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Different computational methodologies to compute thermodiffusion of hydrogen in palladium are

explored. It is found that diffusion occurs rapidly enough to directly observe thermodiffusion in the

presence of an applied temperature gradient. This provides an unequivocal result that hydrogen

moves from low to high temperatures, corresponding to a negative value for the reduced heat of

transport Q�0 � �0:3 eV, which can be used to validate other methods. Further simulations using

the Green-Kubo formulae and a recently developed constrained-dynamics approach are found to be

in agreement with direct simulation results. In particular, in each of the three methods used, the

value of Q�0 is found to be in the range between �0.3 and �0.2 eV. We show how to correctly

define and compute the partial-enthalpy term for hydrogen which is key to obtaining

accurate results. The results provide important foundational and numerical validation for the

constrained-dynamics approach. The advantage of the constrained-dynamics method is that it can

be applied to thermodiffusion in materials where diffusion does not occur on a molecular-dynamics

time scale. Finally, we show that the empirical potential predicts behavior that is not in agreement

with experiment. In particular, experiments are reported to show hydrogen diffusing from high to

low temperatures corresponding to a positive value for Q�0. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4758462]

I. INTRODUCTION

Thermodiffusion is the phenomenon of mass transport

in response to a temperature gradient. Alternately, it refers to

the heat flux that accompanies a mass flow. In solid crystal-

line materials, this effect has been the focus of several theo-

retical and experimental studies over a period of several

decades. Yet progress in developing fundamental under-

standing has been quite slow, and there is still little known

especially at the atomic scale. For example, in a two compo-

nent system such as hydrogen in palladium with an applied

temperature gradient, there are few simple arguments that

have been tested which can predict even the direction of the

flow of hydrogen. Moreover, a simple picture that explains

the magnitude of the driving force for thermodiffusion is

lacking. Simple kinetic theory has suggested that the key pa-

rameter that describes the thermodiffusion driving force, the

reduced heat of transport Q�0 (see Sec. II for a definition),

should be comparable to the activation energy DUact for

migration.1,2 However, experimental observations do not

support this simple picture, and in many cases Q�0 is found to

be either much smaller or much larger than DUact.
1

Atomic scale simulation using simple empirical poten-

tials can play a key role in answering these questions and

hence provide a basis for a fundamental theory of thermotran-

sport. However, while there have been many efforts using

molecular-dynamics (MD) simulation, a clear picture is yet to

emerge. One of the primary obstacles is the fact that coupled

heat and mass transport is a relatively weak effect in compari-

son to ordinary isothermal diffusion and conductive thermal

transport. Moreover, in most instances of practical impor-

tance, DUact is significantly greater than kBT, and diffusion

does not occur on a typical MD time scale. Consequently,

direct brute-force simulation is generally impractical.

Several techniques exist for determining Q�0 from MD

simulation. The Green-Kubo method3,4 uses time-correlation

functions of the coupled heat an mass fluxes to compute

transport coefficients. This approach was used by Gillan,5,6

who was able to demonstrate practicality for the Pd:H sys-

tem. However, Pd:H is a special case because hydrogen dif-

fuses quite rapidly. In cases where ordinary diffusion does

not occur on an MD time scale, Green-Kubo methods are not

practical. Gillan also explored applying external forces7 to

drive heat and mass currents, which was again found to pro-

vide reasonable results. In particular, a value of Q�0 was

obtained from the heat flux that results from a driven hydro-

gen mass flux.6 Recently, we have developed a technique,

referred to hereafter as the constrained-dynamics approach,

which can be used to determine the driving force for thermo-

diffusion by computing the work required to drive an atom

through the transition state in the presence of an applied tem-

perature gradient.8 The practical advantage of constrained

dynamics is that it can be used to compute transport parame-

ters in problems where the underlying hopping events are

too slow to be observed on an MD time scale. This includes,

for example, vacancy-mediated thermodiffusion in single-

component or binary-alloy metal. While the results are

promising, as of now there are no published results that vali-

date the methodology. In part this can be accomplished by

direct comparison to simulation results using established

approaches. There is also a need to put constrained-

dynamics simulation on a more solid theoretical foundation.

Finally, several numerical aspects of the approach should be

explored, including finite-size and nonlinear effects.
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In this article, we simulate thermodiffusion of hydrogen in

a palladium lattice. The primary objective is to more firmly es-

tablish the theoretical foundation of the constrained-dynamics

method first presented in Ref. 8, and also to establish if predic-

tions using this approach are in agreement with other methods.

Because hydrogen diffuses rapidly in the system, we find that

“direct” simulation of thermodiffusion is possible by comput-

ing the average drift of hydrogen in the presence of a tempera-

ture gradient. An approach for estimating Q�0 based on the

direct observation of hydrogen drift is outlined. We revisit

the Green-Kubo calculations first performed by Gillan for the

Pd:H system.5,6 We show that a correct definition of the partial

enthalpy is key to obtaining correct results using Green-Kubo

methods. Finally, results using the constrained-dynamics

method are reported. The three techniques are found to give

consistent results for Q�0. Specifically, Q�0 is found to be nega-

tive indicating that hydrogen tends to drift in the direction of

increasing temperature. In summary, the results presented here

demonstrate that the constrained-dynamics approach in Ref. 8

provides a reliable method to compute Q�0. This should be of

use for more challenging cases where Green-Kubo and direct

methods are not practical.

II. THEORETICAL BACKGROUND

In this article, we are primarily interested in the coupled

transport of heat and matter in the two component Pd:H sys-

tem. We define the mass flux ~J1 for Pd,

~J1 ¼
XN1

i¼1

~vi; (1)

where the sum is only over the N1 Pd atoms. Similarly, the

mass flux for the hydrogen atoms is,

~J2 ¼
XN2

i¼1

~vi; (2)

where the sum is only over the N2 hydrogen atoms. Both of

the mass fluxes ~J1 and ~J2 are defined relative to the center-

of-mass reference frame. Hence, there is clearly a relation

between the mass fluxes, in particular,

m1
~J1 þ m2

~J2 ¼ 0; (3)

where m1 is the mass of Pd and m2 is the mass of hydrogen.

Because m2 � m1, the flux of hydrogen ~J2 is dominant.

Hence, it is sufficient to consider only the hydrogen flux ~J2

and energy flux ~Jq. In the section describing Green-Kubo

calculations, explicit expressions for the energy flux ~Jq and

heat flux ~J
0
q for the case of a pair potential will be given.

The phenomenological transport equations for mass and

energy flux are1

~J2 ¼
X

kBT
½L22

~X2 þ L2q
~Xq�; (4)

~Jq ¼
X

kBT
½Lq2

~X2 þ Lqq
~Xq�; (5)

where X is the system volume. The Onsager reciprocal rela-

tions9 assert that

Lq2 ¼ L2q: (6)

The driving forces are defined by

~X2 ¼ ~Fext � T~r l2

T

� �
; (7)

~Xq ¼ �
1

T
~rT; (8)

where ~Fext is an external force applied to the hydrogen atoms

and l2 is the chemical potential of hydrogen.

The phenomenological equations can be written for

alternative definitions of the driving forces and fluxes.

An alternate definition for the thermodynamic driving

forces is

~X
0
2 ¼ ~X2 þ h2

~Xq; (9)

~X
0
q ¼ ~Xq; (10)

with corresponding fluxes given by

~J
0
2 ¼ ~J2; (11)

~J
0
q ¼ ~Jq � h2

~J2: (12)

Here, h2 refers to the partial enthalpy of hydrogen in the Pd

lattice. The transport equations are defined identically as

Eqs. (4) and (5)

J02 ¼
X

kBT
½L022

~X
0
2 þ L02q

~X
0
q�; (13)

~J
0
q ¼

X
kBT
½L0q2

~X
0
2 þ L0qq

~X
0
q�: (14)

The transport coefficients for the two descriptions are related

by

L022 ¼ L22; (15)

L02q ¼ L2q � h2L22; (16)

L0qq ¼ Lqq � 2h2L2q þ h2
2L22: (17)

We next define the heat of transport1 Q� using

L2q ¼ Lq2 � Q�L22: (18)

Using this definition and also Eq. (16), we also see that

L02q ¼ ðQ� � h2ÞL22 ¼ Q�0L22; (19)

where the quantity Q�0 is most often called the reduced heat

of transport.

In the present study, the definitions in Eqs. (13) and (14)

are most convenient. We use the definition of the Q�0 and

find
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~J2 ¼ �
L22X
kBT
ð~rl2ÞT þ

L22X
kBT

~Fext � Q�0
~rT

T

" #
; (20)

where we have used that ~J
0
2 ¼ ~J2 and L022 ¼ L22. The gradi-

ent term ð~rl2ÞT represents the gradient of the hydrogen

chemical potential due to concentration and pressure gra-

dients only. In the following, we refer exclusively to Eq.

(20) for the description of the mass flux ~J2. In the absence of

any pressure or concentration gradient, the hydrogen flux is

~J2 ¼
L22X
kBT

~Fext � Q�0
~rT

T

" #
: (21)

This expression clearly demonstrates that the driving force

for thermodiffusion is given by ~Fext � Q�0
~rT
T . This force is

relevant, for example, for the driving force acting on a single

hydrogen atom in Pd with an imposed temperature gradient

and externally applied force.

III. SIMULATION APPROACH

In the MD simulations, we use the empirical pair poten-

tials reported in Ref. 5. The interaction between palladium

atoms is given by a sixth-order polynomial

VPd�PdðrÞ ¼
X6

s¼1

asr
s: (22)

For the interaction between hydrogen atoms, the pair poten-

tial is taken to be the same as that which describes the Pd-H

interaction

VPd�HðrÞ ¼ VH�HðrÞ ¼ Aexpð�r=qÞ: (23)

The parameters and cutoff distances rc for the interactions

are given in Ref. 5. In preliminary MD simulations, small

discontinuities in the total energy were observed due to the

discontinuity of the potential energy and resulting forces at

the cutoff distance rc. We remedied this using a standard pro-

cedure to remove discontinuities in the potential energy and

forces. In particular, we shift each potential and obtain the

smooth potential V0ðrÞ from

V0abðrÞ ¼ VabðrÞ � Vabðr ¼ rcÞ � ðr � rcÞ
dVab

dr

� �
r¼rc

; (24)

where ab represents the particular pair, Pd-Pd, Pd-H, or

H-H. In this way, the potentials V0abðrÞ and the first deriva-

tives
dV0ab

dr smoothly approach zero at the cutoff distance rc. It

was initially thought that this procedure would simply remove

the discontinuities without resulting in significant changes in

the interactions. However, it was found that some noticeable

quantitative differences occurred. However, the shape of the

potential functions was only slightly altered, and the main

effect was a shift in energy. For example, the energy required

to insert a single hydrogen into the Pd lattice at a fixed lattice

parameter a0 ¼ 4:07Å and T ¼ 0� K was 1.32 eV. This is

compared to the value reported in Ref. 5 of 1.61 eV. This

downward shift of 0.29 eV is due in part to a constant shift in

the repulsive Pd-H potential, and also a small constant shift in

the Pd-H repulsive force. We show below, however, that the

overall description of thermodiffusion was not significantly

affected by the smoothing procedure. In particular, differen-

ces in the Pd-H interaction approximately cancel in the calcu-

lation of the reduced heat of transport Q�0.
The first requirement for the direct simulation of ther-

modiffusion is that diffusion occurs rapidly on an MD time

scale. In all the calculations reported here, the MD time step

was Dt ¼ 0:414 fs. We first simulate diffusion in isothermal

conditions using a system with N1 ¼ 2048 Pd atoms and

N2 ¼ 10 hydrogen atoms. We obtain the diffusion coefficient

D from the mean-squared displacement hDr2i using the Ein-

stein relation

6Ds ¼ hDr2is; (25)

where s is the simulation time for which the average hDr2is
was computed. We performed four independent simulations

each of duration 44.9 ps to obtain D at T ¼ 980� K. We

found D ¼ 3:03	 10�4 cm2=s. Simulations over a range

from T ¼ 680�K to T ¼ 1280�K were used to generate an

Arrhenius plot, from which we determined the activation

energy DUact ¼ 0:25 eV for migration. This is to be

compared to D ¼ 2:23	 10�4 cm2=s at T ¼ 980� K and

DUact ¼ 0:29 eV from the fit in Ref. 5. Thus, while the

results are not too different, the potentials used here with the

discontinuities smoothed out result in slightly different self-

diffusion behavior. From these results, we see that on aver-

age about 40–50 hops occur within 40 ps of simulation time.

This quite fast diffusion rate, as we will see in Secs. IV and V,

is sufficient to observe thermodiffusion effects on an MD

time scale.

The simulation cell used in direct thermodiffusion simu-

lations and constrained-dynamics simulations was a rectan-

gular prism. We define a Cartesian coordinate system

coincident with the vectors that define the supercell. The x-,

y-, and z- directions were chosen to be coincident with the

½1�10�, [001], and [110] crystallographic directions, respec-

tively. For this supercell, it is convenient to define a two-

atom unit cell. The supercell then consisted of 8	 6	 28

unit cells with a total of 2688 Pd atoms in an fcc lattice. To

simulate non-equilibrium conditions with an applied temper-

ature gradient ~rT, we use the method developed by Jund

and Jullien in Ref. 10. In this method, two thin regions are

defined where heating and cooling takes place. The thickness

of the hot and cold reservoirs was taken to be a0=
ffiffiffi
2
p

, with

a0 ¼ 4:07Å. A single hydrogen atom is added in an octahe-

dral interstitial site approximately equidistant from the hot

and cold reservoirs. In the hot region, we add an energy

D� ¼ 0:01eV at each MD time step by rescaling the velocity

of the atoms in the hot reservoir. The same amount of energy

is removed at each MD step in the cold reservoir. Given

these parameters, we obtain J0q=X ¼ 2:15	 1011 W=m2 for

the input heat current.

For Green Kubo calculations, we use a small cell with

N1 ¼ 108 Pd atoms and N2 ¼ 20 hydrogen atoms. In the

equations and simulations reported here, the mass and heat

083516-3 P. K. Schelling and T. Le J. Appl. Phys. 112, 083516 (2012)



flux were computed in a center of mass reference frame.

Because the mass of Pd is much greater than that of hydro-

gen, there is little difference between a reference frame fixed

to the lattice, as was done in Ref. 6, and the center-of-mass

reference frame.

IV. RESULTS

A. Direct thermodiffusion simulation

We first consider direct simulation of thermodiffusion

by applying a temperature gradient in the 8	 6	 28 cell

with 2688 Pd atoms and a single hydrogen atom described in

Sec. III. After establishing equilibrium at T ¼ 980
�
K, a tem-

perature gradient was established over 9000 MD steps or

3.73 ps. During the first 3.31 ps the hydrogen atom was held

fixed in place, and then it was allowed to freely diffuse. The

displacement of the hydrogen atom was determined as a

function of time over 20.72 ps. In Fig. 1, the time-averaged

temperature gradient is shown. In Fig. 2, we show the aver-

age displacement of the hydrogen atom hDrxi, hDryi, and

hDrzi in the three Cartesian directions averaged over 60 inde-

pendent simulations. The results show that the hydrogen

atom drifts toward the hot reservoir by a distance

hDrzi ¼ �097a0.

The result in Eq. (21) shows that computing the current ~J2

in the presence of a temperature gradient ~rT can be used to

determine the reduced heat of transport Q�0. We first analyze

the results in Fig. 2 to provide an estimate for ~J2 in the case

where ~Fext ¼ 0. We consider the averaged quantity h~J2 
 k̂i
where k̂ is a unit vector along the z-direction of the simulation

cell. Assuming a uniform average drift velocity, we obtain

h~J2 
 k̂i ¼
hDrzi

s
� � 0:97a0

s
: (26)

Then, using Eq. (21) with ~Fext ¼ 0, we obtain a prediction

for Q�0,

Q�0 ¼ � kBT2

L22X

� �
h~J2 
 k̂i
h~rT 
 k̂i

: (27)

The time-averaged temperature gradient is estimated from the

data shown in Fig. 1 to be �15:8
�
KÅ

�1
. To determine the

magnitude of the temperature gradient, only the linear portion

of the temperature profile at least 12 Å away from the hot and

cold reservoirs was used. For a single hydrogen atom in a vol-

ume X, we used that L22X ¼ D where D ¼ 3:03	 10�4cm2=s

is the diffusion coefficient computed in Sec. III. Combining, the

expression above gives Q�0 ¼ �0:3360:10 eV. The estimate

for the error comes from the apparent error of 60:30a0 in the

determination of hDrzi due to random diffusion. The negative

sign of Q�0 is consistent with the tendency of the hydrogen

atom to drift towards the hot side of the simulation cell. This

result is in contradiction to the Green-Kubo results reported by

Gillan.6 Later in this section, we will address this apparently

contradictory result.

Equation (21) indicates that it should be possible to

apply an external force ~Fext to cancel the driving force due to

the temperature gradient and hence provide another approach

to estimate Q�0. This is analogous to the thermoelectric

effect, where the Seebeck coefficient is determined by meas-

uring the electrostatic potential that exactly balances the

driving force due to an imposed temperature gradient. We

define ~F
0

ext to be the external force determined to result in

hDrzi ¼ 0. We consider only an external force applied either

parallel or antiparallel to the temperature gradient ~rT. Then

the value of Q�0 can be found from

Q�0 ¼ ð~F0

ext 
 k̂Þ
T

h~rT 
 k̂i
: (28)

In Fig. 3, we show the computed values of hDrzi determined

as a function of the magnitude of the external force Fext. We

include the result for the case Fext ¼ 0 as described above.

Each result is determined as a statistical average over 60 in-

dependent realizations. In the region of the system where the

hydrogen atom is placed, the temperature gradient points in

the negative-z direction. Although the statistical error in

Fig. 3 is substantial, we also include a linear fit to the data and

obtain the estimate F0
ext ¼ 0:00560:002eV=Å. The value of

F0
ext is positive which indicates that the external force must be

applied in the opposite direction as the gradient ~rT in order

to cancel the driving force for thermodiffusion. Finally, using

FIG. 1. Time-averaged temperature profile computed for direct simulations

of thermodiffusion. The temperature profiles for constrained-dynamics simu-

lations are essentially identical.

FIG. 2. Average displacements hDrxi (black solid line), hDryi (red dashed

line), and hDrzi (green dotted line) in the presence of a temperature gradient

with ~Fext ¼ 0 in units of the lattice parameter a0 ¼ 4:07Å. The results show

a clear drift of the hydrogen atom in the negative z-directions, hence towards

higher temperatures.
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Eq. (28), the estimate Q�0 ¼ �0:3160:10 eV. This result is

quite consistent with the estimate Q�0 ¼ �0:33 6 0:10 eV

found only using the result for ~Fext ¼ 0.

In summary, direct simulation of thermodiffusion was

observed by tracking the displacement of a hydrogen atom in

the presence of a temperature gradient ~rT. The hydrogen

atom clearly tends to drift in the direction of increasing tem-

perature, corresponding to a negative value for the reduced

heat of transport. The estimate Q�0 � �0:3 eV will be shown

in Secs. IV B and IV C to be in reasonable agreement with

predictions obtained using other methods. However, we

believe that the approach used in this section, while adequate

for establishing qualitative behavior and obtaining an estimate

for Q�0, may involve an important systematic error that, in the

present case, results in over-prediction of the magnitude of

Q�0. In particular, in the direct method, the hydrogen atom can

freely diffuse in the system and hence can explore a wide

range of local temperatures. It is well known that the transport

coefficients, in this case L22 in particular, are temperature de-

pendent. Hence, if the hydrogen atom happens to move into

regions of higher temperature, its hopping rate will increase.

By contrast, in the cases where the hydrogen atom moves into

regions of lower temperature, its hopping rate will decrease.

In the present case, we think that this could lead to larger dis-

placements Drz in the negative-z direction, thereby resulting

in an overestimation of the magnitude of Q�0. However, we

have not found a way to test this hypothesis.

B. Green-Kubo approach

The theory of non-equilibrium thermodynamics demon-

strates that the transport coefficients are directly related to

time-correlation functions of the heat and mass fluxes. Gen-

erally known as the Green-Kubo formulae,3,4 application to

thermodiffusion in solids is impractical in cases where the

activation barriers are high in comparison to kBT and atom

hops occur only very rarely. In the case of the Pd:H system,

Gillan6 successfully analyzed the Green-Kubo formulae and

obtained a result for Q�0, albeit with rather large statistical

error. Here, we review the calculation and duplicate many of

the results reported in Ref. 6 with improved statistical accu-

racy. We show that the value of Q�0 depends on a consistent

definition of the partial enthalpy h2 of hydrogen. In Ref. 6,

we believe an inconsistent definition for h2 was chosen,

resulting in Q�0 � 0:04 eV which is significant disagreement

with the results reported here. We show that a correct analy-

sis of h2 brings the results of Ref. 6 for Q�0 into very good

agreement with our results.

We simulate a system with N1 ¼ 108 and N2 ¼ 20,

which was also simulated in Ref. 6. The mass flux ~J2 is given

by Eq. (2), defined, as previously explained, in the center-of-

mass reference frame. The approach in Ref. 6 was somewhat

different. In particular, the results in Ref. 6 were determined

using mass fluxes defined in a frame of reference fixed to the

Pd lattice. In that case, the Pd mass flux is zero (~J
0
1 ¼ 0), and

the hydrogen flux is given by

~J
0
2 ¼

XN2

i¼1

~vi �
N2

N1

XN1

i¼1

~vi ¼ ~J2 �
N2

N1

~J1: (29)

Then using Eq. (3) it is easily shown that

~J
0
2 ¼ ~J2 1þ N2m2

N1m1

� �
� ð1:0017Þ~J2; (30)

where the atomic velocities are defined with respect to the

center-of-mass reference frame. We see that the mass flux J02
used by Gillan in Ref. 6 is nearly equal to ~J2 as defined in

the center-of-mass reference frame. Hence, we do not expect

the results to depend in any significant fashion on whether

the hydrogen flux is defined with respect to the center-of-

mass or lattice-fixed reference frames.

The energy flux is computed in the center of mass refer-

ence frame by11

~Jq ¼
X

i

~vi�i þ
1

2

X
i<j

~rij½~Fij 
 ð~vi þ~vjÞ�; (31)

where the summations are over all particles, Pd and H, and
~Fij is the force on atom i due to its interaction with atom j.
The partial energy �i is given by

�i ¼
1

2
mi~vi 
~vi þ

1

2

X
j 6¼i

VijðrijÞ; (32)

where Vij is the pair-potential interaction between particles i
and j separated by a distance rij. The choice to divide the

potential energy equally between the two interacting par-

ticles is arbitrary and should make no difference to theoreti-

cal predictions. Nevertheless, the choice above is quite

standard and moreover was also used in Ref. 6. As discussed

in Ref. 11, as long as the interactions are relatively short-

ranged, Eq. (32) is a suitable definition. The definition in Eq.

(31) for the energy flux includes energy transport due to both

heat conduction and mass transport. The heat flux, in contrast

to the energy flux, describes only conduction.11 We use Eq.

(12) to define the heat flux ~J
0
q, which requires a sensible defi-

nition for the partial enthalpy of hydrogen h2.

We next consider the calculation of the partial energies,

u1 and u2, and partial enthalpies h1 and h2, for the Pd and

FIG. 3. Averaged displacements hDrzi as a function of the magnitude of the

external force Fext after 20.47ps of simulation in a temperature gradient.
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hydrogen species, respectively. We take an approach that

follows Ref. 11. For the partial energy of Pd, we use

u1 ¼
1

N1

XN1

i¼1

h�ii; (33)

where �i is defined as in Eq. (32) and the summation

includes only the N1 Pd atoms. The angle brackets indicate

time averaging. Similarly, the partial energy of the hydro-

gen atoms is

u2 ¼
1

N2

XN2

i¼1

h�ii: (34)

Then the total internal energy is given by

U ¼ N1u1 þ N2u2: (35)

The definitions of h1 and h2 should be consistent with u1 and

u2. For Pd atoms, we define the partial enthalpy

h1 ¼ u1 þ p1X: (36)

Similarly, the partial enthalpy of hydrogen is defined as

h2 ¼ u2 þ p2X: (37)

The total enthalpy is then given as,

H ¼ N1h1 þ N2h2 (38)

To determine the pressure terms p1 and p2, we first recall the

definition for the elements of stress tensor pl� for a pair

potential,11,12

pl�X ¼
X

i

mivi;lvi;� þ
1

2

X
i

X
j 6¼i

ðFij;lrij;�Þ: (39)

Here, the Greek indices l and l represent components in a

Cartesian coordinate system. Hence, vi;l is a component of the

velocity vector~vi for particle i. Similarly, Fij;l is a component

of the vector ~Fij which represents the force on particle i due to

its interaction with particle j, and rij;l is a component of the

vector ~rij ¼~ri �~rj which describes the relative position vec-

tors of particles i and j. The (time-averaged) total pressure p is

proportional the trace of the stress tensor

pX ¼ 1

3

X3

l¼1

hplli; (40)

which using Eq. (39) can also be written as

pX ¼ 1

3

X
i

mih~vi 
~vii þ
1

2

X
i

X
j6¼i

h~Fij 
~riji
" #

: (41)

In the definition of the quantities p1 and p2 used in the defini-

tions of h1 and h2, we assume that the contributions due to

the pairwise interactions are equally divided between the

particles. Hence, we take

hpiiX ¼
1

3
mih~vi 
~vii þ

1

6

X
j6¼i

h~Fij 
~riji: (42)

The partial pressure term p1 due to Pd is then,

p1 ¼
1

N1

XN1

i¼1

hpii (43)

and for hydrogen,

p2 ¼
1

N2

XN2

i¼1

hpii: (44)

Finally, the total pressure p is related to the contributions p1

and p2 due to the Pd and hydrogen atoms

p ¼ N1p1 þ N2p2: (45)

The expressions for H and U and the individual contributions

are related by

H ¼ N1h1 þ N2h2 ¼ N1ðu1 þ p1XÞ þ N2ðu2 þ p2XÞ
¼ U þ pX: (46)

Determined in this way, h1 and h2 are consistent with the

definition of the energy terms �i defined by Eq. (32). In par-

ticular, it was shown in Ref. 11 that using the definition in

Eq. (32) to determine the local energy density leads naturally

to the local contribution to the internal pressure given by Eq.

(42). In some studies, the partial enthalpy term is either

neglected or incorrectly calculated, leading to errors in com-

puted thermal conductivity values or other transport parame-

ters. However, there are examples in the literature where the

approach described above is used for computing partial en-

thalpy in binary liquids.13,14 Recently, a detailed study has

been performed verifying that the approach above to com-

pute the partial enthalpy terms results in good agreement

between Green-Kubo and direct methods for computing ther-

mal conductivity.15

We show in Table I the partial thermodynamic quanti-

ties computer for the Pd:H system for N1 ¼ 108 Pd atoms

and several different numbers of hydrogen atoms N2. The

temperature in each case corresponds to T ¼ 980
�
K, and the

system volume is fixed independent of the number of hydro-

gen atoms N2. For N2 ¼ 20, we find h2 ¼ 2:038 eV. We find

that u2 is relatively independent of N2, indicating that

hydrogen-hydrogen interactions are fairly unimportant. For

u1, the value increases significantly as N2 increases due to

fact that half of the repulsive Pd-H interactions are attributed

to the u1. Likewise, the energy p1X depends fairly strongly

on N2, whereas p2X depends only weakly on N2.

In Ref. 6, a different approach was used to determine h1

and h2. In particular, Gillan determined h2 using

h2 ¼
@H

@N2

� �
p;T;N1

¼ @U

@N2

� �
X;T;N1

þ v2T
@p

@T

� �
X;N1;N2

; (47)

with the partial volume of hydrogen in solution,
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v2 ¼
@X
@N2

� �
p;T;N1

: (48)

The main calculation required to use these expressions is the

total energy U as a function of the N2. This approach yields

significantly different values than the values reported in

Table I. In particular, applying Eq. (47) to the potentials

used in this paper, we obtain h2 ¼ 1:733 eV in contrast to the

value h2 ¼ 2:038 eV in Table I. In Ref. 6, h2 ¼ 2:02 eV was

obtained. While the approach in Ref. 6 for determining par-

tial enthalpy is not incorrect, we believe that it is incorrect in

this context. In particular, the definition for h2 used by Gil-

lan6 is not consistent with the expressions in Ref. 11, which

were derived assuming the same definition of the local

energy term �i given by Eq. (32). Below, we will see that the

results reported here are, in fact, in agreement with Ref. 6,

when the correct value for h2 is used.

The transport parameters are determined by integration

of the time-correlation functions,

f22ðsÞ ¼
1

3X

ðs

0

h~J2ðsÞ 
 ~J2ð0Þids; (49)

f2qðsÞ ¼
1

3X

ðs

0

h~J2ðsÞ 
 ~Jqð0Þids; (50)

fq2ðsÞ ¼
1

3X

ðs

0

h~JqðsÞ 
 ~J2ð0Þids; (51)

fqqðsÞ ¼
1

3X

ðs

0

h~JqðsÞ 
 ~Jqð0Þids: (52)

In particular,

L22 ¼ lim
s!1

f22ðsÞ; (53)

L2q ¼ Lq2 ¼ lim
s!1

f2qðsÞ ¼ lim
s!1

fq2ðsÞ; (54)

Lqq ¼ lim
s!1

fqqðsÞ: (55)

Then the value of the heat of transport Q� is found from

Q� ¼ L2q

L22

: (56)

If instead the definition ~J
0
q for the heat flux given in Eq. (12)

is used, the relevant correlation functions are

f02qðsÞ ¼
1

3X

ðs

0

h~J2ðsÞ 
 ~J
0
qð0Þids; (57)

f0q2ðsÞ ¼
1

3X

ðs

0

h~J 0qðsÞ 
 ~J2ð0Þids; (58)

f0qqðsÞ ¼
1

3X

ðs

0

h~J 0qðsÞ 
 ~J
0
qð0Þids; (59)

while f22ðsÞ is unchanged. The correlation functions are

related by

f02qðsÞ ¼ f2qðsÞ � h2f22ðsÞ; (60)

f0qqðsÞ ¼ fqqðsÞ � h2ðf2qðsÞ þ fq2ðsÞÞ þ h2
2f22ðsÞ: (61)

From these expressions, the relationship between the

transport coefficients given in Eqs. (16) and (17) can be

obtained. Then, the reduced heat of transport Q�0 is found

from

Q�0 ¼
L02q

L22

; (62)

where L02q ¼ lims!1 f02qðsÞ. As we have seen previously, Q�0

and Q� are differ by the partial enthalpy h2, and

Q�0 ¼ Q� � h2. Thus, Q� can be easily determined independ-

ent of the definition of h2, whereas Q�0 depends on a correct

value for h2.

To determine the transport coefficients, we performed a

total of 360 independent equilibrium MD simulations at an

average temperature T ¼ 980�K. In each simulation, 104

MD steps were used to equilibrate the system, followed by

2	 105 steps to determine the time correlation functions.

The total amount of simulation time used for averaging was

29.8 ns. In Ref. 6, the total simulation time used for averag-

ing was 2.0 ns over 16 independent simulations. The statisti-

cal errors reported in Ref. 6 for the calculation of Q�0 where

comparable to the computed value. Owing to the much lon-

ger simulation time reported here, we estimate that the statis-

tical error should be reduced by about a factor of 3–4.

We show in Table II the computed transport coefficients

for a different integration times s along with an estimate of

the numerical error. The error was estimated by determining

the standard deviation for 4 independent segments of the

entire data set. Each of the transport parameters appears

fairly well converged after s ¼ 2:0 ps of integration time

with acceptable error. At s ¼ 1:2 ps, the transport parameters

also appear well converged with the exceptions of Lqq and

L0qq. For longer integration times s, the estimated error

becomes comparable to the parameters themselves. Conse-

quently, there is no clear evidence for correlations beyond

s ¼ 2:0 ps. Hence, in the following, we refer in particular to

the values computed for s ¼ 2:0 ps. However, we show data

in the figures for integration times extending until s ¼ 20 ps.

In Fig. 4, we show the integrated correlation function

f22ðsÞ as a function of integration time s. The results are in

TABLE I. Computed partial energies, enthalpies, and pressures compute for

N1 ¼ 108 Pd atoms and different numbers N2 of hydrogen atoms. Values

were determined for a fixed volume X ¼ 27a3
0 with a0 ¼ 4:07Å independent

of N2, and a temperature T ¼ 980� K.

N1 N2 u1 u2 h1 h2 p1X p2X

108 0 �0.563 – �0.314 – 0.249 –

108 1 �0.545 0.833 �0.290 1.967 0.255 1.134

108 10 �0.464 0.832 �0.103 1.999 0.361 1.167

108 18 �0.444 0.845 �0.015 2.036 0.429 1.191

108 19 �0.410 0.836 0.045 2.022 0.455 1.186

108 20 �0.406 0.842 0.051 2.038 0.457 1.196

108 21 �0.410 0.846 0.054 2.044 0.464 1.198

108 22 �0.385 0.854 0.098 2.059 0.483 1.205
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reasonable agreement with those reported in Ref. 6 for times

below the 1:2ps. In particular, at s ¼ 1:2 ps, Gillan reported

a value L22 ¼ 0:029 ps�1Å
�1

compared to the result here

L22 ¼ 0:033 ps�1Å
�1

. For the value L22 ¼ 0:034 ps�1Å
�1

obtained for s ¼ 2:0 ps of integration, we obtain the diffu-

sion coefficient D ¼ 3:0960:31 cm2s�1, in good agreement

with the value D ¼ 3:03 cm2s�1 obtained using the Einstein

relation described in Sec. III. Results for times beyond 1.2 ps

were not reported in Ref. 6. We find that f22ðsÞ increases

gradually well beyond 1.2 ps. This could be due to correlated

diffusion of the N2 ¼ 20 hydrogen atoms. For example, the

hopping of a hydrogen atom may either act to block or open

a site, initiating or inhibiting diffusion of another hydrogen.

However, the long-time correlations are not larger than the

statistical error, and we conclude that longer simulation time

is required to adequately resolve this question.

In Fig. 5, the integrated cross-correlation function f2qðsÞ
is shown. It appears that f2qðsÞ mostly converges within less

than 1 ps of integration time. The correlation between the

energy flux and the hydrogen flux is quite strong, demon-

strating the important role played by hydrogen in energy

transport. For s ¼ 2:0 ps of integration time, we obtain a

value L2q ¼ 0:06260:001 eVps�1Å
�1

. A value for this quan-

tity was not reported in Ref. 6. Using L2q and L22 determined

from s ¼ 2:0 ps of integration time, we obtain the prediction

Q� ¼ 1:8360:04 eV.

The function f02qðsÞ is shown in Fig. 6. In contrast to

f2qðsÞ shown in Fig. 5, the values are small and consistently

negative. We use the value h2 ¼ 2:038 eV reported in Table

I. The very small values suggest that correlation effects

between the heat flux and mass transport are in fact quite

small. The results differ here from what was reported in Ref.

6. In particular, in Ref. 6, it was found that f02qðsÞ was posi-

tive for times to s ¼ 1:2 ps, resulting in the prediction L02q

¼ 0:001 eVps�1Å
�1

. By contrast, we obtain L02q ¼ �0:007

60:001 eVps�1Å
�1

for s ¼ 1:2 ps. The value L02q we obtain

is unchanged for s ¼ 2:0 ps of integration time. Using the

results for s ¼ 2:0 ps of integration time, we obtain for the

reduced heat of transport Q�0 ¼ �0:2160:04 eV.

The positive value for L02q found in Ref. 6 resulted in the

prediction Q�0 � 0:04 eV. We believe that the apparent dis-

agreement is due to the inappropriate definition of h2 used by

Gillan.6 We first note that, given the value h2 ¼ 2:02 eV

reported by Gillan,6 that the heat of transport Q� ¼ Q�0

þh2 ¼ 2:06 eV. This is to be compared to Q� ¼ 1:83 eV

determined above. This comparison is completely independ-

ent of h2.

We can also obtain a correct value for Q�0 from the data

reported in Ref. 6 and a correct calculation of h2. Using the

potentials defined in Ref. 5 without smoothing, we use the

correct definition for h2 given above by Eqs. (34), (37), (42),

and (44) and obtain the value h2 ¼ 2:29 eV. Using this value,

the results in Ref. 6 are found to correspond to a reduced

heat of transport Q�0 ¼ �0:2360:02 eV. This is extremely

close to the result reported here, suggesting that our results

are actually in very good agreement with those reported by

Gillan in Ref. 6, and that the differences are almost entirely

due to the incorrect value of h2. The primary affect of the

smoothing the potentials seems to be to introduce a down-

ward shift of about 0.23–0.25 eV in the values of h2 and Q�.
This is comparable, if not exactly equal, to the downward

TABLE II. Computed transport parameters obtained using the Gillain potential5 with the smoothing described in the text. Results are given for different values

of the integration time s.

s ðpsÞ L22 (ps
�1Å

�1
) L2q ðeVps�1Å

�1Þ L02q ðeVps�1Å
�1Þ Lqq ðeV2 ps�1 Å

�1Þ L0qq ðeV2 ps�1Å
�1Þ

1.2 0:03360:001 0:06060:001 �0:00760:001 0:17560:003 0:06660:005

2.0 0:03460:003 0:06260:001 �0:00760:001 0:18660:015 0:07360:007

5.0 0:03860:005 0:06960:008 �0:00960:008 0:21360:033 0:09160:022

10.0 0:03660:006 0:06460:017 �0:00960:017 0:19860:033 0:08660:038

FIG. 4. The integrated correlation function f22ðsÞ as a function of integration

time s.

FIG. 5. The integrated correlation function f2qðsÞ as a function of integration

time s.
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shift of 0.29 eV in the energy of a hydrogen atom occupying

an interstitial site at T ¼ 0
�
K. In the calculation of the

reduced heat of transport Q�0 ¼ Q� � h2, the downward shift

in both quantities appears to cancel.

Finally, the integrated functions fqqðsÞ and f0qqðsÞ are

shown in Fig. 7. As with the other integrated correlation

functions, the values converge fairly quickly. The results

demonstrate that the energy flux associated with hydrogen

diffusion is comparable to conductive heat transfer. The

results in Fig. 7 can be used to estimate the thermal conduc-

tivity j. In particular, we use the results for f0qqðsÞ to deter-

mine the thermal conductivity from

j ¼
L0qq

kBT2
: (63)

Using the value of f0qq ¼ 0:073 eV2ps�1Å
�1

after an integra-

tion time s ¼ 2:0 ps for the transport coefficient L0qq, the esti-

mate j ¼ 1:3660:14 Wm�1�K�1 is obtained. In Ref. 6, the

value j ¼ 1:1 Wm�1�K�1 was reported. The differences here

are due in part to the incorrect definition of h2. However, we

also found that the integrated correlation function did not

converge to its asymptotic value within the s ¼ 1:2 ps

reported in Ref. 6. The value of j can also be obtained from

the value of the applied heat flux and the time-averaged tem-

perature gradients shown in Fig. 1 and discussed in Sec.

IV A. It is well known that this approach yields results that

exhibit very strong finite-size effects.16–18 Nevertheless,

using Fourier’s law we obtain the estimate j ¼
1:4 Wm�1�K�1 which is in agreement with the Green-Kubo

result. Finite-size effects tend to be more significant when

the phonon mean free path is long and j is relatively high,

which does not correspond to the Pd:H system simulated

here. Finally, it is not expected that these values for j for lat-

tice heat conduction will be in good agreement with experi-

mental measurements of j, since in metals electronic heat

conduction is known to be dominant.

C. Constrained-dynamics approach

In Ref. 8, an approach was developed that uses a con-

straint force ~Fc to move an atom through the transition state.

The approach was applied in Ref. 8 to vacancy thermodiffu-

sion in a Lennard-Jones crystal. The basic idea is to compute

the net work W1!2 required to displace an atom from z1 to

z2, the initial and final local-equilibrium positions, through

the transition state in the presence of a temperature gradient.

It was shown in Ref. 8 that the computed work can be used

to determine Q�0 from

Q�0 ¼ W1!2

T

DT
; (64)

where DT is the difference in the local temperature between

points z1 and z2. Here, we apply this approach to the Pd:H

system. Before presenting results, we first address some

questions about the methodology and attempt to give further

justification than was given in Ref. 8.

The results determined using the direct approach

described in Sec. IV A show that thermodiffusion in the

Pd:H system occurs as a result of an average force felt by the

hydrogen atom due to the temperature gradient. It was fur-

thermore shown how this force could be determined and

then related to Q�0. Moreover, it is possible to determine an

external force ~F
0

ext that on average cancels the driving force

due to an applied temperature gradient. We begin with Eq.

(28) which defines ~F
0

ext. We integrate this equation along a

path between two points z1 and z2

ðz2

z1

~F
0

ext 
 k̂dz ¼ Q�0
ðz2

z1

~rT

T

 !

 k̂dz: (65)

The left-hand side is just the work done by the external

force as the particle is displaced from z1 to z2 which we

denote as W1!2. Because ~F
0

ext is uniform,

W1!2 ¼ F0
extðz2 � z1Þ. The right-hand side, to first order, is

given by

Q�0
ðz2

z1

~rT

T

 !

 k̂dz � Q�0

DT

T
: (66)

Hence, we obtain Eq. (64). In the derivation given here for

Eq. (64), there is no argument that requires the external force

to be uniform. We propose here that Eq. (64) also applies to

FIG. 6. The integrated correlation function f02qðsÞ as a function of integration

time s.

FIG. 7. The integrated correlation functions fqqðsÞ (solid black line) and

f0qqðsÞ (dotted red line) as a function of integration time s.
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the work done by the non-uniform constraint force ~Fc. Both
~Fc and ~F

0

ext represent a conservative external force. The con-

straint force ~Fc exactly cancels the total interatomic force

felt by the hydrogen atom along the direction of constraint

(in this case along a ½110� direction), and hence exactly can-

cels the driving force due the temperature gradient at each

point between z1 and z2. By contrast, ~F
0

ext only acts to cancel

the thermodiffusion driving force on average. The relation-

ship between the constraint force ~Fc and the external force
~F

0

ext is found by equating the work W1!2 in either case

W1!2 ¼
ðz2

z1

h~FcðzÞ 
 k̂idz ¼ F0
extðz2 � z1Þ: (67)

Hence, using the approach in Ref. 8 to compute W1!2 from

the z-component of the time-averaged constraint force

h~Fc 
 k̂i, direct comparison can be made to the estimated F0
ext

determined in Sec. IV A.

In the constrained-dynamics simulations, the system

size and temperature gradient are exactly the same as in the

direct thermodiffusion simulations in Sec. IV A. At the be-

ginning of each MD simulation, the hydrogen atom is dis-

placed by the desired amount from the equilibrium position

z1. In addition, its initial velocity component along the z-

direction, corresponding to the [110]-direction in the fcc lat-

tice, is set to zero. During the MD simulation, the force ~F on

the hydrogen atom due to the neighboring Pd atoms is com-

puted. The component of ~F along the z-direction is deter-

mined from

Fz ¼ ~F 
 k̂: (68)

The constraint force is added so that the motion of the hydro-

gen atom is constrained to a (110) plane. In particular, the

constraint force is

~Fc ¼ �Fzk̂: (69)

The hydrogen follows dynamics with a force ~F
0
given by

~F
0 ¼ ~F þ ~Fc: (70)

Because ~F
0

has no component along the [110] direction,

there is no motion in that direction. However, the hydrogen

atom is not constrained in directions perpendicular to [110].

In this way, the hydrogen atom samples many possible tran-

sition paths, while it preferentially explores the saddle point

of the transition. Finally, so that the center of mass of

the system does not move with the application of ~Fc to the

hydrogen atom, an equal but opposite force is applied to

the Pd atoms. We choose to apply the same force to each of

the Pd atoms, so that the force on Pd atom i is given by,

~F
0
i ¼ ~Fi �

~Fc

N1

: (71)

At each point along the path, the system is first equilibrated

at T ¼ 980� K for 105 MD steps corresponding to about

41.4 ps. Afterwards, the temperature gradient is imposed and

the system is run for 2	 106 MD steps or 0.829 ns. After an

initial time of 8.28 ps to establish the temperature gradient in

steady state, the constraint force is averaged over the remain-

der of the simulation time.

In Fig. 8, we show the integrated work W(z) required to

displace a single hydrogen atom in the presence of a temper-

ature gradient. The work W(z) was computed for 129 differ-

ent displacements z of the hydrogen atom. Figure 8 clearly

shows a trend that W(z) increases overall as the hydrogen

atom is displaced in the opposite direction of the temperature

gradient. Along the path of length a0=
ffiffiffi
2
p

corresponding to

the distance between two octahedral interstitial sites, we find

that the hydrogen actually finds another energy minimum.

The overall path of the hydrogen atom is depicted in Fig. 9.

However, the path shown in Fig. 9 is simplified from the

actual trajectory, since the hydrogen atom can move freely

perpendicular to the [110] direction. In fact, in the course of

a simulation, we find that the hydrogen atom freely diffuses

perpendicular to the constraint direction.

In the initial equilibration period at T ¼ 980
�
K before

the temperature gradient is imposed, we compute the work

W~rT¼0ðzÞ done by the constraint force. In Fig. 10, we sub-

tract from W(z) shown in Fig. 8 the work W~rT¼0ðzÞ. This dif-

ference clearly demonstrates the thermodiffusion driving

force. In particular, the general increasing trend with increas-

ing z is consistent with the existence of a thermodiffusion

driving force tending to push the hydrogen towards higher

temperatures (i.e., with the temperature gradient ~rT). From

the difference between Wðz ¼ z1Þ at the minima near z1 ¼
0:35a0 and Wðz ¼ z2Þ at the minima near z2 ¼ 1:06a0, we

obtain the estimate W1!2 ¼ 9:6	 10�3eV. To determine the

temperature difference DT, we use the ~rT 
 k̂ ¼ 15:8
�
KÅ

�1

obtained in Sec. IV A for the approximate magnitude of the

temperature gradient and find DT � 45:5
�
K. From Eq. (64),

we hence obtain Q�0 ¼ �0:2160:02 eV. The error is esti-

mated from uncertainty in the local temperature and the tem-

perature gradient. However, there is a need for a detailed

study of this method including to elucidate possible nonlin-

ear and finite-size effects, and the error estimate here is quite

tentative. This is discussed further in Sec. V. Nevertheless,

this result is in agreement with the Green-Kubo result

FIG. 8. The integrated work W(z) required to drive a single hydrogen atom

in an temperature gradient as a function of position z in units of the lattice

parameter a0 ¼ 4:07Å. The direction of the temperature gradient ~rT is

shown by an arrow.
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Q�0 ¼ �0:2160:04 eV, although there is a noticeable quanti-

tative difference from the prediction Q�0 � �0:30 eV using

the results of direct thermodiffusion simulations.

The work W(z) shown in Fig. 8 is very closely related to

the free energy profile. In equilibrium conditions ~rT ¼ 0, it

is in fact equal to the free energy A(z) corresponding to the

hydrogen atom at position z. Therefore, the barriers in Fig. 8

are very close to the activation free energy DAact. We obtain

the value DAact ¼ 0:12 eV, which is significantly lower than

DUact ¼ 0:25 eV found in Sec. IV A. This difference indica-

tions strong entropic effects along the diffusion path. In fact,

using the expression for the entropy of activation

DSact ¼
DUact � DAact

T
; (72)

we obtain the estimate DSact ¼ 1:54 kB. We believe that the

detailed energetics and entropic effects along the diffusion

pathway should be directly connected to the thermodiffusion

behavior. Becomes this information emerges naturally from

constrained-dynamics simulations, we believe this is another

reason to be hopeful that new insight can be obtained.

Finally, we examine the predicted relationship given by

Eq. (67) between the average constraint force and the exter-

nal force F0
ext. Using the value W1!2 ¼ 9:6	 10�3 eV deter-

mined above for the constraint force, we obtain the

prediction F0
ext ¼ 0:003 eV=Å. This is to be compared to the

value F0
ext ¼ 0:00560:002 eV=Å obtained in Sec. IV A. The

agreement appears to be only approximate, which was

expected considering the disagreement between Q�0 deter-

mined using the direct method described in Sec. IV A and

the constrained-dynamics results.

V. SUMMARY AND CONCLUSIONS

Different computational methodologies were explored

for computing the heat of transport of hydrogen in a Pd lat-

tice. Using direct simulation of thermodiffusion, the Green-

Kubo formulae, and the constrained-dynamics approach, the

reduced heat of transport Q�0 was found to be consistently

negative in the range between �0.20 eV to �0.30 eV. In the

case of direct simulation of thermodiffusion, the results

unambiguously demonstrate that hydrogen is driven in the

direction of increasing local temperature. This provide im-

portant validation for the Green-Kubo and constrained-

dynamics results. The consistency of the sign and magnitude

of Q�0 suggests that each of these methods provide reasona-

ble results. Disagreement with previously published results

by Gillan6 was shown to be almost entirely due to an incor-

rect definition of h2.

For the Pd:H system, it is not clear which approach

gives an advantage in accuracy or computational efficiency.

The direct simulations of thermodiffusion result in

Q�0 � �0:30 eV, which is significantly larger magnitude

than the prediction from Green-Kubo and constrained-

dynamics simulation Q�0 ¼ �0:21 eV. As discussed previ-

ously, we think that the differences here might be due to the

fact that in the direct simulations, the hydrogen atom is free

to explore a wide range of local temperatures and hence

strongly varying local mobility. However, this hypothesis

has not been directly confirmed.

In the case of the constrained-dynamics approach, there

is a need to more thoroughly explore the practical aspects of

the methodology. For example, it may be that there are non-

linear and finite-size effects that introduce error. We plan a

study in the near future where variations in system size and

the magnitude of the applied heat flux are explored. It should

then be possible to determine the relative merits of the

Green-Kubo and constrained-dynamics approaches. At pres-

ent, it is clear that the constrained-dynamics method requires

simulations of a larger system than in the Green-Kubo

method. However, it should be noted that Pd:H represents a

special case due to the fast diffusion of the hydrogen. In

other problems, for example, the thermodiffusion of vacan-

cies or vacancy-mediated thermodiffusion in a binary metal

alloy, it is clear that, of the three approaches studied here,

only the constrained-dynamics approach first developed in

FIG. 9. Path taken by the hydrogen atom for the constrained-dynamics

results shown in Fig. 8. The hydrogen atom essentially explores three local

minima along the path from z1 to z2 The arrows do not represent a realistic

trajectory, since the hydrogen atom actually freely diffuses perpendicular to

the [110] constraint direction.

FIG. 10. The difference between the work W(z) shown in Fig. 8 and the

work W~rT¼0ðzÞ computed with no temperature gradient as a function of

position z in units of the lattice parameter a0 ¼ 4:07Å. The direction of the

temperature gradient ~rT is shown by an arrow. The figure is consistent with

a force tending to drive the hydrogen atom in the negative z-direction (i.e.

with the temperature gradient in the direction of increasing temperature).
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Ref. 8 is capable of providing results. Another advantage of

the constrained-dynamics approach is that basic information

about the thermodynamics of the transition path emerges,

including the activation free energy and entropy, which may

in some way be correlated to Q�0.
Another approach developed first by Gillan19–21 for

T ¼ 0� K and later modified for finite temperatures22 has

not been considered in this article. In this approach, the dif-

fusing particle is constrained at the saddle point and then is

later released. As the particle moves towards an equilibrium

point, the heat current is computed and then related to Q�0.
This approach has been applied in several studies to the

study the thermodiffusion of vacancies in fcc crystals.23–25

As with the constrained-dynamics method, the Gillan

approach at finite temperature has the advantage of being

applicable to systems where diffusion is too slow to be

observed on a typical MD time scale. However, we are

aware of no studies that have been done to validate the

finite-temperature method in Ref. 22 by comparison to other

methods. It would be interesting to compare the results

obtained using that approach to the Pd:H system where we

now have quite thorough and accurate results.

The results here are in strong disagreement with experi-

mental values, indicating that the empirical potential for the

Pd:H system is inadequate in some critical respect. For the

experimental measurement in the temperature range

670� 830
�
K, the value 0.065 eV was reported in Ref. 26.

This suggests that hydrogen tends to diffuse form the hot end

to the cold end. In this article, the prime objective was to

provide insight and to validate different computational meth-

odologies including in particular the constrained-dynamics

method. However, it is still an important goal in the future to

generate computational results that can make accurate,

materials-specific predictions. However, because insight into

thermodiffusion remains incomplete, we cannot say what are

the key quantities that a model needs to accurately reproduce

in order to predict values of Q�0 that are in agreement with

experiment. In the Pd:H system, another important aspect

might be at play. In particular, heat conduction in metals is

dominated by electrons, and it is not known whether an elec-

tron wind or thermoelectric driving force might act on the

hydrogen atoms. Because hydrogen atoms have a very small

mass, this effect might be relevant. By contrast, this contri-

bution is likely to be small for vacancy-mediated thermodif-

fusion in a binary alloy.

However, there may be some insight into the Pd:H sys-

tem which explains the observation of hydrogen flow from

high to low temperatures. In particular, Asaro and coworkers

put forth simple arguments to describe the thermodiffusion

of interstitials, including in fcc solids.27 The arguments basi-

cally relate to the uptake and release of heat during as an in-

terstitial moves from the initial to the final state. Their

assumption is that, as the H moves from the transition state

to the final equilibrium state, it releases an energy approxi-

mately equal to the migration energy. Assuming that the

energy is radiated symmetrically, this would lead to a posi-

tive value for the heat of transport. This qualitative predic-

tion is apparently in agreement with experiment but does not

explain the simulation results here, where Q�0 is negative.

One possible reason for the discrepancy is that the Pd-H

interactions in the model used here are purely repulsive, and

hence the H appears to prefer the octahedral site because it is

further from the neighboring Pd atoms. This is in contrast to

the picture in Ref. 27 which assumed an attractive Pd-H

interaction which resulted in contraction of the Pd atoms at

the octahedral site. However, these qualitative arguments

have not been tested using a more realistic simulation model.

ACKNOWLEDGMENTS

This work was supported by a grant from the National

Science Foundation (Award No. 1106219). We would also

like to acknowledge helpful correspondence from Professor

Pawel Keblinski, who let us review, before publication,

results that demonstrate the correct method for computing

partial enthalpy in the context of Green-Kubo thermal con-

ductivity calculations.

1R. E. Howard and A. B. Lidiard, “Matter transport in solids,” Rep. Prog.

Phys. 27, 161 (1964).
2A. B. Lidiard, Handb. d. Phys. 20, 246 (1957) (Springer Verlag, Berlin).
3M. S. Green, “Markoff random processes and the statistical mechanics of

time-dependent phenomena.2. Irreversible processes in fluids,” J. Chem.

Phys. 22, 398 (1954).
4R. Kubo, “Statistical-mehanical theory of irreversible processes. 1. Gen-

eral theory and simple applications to magnetic and conduction problems,”

J. Phys. Soc. Jpn. 12, 570 (1957).
5M. J. Gillan, “A simulation model for hydrogen in palladium: I. Single-

particle dynamics,” J. Phys. C. 19, 6169 (1986).
6M. J. Gillan, “A simulation model for hydrogen in palladium: II. Mobility

and thermotransport,” J. Phys. C. 20, 521 (1986).
7D. J. Evans, “Homogeneous NEMD algorithm for thermal conductivity–

Application of non-canonical linear response theory,” Phys. Lett. A 91,

457 (1982).
8Z. McDargh and P. K. Schelling, “Molecular-dynamics approach for deter-

mining the vacancy heat of transport,” Comput. Mater. Sci. 50, 2363

(2011).
9L. Onsager, “Reciprocal relations in irreversible processes. I.,” Phys. Rev.

37, 405 (1931).
10P. Jund and R. Jullien, “Molecular-dynamics calculation of the the thermal

conductivity of vitreous silica,” Phys. Rev. B 59, 13707 (1999).
11J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of

transport processes. IV. The equations of hydrodynamics,” J. Chem. Phys.

18, 817 (1950).
12M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals:

A new molecular dynamics method,” J. Appl. Phys. 52, 7182 (1981).
13R. Vogelsang and C. Hoheisel, “Thermal conductivity of a binary-liquid

mixture studied by molecular dynamics with use of Lennard-Jones

potentials,” Phys. Rev. A 35, 3487 (1987).
14R. Vogelsang, C. Hoheisel, G. V. Paolini, and G. Ciccoti, “Soret coeffi-

cient of isotopic Lennard-Jones mixtures and the Ar-Kr system as deter-

mined by equilibrium molecular-dynamics simulation,” Phys. Rev. A 36,

3964 (1987).
15H. Babaei, P. Keblinski, and J. M. Khodadadi, “Equilibrium molecular

dynamics determination of thermal conductivity for multi-component sys-

tems,” J. Appl. Phys. 112, 054310 (2012).
16P. K. Schelling, S. R. Phillpot, and P. Keblinski, “Comparison of atomic-

level simulation methods for computing thermal conductivity,” Phys. Rev.

B 65, 144306 (2002).
17X. W. Zhou, S. Aubry, R. E. Jones, A. Greenstein, and P. K. Schelling,

“Towards more accurate molecular dynamics calculation of thermal con-

ductivity: Case study of GaN bulk crystals,” Phys. Rev. B 79, 115201

(2009).
18D. P. Sellan, E. S. Landry, J. E. Turney, A. J. H. McGaughey, and C. H.

Amon, “Size effects in molecular dynamics thermal conductivity pre-

dictions,” Phys. Rev. B 81, 214305 (2010).
19M. J. Gillan, “The heat of transport in solids: A new theoretical approach,”

J. Phys. C 10, 1641 (1977).

083516-12 P. K. Schelling and T. Le J. Appl. Phys. 112, 083516 (2012)

http://dx.doi.org/10.1088/0034-4885/27/1/305
http://dx.doi.org/10.1088/0034-4885/27/1/305
http://dx.doi.org/10.1063/1.1740082
http://dx.doi.org/10.1063/1.1740082
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1088/0022-3719/19/31/012
http://dx.doi.org/10.1088/0022-3719/20/4/005
http://dx.doi.org/10.1016/0375-9601(82)90748-4
http://dx.doi.org/10.1016/j.commatsci.2011.03.014
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRevB.59.13707
http://dx.doi.org/10.1063/1.1747782
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1103/PhysRevA.35.3487
http://dx.doi.org/10.1103/PhysRevA.36.3964
http://dx.doi.org/10.1063/1.4749265
http://dx.doi.org/10.1103/PhysRevB.65.144306
http://dx.doi.org/10.1103/PhysRevB.65.144306
http://dx.doi.org/10.1103/PhysRevB.79.115201
http://dx.doi.org/10.1103/PhysRevB.81.214305
http://dx.doi.org/10.1088/0022-3719/10/10/008


20M. J. Gillan, “Heat of transport in solids: II. Harmonic theory for a va-

cancy in the simple cubic lattice,” J. Phys. C. 10, 3051 (1977).
21M. J. Gillan and M. W. Finnis, “Heat of transport in solids: III. Com-

puter simulation of a vacancy in an fcc crystal,” J. Phys. C. 11, 4469

(1978).
22C. Jones, P. J. Grout, and A. B. Lidiard, “The heat of transport of vacan-

cies in solid argon,” Philos. Mag. Lett. 74, 217 (1996).
23C. Jones, P. J. Grout, and A. B. Lidiard, “The heat of transport of vacan-

cies in model fcc solids,” Philos. Mag. A 79, 2051 (1999).

24P. J. Grout and A. B. Lidiard, “Computation of heats of transport in crys-

talline solids: II,” J. Phys. Condens. Matter 20, 425201 (2008).
25K. A. M. Dickens, P. J. Grout, and A. B. Lidiard, “Computation of heats of

transport of vacancies in model crystalline solids: III,” J. Phys. Condens.

Matter 23, 265401 (2011).
26W. A. Oates and J. G. Shaw, “Thermomigration of hydrogen in palladium,”

Metall. Trans. 1, 3237 (1970).
27R. J. Asaro, D. Farkas, and Y. Kulkarni, “The Soret effect in diffusion in

crystals,” Acta Mater. 56, 1243 (2008).

083516-13 P. K. Schelling and T. Le J. Appl. Phys. 112, 083516 (2012)

http://dx.doi.org/10.1088/0022-3719/10/16/015
http://dx.doi.org/10.1088/0022-3719/11/22/005
http://dx.doi.org/10.1080/095008396180380
http://dx.doi.org/10.1080/01418619908210408
http://dx.doi.org/10.1088/0953-8984/20/42/425201
http://dx.doi.org/10.1088/0953-8984/23/26/265401
http://dx.doi.org/10.1088/0953-8984/23/26/265401
http://dx.doi.org/10.1007/BF03038444
http://dx.doi.org/10.1016/j.actamat.2007.11.019

	Computational methodology for analysis of the Soret effect in crystals: Application to hydrogen in palladium
	Recommended Citation

	s1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	s3
	d22
	d23
	d24
	d25
	s4
	s4A
	d26
	d27
	d28
	f1
	f2
	s4B
	d29
	d30
	d31
	d32
	f3
	d33
	d34
	d35
	d36
	d37
	d38
	d39
	d40
	d41
	d42
	d43
	d44
	d45
	d46
	d47
	d48
	d49
	d50
	d51
	d52
	d53
	d54
	d55
	d56
	d57
	d58
	d59
	d60
	d61
	d62
	t1
	t2
	f4
	f5
	d63
	s4C
	d64
	d65
	d66
	f6
	f7
	d67
	d68
	d69
	d70
	d71
	f8
	d72
	s5
	f9
	f10
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27

