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ABSTRACT 

In this paper, the effects of variable thermal conductivity and thermal radiation on the MHD flow and heat transfer of 
a non-Newtonian power-law liquid film at a horizontal porous sheet in the presence of viscous dissipation is studied. 
The governing time dependent boundary layer equations are transformed to coupled, non-linear ordinary differential 
equations with power-law index, unsteady parameter, film thickness, magnetic parameter, injection parameter, 
variable thermal conductivity parameter, thermal radiation parameter, the Prandtl number and the Eckert number. 
These coupled non-linear equations are solved numerically by an implicit, finite difference scheme known as the 
Keller box method. The obtained numerical results for velocity and temperature profiles are presented graphically. 
Also, the obtained results of our study for some special cases are compared with the previously published results, and 
the results are found to be in very good agreement. The effects of unsteady parameter on the skin friction, wall- 
temperature gradient and the film thickness are explored for different values of the power-law index and the magnetic 
parameter. The results obtained reveal many interesting behaviors that warrant further study of the equations related 
to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. 
 
Keywords: MHD flow, Power-law fluid, Thin liquid film, Heat transfer, Variable thermal conductivity, Viscous 
dissipation, Finite difference method. 
 

1. INTRODUCTION 

During the past two decades, the study of boundary 
layer flow and heat transfer within a thin liquid film 
over a stretching surface gained interest because of its 
several applications in manufacturing processes. For 
example, during mechanical processes, such as 
extrusion, melting-spinning, the extruded material 
issues through a die; where the flow is induced close to 
the material extruded, due to the moving surface. 
Similar circumstances arise during the manufacture of 
plastic and rubber sheets where it is often required to 
blow a gaseous medium through not-yet solidified 
material and where the stretching force may vary with 
time. All the coating processes demand a smooth glossy 
surface to meet the requirements for best appearance 
and optimum service properties such as low friction, 
transparency and strength.  Wang (1990) was the first 
among the others to consider such a flow situation over 
an unsteady stretching surface. His pioneering work 
was subsequently extended by many researchers (see 
Dandapat et al. 2000, Kumari and Nath 2004, Wang 
2006, Liu and Andersson 2008, Hayat et al. 2008, 
Nadeem and Awais 2008, Subhas Abel 2009,  and Aziz 
et al. 2011) to study the flow and heat transfer within a 
thin liquid film under different physical constraints in 

the presence/absence of a magnetic field. Specifically, 
Dandapat et al. (2000) extended the work of Wang 
(1990) and analyzed the accompanying heat transfer in 
the liquid film driven by an unsteady stretching surface 
and discussed the physical mechanisms that govern the 
observed thermal characteristics for several values of 
the Prandtl number and the unsteady parameter. Liu and 
Andersson (2008) generalized the above problem for 
prescribed surface temperature for the thermal 
characteristics of a liquid film driven by an unsteady 
stretching surface. Nadeem and Awais (2008) analyzed 
the effect of a thin film over an unsteady shrinking 
sheet with variable viscosity. Subhas Abel et al. 
(2009a) studied the heat transfer problem in the 
presence of an external magnetic field and viscous 
dissipation. Aziz et al. (2011) explored analytically the 
influence of internal heat generation/absorption on the 
flow and heat transfer characteristics by means of 
Homotopy Analysis Method.   

The above mentioned researchers restrict their analyses 
to Newtonian fluids. However, the fluids employed in 
material processing or protective coatings are, in 
general, non-Newtonian, and thus the study of non-
Newtonian liquid film is important. The free-surface 
flow of non-Newtonian liquid in thin film is a 
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phenomenon widely occurring in various industrial 
applications, for instance in polymer and plastic 
fabrication, food processing and in coating equipment. 
Andersson et al. (1996) examined numerically the 
behavior of a liquid film of an incompressible non-
Newtonian fluid obeying a power-law model due to 
unsteady stretching surface, and further extended by 
Chen (2006) to the heat transfer characteristics induced 
by an accelerating surface in the presence of viscous 
dissipation. Here, the thermo-physical properties of the 
ambient fluid are assumed to be constant. However it is 
well known that these properties may change with 
temperature, especially thermal conductivity. Available 
literature (Savvas et al. 1994, Chaim  1996, 1998, 
Prasad et al. 2000, 2009, Datti et al. 2004) on non-
Newtonian fluids with variable thermal conductivity 
shows that work has not been carried out for non-
Newtonian power-law liquid film due to an accelerating 
unsteady porous stretching surface. 

Keeping this in view, in the present paper, the authors 
examined the effect of variable thermal conductivity on 
the MHD flow and heat transfer of a power-law liquid 
film induced by an accelerating unsteady porous 
stretching surface in the presence of thermal radiation. 
In contrast to the work of Subhas Abel et al. (2009), the 
present work considers the effects of non-Newtonian 
behavior namely, the power-law index, the magnetic 
field, the suction/blowing velocity, the variable thermal 
conductivity, the viscous dissipation and the thermal 
radiation. Thermal radiation plays a significant role in 
controlling heat transfer in polymer processing industry 
(Perdikis and Raptis 1996, Raptis and Perdikis 1998, 
Raptis 1999, Quinn Brewster 1992). The quality of the 
final product depends to a great extent on the heat 
controlling factors, and the knowledge of heat transfer 
in the system perhaps leads to desired product with 
sought qualities. Because of the rheological equation of 
state, the momentum and energy equations are highly 
non-linear. Hence, a similarity transformation is used to 
transform the non-linear partial differential equations 
into nonlinear ordinary differential equations. Due to its 
complexity and nonlinearity, the proposed problem, has 
been solved numerically by an implicit finite difference 
scheme known as the Keller box method. In order to 
implement this method, a new similarity transformation 
is introduced to transform the extent of the independent 
variable to a finite range of 0-1. For wide ranges of the 
power-law index and the unsteady parameters, 
numerical solutions are obtained and compared with 
earlier studies. The obtained numerical results are 
analyzed and found to have applications to 
manufacturing engineering, such as polymer extrusion. 

2. MATHEMATICAL FORMULATION 

The Consider an unsteady, laminar, MHD flow and heat 
transfer in a thin liquid film on a horizontal sheet which 
issues from a thin slot as shown in Fig. 1. The non-
Newtonian fluid is assumed to obey the power law 
model [see Eq. (6) below]. The fluid motion within the 
thin film arises due to the stretching of an elastic porous 
sheet.  

 
 
The x-axis is taken along the continuous surface in the 
direction of the motion and y-axis perpendicular to it.  
A magnetic field of strength B0 (t) is imposed along y-
axis. The induced magnetic field is negligible, which is 
a valid assumption on a laboratory scale under the 
assumption of small Reynolds number and the external 
electric field is zero. The continuous sheet is assumed 

to have a surface velocity sU  and prescribed surface 

temperature which vary with the horizontal 

coordinate x and time t in the following form 
  

                                                          (1)  

                             (2) 

where andb  are positive constants with dimension 

 n is the power-law index, and  is 

the effective stretching. 0  is the temperature at the 

origin, refT  is the reference temperature which can be 

taken either a constant reference temperature or 
constant temperature difference. It is apparent to note 

that the above expressions are valid for time . 

Further, it should be noted that the end effects and the 
gravity are negligible, and the surface tension is 
sufficiently large such that the film surface remains 
smooth and stable throughout the motion. The special 

form of s s defined in Eq. (1) and Eq. (2) 

respectively helps us to develop a new similarity 
transformation which transforms the governing partial 
differential equations into a set of nonlinear ordinary 
differential equations. A thin liquid film of uniform 
thickness h(t) lies on the horizontal sheet. The fluid 
motion within the thin film is caused solely by the 
linear stretching of an elastic porous sheet. The velocity 
and temperature fields in the non-Newtonian power-law 
fluid are governed by the following two-dimensional 
boundary layer equations (for details see, Quinn 
Brewster 1992, Chaim 1996, Chen 2006, Subhas Abel 
2009): for mass, momentum and thermal energy are 

v
0

u

x y
                                                             (3) 

2
01

v xy B tu u u
u u

t x y y
                  (4) 
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(5) 

where u and v are the velocity components along the x 
and y-directions, respectively; is the density,  is 

the shear stress. In the present problem, we have 
which gives the shear stress as   

                                                       (6) 

where K is the consistency coefficient and n is the flow 
behavior index, namely, the power-law index. The fluid 

is Newtonian for with (the absolute 

viscosity). As n deviates from unity, the fluid becomes 
non-Newtonian: For example,   and  
correspond to shear thinning (pseudo plastic) and shear 
thickening (dilatants) fluids, respectively. Further, is 

the electric conductivity, and the flow field is exposed 
to the influence of an external magnetic field of strength 
B0 which is assumed to be variable and is chosen in its 

special form as . This form of 

has also been considered by Abel et al. (2009) in 

MHD thin-film flow over an unsteady stretching 

surface. In Eq. (5),  is the specific heat at constant 

pressure, T is the temperature, and T is the 

temperature-dependent variable thermal conductivity. 

For liquid metals, the thermal conductivity varies 
linearly with temperature in the range 

0 0 (see for details Savvas et al. 1994). In 

the present study, the thermal conductivity is assumed 
to vary linearly with temperature (Chaim 1996) as 

 

0 0                                    (7)  

Here, 0sT T T , are respectively, the 

temperature of the stretching sheet and temperature at 

the slit, 0 0s  is a small parameter known as 

the variable thermal conductivity parameter, and 0 is 

the thermal conductivity at the slit . The second term in 
RHS of Eq. (5) is due to the viscous dissipation. The 
last term in Eq. (5) represents the radiative heat flux 
(Perdikis and Raptis 1996, Raptis and Perdikis 1998) 
assumed to be 

* 4

1

4

3
r

T
q

k y
                                                         (8) 

where *
1   are the Stephan-Boltzman constant 

and the Roseland mean absorption coefficient 
respectively. We assume that the temperature 
differences within the flow are sufficiently small such 

that  may be expressed as a linear function of 

temperature. This is accomplished by expanding  in 

a Taylor series about and neglecting higher order 

terms, thus 4 3 4 on substituting in Eq. (8) 

we have,  
 

* 3 2

2
1

16
.

3
rq T T

y k y
                                                 (9) 

 
 Substituting Eq. (6) to Eq. (9) into Eq. (4) and Eq. (5) 
we obtain 
 

2
0

n

 (10) 

 
 

   

(11) 
 

In the derivation of the above governing equations, the 
conventional boundary layer approximation has been 
invoked. This is justified by the assumption that the 
film thickness h is much smaller than the characteristic 
length L (in the direction along the sheet). The mass 

conservation Eq. (3) then implies that the ratio (v )u  

between the two velocity components is of order 
2  Also, stream-wise diffusion of momentum and 

thermal energy is of order 2

 
smaller than the 

corresponding diffusion perpendicular to the sheet. For 
this reason the stream-wise diffusion terms are 
neglected in Eq. (10) and Eq. (11). Assuming that the 
interface of the planar liquid film is smooth and free of 
surface waves and the viscous shear stress and the heat 
flux vanish at the adiabatic free surface, the boundary 
conditions become  
 

s s s                       (12) 

0, v at
u T dh

y h t
y y dt

                (13) 

 

where sU  and  are the surface velocity and 

temperature of the stretching sheet, respectively, 

and is the suction/injection velocity . Here  is 

the free surface elevation of the liquid film i.e., the film 
thickness. Further, it should be noted that the end 
effects and the gravity are negligible, and the surface 
tension is sufficiently large such that the film surface 
remains smooth and stable throughout the motion. We 
introduce the following dimensionless variable 

as well as the similarity variable  as   

 

             

(14)  

 
2 2 5

2
0

n
n

ref                (15)  
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1

2 1
2 11 1 11

n n
n nn nb

x t y
K

   (16) 

 
where  is a yet unknown constant denoting the 

dimensionless film thickness, and  is the 

stream function defined by   
 

su U f
y

                                     (17) 

and 

1 1 2 1
v Re

1 1

n

s x

n n
U f f

x n n
       (18) 

which automatically satisfies the continuity Eq. (3). In 
terms of these new variables, the momentum and the 
energy equations together with the boundary conditions 
become 
 

1 1 2

1 1

2

1

2
0

1

n n

n n

n
n f f f f f

n

n
S f f Mn f

n

  (19)  

 

(20)  

 
and 
 

0 , 0 1,

2
1 0, 1

2

wf f f

n
f f S

n                                    
(21) 

 

                                      (22) 

 
where a prime denotes the differentiation with respect 

to , S b  is a dimensionless measure of the 

unsteadiness, 2
0 is the magnetic parameter,  

1

1n
w s s x  is the suction/injection 

parameter (namely, w corresponds to suction 

whereas w  corresponds to injection), 

2

1n
s x  is the generalized Prandtl 

number, is the Eckert number and 

is the thermal radiation 

parameter. The parameter  is an unknown constant 

which must be determined as a part of the boundary 
value problem. Although the dimensionless film 
thickness is a constant for fixed values of S and n, the 
actual film thickness depends on time t and the stream-

wise location x.  From Eq. (16) we find that the film 

thickness can be expressed as 

 

 
(23) 

 
In the Newtonian case (n =1), h becomes a function of 
time only; whereas in the case of non-Newtonian films, 
the thickness decreases with x for pseudo plastics (n 
<1); while the film thickness decreases in the stream-
wise direction for dilatant fluids (n >1). It is worth 
mentioning here that the momentum boundary layer 
problem defined by the ODE (19) subject to the 
relevant boundary conditions Eq. (21) is de-coupled 
from the thermal boundary layer problem, while the 
temperature field is on the other hand coupled with the 
velocity field.  Further, for Newtonian fluid and 

constant thermal conductivity In the 

absence of thermal radiation, the Eq. (19) and Eq. (20) 
reduce to those of Abel et al. (2009). However, in the 
presence of a non-Newtonian power-law fluids and 
when there is no heat transfer, Eq. (19) reduces to that 
of Andersson et al. (1996). Further, when the unsteady 
parameter and the Eckert number are absent, Eq.  (19) 
and Eq. (20) are similar to the ones studied by Datti et 
al. (2004) for Newtonian fluid case. For practical 
purposes, the physical quantities of interest include the 
local skin friction coefficient fx and the local Nusselt 

number x . These quantities can be written as  

 

                                      (24) 

 
21
12

1
1 Re 0

2

n

n
x xNu t                                  (25) 

 

where 2Re n n
x sU x K   is the local Reynolds 

number. 

3. NUMERICAL PROCEDURE 

By applying a suitable similarity transformation to the 
governing equations and the boundary conditions, the 
governing equations are reduced to a system of coupled, 
non-linear ordinary differential equations with 
appropriate boundary conditions. Finally the system of 
similarity Eq. (19) and Eq. (20) with the boundary 
conditions Eq. (21) is solved numerically by the Keller 
box method (Cebeci and Bradshaw 1984, Keller 1992, 
Prasad et al. 2009). The numerical solutions are 
obtained in four steps are as follows; 

  reduce  Eq. (19) and Eq. (20) to a system of first-
order equations; 

 
 Write the difference equations using central 
differences; 

 
 
method, and write them in matrix-vector form; and 

 
 Solve the linear system by the block tri-diagonal 
elimination technique. 
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For the sake of brevity further details of the solution 
process are not presented here. In order to implement 
this method, a new similarity transformation is 
introduced to transform the domain of the independent 
variable to a finite range of 0 - 1. This method is 
unconditionally stable and has a second order accuracy 
with arbitrary spacing. It is worth mentioning that the 
choice of a uniform grid of  is satisfactory 

in obtaining sufficient accuracy with an error tolerance 

less than  To demonstrate the accuracy of the 
present method, results for the dimensionless film 
thickness and the skin friction are compared with the 
available results in the literature for a special case: That 
is, for a Newtonian fluid (n = 1), obtained by Aziz et al. 
(2011) and Wang (2006). It was found from Table 1 
that the present results agree very well with those of 
Aziz et al. (2011), Wang (2006), Noor et al. (2010). 

 

Table 1 Variations in dimensionless film thickness  and skin friction 0f with unsteady parameter  for  

  when w . 

 
Present work Aziz et al. (2011) Wang (2006) Noor et al.(2010)  

0f   0f   0f   0f   

0.8 -2.677545 2.149956 -2.680943 2.151994 -2.680940 2.151990 -2.68094 2.15199 

1.0 -1.967297 1.540905 -1.972384 1.54362 -1.972380 1.543620 -1.97238 1.54362 

1.2 -1.435752 1.124422 -1.442625 1.127780 -1.442631 1.127780 -1.44263 1.12778 

1.4 -1.003991 0.816898 -1.012784 0.821032 -1.012784 0.821032 -1.012780 0.821032 

1.6 -0.631578 0.570868 -0.631578 0.567173 -0.642397 0.567173 -0.309137 0.576173 

         

 

4. RESULT AND DISCUSSION 

Numerical computation are carried out for several sets 
of values of the unsteady parameter s, the power-law 
index parameter n, the magnetic parameter Mn, the 
suction or injection parameter fw, the variable thermal 

conductivity parameter T , the thermal radiation 

parameter Nr, the Prandtl number Pr and the Eckert 
number Ec. In order to analyze the salient features of 
the mathematical model, the numerical results are 
presented in Fig. 2 to Fig. 7. These figures depict the 
changes in the transverse velocity, the horizontal 
velocity and the fluid temperature distribution. Changes 
in the skin friction, the free surface velocity, the free 
surface temperature, the film thickness and the wall-

temperature gradient for several sets of pertinent 
parameters are recorded in Table 2 and Table 3. For the 
present mathematical model, there exists a critical value 
of S, above which no solution could be obtained: Wang 
(2006) noticed the critical value of S = 2 for Newtonian 
fluid. It may be noted here that (for positive values of 
S), S 0 stands for the case of an infinitely thick fluid 
layer (i.e.,   ), whereas the limiting case of S 2 
represents a liquid film of infinitesimal thickness (i.e.,  

 0). In the case of non-Newtonian fluids, the present 
calculations show that the critical value of S = 1.35 for 
shear thinning fluids and the critical value of S = 3.03 
for shear thickening fluids when 0. However, it is 
difficult to perform these calculations for the limiting 
case of   . 

Table 2 Values of the dimensionless film thickness, skin friction and wall-temperature gradient for   different values 

of the parameters w  

 Nr    
0  

   

1.0 

0.5 

0.1 
0.0 -1.768664 -3.051537 -4.957447 
0.2 -1.688420 -2.890074 -4.673884 
0.4 -1.608170 -2.728597 -4.390298 

0.0 

0.2 

-1.770058 -3.027801 -4.901918 
0.1 -1.688420 -2.890074 -4.673884 
0.2 -1.615335 -2.767139 -4.470696 

0.0 

0.1 

-2.131714 -3.605479 -5.864551 
0.5 -1.688420 -2.890074 -4.673884 
1.0 -1.407834 -2.443727 -3.952675 

1.0 
0.5 

-1.688420 -2.890074 -4.673884 
2.0 -2.583962 -4.360553 -7.154659 
3.0 -3.254841 -5.513258 -9.175823 
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For the present mathematical model, there exists a 
critical value of S, above which no solution could be 
obtained: Wang (2006) noticed the critical value of S = 
2 for Newtonian fluid. It may be noted here that (for 
positive values of S), S 0 stands for the case of an 
infinitely thick fluid layer (i.e.,   ), whereas the 
limiting case of S 2 represents a liquid film of 
infinitesimal thickness (i.e.,   0). In the case of non-
Newtonian fluids, the present calculations show that the 
critical value of S = 1.35 for shear thinning fluids and 
the critical value of S = 3.03 for shear thickening fluids 
when 0. However, it is difficult to perform these 
calculations for the limiting case of   . 

Velocity profiles are shown graphically in 

Fig. 2 and Fig. 3 for different values of S, wf and n. In 

general, decreases monotonically, whereas 

increases monotonically as the distance increases 

from stretching surface. The effect of increasing values 

of S is to increase f and  and thereby increases the 

horizontal boundary layer thickness. This phenomenon 
is true even for shear thinning (n = 0.8), Newtonian (n = 
1) and shear thickening (n = 1.2) fluids. We further 
notice from these figures that a moderate deviation 
from Newtonian rheology (n = 1) have a significant 
influence on the horizontal velocity component 

across the fluid film. For a given value of S, the 

pseudo plastic (shear thinning fluids) film is thinner and 
exhibits a greater surface velocity than a Newtonian 
film, while quite reverse behavior is true for shear 
thickening (dilatant) fluids. In shear thinning fluids, 
viscosity is reduced with increasing shear rates; 
whereas for dilatants substances, viscosity increases 
with shear rate and becomes more viscous and will 
thicken with an increasing rate of shear.  It is therefore 
not surprising to observe that the pseudo plastics are 
more likely to flow nearly as an inviscid layer on the 
top of the stretching surface than as in the case of shear 
thickening or dilatants fluids. These results are in good 
agreement with the physical situations.  

 

 

 

 

 

Comparison of Fig. 2(a) with Fig. 2(c) reveals that 

suction w  reduces the horizontal velocity 

boundary layer thickness whereas injection 

has quite the opposite effect on the velocity 

boundary layer. 
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In Fig. 4 to Fig. 7 the numerical results for the 

temperature  for several sets of values of the 

governing parameters are presented. The general trend 
is that the effect of increasing values of power-law 
index is to reduce the thermal boundary layer thickness. 
It is also observed that the temperature distribution is 
unity at the wall. With changes in the physical 
parameters it decreases as the distance increases from 
the surface.  

Figure 4(a) explores the effects of the magnetic 

parameter Mn  and power-law index on the temperature 
profile. It is observed that the effect of the magnetic 
parameter  is to increase the temperature. This is 
due to the fact that, the introduction of transverse 
magnetic field to an electrically conducting fluid gives 
rise to a resistive force known as the Lorentz force. This 
force, forces the fluid to experience a resistance by 
increasing the friction between its layers, and due to 
this there is an increase in the temperature. This 
behavior is true for all increasing values of the power-
law index .  

 

The effects of the power-law index parameter on the 

temperature profiles for are 

shown graphically in Fig. 4(b)-4(d).  

 

 

 

Further, the effect of increasing S with different values 
of n, (namely, shear thinning (n = 0.8), Newtonian (n = 
1), and shear thickening (n = 1.2) fluids) is to enhance 
the temperature, and hence increases the thermal 
boundary layer thickness. Comparison of the Fig. 4(b)-
4(d) reveals that the effect of the suction/injection 
parameter is to reduce the thermal boundary layer 
thickness. 

Figures 5(a) - 5(c) exhibit the temperature distribution 

for different values of Ec in blowing, 

impermeability and suction cases, respectively. From 
these figures we see that the effect of increasing Ec is to 

increase the temperature distribution . This is in 

conformity with the fact that energy is stored in the 
fluid region as a consequence of dissipation due to 
viscosity and elastic deformation. 
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T 

The effects of   on the temperature profile in the 

boundary layer for the cases  and 

 are depicted in Fig. 6(a) - 6(c), respectively. 

  

 
 

 
 
From these figures, we observe that the temperature 
distribution is lower throughout the boundary layer for 
zero values of  as compared with non-zero values of . 
This is due to the fact that the presence of temperature-
dependent thermal conductivity results in reducing the 
magnitude of the transverse velocity by a quantity 

 and this can be seen from the energy 

equation. This behavior holds for all types of fluids 
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considered, namely, pseudo plastic, Newtonian, and 
dilatant fluids. 
 

  
 
 

 
 
 

 
 

The variations in temperature profile for 

various values of the modified Prandtl number Pr are 
shown in Fig. 7(a) - 7(c). Both figures demonstrate that 
an increase in Pr results in a monotonic decrease in the 
temperature distribution and it tends to zero as the 
distance increases from the sheet. That is, the thermal 
boundary layer thickness decreases for higher values of 

the Prandtl number. This holds good for all values of n 

and wf .  

The impact of all physical parameters on the skin 
friction, the wall temperature gradient, the film 
thickness, the free surface velocity and the free surface 
temperature at the surface are depicted in Table 2 and 
Table 3. It is of interest to note that the effect of 
increasing values of the unsteady parameter and 
magnetic parameter is to decrease the magnitude of the 
skin friction coefficient. The effect of the variable 
thermal conductivity parameter, the Eckert number and 
the thermal radiation parameter is to increase the wall-
temperature gradient; whereas the reverse trend is seen 
with increasing values of the Prandtl number.  It is also 

noted that the surface velocity  and surface 

temperature  increase with increasing unsteady 

parameter and the injection parameter. The effect of 
unsteady parameter and the magnetic parameter is to 
reduce the film thickness; whereas the effect of 
injection parameter is to increase the film thickness. 
This observation is true for all values of power-law 
index. 

5. CONCLUSION 

In this work we explore the influence of viscous 
dissipation and temperature dependent thermal 
conductivity on the MHD flow and heat transfer 
characteristics within a thin power law liquid film over 
an unsteady porous stretching surface. Results for 
transverse velocity, horizontal velocity, and temperature 
distributions across the liquid film, the free surface 
velocity, the wall shear stress and wall temperature 
gradient are illustrated for different values of the 
pertinent parameters. Comparisons with previously 
published work were performed and found to be in 
excellent agreement We hope that the numerical 
solutions given by an implicit, second order finite 
difference scheme namely Keller box method is helpful 
to understand the flow and heat transfer mechanisms of 
the power law liquid film and would find applications 
in technological and manufacturing industries such as 
polymer extrusion. 
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