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Dynamical mean-field theory for molecules and nanostructures
Volodymyr Turkowski,1,2,a) Alamgir Kabir,1 Neha Nayyar,1 and Talat S. Rahman1,2

1Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
2NanoScience and Technology Center, University of Central Florida, Orlando, Florida 32816, USA

(Received 17 October 2011; accepted 20 February 2012; published online 16 March 2012)

Dynamical mean-field theory (DMFT) has established itself as a reliable and well-controlled approx-
imation to study correlation effects in bulk solids and also two-dimensional systems. In combination
with standard density-functional theory (DFT), it has been successfully applied to study materials
in which localized electronic states play an important role. It was recently shown that this approach
can also be successfully applied to study correlation effects in nanostructures. Here, we provide some
details on our recently proposed DFT+DMFT approach to study the magnetic properties of nanosys-
tems [V. Turkowski, A. Kabir, N. Nayyar, and T. S. Rahman, J. Phys.: Condens. Matter 22, 462202
(2010)] and apply it to examine the magnetic properties of small FePt clusters. We demonstrate that
DMFT produces meaningful results even for such small systems. For benchmarking and better com-
parison with results obtained using DFT+U, we also include the case of small Fe clusters. As in the
case of bulk systems, the latter approach tends to overestimate correlation effects in nanostructures.
Finally, we discuss possible ways to further improve the nano-DFT+DMFT approximation and to
extend its application to molecules and nanoparticles on substrates and to nonequilibrium phenom-
ena. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692613]

I. INTRODUCTION

The theoretical description of solid state systems which
include localized electronic states (usually in the case of tran-
sition metal (TM) atoms with unfilled shells of d-electrons)
remains one of the most difficult problems of condensed mat-
ter physics. These states play an important role in many un-
usual phenomena in a variety of materials, such as cuprate su-
perconductors, heavy fermions, and manganites. In the case
of small TM nanosystems, clusters, and molecules, the role
of electron–electron correlations are of special interest from
both practical and fundamental points of view. Indeed, these
structures have a great potential to be used in many modern
technological applications, such as ultra-high density mag-
netic recording systems, sensors, and photovoltaic devices.
From the fundamental point of view, understanding of cor-
relation effects in TM nanosystems would facilitate deeper
understanding of their growth dynamics and the role of the
quantum effects in corresponding larger structures. Theoret-
ical predictions of properties of these nanosystems also help
to fill the void resulting from the lack of experimental data
which are not easily obtainable. Unfortunately, most stud-
ies of TM clusters either ignore strong electron correlation
effects, or take them into account in an oversimplified way,
thereby neglecting the very effects that maybe responsible for
their unusual properties such as magnetism and superconduc-
tivity. In the case of systems at the nanoscale, correlation ef-
fects are expected to be even more important due to reduced
dimensionality, which makes it much more difficult for elec-
trons “to avoid” each other as compared to the case of bulk
material.

a)Author to whom correspondence should be addressed. Electronic mail:
vturkows@ucf.edu.

Correlation effects are typically included via the density-
functional theory (DFT)+U method.2, 3 However, as this
approach neglects dynamical effects such as time-resolved
local interactions, it may fail even for cases in which cor-
relations are not very dominant (small on-site Coulomb
repulsion energy U). Such is the case of bulk TMs, for which
the DFT+U method may lead to wrong results as predicting
a non-existing magnetic phase in plutonium. In the case of
large U, the DFT+U approximation may also lead to wrong
predictions, for example, spin-ordering temperatures (see,
e.g., review Ref. 4 and references therein). On the other hand,
in the case of extended systems, several many-body theory
approaches have successfully incorporated electron corre-
lation effects. Familiar examples include the Bethe ansatz
approach in the 1D case (see, e.g., Ref. 5) and the dynamical
mean-field theory (DMFT) method for higher dimensions. In
the last approach, one takes into account temporal fluctua-
tions by considering the time- (frequency-) dependence of the
electron self-energy �(ω). In this effective single-electron
approach, all correlation effects due to interaction of the elec-
tron with all other electrons are taken into account through
the field �(ω) (time-dependent, dynamical approximation).
The spatial dependence of the self-energy is neglected (mean-
field approximation), which strictly speaking is exact only
in the limit of infinite dimensions (coordination number Z).6

Nevertheless, DMFT appears to be a good approximation for
two-dimensional (2D) and 3D systems (for an over-review,
see Ref. 7). Since the exchange effects are taken into account
by using the Hartree–Fock (HF) determinant many-electron
wave function, the DMFT self-energy is related to the
correlation part of the self-energy (described by the local
on-site interaction of the electrons with different spins).
The anti-symmetry of the many-electron wave-function
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(exchange effects) is automatically taken into account in the
DMFT quantum many-body approach which uses secondary
quantization fermion operators. The DMFT formalism has
also been successfully extended to incorporate electron–
phonon interaction,8 nonhomogeneous systems (multilayered
structures),9–11 and nonequilibrium phenomena.12

An important step in the analysis of the correlation ef-
fects in real materials was made when the DMFT approach
was incorporated into the DFT scheme.13, 14 In this combined
DFT+DMFT method, the system geometric structure (lat-
tice, interatomic distances, etc.) and the properties of corre-
sponding “non-correlated” (Kohn–Sham) electron subsystem
are obtained within the DFT approximations (usually LDA or
GGA), and correlation effects are taken into account via the
short-range Coulomb interaction of the quasi-particles within
a Hubbard-type tight-binding model. In the case of bulk mate-
rials, this approach has been successfully applied for studying
the spectral, optical, and magnetic properties of systems (see
Refs. 4 and 15 for reviews). In particular, it was shown that the
dynamical fluctuation effects which are naturally incorporated
in DFT+DMFT approach may lead to a different behavior
of the system from that arising from DFT+U, as mentioned
above.

At first sight, it is not obvious that the DMFT approach
can also be applied to nanostructures or molecules, for which
space nonhomogeneity is important in most cases. It has
been suggested by Florens,16 however, that when the av-
erage atomic coordination number (Z) is large, DMFT is
a good approximation even in the case of finite-sized sys-
tems. The application of DMFT to nanostructures, namely,
surfaces, nanoparticles, and molecules, may also be feasible
since Z in these systems ranges from vary small to bulk val-
ues. The main contribution to the spatial fluctuations comes
from the difference between the “surface” (low-coordinated)
and the “bulk” atoms. Therefore, one can expect that the spa-
tial fluctuations are important when the number of the sur-
face atoms is comparable to or larger than that of the bulk
atoms. This is definitely not the case for nanostructures (ex-
cept chains), so the DMFT approach must be a reasonable ap-
proximation for these systems. Moreover, it is expected to be
a good approximation even in the case of much smaller sys-
tems, down to non-flat 5–10 atom clusters, since in this case
the average coordination number is of order of 4, similar to
that one of the 2D systems, where DMFT is often considered
to be a good approximation. Furthermore, there is the gener-
alization of DMFT for the nonhomogeneous case, in which
the electron self-energy remains local, but site-dependent.9, 10

This generalization and enhanced accuracy, which is compu-
tationally much more time- and memory-consuming, allows
one to study systems with several hundred atoms within avail-
able computational resources (see Sec. II).

The DMFT and combined DFT+DMFT approximations
were recently applied to study several properties of sys-
tems containing up to one hundred atoms.1, 17–21 For exam-
ple, spectral properties of the Mn4 and H6 ring molecules
were analyzed by using DFT+DMFT.17, 20 It was shown
that the DMFT approximation not only gives reasonable re-
sults even for such small systems, but also a better descrip-
tion as compared to the DFT+U (Ref. 17) or unrestricted

HF (Ref. 20) approximations. The transport properties of
110 atom quantum point contact18 and small Ni clusters be-
tween Cu nanowires19 were analyzed by using DMFT and
DFT+DMFT, respectively. For quantum chemistry, as an
alternative to DFT+DMFT a combined Hartree–Fock and
DMFT approximation was used to study the spectral prop-
erties of solid bulk hydrogen.21 The effects of the short-range
interaction were examined within DMFT, while the remain-
ing long-range interactions were treated with the HF approach
along these directions. We have recently proposed a combined
DFT+DMFT approach to study the magnetic properties of
nanosystems, and showed its validity for examining the mag-
netic properties of small iron clusters.1

In this paper, we provide details of our recently pro-
posed combined DFT–DMFT approach to study the physical
properties of finite systems, which include nanoclusters and
molecules, and in which electron–electron correlation plays
an important role. We elaborate on the application of the
method for nanomagnetism and provide results for the mag-
netic properties of very small (2–5 atoms) Fe and FePt clus-
ters, We analyze the role of correlation effects for different
cluster geometries and chemical composition. Our compari-
son of the DFT+DMFT and the corresponding DFT+U re-
sults suggests that neglect of dynamical correlations tends to
lead to an overestimation of the role of electron correlations.
Finally, we discuss possible generalization of the approach to
nanostructures and molecules on substrates and to nonequi-
librium systems.

II. THE DMFT APPROACH: FROM BULK TO NANOSIZE

In this section, for completeness we first review the main
equations for the DMFT formalism for extended (homoge-
neous) systems and its (nonhomogeneous) generalization for
finite systems. In most cases, the properties of systems with
strong electron–electron correlations can be studied by solv-
ing the problem with the tight-binding Hamiltonian of the
Hubbard type

H = −
∑

i,j,σ,l,m

til;jmc
†
iσ lcjσm +

∑
i,j,σ,σ ′,m

Ulm
σ,σ ′niσ lnjσ ′m. (1)

In the last expression, c
†
iσ l and cjσm are the electron cre-

ation and annihilation operators of the fermion at site i with
quantum numbers σ (spin) and and l (other quantum num-
bers: orbital momentum, band number, etc.). In these nota-
tions, the particle number operator, which corresponds to state
σ , l is niσ l = c

†
iσ lciσ l . The competition between the kinetic

energy and the (short-range Coulomb repulsion) potential en-
ergy is defined by the hopping til; jm and the Coulomb repul-
sion matrices Ulm

i,j,σσ ′ . Usually, the hopping matrix elements
are obtained from fitting the experimental band structure, and
only the nearest-neighbor or next-nearest-neighbor hopping
matrix elements are taken into account. The Coulomb re-
pulsion energy is often chosen in the local approximation,
(Ulm

i,j,σσ ′ = δij δlmUl), since these terms give the largest con-
tribution into the Hamiltonian in Eq. (1), and the values for
Ul (l is usually the orbital number: s, p, d . . .) are chosen as
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fitting parameters, though one can in principle obtain the val-
ues for Ul from DFT calculations (see, e.g., Ref. 15).

The problem described by the Hamiltonian in Eq. (1) can
be solved by using the time-ordered Green’s function (GF)

Giσl;jσ ′m(t, t ′) = −i〈T ciσ l(t)c
†
jσm(t ′)〉. (2)

This function is connected to the single-particle self-energy
�iσl;jσ ′m(t, t ′) through the Dyson equation in the following
way:

Giσl;jσ ′m(ω) = G0
iσ l;jσ ′m(ω) + [G(0)(ω)�(ω)G(ω)]iσ l;jσ ′m

(3)

(in the frequency representation). In the last equation,
G

(0)
iσ l;jσ ′m(ω) is the non-interacting GF (which corresponds to

the U = 0 case). Since in the high-dimensional (coordination)
limit the problem can be reduced to the single-site problem
with the local GF and the local self-energy, taken, for exam-
ple, at sites i = j = 0, one can find from the Dyson equation
(3) the following expression for the local GF:

Gσl;σ ′m(ω) =
∫

dk
(2π )d

(
1

ω − ε(k) + μ − �(ω)

)
σ l;σ ′m

.

(4)

In the last equation, ε(k) is the “free” quasi-particle spectrum
obtained from the Fourier transform of the hopping matrix, μ

is the chemical potential, and �(ω) is the quasi-particle self-
energy, which is also local and site-independent in the case of
the DMFT approximation. The frequency-dependence of the
self-energy allows one to take into account dynamical effects,
such as the time-dependent local occupation numbers and in-
teraction. In the case of standard mean-field (in particular HF,
which corresponds to DFT+U) approximation, in which � is
assumed to be static (frequency independent), these effects are
neglected. Though finding the frequency-dependence of the
self-energy is often not an easy task, the space-(momentum-)
independence of the self-energy is a crucial simplification,
which is exact in the limit of infinite dimensions or coordina-
tion number,6 and allows one to solve the problem of strongly
correlated electrons with rather high accuracy in many cases.
A variety of physical quantities can be obtained from the GF,
for example, the orbital spin density

nσl = −
∫

dω

2π

∫
dk

(2π )d
ImGσl;σ l(ω). (5)

It follows from Eq. (4) that in order to find the GF, one
needs to find the self-energy �(ω). Additional equation(s)
which connect the local GF and self-energy can be found in
the following way. The local GF can be formally expressed
in terms of the path integral over the Grassmann variables ψ

and ψ*:

Gσl;σ ′m(ω) =
∫

D[ψ]D[ψ∗]ψσlψ
∗
σ ′me−A[ψ,ψ∗], (6)

where the action A has the following form:

A[ψ,ψ∗] =
∫ β

0
dτ

⎛
⎝∑

i,σ

ψ∗
iσ ∂τψiσ −

∑
i,j,σ

tijψ
∗
iσψjσ

−μ
∑
i,σ

ψ∗
iσ ψiσ + U

∑
i

ni↑ni↓

)
(7)

(here and in some places below, for simplicity we neglect the
orbital degrees of freedom and assume the Coulomb repulsion
to be local). The integration over all states which correspond
to the sites different from l = 0 in Eq. (6) can be formally
performed, which gives

Gσl;σ ′m(ω) =
∫

D[ψ]D[ψ∗]ψσlψ
∗
σ ′me−Aeff [ψ,ψ∗,G−1], (8)

where

Aeff [ψ,ψ∗,G−1]=−
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

ψ∗
0σ (τ )G−1(τ − τ ′)

×ψ0σ (τ ′) + U

∫ β

0
dτn0↑(τ )n0↓(τ ) (9)

is the impurity effective action (τ is the imaginary time and β

= 1/T is the inverse temperature). This action depends on the
effective dynamical mean-field Gσ l;σ ′m(ω), which takes into
account all effects of the rest of the system with sites �= 0
on the impurity site. The problem now is equivalent to the
problem of the single site coupled to the bath described by the
field Gσ l;σ ′m(ω). In principle, in the case of given dynamical
mean-field one can find the local GF from Eq. (8) by using
different approaches (see below).

The next step is to find the dynamical mean-field
Gσ l;σ ′m(ω). The equation which connects this field with the
local GF and self-energy can be found by mapping the single
impurity problem to that of the Anderson impurity with the
Hamiltonian

HA =
∑

σ

(ε0 − μ)c†0σ c0σ + Un0↑n0↓

+
∑
k,σ

Vk(c†k,σ c0σ + c
†
0σ ck,σ ) +

∑
k,σ

εb
kc

†
k,σ ck,σ , (10)

where ε0 and εb
k are the energy levels of the impurity and

of the bath electrons, and Vk is the hybridization between
the impurity and bath states (see, e.g., Ref. 7). Since this
Hamiltonian is quadratic in the bath-field operators, one can
easily find the impurity Green’s function in the non-correlated
case (U = 0)

G(ω) = 1

ω − ε0 + μ − (ω)
, (11)

where

(ω) =
∑
k,σ

|Vk|2
ω − εb

k

(12)

is the hybridization function. Since, we assume that “the
Hubbard” (in Eq. (7)) and “the Anderson” (Eq. (10)) baths
are equivalent, the mean-field functions in Eq. (9) and in
Eq. (12) are equal to each other (since in both cases they are
equal to the local impurity GFs at U = 0). On the other hand,
the function (12) is connected with the impurity self-energy
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in the standard way by means of the Dyson equation

G−1(ω) = G−1(ω) − �(ω). (13)

Again, since the two impurity problems are equivalent, the
self-energies in Eqs. (4) and (13) have to be the same.

We thus obtain a closed system of DMFT equations, i.e.,
Eqs. (4), (8), and (13), for the local GF, dynamical mean-field,
and self-energy. It can be solved by iterations for every value
of frequency in the following way:

1. choose the initial self-energy �(ω);
2. calculate the local GF from Eq. (4);
3. calculate the dynamical mean-field G(ω) from Eq. (13);
4. use the mean-field function to solve the impurity prob-

lem (8) to find the local GF;
5. find new self-energy from Eq. (13) by using the values

of G(ω) and G(ω);
6. continue iterations until �(ω) converges with the desired

accuracy.

The most difficult part of the solution is the path in-
tegral equation (8). Usually, exact numerical methods such
as quantum Monte Carlo (QMC) solvers (e.g., Hirsh–Fye or
continuous-time QMC approaches), or analytical ones em-
ploying expansion either in powers of t/U or U/t, including
the iterative perturbation theory expansion (for details, see
Refs. 4, 7, and 15), are used.

In the case of nanostructures, the problem is essentially
nonhomogeneous (except some specific cases, such as sym-
metric clusters that consist of single type of atoms: dimers,
equilateral triangles, etc., in which all sites are equivalent),
making the process complex and tedious. To simplify the
solution, it was proposed16 that the properties at a given
site (a cavity) can be obtained by knowing the solution on
the rest of the sites. To find the last solution, one can con-
tinue by considering the next cavity approximation, by re-
moving the nearest to the cavity shell and so on. Thus,
when one finds the solution for the external shell, one can
move backwards to solve one-by-one the internal shell prob-
lems coupled to the corresponding external shell bath. At
the end, one can find the dynamics on the central atom (see
Fig. 1, where the illustration of the reduction of the prob-
lem to the cavity problem for a three-shell nanoparticle is
presented).

In a more straightforward manner, in the case of system
containing up to a few hundred of atoms, one can solve the
problem “exactly” without dividing the system into shells by
generalizing the system of the DMFT equations in real space
representation (the generalization of the DMFT theory on
the nonhomogeneous Hubbard model was made by Nolting
and Potthoff9, 10). Namely, the local site-dependent GF for the
N-atom system can be obtained from Eq. (3), which can be
written as

Ĝ−1(ω) =

⎛
⎜⎜⎜⎜⎝

ω + μ − �1(ω)
t21

t31

. . .

tN1

t12

ω + μ − �2(ω)
t32

. . .

tN2

t13

t23

ω + μ − �3(ω)
. . .

tN3

. . .

. . .

. . .

. . .

. . .

t1N

t2N

t3N

. . .

ω + μ − �N (ω)

⎞
⎟⎟⎟⎟⎠ . (14)

We assume that the self-energy remains local in space, but it
is site-dependent: �ij(ω) = δij�i(ω). The other two equations
(Eqs. (8) and (13)) remain the same, as in the extended case,
though one needs to solve N impurity problems (or less, if
some sites are equivalent due to the symmetry of the system)

G−1
ii (ω) = G−1

ii (ω) − �i(ω), (15)

Gii(ω)=
∫

D[ψ]D[ψ∗]ψiψ
∗
i

× exp

(
−
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

ψ∗
iσ (τ )G−1

ii (τ − τ ′)ψiiσ (τ ′)

+U

∫ β

0
dτni↑(τ )ni↓(τ )

)
. (16)

Equation (16) can be obtained in the same way as in the bulk
case, when instead of one site one considers every site of the
system: 1 ≤ i ≤ N. Equation (15) is less obvious. To derive
it, one can map the single impurity problem to the Anderson
impurity problem for every site of the system. In this case,
one obtains N bath functions Gii(ω).

In the case of nanosystems, one thus needs to solve the
system of DMFT Eqs. (14)–(16). Similar to the extended case,
one can solve the problem by iterative procedure for every
value of frequency:

1. choose the initial self-energies �i(ω) for each site;
2. find the local GF, Gii(ω), from Eq. (14) for each site by

inverting the matrix and extracting the diagonal elements
(ith diagonal element is equal to Gii(ω));

3. calculate the mean-fields Gii(ω), 1 ≤ i ≤ N from
Eq. (15);

4. use the mean-field functions to solve the impurity prob-
lems (16) to find the local GFs for all sites;

5. find new self-energy from Eq. (15) by using the values
of Gii(ω) and Gii(ω);

6. continue iterations until �ii(ω), 1 ≤ i ≤ N, is converged
with the desired accuracy.

In both extended and nanocases, the problem can be
solved separately for every frequency, which makes it easy
to parallelize. However, the nonhomogeneity in the nanocase
makes the calculations far more demanding as one needs to
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FIG. 1. The illustration of the reduction of the DMFT problem to the cavity
problem in the case of three-shell nanoparticle.

work with the inversion of rather large matrices (Eq. (14)).
Assuming that modern computers are capable of inverting ef-
ficiently matrices of size up to 10 000 × 10 000, systems with
500 atoms or less can be studied by using “the exact” set of
equations. This number is obtained by dividing 10 000 by
the numbers of orbitals and spin projections which also must
be included in the matrix (14). Usually, one takes around 6
or 9 orbitals into account, which may include one s-orbital,
three p-orbitals, and five d-orbitals, etc. This allows one to
study nanoparticles of size up to ∼5 nm. For larger systems,
one could divide them into blocks, solve for each block sep-
arately, and then sew the solution by solving the problem of
the “border” layers between each block, by “freezing” the in-
ternal (core) block sites, i.e., by keeping the local self-energy
for these atoms fixed. The accuracy of the DMFT solution can
be estimated by comparing the results with some exact results
known for the Hubbard model. In particular, one can com-
pare the values of the lowest Green’s function and self-energy
spectral moments with the exact analytical expressions.22–24

III. DFT+DMFT APPROACH: BULK CASE

In the case of DFT+DMFT calculations, the first step
consists of a DFT study of the system, i.e., one needs to
optimize the system structure and obtain characteristics of the
“non-correlated” quasi-particles, such as the bandstructure
(energy ε(k) in Eq. (4))) and the density of states (DOS). At
the next step, one can extract the parameters for the tight-
binding Hamiltonian: the inter-site hopping parameters and
short-range (usually, local and nearest-neighbor) Coulomb
repulsion energies. Next, the correlated problem can be
solved allowing estimation of the role of correlations in prop-

erties of interest. To make the analysis more consistent, one
should perform the DFT calculations by using the DFT+U
method, to ensure that at least the non-dynamical part of the
correlation effects is taken into account when optimizing the
system geometry and that the band structure is obtained with
the same value of U that is used in the DMFT calculations.
However, one must be careful not to take into account the
correlation effects twice: in geometry optimization and in the
DMFT calculations. The optimization process is not affected
by this double counting, since it is performed only one time,
but the band structure in principle must be corrected by
extracting the contribution which comes from the LDA or
GGA exchange-correlation (XC) potentials. In general, the
counting can lead to different behavior of the system, includ-
ing magnetic behavior. In the case of LDA+U calculations,
the double counting error is removed by adding a part to the
corresponding part for the energy potential (see, for example,
Refs. 4, 26, and 27). Since the LDA approximation takes
the correlation effects in the average mean field way (tak-
ing into account the average electron density), and the
Hubbard U term in the LDA+U approach takes them into
account by including orbital-dependent electron–electron
interaction, usually the LDA correlation energy is removed
by subtracting from the total energy a Hubbard “mean-field
terms” (of the UN2 type, where N is the average on-site
number of electrons). The two most popular correction are
so-called around mean field (AMF) and fully localized limit
(FLL) corrections:

EAFM
LDA+U = −U − J

2

∑
σ

T r(ρσρσ ), (17)

EFLL
LDA+U = −U − J

2

∑
σ

T r[ρσρσ − (2l + 1)nσ ], (18)

where J is the exchange parameter, and ρσ is the orbital occu-
pation matrix. Since in many cases it is possible to show that
the first term gives a negative, and the second one a positive
correction to the total energy, and since the right correction
should not change the total energy, often a linear combination
of both terms is used in order to reduce the change of the
total energy (for details, see Ref. 26). Similar corrections
have to be included in the DFT+DMFT approach. However,
in our calculations we use the DFT+U approach in DFT
part (where U is taken into account to obtain the “correlated”
band structure/orbital positions for consistency with the
subsequent DMFT calculations where this band structure is
used).” In most of the LDA+U codes, including the one we
use, the double counting correction is implemented and the
results are free from the double counting error (or the value
of the error is minimized).” Therefore, we do not include this
correction in our DMFT calculations.

The DFT+DMFT approach continues to be successfully
applied to many correlated electron materials. We refer the
reader to excellent reviews of this topic,4, 15 and to more re-
cent numerous literature, most notably that of iron pnictide
superconductors.25, 28
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IV. DFT+DMFT APPROACH: NANOSYSTEMS
AND MOLECULES

In the case of small systems, the DFT+DMFT formalism
has the same strategy as in the bulk case: first, to obtain the
main properties of “non-correlated” electrons within DFT, or
more precisely within DFT+U, and then to use the resulting
structures and other quantities to construct and solve the tight-
binding Hamiltonian.

Contrary to the bulk, in the nonhomogeneous/nanocase it
is more convenient to solve the problem in real space. There-
fore, one needs to extract the effective hopping parameters
from the DFT calculation. In general, the hopping parameters
are equal to the matrix elements of the non-interacting Kohn–
Sham Hamiltionian with respect to the localized atomic-
orbital wave functions:

tijαβ =
∫

drψ∗
α (r + Ri)

(
− ∇2

2m
+ Vatomic(r)

)
ψβ(r + Ri),

(19)
where Ri and Rj are the site vectors and α and β are the cor-
responding orbital numbers, and Vatomic(r) is the atomic po-
tential. Similar, to the bulk case, the values of the Coulomb
repulsion parameter can be obtained either from the DFT cal-
culations or it can be used as a parameter.

Below, before giving a relatively detailed description
of our application of this approach to magnetism (Subsec-
tion IV B), we briefly summarize other applications of the
DFT+DMFT approach to study the spectral and transport
properties of nanosystems and molecules.

A. Spectral and transport properties

Perhaps for the first time the electronic structure of
small systems was studied within a DFT(LDA)+DMFT by
Boukhvalov et al.,17 who used the cluster DMFT approach to
study properties of Mn4 molecular magnet. It was shown that
DMFT predicts correct electronic gap observed experimen-
tally in optical conductivity measurements. The local spin-
density approximation (LSDA) and LDA+U calculations re-
sult in a finite DOS at the Fermi energy and a much smaller
gap (0.9 eV), correspondingly (in the LDA+U case the same
values of Coulomb repulsion and the intra-atomic Hund ex-
change, U = 4 eV and J = 0.9 eV, were used). As these cal-
culations show, the dynamical correlation effects can play a
crucial role in the electronic structure of small systems.

The cluster DMFT was also used to analyze the ground
state geometry and the on-site projected DOS of the hydro-
gen clusters (H4 cluster, H6 chain and ring, H50 chain).20 As
the authors have shown, in the case of intermediate values of
Coulomb repulsion, the DMFT is a superior approach com-
paring to other methods, including the unrestricted HF. In
particular, DMFT predicts reasonably accurately the correct
position of the minimum of the energy of tetragonally coor-
dinated H4 cluster as a function of the inter-atomic distance,
while the unrestricted HF approach fails in this case.

The system energy and the DOS of the extended cubic
system of hydrogen atoms were studied in Ref. 21. In partic-
ular, the dependence of the properties of the system on the

number of bath orbitals was analyzed, which is an important
question in the case of finite systems.

In Ref. 18, the diagrammatic dynamical approach to
solve the Hubbard model coupled to a non-interacting en-
vironment was used with applications to study the transport
properties of different nanosystems, such as a few-atom sys-
tem, benzene molecule, and a quantum point contact consist-
ing of 110 atoms. In particular, the spectral properties and
conductivity of the systems were analyzed by taking into ac-
count the possibility of the Mott transition due to the elec-
tron correlations. This approach was proposed as an alterna-
tive to avoid using the Cayley-type of the model, discussed
by Florens,16 where the properties of the central site depend
on the properties of the external ones without inverse depen-
dence. Notably, as the authors have shown the n-vertex ap-
proximation gives meaningful results already at n = 1, i.e., at
the DMFT level.

The transport properties of nano-contacts were studied
in Ref. 19, where the DMFT GFs were used to calculate the
Landauer transmission function. Namely, the case of Ni
nanocontacts between Cu nanowires was analyzed and it was
shown that the dynamical correlation effects can significantly
alter the behavior of the system.

B. Magnetism

To solve the nano-DMFT problem for specific Caley-
tree-type system, one may use Florens algorithm. On the other
hand, for small systems (up to few hundred atoms) we can
solve the problem exactly, as outlined above. For systems
containing few atoms, one can also use DMFT codes for ex-
tended (periodic) systems, by assuming, for example, that ev-
ery cluster occupies a site on a two-dimensional lattice with
a very large lattice constant such that the cluster–cluster in-
teraction may be neglected (a super-cell approximation). In
this case, every atom in the cluster corresponds to the site
orbital (which includes the atomic orbitals as an additional
quantum number). We have applied such an approach to study
the magnetic properties of small Fe and FePt clusters. The
DMFT part of the calculations was performed using the LISA

code4 with the Hirsch–Fye QMC solver.29 These calculations
were based on the cluster structures obtained by a DFT cal-
culations (VASP4.6 code,30 GGA-PW91 XC potential, for de-
tails, see Ref. 1). To take correlation effects into account start-
ing at the DFT level, the DFT+U approach was used, where
we assumed that U is site- and orbital-independent (3d- and
4s-states were taken into account for Fe atoms, and 5d- and
6s-states in the case of Pt atom). The examples of the clus-
ter geometries used in the DMFT calculations are presented
in Fig. 2. As reference value for the Coulomb repulsion we
have used U = 2.3 eV, often employed in the case of bulk Fe.
However, the properties of the system were analyzed by vary-
ing U from 0 to approximately 5 eV. In particular, to check
our DFT+U results with experimental data, we compared the
bond length for the Fe dimer for U = 2.3 eV with the experi-
mental value, the only available data for small Fe clusters. For
this case, our calculations find a bond length of 1.99 Å, with
DFT+U in good agreement with the experimental estimations
1.87 Å (Ref. 31) and 2.02 Å (Ref. 32).
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FIG. 2. Examples of the structures of the Fe (top row, U = 2.3 eV) and
FePt (middle and bottom row, U = 4 eV) clusters obtained from the DFT+U
calculations that were studied in details in the paper. The red and the gray
balls are the Fe and Pt atoms, respectively. The bond lengths are given in
Angstroms. In the case of bimetallic clusters, we have presented the lowest
energy geometries for both 3D (middle row) and planar (bottom row) cases.

From the DFT+U calculations, we have obtained val-
ues for the hopping parameters for the s- and d-valence elec-
trons by using the Slater–Koster matrix approximation,33, 34 in
which the effective d-orbital radius rd was approximated by
the Muffin–Tin-orbital values 0.864 Å and 1.116 Å for the Fe
and Pt atoms, respectively (see, e.g., Ref. 34). In the case of
iron clusters, we rescaled the hopping parameters by a factor
of 0.367 in order to reproduce the average experimental value
for the spin-up and spin-down bandwidth, which are split, in
this case. This rescaling may also be considered equivalent
to changing U. Indeed, it is not the individual values, rather
the ratio between the hopping parameters for the different or-
bitals for the atoms in question that needs to be kept constant.
This also follows from the fact that all the quantities depend
on U/r

3/2
d and U/r3

d , as it follows from the renormalization
of the Hamiltonian. To make the calculations consistent, we
have used the same renormalization also for the FePt clus-
ters. The following periodic (cluster) DMFT calculations for
the optimized structures were performed by allowing a weak
inter-site (inter-cluster) hopping, for faster convergence. For
this purpose, a weak staggered external magnetic field was
also used. The calculations appear to become slow at large
values of U and low temperatures. However, to obtain system
properties in the zero electronic temperature limit, one does
not need to necessarily consider the case T = 0. When T is
much lower than the hopping and Coulomb repulsion param-
eters – the other energy scales of the system – the properties
of the system will be very close to the zero-temperature case.

C. Application of nanoDMFT to small Fe
and FePt clusters

The magnetism of small Fe clusters has been studied by
using several approaches, including DFT (see, e.g., Ref. 35)
and DFT+U (see, for example, Refs. 36–38) approximations.
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FIG. 3. DFT+U results for the magnetization as a function of U for the
Fe2–Fe5 clusters.

Unfortunately, the experimental data on such small clusters is
rather limited,31, 32, 39 though it is sufficient for estimation of
the validity of the DMFT approximation. In this subsection,
we first summarize the results of our analysis of the magnetic
properties of small Fe clusters, part of which was presented
in Ref. 1, and then focus on the properties of bimetallic FePt
tetramer.

In the Fe case, we have considered clusters containing
2–5 atoms and several possible geometries, which correspond
to the minimum energy configurations at different values of
U. In particular, at U = 2.3 eV we obtained bond length of
1.99 Å in the case of the dimer (the bulk iron bond length
is 2.49 Å). Our minimum energy structures also include an
equilateral triangle, a single-side pyramid for four atoms, and
a bi-pyramid for five atoms (Figure 2). The calculations of the
magnetization with the DFT+U approach show that the mag-
netization per atom is larger than the bulk value 2.2μB. As
can be seen from the results plotted in Fig. 3, the magnetiza-
tion grows as U increases and becomes U-independent after
some critical value of the Coulomb repulsion ∼1 eV, which
depends non-trivially on the number of atoms in the cluster.

In Figure 4, comparison of the results for Fe3 and Fe4

obtained with both DFT+U and DFT+DMFT methods are
presented, the behavior is qualitatively the same for clusters
of other sizes. As it is evident from this figure, dynamical ef-
fects play a role even at rather small values of U, leading to a
significant reduction of the cluster magnetization.

In Table I, we present results for cluster magnetization as
a function of the number of atoms at characteristic value of
U = 2.3 eV (for more details see Ref. 1). Once again, the
DFT+U calculations tend to overestimate cluster magnetic
moments and dynamical effects in general lead to a reduc-
tion of the magnetization. While neither method gives per-
fect agreement with experiment, DFT+U consistently over-
estimates and DFT+DMFT somewhat underestimates the
magnetization. The point here was not to obtain perfect agree-
ment with experiment, rather to show that even for very small
clusters, DFT+DMFT gives reasonable results. One would
naturally expect that the DMFT approach will be much more
accurate in the case of larger clusters, which would make it
preferable over DFT+U. It must be mentioned that the val-
ues of magnetization for the selected small clusters used here
as a test of our method are also reasonably well reproduced
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FIG. 4. DFT+U vs DMFT results for the magnetization of the Fe3 and Fe4
clusters at different values of U.

by other DFT approaches,40–43 and most calculated values lie
within the experimental error bars, which are quite large.39

Finally, for the small Fe clusters we would like to men-
tion briefly our analysis of the role of the dynamical effects
in the case of Jahn–Teller distorted clusters. As our calcula-
tions in the case of Fe trimers show, the dependence of the
magnetic moment on the cluster geometry is qualitatively the
same in both DFT+U and DMFT cases, but similar to the pre-
vious results DMFT leads to a reduction of the cluster mag-
netic moment.1 In general, such a significant reduction of the
cluster magnetization may indicate that the orbital position
and/or their occupancy may change dramatically (through the
electron self-energy) when dynamical effects are taken into
account.

Theoretical results for the magnetic properties of small
FePt clusters is even more limited than those for the case of
Fe.44, 45 Since there is hardly any experimental data available,
it is very important to perform a systematic ab initio anal-
ysis of such small structures, in particular the evolution of
their properties with size in order to understand the structure–

TABLE I. The magnetization per atom (in Bohr magneton) as function of
the number of atoms in the Fe clusters at U = 2.3 eV. Along with the DFT+U
and DFT+DMFT results, we present a set of experimental data.39

N DFT+U DMFT Exp.

2 4.00 2.03 3.25 ± 0.5
3 3.33 2.22 2.7 ± 0.33
4 4.00 1.84 2.7 ± 0.8
5 3.60 1.98 3.16 ± 0.33

function relationship. These clusters are of special interests
for several reasons. For example, there is the need to under-
stand how the addition of the higher, 5d, localized states of
the nonmagnetic metal element affects the magnetic proper-
ties of the 3d states of the magnetic atoms in the cluster. We
have chosen Fe- and Pt-atom clusters as our test cases, since
such nanoalloys have been the subject of both technological
and fundamental interest.

In the case of the FePt clusters, we focused on the dimer
and the tetramer. The first case allows one to analyze quali-
tatively the role of the interplay of the 3d and 5d orbitals in
cluster magnetization. The second case was examined to un-
derstand the dependence of magnetism on the chemical com-
position of the cluster. Similar to the Fe case, the clusters
were optimized by using the DFT+U approach, but contrary
to the iron case it was found that the geometry of the clus-
ters strongly depends on the value of U (Figure 2). In some
cases, 2D structures have lower energy. In particular, the rel-
ative energies for the corresponding structures with the same
values of Fe and Pt atoms at U = 4 eV are: Fe1Pt3 – planar:
−0.13 eV, 3D: 0 eV; Fe2Pt2 – planar: −0.63 eV, 3D: 0 eV;
Fe3Pt1 – planar: 0 eV, 3D: −0.13 eV. The average bond
length is longer in the 2D geometry as compared to the 3D
ones, which would make correlation effects more important
for them. This follows from the notion that one may assume
that in the 2D case less orbitals are involved in the hybridiza-
tion, and thus, correlation effects are enhanced because of the
contribution of unbonded charge.

Since the cluster geometry and the energy levels used in
the DMFT analysis are obtained with the DFT+U calcula-
tions, we first analyzed how these quantities are affected by
changing U. The DFT+U results for the magnetization of
Fe and FePt dimers as function of U, presented in Figure 5,
show that the magnetization barely depends on U for the latter
(the value of the magnetization 2μB per atom is in agreement
with other DFT calculations45), but it has a sharp increase at
U ∼ 3 eV in the case of the former. This result can be ex-
plained as follows. Since increase of U leads to an increase
of the bond length, and this value of U is of order 3 eV –
a typical value which corresponds to the Mott transition in
bulk materials, and the change of the cluster magnetization
is rather sharp at this point, one may speculate the presence
of some kind of (magnetic) transition. The fact that the mag-
netization is U-independent in the case of FePt cluster can be
explained by assuming that the d-orbitals of the FePt are much
less hybridized in the last case as compared to the Fe dimer
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FIG. 6. DFT+U results for the positions of the s- and d-energy peaks in the
DOS of the Fe2 and FePt clusters different values of U. The blue and red solid
lines correspond to the spin-up and spin-down peaks of the Fe2 cluster. The
dotted line corresponds to the energy peaks for the FePt cluster.

due to the energy mismatch even at small U; so, increasing U
which leads to an increase of the bond length does not lead to
a significant charge redistribution (localization) as compared
to the case of the iron dimer. In fact, our DFT+U calculations
give the following results for the bond length (at U = 2.3 eV):
1.99 Å (Fe2) and 2.29 Å (FePt). In the case of increasing U,
the bond length increases in both cases, for example, in the
case of FePt the bond length is equal to 2.34 Å at U = 4.0 eV
(in the case U = 0 eV, the DFT calculations45 give the bond
length 2.2 Å).

To get a better understanding of the role of the correla-
tion effects in the spectral properties of the dimers, we have
calculated the positions of the s- d-state peaks as functions

of U for both clusters (Fig. 6). We find that with U increas-
ing, the distance between the spin-down peaks (two red lines)
and spin-up d-orbital peaks (top blue solid line) significantly
increases when U changes from 2 eV to 3 eV in the case
of iron dimer. This implies that the probability for one elec-
tron to migrate back and forth from the spin-up to the spin-
down orbital, and hence to decrease the cluster magnetiza-
tion, decreases at large Us. This transition may correspond
to the magnetization jump in Fig. 5. In the case of FePt
cluster, there is no such sharp change between the energy
difference for these states (the corresponding dashed lines).
Therefore, the magnetization does not change significantly
with U. There is another interesting effect of changing U in
the case of FePt cluster. Namely, the positions of the spin-
up d-state and spin-down s-state change when U is between
2 eV and 3 eV. This means that at large Us, one can neglect
to some extend the role of s-orbital in correlation effects for
FePt cluster, since this orbital may be assumed to be doubly
occupied (this statement is true only when the distance be-
tween the s-spin-down and d-spin-up peaks is large enough,
though).

To obtain a deeper understanding of the role of differ-
ent d-orbitals in the dynamical processes, we have analyzed
the positions of projected d-states at different values of U for
the FePt dimer (Figs. 7 and 8). It follows from these figures
that with increasing U, the position of the spin-down dx2−y2

state changes significantly with respect to the Fermi energy
(0 eV), while that of other orbitals (or the position of the
HOMO–LUMO gap) almost do not change, which means that
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FIG. 8. The same as in Fig. 7 at U = 4.0 eV.

their occupancies are not very much affected by U. The other
important consequence of increasing U is an increase of the
distance between the s- and d-states of the same spin, espe-
cially remarkable for the spin-up states. This separations in-
dicates that one can neglect low-lying spin-up states for the
s-orbitals for large U, except the dx2−y2 orbital (Figure 8). In
other words, one can neglect the hopping processes between
these and other states. In many cases, such a simplification
may lead to a significant reduction of the computational time
in the DMFT calculations.

We have also analyzed the magnetic properties of four-
atom FePt systems. In particular, we have studied the U-
dependence of the magnetization of the 3D and planar Fe3Pt
by using both the DFT+U and DFT+DMFT calculations
(Fig. 9). From Fig. 9, it follows that DFT+U leads to an in-
crease of magnetization at large values of U for the 3D struc-
tures. This is not surprising, since in the case of 3D structure
the correlation effects are more sensitive to the distance be-
tween atoms than in the 2D case in which the atoms are on
average much farther from each other even for small values of
U. The reduction of magnetization due to dynamical effects,
taken into account in the DMFT is even more dramatic than
in the case of pure iron four-atom cluster (Fig. 4(b)). Indeed,
when one iron atom is substituted by a platinum atom, the
corresponding hopping parameter to this size increases sig-
nificantly due to larger spatial extension of the corresponding
orbitals, which decreases the average in-time occupancy of
the orbitals, and hence decreases the magnetization.

The chemical composition dependence of the magneti-
zation for the four-atom clusters is presented in Fig. 10. In
this case, the magnetization increases dramatically with in-
creasing of the number of “more magnetic” Fe atoms as the
DFT+U calculations show. The DMFT calculations show that
the magnetization is rather small and almost composition in-
dependent when Pt atoms are present. This means that the
hybridization effects are dominant even in the case of large
Us. It is interesting to note that the DFT calculations for the
Fe2Pt2 cluster45 give the magnetization 2μB, which is much
closer to our DFT+U result than to the DMFT one. This sug-
gests that the energy levels calculated by the DFT approach
are well separated already at small U, and the hybridization is
rather weak in this case. On the other hand, the dynamical ef-
fects may change dramatically the magnetization even in such
a case of strongly localized orbitals.

V. POSSIBLE EXTENSIONS

Since in most practical applications the clusters are sup-
posed to be on a substrate, it would be very helpful to develop
a DFT+DMFT formalism for such cases. One may think
about this situation as a cluster coupled to a bath (substrate).
Thus, for the lowest order approximation one can solve the
problem for the surface and then to take the substrate-cluster
interaction into account by fixing the substrate energy levels.
The inverse influence of the cluster on the substrate can also
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FIG. 9. DFT+U vs DMFT results for the magnetization of the Fe3Pt clusters
as a function of U in the case of 3D (a) and planar (b) geometries.

be taken into account as the next step, similar to the approach
proposed by Florens.16

Another important case is the nonequilibrium behavior
of nanosystems with strong electron–electron correlations. In
many technological applications, such as electronic and mag-
netic devices, usually fast switching of strong external fields
takes place. Such a nonequilibrium formulation of DMFT was
already done in the case of extended systems.12 In this case,
one can study the time evolution of the local GF defined on
the Kadanoff–Baym or Keldysh time contour. This problem
is technically much more complicated than the time transla-
tionally invariant case, since instead of solving one DMFT
problem for each frequency in the equilibrium case, one needs
to work with complex GF and self-energy time matrices of a
rather large size. The size of the GF matrix will be (number
of atoms × number of orbitals) × (number of time points)
instead of (number of atoms × number of orbitals) as in
Eq. (14). Moreover, the number of time points must be twice
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FIG. 10. DFT+U vs DMFT results for the magnetization of the four atom
iron–platinum clusters as function of the number of iron atoms at U = 4 eV.

the number of the real time points in the case of Keldysh
contour, and the last number plus the number of (imaginary
branch) points on the interval [0, 1/T] for the temperature av-
eraging in the case of Kadanoff–Baym contour. Typically, the
number of the real time points in the nonequilibrium prob-
lem is around 1000 for the real branch and 10–100 for the
imaginary one. Obviously, such large matrices can be barely
inverted when one would like to solve the problem exactly,
except the case of a few-atom cluster. In the case of nanosys-
tems, one needs to use again the layer-by-layer solution pro-
posed by Florens. Presently, we are working on developing
numerical tools which will allow us to examine the magnetic
characteristics of nanoalloys on substrates and also in pres-
ence of external fields.

VI. CONCLUSION

In this paper, we have provided and overview of the cur-
rent status of the applications of combined DFT+DMFT ap-
proaches to study correlation effects in the case of molecules
and nanostructures. In general, all the studies show that sim-
ilar to the case of bulk and 2D systems, this approach is a
promising method to take into account the correlation effects
even in the case of small clusters and molecules.

We have paid special attention to the case of nano-
magnetism, for which we have proposed a DFT+DMFT
approach and applied it to study the magnetic properties of
small Fe and FePt clusters. It follows from our calculations
that dynamical correlation effects lead to a significant
decrease of the magnetization than DFT+U. There are two
reasons for this: first, the time-dependence of the orbital
occupancy taken into account in the DMFT approach leads
to a significant decrease of the magnetization relative to
“the staggered” DFT+U case of “frozen” spins. Second, the
frequency-dependence of the self-energy can lead to a shift of
the energy levels with respect to the Fermi energy, and hence
to a change of the level occupancy and magnetization. We
have analyzed also the geometry, chemical composition, and
local Coulomb repulsion dependencies of the magnetization
in the case of different clusters. In particular, we find that for
a given system, to get the same magnetization from DFT+U
and DMFT one needs to use a larger value of U in the latter,
similar to results for the bulk. One of the reasons for this may
be a stronger screening in the DMFT case.4 The DFT+U and
DFT+DMFT results are approximately on the same level of
agreement with the experimental data. However, in the case
of larger systems, one may expect that the DMFT results will
be much more accurate than the DFT+U.

We have discussed a possible extension of the approach
on two most important cases: particles and molecules on a
substrate and the nonequilibrium systems. The work in these
two directions, including application to larger clusters, is in
progress.
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