 − g1)+ (g1 − g2)+ (g2 − g3)+ · · · + (gn − gn+1)+ gn+1,

so by the triangle inequality,

‖g0‖L1((0,sn)) ≤ ‖g1 − g0‖L1((0,sn)) +

n
∑

k=1

‖gk+1 − gk‖L1((0,sn))(2.12)

+ ‖gn+1‖L1((0,sn)).

Now,

(2.13) ‖g1−g0‖L1((0,sn)) =

∫ sn

0
|g1(t)−g0(t)|dt ≤

∫

W(A)
|∇u(x) ·v(A)|dx.

For 1 ≤ k ≤ n, the Fundamental Theorem of Calculus yields

‖gk+1 − gk‖L1((0,sn)) =

∫ sn

0
|gk+1(t)− gk(t)|dt(2.14)

≤

∫

Tk−1(A)
|∇u(x) · v(Park−1(A))|dx.

Since f∞ = 0 on the bottom half of S, u|S = f∞, and Bot(A) ∩ S is a subset of
the bottom half of S, it follows that

(2.15) ‖gk+1‖L1((0,sn)) =

∫ sn

0
|gk+1(t)|dt ≤

∫

Bot(A)
|∇u · j|dx.

Putting (2.11) and (2.12)–(2.15) together yields (2.10). ❐

Define D− ⊂ D, the “lower part” of D, by

(2.16) D− =

{

x ∈ D | x2 < sin
(

π

2
−

1
2

)}

.

From Lemma 2.1, we have the following result.
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Lemma 2.2. Let u be as in Lemma 2.1: u ∈ C∞(D)∩BV(D) with u|S = f∞.
Let n ≥ 1. Then,

∑

A∈An

∫

W(A)
|∇u · v(A)|dx +

n
∑

m=1

∑

A∈Am

∫

T(A)∩Bn
|∇u · v(A)|dx(2.17)

+

∫

Bn∩D−
|∇u · j|dx ≥ cos

(

Kn
2n+1

)

K∞.

Proof. By Lemma 2.1,

∑

A∈An

∫

W(A)
|∇u · v(A)|dx +

∑

A∈An

n−1
∑

k=0

∫

Tk(A)
|∇u · v(A)|dx(2.18)

+
∑

A∈An

∫

Bot(A)
|∇u · j|dx ≥ cos

(

Kn
2n+1

)

K∞.

We must prove that inequalities (2.17) and (2.18) are equivalent. The right-hand
sides and first terms of the left-hand sides are exactly the same. The third sum-
mands in the left-hand sides are equal because Bn∩ D̄− is the disjoint union of the
sets Bot(A) for the 2n arcs A in An. We must show that the second summands
on the left-hand sides of (2.17) and (2.18) are equal. Call the common integrand
of the integrals “g(x)”. Generally, any two distinct sets of the form Tk(A), for
ℓ ≥ 1, A ∈ Aℓ, and k ∈ {0, . . . , ℓ − 1}, have intersection of H 2-measure zero.
This includes the case of k = 0, Tk(A) = T0(A) ≡ T(A). Therefore, the second

summands on the left-hand sides of (2.17) and (2.18) have the form
∫

S1

g dx and
∫

S2

g dx, where

S1 =

n
⋃

m=1

⋃

A∈Am

(T(A)∩ Bn) = Bn ∩
(

n
⋃

m=1

⋃

A∈Am

T(A)
)

,

S2 =
⋃

A∈An

n−1
⋃

k=0

Tk(A).

We must show S1 = S2. This is easy to see if one uses a picture, but unfortunately
is difficult to explain in words. We will do both.

In Figure 2.4, the shaded region (comprised of eight components) is S1 (which
equals S2) in the case n = 3.

On one hand, the shaded region is S2: A3 contains eight disjoint closed arcs
A. For each such A, the union of the polygons T0(A), T1(A), and T2(A) equals
one of the eight components of the shaded region: on top, T0(A) is a tiny triangle
that is barely visible; just below, T1(A) is a larger triangle or trapezoid; and on
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FIGURE 2.4. The set S1 (which equals S2) from the proof of
Lemma 2.2

the bottom, T2(A) is a triangle or trapezoid, one of whose sides is a subset of the
horizontal chord Cho(C0) at the bottom of Figure 2.4. On the other hand, the
shaded region is S1: each component of the shaded region is the union of three
polygons. The union of the polygons on the bottom of the components (there are
eight such polygons) is B3 ∩

⋃

A∈A1
T(A). The union of the middle polygons of

the components (there are eight such polygons) is B3 ∩
⋃

A∈A2
T(A). Finally, the

union of the top polygons of each component (there are eight such polygons, and
they are all tiny triangles) is B3 ∩

⋃

A∈A3
T(A).

To formally prove S1 = S2, we show that the two sets are subsets of each
other. First, we show S1 ⊂ S2. Let m′ ∈ {1, . . . , n} and A′ ∈ Am′ . We will
show Bn ∩ T(A′) ⊂ S2. Let A ∈ An. Since T(A′) ⊂ D \D− and Bot(A) ⊂ D̄−,
x2 = sin(π/2− 1

2) along T(A′)∩ Bot(A). Now,

Bot(A)∩
{

x | x2 = sin
(

π

2
−

1
2

)}

= Tn−1(A)∩

{

x | x2 = sin
(

π

2
−

1
2

)}

.

Thus, we have T(A′) ∩ Bot(A) ⊂ Tn−1(A). Also, since m′ ≤ n, we have that
T(A′)∩W(A) ⊂ T(A) ≡ T0(A). Therefore,

Bn ∩ T(A
′) ≡

(
⋃

A∈An

(

W(A)∪ Bot(A)∪
n−1
⋃

k=0

Tk(A)
))

∩ T(A′)

=
⋃

A∈An

((

W(A)∪ Bot(A)∪
n−1
⋃

k=0

Tk(A)
)

∩ T(A′)
)

=
⋃

A∈An

n−1
⋃

k=0

(Tk(A)∩ T(A
′)) ⊂

⋃

A∈An

n−1
⋃

k=0

Tk(A) = S2,
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and S1 ⊂ S2. Next, we prove S2 ⊂ S1. Let A′ ∈ An and k′ ∈ {0, . . . , n− 1}. We
will show Tk′(A′) ⊂ S1. First,

(2.19) Tk′(A
′) ⊂

n−1
⋃

k=0

Tk(A
′) ⊂ BA′ ⊂ Bn.

Next, let m′ = n− k′ ∈ {1, . . . , n}. Since we have Tk′(A′) ⊂ T(Park
′

(A′)) and
Park

′

(A′) ∈ An−k′ = Am′ , it follows that

(2.20) Tk′(A
′) ⊂ T(Park

′

(A′)) ⊂
n
⋃

m=1

⋃

A∈Am

T(A).

By (2.19), (2.20), and the definition of S1, we have Tk′(A′) ⊂ S1. Therefore,
S2 ⊂ S1. Lemma 2.2 is proven. ❐

Now, as n → ∞, H 2(
⋃

A∈An
W(A)) → 0. Also, Kn → K∞ as n → ∞. Thus,

taking limits of both sides of (2.17) as n → ∞ yields the second inequality in the
lemma below.

Lemma 2.3. Let u ∈ C∞(D)∩ BV(D) with u|S = f∞. Then,

∫

B∞∩D
|∇u|dx ≥

∞
∑

n=1

∑

A∈An

∫

T(A)∩B∞
|∇u ·v(A)|dx+

∫

D−∩B∞
|∇u · j|dx ≥ K∞.

The first inequality is obvious because any two different triangles in the col-
lection {T(A) | A ∈Aℓ, ℓ ≥ 1} have intersection with zero H 2-measure, and all
such triangles are disjoint with D−.

Now, let us prove (2.3.i). Suppose

u ∈ BV(D), with u
∣

∣

S
= f∞ and

∫

D\B∞
|u|dx > 0.

D \ B∞ consists of countably many open components. For at least one such com-

ponent Ω,
∫

Ω

|u|dx > 0. Note that ∂Ω contains an arc of S of positive arc length

along which f∞ equals zero. Therefore,
∫

Ω

|Du| > 0.

By [1, Theorem 1.17, Remark 1.18, Remark 2.12], there then exists a sequence
(um) ⊂ C∞(D) ∩ BV(D) with um|S = f∞ for all m, um → u in L1(D), and
∫

D

|∇um|dx →

∫

D

|Du| as m →∞. By [1, Theorem 1.19],

lim inf
m→∞

∫

Ω

|∇um|dx ≥

∫

Ω

|Du| > 0.
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Therefore, using Lemma 2.3,
∫

D

|Du| = lim
m→∞

∫

D

|∇um|dx ≥ lim inf
m→∞

(
∫

D∩B∞
|∇um|dx +

∫

Ω

|∇um|dx

)

≥ B∞ +

∫

Ω

|Du| > B∞.

Next, we prove (2.3.ii), which will complete the proof of Theorem 1.1. Sup-

pose u ∈ BV(D) with u|S = f∞ and
∫

D\B∞
|u|dx = 0. Recall D−, defined in

(2.16). Since u ≠ 0,
∫

D−

|u|dx > 0 or
∫

D\D−

|u|dx > 0.

We examine the former case first. Assume
∫

D−

|u|dx > 0. Then, there exists a

closed rectangle [a, b]× [c, d] ⊂ D− and δ > 0 with
∫

[a,b]×[c,d]
|u|dx > δ.

B∞ is a compact subset of D̄ with empty interior. The restriction of χB∞ to D− is
constant on vertical line segments. Therefore, there exists an open, dense subset
U of [a, b] with

(U × [c, d])∩ B∞ = 0.

Let a < a1 < b1 < b with a1, b1 ∈ U and
∫

[a1,b1]×[c,d]
|u|dx >

δ

2
.

Let (um) ⊂ C∞(D)∩BV(D) be given by the construction in [1, Theorem 1.17]:

um|S = f∞ for all m, um → u in L1(D), and
∫

D

|∇u|dx →

∫

D

|Du| > 0 as

m → ∞. Furthermore, the um are obtained by convolving u with C∞ mollifier
functions, supported on discs, with the radii of the discs approaching 0 asm →∞

uniformly on the rectangle [a, b] × [c, d]. Thus, for large enough m, we have
um = 0 on the vertical line segments {a1}× [c, d] and {b1}× [c, d]. By Lemma
A.2 in Appendix A,

∫

[a1,b1]×[c,d]

∣

∣

∣

∣

∂um
∂x1

∣

∣

∣

∣

dx ≥
2

b1 − a1

∫

[a1,b1]×[c,d]
|um|dx >

δ

b1 − a1
≡ δ2

for large enough m. Clearly, for large enough m,

∫

[a1,b1]×[c,d]

∣

∣

∣

∣

∂um
∂x2

∣

∣

∣

∣

dx ≤

∫

[a1,b1]×[c,d]
|∇um|dx ≤

∫

D

|∇um|dx < 2
∫

D

|Du|.
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Thus, for large enough m, by Lemma A.3 in Appendix A (using g = |∂um/∂x1|

and h = |∂um/∂x2| = |∇um · j|), we have

∫

[a1,b1]×[c,d]
|∇um|dx ≥

∫

[a1,b1]×[c,d]
|∇um · j|dx +

δ2
2

4
∫

D

|Du| + δ2

(2.21)

≡

∫

[a1,b1]×[c,d]
|∇um · j|dx + δ3.

The collection of triangles {T(A) | A ∈ Aℓ, ℓ ≥ 1} is a countable family of
sets, for which the intersection of any distinct pair has zeroH 2-measure. All these
triangles are subsets of D̄ \ D−. Therefore, applying (2.21) and Lemma 2.3, it
follows that, for large enough m,

∫

D

|∇um| =

∫

D−

|∇um|dx +

∫

D\D−

|∇um|dx

≥

∫

D−

|∇um · j|dx + δ3 +

∞
∑

n=1

∑

A∈An

∫

T(A)
|∇um|dx

≥

∫

D−∩B∞
|∇um · j|dx + δ3 +

∞
∑

n=1

∑

A∈An

∫

T(A)∩B∞
|∇um · v(A)|dx

≥ K∞ + δ3.

Since
∫

D

|∇um|dx→

∫

D

|Du| asm →∞, it follows that
∫

D

|Du| ≥ K∞+δ3 > K∞.

Next, suppose
∫

D\D−

|u|dx > 0 (and
∫

D\B∞
|u|dx = 0). Since

((D \D−)∩ B∞) ⊂
∞
⋃

n=1

⋃

A∈An

T(A),

there exists n′ ≥ 1 and A ∈ An′ with

∫

T(A)|u|dx > 0.

There then exists a closed rectangle R ⊂ T(A)∩D with sides parallel and perpen-

dicular to v(A) and
∫

R
|u|dx > 0.

Let (um) be given by the construction in [1, Theorem 1.17], as before. Argu-
ing as before, let the line segment L be one of the two sides of R perpendicular to
v(A). Note that L has an open and dense (with respect to the subspace topology
on L) subset X with X ∩ B∞ = 0. From the way B∞ is constructed, if x ∈ R and



1834 GREGORY S. SPRADLIN & ALEXANDRU TAMASAN

the vector x− y is parallel to v(A) for some y ∈ X, then x 6∈ B∞. Arguing as in

the
∫

D−

|u|dx > 0 case, there exists δ3 > 0 with

(2.22)
∫

R
|∇um|dx ≥

∫

R
|∇um · v(A)|dx + δ3

for large enough m. Using Lemma 2.3 and (2.22), for large enough m, we have

∫

D

|∇um|dx =

∫

D−

|∇um|dx +

∫

D\D−

|∇um|dx

≥

∫

D−∩B∞
|∇um|dx +

∞
∑

n=1

∑

A∈An

∫

T(A)
|∇um|dx

≥

∫

D−∩B∞
|∇um · j|dx + δ3 +

∞
∑

n=1

∑

A∈An

∫

T(A)
|∇um · v(A)|dx

≥

∫

D−∩B∞
|∇um · j|dx + δ3 +

∞
∑

n=1

∑

A∈An

∫

T(A)∩B∞
|∇um · v(A)|dx

≥ K∞ + δ3.

As before, since
∫

D

|∇um|dx →

∫

D

|Du| as m → ∞, it follows that we have
∫

D

|Du| ≥ K∞ + δ3 > K∞. The proof of Theorem 1.1 is thus complete. �

APPENDIX A. THREE LEMMAS

This section contains three easy, self-contained lemmas, moved to the end of the
paper in order not to interrupt the flow of the main proof.

Lemma A.1. Let θ ∈ (0,1] and α ∈ [θ2/2, θ). Let P and S be points on S
separated by arc length θ. Let Q and R lie on the arc PS, with QR having arc length
α, with PQ and RS having equal arc length, and with Q between P and R. Let T
and U lie on the chord PS, chosen such that △PQT and △RSU are right triangles.
Then, △PQT and △RSU have disjoint closures.

Proof. Clearly, it suffices to consider α = θ2/2. By rotating the arc PS, we
may assume

P =

(

cos
θ

2
, sin

θ

2

)

, S =

(

cos
θ

2
,− sin

θ

2

)

,

Q =

(

cos
θ2

4
, sin

θ2

4

)

, R =

(

cos
θ2

4
,− sin

θ2

4

)

.
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Define V = (cos(θ/2),0). It suffices to show the angle ∠PQV is obtuse, using a

dot product. We will show
---------------------------------------------------------------------→
QP ·

--------------------------------------------------------------------------→
QV < 0. Using familiar trigonometric identities,

---------------------------------------------------------------------→
QP =

〈

cos
(

1
2
θ

)

− cos
(

1
4
θ2
)

, sin
(

1
2
θ

)

− sin
(

1
4
θ2
)�

,

--------------------------------------------------------------------------→
QV =

〈

cos
(

1
2
θ

)

− cos
(

1
4
θ2
)

,− sin
(

1
4
θ2
)�

,

---------------------------------------------------------------------→
QP ·

--------------------------------------------------------------------------→
QV =

(

cos
(

1
4
θ2
)

− cos
(

1
2
θ

))2

−

(

sin
(

1
2
θ

)

− sin
(

1
4
θ2
))

sin
(

1
4
θ2
)

= cos2
(

1
4
θ2
)

+ cos2
(

1
2
θ

)

− 2 cos
(

1
4
θ2
)

cos
(

1
2
θ

)

− sin
(

1
2
θ

)

sin
(

1
4
θ2
)

+ sin2
(

1
4
θ2
)

= 1+
(

1
2
+

1
2

cos(θ)
)

−

(

cos
(

1
2
θ +

1
4
θ2
)

+ cos
(

1
2
θ −

1
4
θ2
))

−
1
2

(

cos
(

1
2
θ −

1
4
θ2
)

− cos
(

1
2
θ +

1
4
θ2
))

=
3
2
+

1
2

cosθ −
1
2

cos
(

1
2
θ +

1
4
θ2
)

−
3
2

cos
(

1
2
θ −

1
4
θ2
)

.

By the Maclaurin series for cos and properties of alternating series,

1− x2/2 < cosx < 1− x2/2+ x4/24 for 0 < x < 1.

Both θ/2+ θ2/4 and θ/2 − θ2/4 are between 0 and 1. Therefore,

---------------------------------------------------------------------→
QP ·

--------------------------------------------------------------------------→
QV <

3
2
+

1
2

(

1−
θ2

2
+
θ4

24

)

−
1
2



1−
1
2

(

θ

2
+
θ2

4

)2




−
3
2



1−
1
2

(

θ

2
−
θ2

4

)2


 = −
1
8
θ3 +

1
24
θ4 < 0. ❐

Lemma A.2. Let a < b, c < d, and u ∈ C1([a, b]× [c, d]) with u = 0 on
{a,b} × [c, d]. Then,

(A.1)
∫ d

y=c

∫ b

x=a

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx dy ≥
2

b − a

∫ d

y=c

∫ b

x=a
|u(x,y)|dx dy.

Proof. Fix y ∈ [c, d]. Let x0 ∈ (a, b) with

|u(x0, y)| = max
[a,b]×{y}

|u|.
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Then,

∫ b

x=a
|u(x,y)|dx ≤ (b − a)|u(x0, y)|(A.2)

=

(

b − a

2

)

(|u(x0, y)−u(a,y)| + |u(b,y)−u(x0, y)|)

=

(

b − a

2

)(∣

∣

∣

∣

∫ x0

a

∂u

∂x
dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ b

x0

∂u

∂x
dx

∣

∣

∣

∣

)

≤

(

b − a

2

)(∫ x0

a

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx +

∫ b

x0

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx

)

=

(

b − a

2

)∫ b

a

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx.

Multiplying both sides of (A.2) by 2/(b−a) and integrating from y = c to y = d
yields (A.1). ❐

Lemma A.3. Let M,δ > 0, let Ω be an open subset of Rn (n ≥ 1), let

g,h ∈ L1(Ω) with g,h ≥ 0 Lebesgue-almost everywhere, and assume
∫

Ω

g dx ≥ δ,
∫

Ω

hdx ≤ M . Then,

(A.3)
∫

Ω

√

g2 + h2 dx ≥

∫

Ω

hdx +
δ2

2M + δ
.

Proof. This proof is courtesy of Oleksiy Klurman of the University of Mani-
toba.

Since x2/(
√

x2 +y2 + |y|) → 0 as (x,y) → (0,0), we will interpret the

expression “g2/(
√

g2 + h2 + h)” as zero when g = h = 0 below. By the Cauchy-
Schwarz inequality,

(
∫

Ω

g dx

)2

=

(
∫

Ω

g
√

√

g2 + h2 + h

·

√

√

g2 + h2 + hdx

)2

≤

(∫

Ω

g2
√

g2 + h2 + h
dx

)(∫

Ω

√

g2 + h2 + hdx

)

=

(∫

Ω

√

g2 + h2 − hdx

)(∫

Ω

√

g2 + h2 + hdx

)

≤

(∫

Ω

√

g2 + h2 − hdx

)(

2
∫

Ω

hdx +

∫

Ω

g dx

)

≤

(∫

Ω

√

g2 + h2 − hdx

)(

2M +

∫

Ω

g dx

)

.
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Therefore,

(A.4)
∫

Ω

√

g2 + h2 − hdx ≥

(∫

Ω

g dx

)2

2M +

∫

Ω

g dx
≥

δ2

2M + δ
,

because the map x ֏ x2/(2M + x) is an increasing function of x for x ≥ 0.
Rearranging (A.4) yields (A.3). ❐
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