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High-performance near-infrared imaging for
breast cancer detection
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Abstract. We present a method for the noninvasive determination of the size, position, and optical properties of
tumors in the human breast. The tumor is first detected by photothermal imaging. It is then sized, located, and
optically characterized using designed digital image processing and edge-detection pattern recognition. The
method assumes that the tumor is spherical and inhomogeneous and embedded in an otherwise homogeneous
tissue. Heat energy is deposited in the tissue by absorption of near-infrared (NIR) Nd:YAG laser radiation, and its
subsequent conversion to heat via vibrational relaxation causes a rise in temperature of the tissue. The tumor
absorbs and scatters NIR light more strongly than the surrounding healthy tissue. Heat will diffuse through the
tissue, causing a rise in temperature of the surrounding tissue. Differentiation between normal and cancerous
tissues is determined using IR thermal imaging. Results are presented on a 55-year-old patient with a papillary
breast cancer. We found that these results provide the clinician with more detailed information about breast
lesions detected by photothermal imaging and thereby enhance its potential for specificity. © 2014 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.1.016018]
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1 Introduction
Photothermal imaging is a noninvasive imaging modality that
employs near-infrared (NIR) light, typically in the wavelength
range of 1064 nm, to detect breast cancer. The basic approach
consists of illuminating one side of the female breast samples
with a pulsed light beam, while the examiner looks for regions
of higher induced thermal intensity on the same side using
a thermal camera.

Thermal effects are perhaps the most widely encountered
form of tissue–laser interaction in clinical practice. Many such
applications can be performed with long-pulse lasers and have
been utilized clinically for nearly six decades. Understanding
the physical mechanisms of laser interaction with biological
molecules and structures has resulted in the application of laser
radiation to a wide variety of biological and medical problems,
ranging from subcellular manipulation/surgery to the successful
diagnosis and treatment of human disease.1

At the tissue level, lasers are being used to diagnose and
treat malignancy in combination with light-activated drugs, to
ablate cornea and other hard and soft tissues through ultraviolet
photoablation, to selectively ablate structures within the skin
under controlled heating/cooling conditions, and to differentiate
normal from abnormal tissue using a variety of fluorescence
detection and light-scattering techniques.2,3

Thermal effects are important phenomena in laser inter-
actions with biological tissues, resulting from three distinct phe-
nomena; namely the conversion of light to heat, the transfer of
heat and the tissue reactions, which are ultimately related to
the change in temperature, and the heating time, as shown in
the schematic diagram of Fig. 1.4 A key for understanding

this interaction is through the analysis of the mechanisms of
heat transfer in the biological tissues. This transfer is essentially
produced by the mechanism of conduction, the influence of
blood perfusion, and metabolic heat generation.4 The transfer
of energy of the laser beam to the tissue molecules occurs ran-
domly between the more and less energetic particles and results
in a “secondary” heated volume; this is bigger than the “pri-
mary” laser source, which is based only on the conversion of
light to heat. The kinetics of this thermal action, in turn, depend
on the initial temperature in the tissue, time of heating, and
susceptibility of the tissue to thermal damage or, in our case,
thermal expansion. The lack of proper physical understanding of
the process of laser–tissue interactions has been one of the
principal deterrents in the full exploitation of the associated
benefits in medical treatments. Over many years, medical cancer
treatments using gold particles and procedures have remained as
more or less an experience-based science than a subject of more
fundamental study,5,6 but lately significant attempts are being
made to understand the process of laser–tissue interaction from
a fundamental view point. Fundamental mathematical studies
with regard to laser–tissue photothermal interaction have been
relatively few.7–12

2 Theoretical Modeling
Consider a laser beam incident on the tissue. When a steady state
has been reached, the scattered incident light can be described
by the irradiance, which depends on the position in the tissue
ψ ¼ ðx; y; zÞ. The units of ψ are Wm−2, so it is a measure of
the energy flux through a unit area in a unit time. The transfer
of irradiance to heat depends upon absorption and thermal
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relaxation, which leads to an increase in temperature as demon-
strated in the next section.

2.1 Temperature Rise

If the tissue does not change the phase (our case study), then an
increase in the heat energy per unit volume, ∂E, leads to a rise in
temperature ∂T. The magnitude of this rise can be calculated
using the specific heat capacity, Cp

12–14

Cp ≅
1

ρ

�
∂E
∂T

�
p
: (1)

A heat increase ∂E (energy per unit volume) and the resulting
temperature rise ∂T are therefore related by

∂E ¼ ρCpdT; (2)

where ρ is the mass density in kgm−3, and Cp is the specific heat
capacity in Jkg−1 K−1.

2.2 Thermal Conductivity

The deposited heat does not remain in the same place for a long
time, but spreads into the surrounding tissue. We therefore need

something to describe the flow of heat through the tissue. It is
found empirically that the heat flux, q, is proportional to the
gradient of the temperature, given by the vector

∇T ¼
�
∂T
∂x

;
∂T
∂y

;
∂T
∂z

�
: (3)

We can write that the heat flux and temperature gradient are
related by

q ¼ −k∇T (4)

2.3 Governing Equations

The governing equation of thermal energy conservation in the
tissues exposed to the laser irradiation is given by13,14

ρCP
∂T
∂t

¼ k

�
∂2T
∂x2

þ ∂2T
∂y2

þ ∂2T
∂z2

�
þ wbCpbðTa − TÞ

þQm −
∂ρΔH
∂t

; (5)

where ρ, Cp, and k are, respectively, the density, the specific
heat, and the thermal conductivity of the tissue, Qm is the meta-
bolic heat generation per unit volume, wb is the blood perfusion
rate, Cpb is the specific heat of blood, Ta is the initial temper-
ature, and T is the local tissue temperature.

The last term on the right side represents the rate of release/
absorption of latent heat, as a consequence of the phase change
process; ΔH being the latent enthalpy characterizing phase
transformations at the specific locations in the domain under
consideration.

Solutions to simple cases (e.g., simple geometries and tem-
perature-independent and uniform material properties) give us
a guide to how heat behaves and can even be applied directly
to a number of practical cases.

For convenience, we will define the heat source term as Q̂ ≡
Q∕ρCp and introduce the thermal diffusivity D ðcm2 s−1Þ,
defined by12–14

D ≡ k∕ρCp: (6)

Equation (6) can then be written as

∂T
∂t

−D∇2T ¼ Q̂ðx; tÞ; (7)

where the source has been explicitly written as a distributed
source Q̂ðx; tÞ. The solution can now be calculated from the
Green’s function above by integrating (summing) together
the Green’s functions for every source position x 0 and time
t 0 and weighted by the source term Q̂ðx; tÞ

Tðx; tÞ ¼ E
ρcp

�
1

8ðπDtÞ3∕2
�
expð−x2∕4DtÞ: (8)

At 1064 nm, there was a clear and reproducible difference
between the thermal response of cancerous and normal tissues
as a result of increased optical attenuation in cancerous tissues,
providing the capability to characterize abnormal tissue and give
us information about both the composition and thickness of the
tissue.

Fig. 1 The various aspects involved in thermal interactions of light
with tissue.
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3 Experimental System
Figure 2 shows a schematic drawing of the experimental setup.
A Q-switched pulsed Nd:YAG laser with a wavelength of
1064 nm, a pulse duration of 14 ns, and a 10-Hz repetition
rate was used to illuminate the samples. To achieve a homog-
enous laser fluence distribution over the whole circular top
surface of the sample, the laser beam was expanded by two
concave lenses with −50- and −75-mm focal lengths, respec-
tively. Use of these lenses decreased the laser fluence incident
on the biopsy sample surface to approximately 0.2 mJ cm−2, and
this resulted in a weak signal-to-noise ratio. The black-body
radiation from the optically excited sample is collected, colli-
mated, and focused onto an IR thermal camera sensitive over
7.5 to 14 μm. The thermal camera (model Fluke Ti32 thermal
imager) is coupled with computer software for the interpretation
of the IR images. The test is ideal for detecting hot and cold
spots or areas of different emissivities on the skin surface,
since human tissue radiates IR energy very efficiently.15–19

3.1 Image Acquisition

To provide high-resolution and accurate photothermal images,
the following procedures for data collections must be followed:

1. The sample was placed at least 50 cm distance from
the thermal camera.

2. The room temperature was recorded.

3. IR source interferences were minimized. All windows
were shielded to prevent any stray IR radiation.

4. A waiting period of ≅ 7 to 10 min was allowed for
thermal adaptation after every laser shot. The sample
area was cooled slightly with a fan and monitored by
the thermal camera.

5. The thermal imager system calibrated using an external
black-body source is recommended to check for any
drift in the temperature sensitivity setting. The threshold
temperature of around 0.7 of its maximum temperature
values shall also be calibrated, as it is a reference point
that the thermal imagers use to differentiate an evalu-
ated temperature from normal temperature.

3.2 Image Processing

The photothermal image is filtered from low-frequency thermal
noise and high-frequency electrical noise and then integrated to
produce values proportional to the thermal potential. Image
segmentation and analysis are proposed as an efficient method
for breast analysis using IR images.20–24 Different types of
filters can be applied in order to remove the image artifacts
and to optimize the signal-to-noise ratio by varying the used
frequency band. For all images, three different types of filters
with different parameters were applied, and the setting with
the best image contrast and signal-to-noise ratio was chosen.
Applying different filters with different parameters can change
the image contrast.

For noise removal and to limit the background effect, a band-
pass filter was applied after mapping the time domain into the
frequency domain using Fourier transformation. The amplitude
and temporal characteristics of the photoacoustic response
depend upon the effective attenuation coefficient μeff of the tis-
sue, which in turn is a function of the absorption coefficient μa.
Since the ratio of optical absorption in cancerous to normal tis-
sues at 1064 nm is approximately a factor of 2 (Refs. 25– 27),
there will be significant differences between the photoacoustic
signatures of the two tissue types, thus providing a means of
discriminating between normal and cancerous tissues. We can
localize the tumor areas by calculating the photoacoustic
response packs using edge-detection methods.

Edge detection is a well-developed field on its own within
image processing. Region boundaries and edges are closely
related, since there is often a sharp adjustment in intensity at
the region boundaries. Edge-detection techniques are therefore
used as the base of another segmentation technique.20,21,28,29

The edges identified by edge detection are often disconnected.
To segment an object from an image, however, one needs
closed-region boundaries. Discontinuities are bridged, if the
distance between the two edges is within 0.7 of its maximum
temperature values.

We have designed a worksheet toolbox to extract the boun-
daries of the breasts, because it is one of the most precise
edge-detection operators and has been widely used.22,23,28,29

It is robust to noise and implements a Gaussian function to
smooth the image and to obtain the magnitude and orientation
of the gradient for each pixel.

Fig. 2 Schematic of the photothermal imaging for the detection of human breast cancer.
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4 Results and Discussion
Figures 3 and 4 show the photothermal images taken from the
breast samples of a 55-year-old patient affected by breast cancer;
the first sample taken from a controlled breast tumor of size
0.5 cm3 and the other sample taken from the affected tissue of
size 2 cm3.

All samples of more than 15 biopsies (some of these irradi-
ated sample are seen at end of this section in either of traditional
gray or rainbow styles) were irradiated for 5 s at 0.6 Wcm−2

with the 1064-nm NIR laser with a laser spot size of 4.4 cm2

(Fig. 2).
The laser power was kept constant throughout the irradiation.

This led to a rapid temperature rise in the first minute, which
then leveled to approximately 39 to 40°C over the next 5 s.

The temperature was monitored continuously by thermal
imaging and checked periodically by a thermoprobe placed
directly in contact with the tumor. The physical appearance of
the tumor was whitened. The tumors of the first sample had an
average size of ∼22 mm3 in the start of irradiation. Thermal
images, taken at various time points during the heating, showed
that the tissue heated up very fast and reached an average tem-
perature of 39°C.

By contrast, the tumors reached temperatures of more
than 40°C after 5 s, while the laser spot size was much larger
than the tumor (4.4 cm2 as compared with a tumor size of less

Fig. 3 In vivo near-infrared (NIR) imaging of a small tumor. (a) An NIR
image taken with 5-s radiation. High-tumor contrast is seen as
the peak temperature intensity in gray scale. (b) A color photothermal
image for the same sample (the red color represents the tumor
position and its size).

Fig. 4 In vivo NIR imaging of a large tumor. (a) A gray thermal image of a breast cancer-bearing tumor
using NIR laser irradiation at a power of 2 Wcm−2, (b) a color thermal image of the same sample, and
(c) an optical image of the same sample.
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Fig. 5 Three-dimensional plot for (a) small tumor size (<0.5 cm3) and (b) large tumor size (>0.5 cm3).

Fig. 6 Temperature contours after 1 s for (a) small tumor size (<0.5 cm3) and (b) large tumor size
(>0.5 cm3). Edge detection for NIR imaging for (c) small tumor size (<0.5 cm3) and (d) large tumor
size (>0.5 cm3).
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than 0.5 cm2) and thermal imaging indicated that the healthy,
illuminated tissue remained closer to normal body temperatures,
as shown in Fig. 3. This confirms that the tumors were respon-
sible for the absorption of laser light and subsequent heating of
the tumor tissue. The second sample was considered “high risk”
due to the large tumor size>0.5 cm3 (Fig. 4). In strong contrast,

for comparison, we examined the NIR photothermal heating
capabilities of 1064 nm. The absorption coefficient for
breast tumor is higher than normal tissue.30 The tumors heated
at 2 Wcm−2 formed an eschar and diminished. Based on ther-
mal imaging, the high-intensity peaks, as shown in Figs. 5(a)
and 5(b), indicated the tumor position which matched with
the physician report.

Photothermal imaging afforded high-passive accumulation in
tumors relative to the surrounding organs and provided an
opportunity to combine imaging and photothermal therapy of
tumors by utilizing the intrinsic optical and thermal properties
of cancerous cell. Also, the depth penetration of the NIR laser
becomes an issue when treating tumors deep within the body.
Since the penetration depth is less than 1 cm at this wavelength,
techniques other than an external laser are necessary to effec-
tively treat deep body tumors. For example, in some cases,
the laser source can be fiber coupled and threaded into the
body. When the NIR photothermal images show a high signal
in the tumor and a low signal in the surrounding tissue, we are
able to heat the tumors without incurring damage to healthy tis-
sue. The features of the heat patterns may include the statistical
parameters such as skewness, variation, and kurtosis. The larger
the tumor size, the steeper the temperature variation.31 How the
temperature varies in the heat pattern is also important. Two heat
patterns with the same temperature range, as shown in Figs. 6(a)
and 6(b), one may be steeper than the other for the same area,
have the different temperature variations or the same tempera-
ture variation occurs in the different areas. The cumulative histo-
gram which describes the temperature variation with an area can
reflect the asymmetry. The asymmetry can be measured by the
bilateral ratio of the quantitative features including skewness,
variation, kurtosis, temperature difference (ΔT), the maximum
ratio between temperature difference, and area (ΔT∕S).

Figures 6(c) and 6(d) illustrate the tumors position using sta-
ble edge-detection techniques; from these results, we can use
it with photothermal therapy and tumor treatments. We select
a biopsy at different tumor sizes and locations from women
at almost the same edge and same tumor degree (nearly 55
years, first degree), image it using our experiment, and save
the thermal image in gray and color formats, as shown in
Figs. 7(a) and 7(b), to calculate the accuracy of our system
and the ability to detect a tumor. As shown in the figures,
the system has a power tool for detecting the tumor location
with high degree of accuracy and matching with the physician
report.

5 Discussions and Conclusions
Photothermal laser heating of tumors coupled with the ability to
image and visualize heat intake into tumors makes photothermal
imaging a promising potential method for future photothermal
diagnosis and treatment. The novelty of the current work lies in
several areas as mentioned in this scenario; first, on the imaging
front, we have been able to achieve high-resolution photother-
mal imaging of tumor with size less than 2 cm3 using NIR laser.
The ability to track the tumor distribution using edge detection
is also an important feature for the diagnosis of breast in early
stage cancer and in the monitoring processes. Finally, we took
advantage of the high-optical absorbance of breast cancer in the
NIR band to heat the tumor volume to the point of complete cell
death, which may be used as a treatment process. More than 15
cancerous biopsies are investigated using the same approach and
were in good agreement with traditional clinical measurements

Fig. 7 (a) Thermal images of different breast tumor sizes and loca-
tions in gray format. (b) Thermal images of different breast tumor
sizes and locations in color format.
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with more precision in extracting the exact size and shape of
the cancerous cells.15–18,20–28 Also, by using this technique with
the help of advanced digital image processing, we would be able
to distinguish and differentiate between different grade levels of
tumor and cancerous cells. The overall photothermal imaging
system is a powerful tool for real-time breast cancer detection
with high resolution and contrast, which enables us to detect
tumors at the size of millimeters in diameter compared with
the photoacoustic imaging system.32 This photothermal imaging
system is more simple and compact and provides real-time non-
invasive monitoring and imaging. In comparison, off-time
photoacoustic imaging requires an array of piezoeletric trans-
ducer to acquire acoustic signals at multiple layers and special
digital signal processing software.32
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