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Conformations, transverse fluctuations, and crossover dynamics
of a semi-flexible chain in two dimensions

Aiqun Huang,1 Aniket Bhattacharya,1,a) and Kurt Binder2

1Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
2Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany

(Received 19 January 2014; accepted 13 May 2014; published online 2 June 2014)

We present a unified scaling description for the dynamics of monomers of a semiflexible chain under
good solvent condition in the free draining limit. We consider both the cases where the contour
length L is comparable to the persistence length �p and the case L � �p. Our theory captures the
early time monomer dynamics of a stiff chain characterized by t3/4 dependence for the mean square
displacement of the monomers, but predicts a first crossover to the Rouse regime of t2ν/1 + 2ν for
τ1 ∼ �3

p, and a second crossover to the purely diffusive dynamics for the entire chain at τ 2 ∼ L5/2. We
confirm the predictions of this scaling description by studying monomer dynamics of dilute solution
of semi-flexible chains under good solvent conditions obtained from our Brownian dynamics (BD)
simulation studies for a large choice of chain lengths with number of monomers per chain N = 16–
2048 and persistence length �p = 1–500 Lennard-Jones units. These BD simulation results further
confirm the absence of Gaussian regime for a two-dimensional (2D) swollen chain from the slope of
the plot of 〈R2

N 〉/2L�p ∼ L/�p which around L/�p ∼ 1 changes suddenly from (L/�p) → (L/�p)0.5,
also manifested in the power law decay for the bond autocorrelation function disproving the validity
of the worm-like-chain in 2D. We further observe that the normalized transverse fluctuations of the
semiflexible chains for different stiffness

√
〈l2

⊥〉/L as a function of renormalized contour length L/�p

collapse on the same master plot and exhibits power law scaling
√

〈l2
⊥〉/L ∼ (L/�p)η at extreme

limits, where η = 0.5 for extremely stiff chains (L/�p � 1), and η = −0.25 for fully flexible chains.
Finally, we compare the radial distribution functions obtained from our simulation studies with those
obtained analytically. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4879537]

I. INTRODUCTION

Macromolecules adsorbed on substrate surfaces occur
in many different contexts, from materials science to bio-
physics, e.g., biomolecules interacting with cell membranes.
Hence, the understanding of conformations and dynamics of
macromolecules in such a (quasi-) two-dimensional (2D) ge-
ometry has been of long-standing interest.1–4 Note also that
many methods to characterize polymer conformations ex-
perimentally, e.g., electron microscopy,5–11 atomic force mi-
croscopy (AFM),12–18 fluorescence microscopy of suitably la-
belled biopolymers,19, 20 require that these macromolecules
are attached to a substrate. In this context, considerations of
macromolecules confined to a strictly two-dimensional geom-
etry are of interest, at least as a limiting case. The same state-
ment holds when one considers macromolecules confined to
nanoslits with non-adsorbing walls, a topic that also has found
much recent interest.

While the statistical mechanics of completely flexible
polymers in d = 2 dimensions has been studied extensively
since a long time and is well understood,21, 22 under many
circumstances it should be taken into account that macro-
molecules are stiff and not flexible on small scales.23–25 This

a)Author to whom the correspondence should be addressed. Electronic mail:
aniket@physics.ucf.edu

is true both for simple synthetic polymers e.g., polystyrene,
alkane chains, etc., and for various biopolymers, e.g., double-
stranded (ds) and single stranded (ss) DNA, polysaccharides,
proteins, etc.26 Apart from very stiff polymers (e.g., Actin,
Titin, microtubules, etc.) the “persistence length �p

23–27 char-
acterizing the stiffness typically is much less than the contour
length L of a macromolecule, and the crossover from rod-
like behavior to the behavior of flexible polymers needs to
be considered. As is well-known, the scales of interest range
from the sub-nanometer scale to the micrometer scale,28, 29

and hence in the theoretical modeling coarse-grained models
must be used.28–30

In the present work, we wish to address the problem of
polymer conformation and dynamics for semi-flexible poly-
mers in two dimensions, using Molecular Dynamics simula-
tions of a bead-spring type model with a bond angle poten-
tial by which we can control the stiffness of the chains over
a wide range. We note that the standard analytical coarse-
grained description in terms of the Kratky-Porod31, 32 model
for worm-like chains (WLC) in d = 2 dimensions is not very
useful, since it neglects excluded volume effects completely,
although they are known to be very important in d = 2.33 A
study of semiflexible polymers in terms of a lattice model33–36

is expected to yield valid results for universal properties of
semiflexible polymer, i.e., on length scales much larger than
the persistence length; but on smaller scales it can describe
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only stiffness of the type similar to that of alkane chains,
where �p is of the order of the typical length of “all trans”
sequences, in between monomers taking a gauche (g ±) min-
imum in the torsional potential. For such cases, e.g., dsDNA
we expect that the (small) flexibility of the macromolecules
is due to fluctuations in bond lengths and bond angles, rather
than disorder in the population of states in the torsional po-
tential, and then the present off-lattice model is more realis-
tic. In addition, the lattice work33–36 applying the pruned en-
riched Rosenbluth method (PERM)37, 38 could not address the
dynamics of the chains at all. Previous work on the dynam-
ics of single semiflexible chains in dilute solution39–47 has fo-
cused on the case d = 3 almost exclusively, and most of the
work39–46 has studied the effect of hydrodynamic (HD) inter-
actions mediated by the solvent. Assuming that the substrate
surface provides a stick boundary condition with respect to
solvent fluid flow, one can show48 that HD interactions are
essentially screened, and hence are ignored here (as well as
in our preliminary communication where a small part of our
results were presented49) from the outset.

While the Kratky-Porod WLC Model has been found to
be grossly inadequate to describe a semiflexible chain in 2D,
vast amounts of analytical and numerical work have been ac-
cumulated using the WLC model as the starting point.40, 50, 51

Recent experimental results of confined biopolymers on a 2D
substrate are also analyzed using the well known results of
WLC model.15 Therefore, in Sec. II we summarize the main
results of the WLC model which we will revisit in the sub-
sequent sections to compare our simulation results. The or-
ganization of the paper is as follows. In Sec. II, we intro-
duce the WLC model. Next, in Sec. III a scaling theory is
derived where we show that monomer dynamics of a semi-
flexible polymer exhibits a double crossover as a function of
time. We then introduce the bead spring model for a semi-
flexible chain in Sec. IV. The results of Brownian dynamics
(BD) simulation are presented in Sec. V, which is divided into
two subsections: The equilibrium properties are presented in
Sec. V A; in Sec. V B among other results we validate the pre-
dictions of the scaling theory using BD simulation for chains
of different length and stiffness.

II. KRATKY-POROD WLC MODEL

The Hamiltonian corresponding to the bending energy for
the WLC model is given by

H = κ

2

∫ L

0

(
∂2r
∂s2

)2

ds, (1)

where r(s) is the position vector of a mass point, L is the in-
extensible contour length, κ is the bending rigidity, and the
integration is carried out along the contour s.25, 52 Using sym-
metry arguments for the free energy it can be shown53 that the
chain persistence length �p for a WLC in 2D and 3D are given
by

�p = 2κ

kBT
(2D); (2a)

�p = κ

kBT
(3D). (2b)

The model has been studied quite extensively applying path
integral and other techniques50, 51, 54, 55 and exact expressions
of various moments of the distribution of monomer distances
along the chain have been worked out. The end-to-end dis-
tance in the WLC model is given by25

〈
R2

N

〉
L2

= 2�p

L

(
1 − �p

L
[1 − exp(−L/�p)]

)
. (3)

In the limit �p � L, one gets 〈R2
N 〉 = 2�pL and the chain be-

haves like a Gaussian coil; for �P � L, 〈R2
N 〉 = L2 and the

chain behaves like a rod. Evidently, the model neglects the
excluded volume (EV) (Eq. (14) of the bead-spring model in
Sec. IV) interaction and hence interpolates between rod and
Gaussian limits only.

The WLC model can be viewed as a limiting case of a
freely rotating chain,25 where the correlation between bond
vectors 	bi and 	bi+s is assumed to follow

〈	bi · 	bi+s〉 = b2 exp(−s/�p), (4)

where | 	bi | = |	bi+s | = b and the characteristic length is de-
fined as the persistence length �p. From Eq. (4) it then
immediately follows that �p can be calculated from the bond
angle cos θ = b̂i · b̂i+1, where b̂i is the unit vector of the cor-
responding bond vector 	bi as follows:

�p = − 1

ln(cos θ )
. (5)

Likewise, dynamics of the WLC model have been ex-
plored using Langevin type of equation.41, 55–58 One can ex-
pect that the dynamics of a stiff chain will be dominated by
transverse fluctuations (bending modes)51 and that the short
time dynamics will be governed by the chain persistence
length. Indeed, a relaxation dynamics using the WLC Hamil-
tonian (Eq. (1)) approach yields an expression for fluctuation,

〈(	h)2〉 ∼ �−0.25
p t0.75, (6)

which crosses over to simple diffusion at late time.56, 57 As we
will see later from our results that even for a Gaussian chain a
more “complete theory” should have captured an intermediate
regime characterized by a growth law t0.5 for a fully flexible
chain for an intermediate time when the fluctuation becomes
of the order of radius of gyration of the chain. However, the
Langevin theories for the WLC chain did not describe this
regime.

III. SCALING DESCRIPTION

We first develop the scaling description for the dynamics
of a two-dimensional semiflexible chain in the free draining
limit. The free draining limit is of particular interest in 2D
because it often satisfies the experimental conditions, such as
DNA confined in a 2D substrate where the effect of hydro-
dynamics is negligible. For a WLC, several theories based on
Langevin dynamics have been developed most of which in-
dicate a t0.75 dependence of the transverse fluctuation of the
MSD g1(t) (see Eq. (26a)) with time t for the stiff chain.
Therefore, we start with Eq. (7) below derived by Granek56
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and Farge and Maggs57 using a Langevin dynamics frame-
work for the WLC Hamiltonian

g1(t) = b2(b/�p)1/4(Wt)3/4, (7)

where W is the monomer reorientation rate. Prefactors of
order unity are omitted throughout.59 For early time, the
monomer dynamics will be independent of the chain length
N until the fluctuations in monomer position become of the
order of �p. Therefore, denoting the time when the first
crossover occurs as τ 1 and substituting g1 = �2

p and t = τ 1

in Eq. (7) we immediately get

Wτ1 = (�p/b)3. (8)

For 0 < t ≤ W−1(�p/b)3, the monomer dynamics is de-
scribed by g1(t) ∼ t0.75 according to Eq. (7) until g1(t) = �2

p

at time W−1(�p/b)3. The width of this region is independent
of N and solely a function of �p (see Fig. 1).

For τ 1 < t < τ 2, the dynamics is governed by the Rouse
relaxation of monomers of a fully flexible EV chain in 2D
characterized by g1(t) ∝ t2ν/(1 + 2ν) = t0.6. τ 2 characterizes the
onset of the purely diffusive regime when g1(τ2) = 〈R2

N 〉.60

Recall that the exponent ν that describes the scaling of the
end-to-end distance 	RN according to 〈R2

N 〉 ∝ N2ν is ν = 3
4 in

2D. Note that when we increase the stiffness of the chain at
fixed chain length, the times τ 1 and τ 2 can be made to coin-

FIG. 1. Theoretical scaling for (N, κ) ≡ (512, 2), (512, 32) (a) and (N, κ)
≡ (128, 32), (1024, 32) (b). Blue (red) symbols, solid and dashed lines corre-
spond to g1(t) ∼ t0.75(g1 ∼ t0.60), black dashed, solid lines correspond to g3(t)
∼ t. Here, the power laws Eqs. (7), (10), and (13) are plotted, using units of
b = 1, lp = 2κ/kBT, W = 1. The width of each region shows how these
regimes depend on �p and N. Note that in reality we expect a very gradual
change of slope on the log-log plot at both crossover times, rather than sharp
kinks.

cide; this happens for L = Nb = �p, as expected: when the
contour length and the persistence length are of the same or-
der, the regime described by Eq. (10) is no longer present. We
will verify the time dependence of g1 at various regimes from
BD simulations.

We then obtain τ 2 as follows:

g1(t) = �2
p(t/τ1)3/5 for t > τ1. (9)

Substituting τ 1 from Eq. (8) in above,

g1(t) = b2(�p/b)1/5(Wt)3/5, for τ1 < t < τ2. (10)

At t = τ 2

g1(t = τ2) = 〈R2
N 〉 = �1/2

p L3/2. (11)

Substituting Eq. (10) for t = τ 2 we get

Wτ2 = (�p/b)
1
2 N5/2. (12)

We also note that the dynamics of the center of mass is given
by

g3(t) = b2W
t

N
. (13)

The “phase diagram” for the crossover dynamics in terms of
N, and �p are shown in Fig. 1. Notice that for a stiffer chain
the region for τ 1 < t < τ 2 for which we predict g1(t) ∼ t0.6

requires to study very long chains and therefore, is hard to see
in simulation for a stiffer chain.

IV. THE MODEL

We have used a bead spring model of a polymer chain
with excluded volume, spring and bending potentials as
follows.60 The excluded volume interaction between any two
monomers is given by a short range Lennard-Jones (LJ) po-
tential with cutoff and shifted in its minimum,

ULJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

+ ε for r ≤ 21/6σ

= 0 for r > 21/6σ. (14)

Here, σ is the effective diameter of a monomer, and ε is the
strength of the potential. The connectivity between neighbor-
ing monomers is modeled as a Finitely Extensible Nonlinear
Elastic (FENE) spring with

UFENE(r) = −1

2
kR2

0 ln
(
1 − r2/R2

0

)
, (15)

where r is the distance between consecutive monomers, k is
the spring constant, and R0 is the maximum allowed separa-
tion between connected monomers.60 The chain stiffness is
introduced by adding an angle dependent interaction between
successive bonds as (Fig. 2)

Ubend(θi) = κ(1 − cos θi). (16)

Here, θ i is the complementary angle between the bond vectors
	bi−1 = 	ri − 	ri−1 and 	bi = 	ri+1 − 	ri , respectively, as shown in
Fig. 2. The strength of the interaction is characterized by the
bending rigidity κ . Introducing unit tangent vector ti = ∂ri

∂s
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i+1

i+2

i+3

θi

i−1

i−2

i

FIG. 2. Bead-spring model of a polymer chain with bending angle θ i sub-
tended by the vectors 	bi−1 = 	ri − 	ri−1 and 	bi = 	ri+1 − 	ri .

(|ti | = 1) we note that the discretized version of Eq. (1) can
be written as

H ≈ κ

2
bl

∑
i

(
ti+1 − ti

bl

)2

= κ

2bl

∑
i

(
t2
i+1 + t2

i − 2 cos θi

)

= κ

bl

∑
i

(1 − cos θi), (17)

where bl = | 	bi | is the bond length in our simulation. There-
fore, for fixed bond length Eq. (16) represents the discrete
version of the WLC model of Eq. (1). Thus, the EV effect in-
troduced through Eq. (14) are completely absent in the WLC
model.

We use the Langevin dynamics with the following equa-
tion of motion for the ith monomer:

m	̈ri = −∇(ULJ + UFENE + Ubend) − �	vi + 	Ri.

Here, � is the monomer friction coefficient and 	Ri(t), is a
Gaussian white noise with zero mean at a temperature T, and
satisfies the fluctuation-dissipation relation

〈 	Ri(t) · 	Rj (t ′)〉 = 4kBT � δij δ(t − t ′) .

The reduced units of length, time, and temperature are chosen
to be σ , σ

√
m
ε

, and ε/kB, respectively. For the spring poten-
tial, we have chosen k = 30 and R0 = 1.5σ , the friction coef-
ficient � = 0.7, the temperature is kept at 1.2/kB. The choice
of the FENE potential along with the LJ interaction param-
eters ensures that the average bond-length in the bulk 〈bl〉
= 0.971. With the choice of these parameters the probabil-
ity of chain crossing is very low. We also find that the av-
erage bond-length 〈bl〉 is almost independent of the range
of chain stiffness parameter (κ = 0–320) used in our sim-
ulation. Strictly speaking, the contour length L is L = (N
− 1)〈bl〉. The equation of motion is integrated with the re-
duced time step 	t = 0.01 following the algorithm proposed
by van Gunsteren and Berendsen.61

V. RESULTS FROM BROWNIAN DYNAMICS
SIMULATION

We have carried out BD simulation for a wide range of
chain length (N = 16–2048) and bending constant (κ = 0–
320). Because of the argument given in Sec. III very long
chains were needed to clearly identify the crossover regimes.
First, we present the equilibrium properties of the chains in
Sec. V A followed by the dynamical quantities presented in
Sec. V B.

TABLE I. Comparison of three ways of calculating �p.

κ Eq. (2a) Eq. (5) �p from fitted slope (Fig. 6)

64 106.7 105.8 112.4
32 53.3 52.6 53.7
16 26.7 25.9 27.4
8 13.3 12.6 13.7
4 6.7 6.05 6.7
2 3.3 3.31 4.2

A. Equilibrium properties

1. Persistence length

From the BD simulation, we have monitored the average
〈cos θ〉 and replacing cos θ → 〈cos θ〉 in Eq. (5) calculated
the chain persistence length for various values of κ . One ex-
pects that Eqs. (2a) and (5) must give results that agree with
each other when the persistence length is much larger than
the range of the excluded volume interaction, but that the two
results agree even for small value of κ = 2 we believe is a
nontrivial result. The comparison of calculated �p by different
methods is shown in Table I. We also observe that the �p cal-
culated using Eq. (5) practically has no dependence on chain
length N. We have used Eq. (5) for further analysis of our
data in the subsequent sections. Note that this behavior dif-
fers from the result found by Hsu et al.33 for a lattice model,
where a renormalization of �p by excluded volume was shown
to occur. Thus, on length scales of order �p there is no strict
universality between different models.

We emphasize, however, that the persistence length,
when it is supposed to measure the local intrinsic stiffness
of the chain (as supposed in the Kratky-Porod model), cannot
be estimated from the asymptotic decay of the bond vector
correlation function 〈	bi · 	bi+s〉 with the “chemical distance”
s along the chain, that is the conventional definition given in
all the polymer physics textbooks: as will be shown below
(Sec. V A 5), we verify the predicted62 power law behavior
for very long chains and large s, previously seen already for a
lattice model of semi-flexible chains by Hsu et al.33 Although
lattice and continuum models have different statistical prop-
erties when one considers lengths of the scale �p, for much
larger scales the behavior should be universal, and hence this
power law decay is expected. We also note that a definition of
the persistence length dating back to Flory, where one consid-
ers the correlation of the first bond vector 	b1 with the end-to-
end vector 	RN ,

�Flory
p = 〈	b1 · 	RN 〉/〈b〉, (18)

which has been advocated by Cifra63 as an “exact expression,”
must similarly be refuted: in 2D, Redner and Privman64 have
shown that �

Flory
p for large N is logarithmically divergent with

N already for a simple self-avoiding walk (SAW). For com-
pleteness, we mention that an analogous definition for inner
bond vectors

�′
p = 〈	bi · 	RN 〉/〈b〉, 1 � i � N (19)

even shows a power-law divergence, �′
p ∝ N (2ν−1), both in 2D

and 3D (see Hsu et al. (Refs. 27 and 65)). Thus, we urge that
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the results and discussion presented in this section need to
be taken seriously in writing future review articles and newer
edition of the existing textbooks.

2. Scaling of semi-flexible chain: Comparison
with theory

The extension of Flory theory for a semi-flexible chain
has been done by Schaefer, Joanny, and Pincus39 and
Nakanishi66 which states that the RMS of the end-to-end dis-
tance 〈R2

N 〉 in d spatial dimensions exhibits the following scal-
ing relation: √〈

R2
N

〉 ∼ N
3

d+2 �
1

d+2
p b

d+1
d+2 , (20)

where b is the bond length (〈bl〉 in our simulation). For d

= 2 this reduces to
√

〈R2
N 〉 ∼ N0.75�0.25

p . In other words, if the
end-to-end distance is scaled by the appropriate power of the
persistence length �p, then this renormalized end-to-end dis-

tances 〈R̃N 〉 =
√

〈R2
N 〉/�0.25

p for different values of the chain
stiffness parameter κ will fall onto the same master plot. For
a large combination of chain length N and stiffness param-
eter κ , we observe excellent fit to our equilibrium data for
〈R̃N 〉 to Eq. (20) as shown in Fig. 3. It is worth noting that
the persistence length calculated from Eq. (5) using the for-
mula from WLC model uses the local correlation, namely,
the angle between the subsequent bond vectors and hence is
expected to provide a decent value of the persistence length
when EV is also included. The excellent collapse of the data
for R̃N ∼ N0.75 for various values of the stiffness parameter
(κ = 1–192) on the same master curve indicates that Eq. (5)
can be used as the standard definition of persistence length
even in presence of the EV effect.

3. Comparison with WLC in 2D

Having established the definition of persistence length
which validated Eq. (20), we now use Eq. (3) presented in
Sec. II to analyze the BD simulation results for the end-to-

FIG. 3. Plot of
√

〈R2
N 〉/�0.25

p versus N0.75 for various values of the chain
stiffness parameter. All the data for different stiffness parameter collapse on
the same master plot. The solid line is a fit to a straight line. Only data points
for which the contour length exceeds the persistence length were included in
this plot.

FIG. 4. 〈R2
N 〉/(2L�p) as a function of L/�p obtained from different combi-

nations of chain length N and stiffness parameter κ (log-log scale). The solid
(maroon) line is a fit to the formula 〈R2

N 〉/2L�p ∼ (L/�p)0.5 for 4 < L/�p

< 170. The inset shows the same for small values of 0 < L/�p < 1 which
clearly indicates that limiting slope of unity (〈R2

N 〉 = L2) for L/�p → 0.

end distance. Please note that limiting cases of Eq. (3) are
either a Gaussian coil (〈R2

N 〉 = 2�pL for L � �p) or a rod
(〈R2

N 〉 = L2 for L � �p). We have used simulation results to

plot 〈R2
N 〉

2�pL
∼ L/�p for a large number of values (∼100) of L/�p

(0.05 ≤ L/�p ≤ 170). We have also taken additional care that
a given value of L/�p is generated for different combinations
of L and �p. These results are shown in Fig. 4. For L/�p � 1,

we observe that 〈R2
N 〉

2�pL
∼ (L/�p)0.95 while for L/�p � 1 the data

very nicely fit with 〈R2
N 〉

2�pL
∼ (L/�p)0.50. This is consistent with

prior Monte Carlo (MC) results using a lattice model by Hsu
et al.33 However, since our studies are done in continuum we
are able to get data that are for much shorter length scales. The
fact that in the rod-like regime (L < �p) the “best fit” exponent
is 0.95 rather than the asymptotic value 1.0 is due to the fact
that for κ = 32 and 64 the “rods” still exhibit nonnegligible
transverse fluctuation unlike truly stiff rods. The Gaussian be-
havior that Eq. (3) implies 〈R2

N 〉/2L�p = 1 for large L would
mean a horizontal straight line in Fig. 4, but no indication of
such a behavior is seen. The simulation data then implies the
strict absence of a Gaussian limit for 2D swollen semi-flexible
chains due to severe dominance of the EV interaction. This
result should be contrasted with the simulation results in 3D,
where one sees a gradual crossover from rod limit to the EV
limit (in 3D) passing through a Gaussian regime.67, 68

4. Transverse fluctuations

It is reasonable to define an average axis for a polymer
chain in the rod limit (�p � L). In this limit using WLC chain
Hamiltonian, the transverse fluctuation with respect to this av-
erage axis has been shown69–71 to obey the following equa-
tion: 〈

l2
⊥
〉 ∼ L3/�p. (21)

The above equation implies that the roughness exponent72 ζ

= 3/2 (
√

〈l2
⊥〉 ∼ Lζ ) for a weakly bending rod. Starting from
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FIG. 5. (a) Log-log plot of
√

〈l2
⊥〉�p as a function of the contour length L for chains of chain length N = 16 (circle), 32 (square), 48 (diamond), 64 (up triangle),

96 (left triangle), 128 (down triangle), 256 (right triangle), 512(×) with various bending stiffness κ = 2 (yellow), 4 (orange), 8 (magenta), 16 (brown), 32
(black), 48 (green), 64 (blue), 96 (indigo), 128 (cyan), 192 (red), 320 (dark green). The orange, magenta, brown, black solid lines are fitted to chains with

κ = 4, 8, 16, 32, respectively. The maroon solid line is fitted for chains with �p > L/2. (b) Log-log plot of
√

〈l2
⊥〉/L as a function of L/�p showing excellent data

collapse as well as maxima of the rescaled fluctuations around corresponding rescaled length L/�p ≈ 1.

an extremely stiff chain where the transverse fluctuations are
expected to be governed by the roughening exponent ζ = 3/2,
if we approach the limit of fully flexible chain, then the fluc-
tuations become isotropic and in this limit one can expect that
〈l2

⊥〉 ∼ Lν , so that in 2D 〈l2
⊥〉 ∼ L0.75. In order to calculate

the transverse fluctuation, in our simulation, for each con-
figuration of the polymer chain, we choose x̂ = 	RN/RN as
the longitudinal axis and calculate transverse fluctuations as
follows:

〈
l2
⊥
〉 = 1

N

N∑
i=1

y2
i , (22)

where yi is the perpendicular distance of the ith monomer with
respect to the instantaneous direction 	RN . We have repeated
this calculation for several chain lengths from extremely stiff
chains to fully flexible chains. This is shown in Fig. 5(a). If
one does not analyze the data carefully, one might be mis-
led to conclude that the exponent ζ increases gradually with
the chain stiffness κ . However, as we will see that the proper
interpretation requires a scaling description in terms of L/�p

as scaling variable. The interesting aspect of this rescaled di-
mensionless transverse fluctuation is shown in Fig. 5(b) as a
function of rescaled length L/�p where the rescaled fluctua-
tions collapse on the same master curve. This plot exhibits
a maximum and then decreases gradually for large value of
L/�p. It is worth noting that analytical results do not exist
for chains with intermediate stiffness. The physical origin of
this maximum can be interpreted as follows. Starting from
the stiff chain limit when L/�p � 1 it increases for a more
flexible chain when the chain undergoes shape changes from
rod to ellipsoid-like blob, and finally to isotropic spherical
blobs. Naturally, when chain flexibility is defined in units of
the persistence length for some value of L/�p (L/�p ∼ 3 from
Fig. 5(b)) the fluctuation becomes maximum before it be-
comes isotropic. To the best of our knowledge, this result is
new and in principle can be used to measure the persistence
length of a semiflexible polymer by measuring the transverse
fluctuations using fluorescence probes. This would require
numerically analyzing a large number of images of semiflex-
ible chains (of a given kind of polymer) with varying contour

length. For each image of a chain, one can extract L as well
as the end-to-end vector 	RN and then use Eq. (22) to extract

〈l2
⊥〉. Plotting then

√
〈l2

⊥〉/L versus L one would find lp from
the position of the maximum of this plot.

5. Bond vector correlation

The orientational correlation between successive bonds
decays exponentially in a WLC model according to Eq. (4).
However, recent MC studies by Hsu, Paul, and Binder33 have
verified that a swollen semiflexible chain in 2D exhibits a
power law decay as a function of the separation s between
the beads given by

〈b̂i · b̂i+s〉 ∝ s−β, β = 2 − 2ν for s � N. (23)

For a fully flexible chain, ν = 0.75 in 2D so that β = 0.5. It is
then expected that a semiflexible chain will exhibit the same
behavior when L/�p � 1. While for very stiff chain one needs
to have extremely long chain to see this asymptotic regime for
large L/�p � 1, yet satisfying the condition s � N, from our
simulation we clearly see this trend for moderate values of κ .

We calculated the bond correlation function from its def-
inition and tested both Eqs. (4) and (23). First, in Fig. 6 we
show the semi-log plot of Eq. (4). The straight lines are fit-
ted only with the first several data points in order to get
values of �p which are close to those calculated from �p

= −1/ln〈cos(θ )〉. The deviation from the initial slope (only
after few points) clearly shows that Eq. (4) predicted by the
WLC model does not hold good for a 2D swollen chain as
expected from the result of Fig. 4.

Fig. 7 shows the log-log plot of Eq. (23) where we have
also included the graph for a fully flexible chain for refer-
ence. Please note that even for a fully flexible chain it re-
quires a rather long chain length (N = 1024) to clearly see
the regime with slope with β = 0.5 over an appreciably broad
range of abscissa values. For comparison, we put the graph for
a shorter fully flexible chain of N = 512. Here, the curve starts
to decrease faster before it reaches the slope corresponding to
β = 0.5. Naturally for stiffer chains (which could be thought
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FIG. 6. Semi-log plot. �p is calculated from the slope of the fitted line, which
is very close to the values (correspondingly 105.8, 52.6, 25.9, 12.6, 6.05,
3.31) from �p = −1/ln〈cos(θ )〉 (see Table I).

of a flexible chain of length L/�p for this purpose) for the max-
imum chain length N = 2048 considered in this paper we only
see the regime characterized by β = 0.5 only for κ = 2.0 and
4.0.

It is expected that the bond vector correlation also ex-
hibits a scaling behavior when studied as a function of s/�p,

FIG. 7. (a) Log-log plot of 〈cos θ (s)〉 as a function of s for various combina-
tions of N and κ . While for large κ the asymptotic slope of s−0.5 is preempted
by finite size effect, for (N, κ) ≡ (1024, 2) and (N, κ) ≡ (2024, 4) the slope
of −0.5 is clearly visible; (b) Same as in (a) but using rescaled variable s/�p

which shows excellent data collapse for s/�p ≤ 1. The inset shows the same
but only for the cases to emphasize that in the limit L/�p � 1.0 there is a
perfect data collapse for the power law scaling.

as even for moderate values of �p ∼ 5 (see Fig. 6), this length
rescaling L → L/�p overrides the exponential decay for small
s/�p. With a choice of distance between monomers in units of
�p all chains are expected to behave as fully flexible chains.
Therefore, if we use the renormalized distance s/�p to replot
Fig. 7(a) then one expects that the power law correlation for
chains with different stiffness will collapse on the same mas-
ter plot. This is shown in Fig. 7(b). We observe excellent data
collapse for s/�p ≤ 1. Deviations from this collapse occur at
a progressively larger value of s/�p as the ratio L/�p increases
either by increasing the contour length L for a fixed �p or for
the same contour length L and lowering the value of �p. This
is expected, since Eq. (23) can hold only for s � N. Of course,
a numerical study of the regime �p/〈b〉 � s � N for large �p

is prohibitively difficult. However, the inset shows both the
data collapse and the β = 0.5 regimes for two chain lengths
(N = 1024 and 2048) and for two values of κ (κ = 2 and κ

= 4) which proves beyond doubt that for 1 � s/�p � L/�p

the bond autocorrelation exhibits a power law decay of a fully
flexible chain.

6. Radial distribution function for end-to-end distance

The Hamiltonian for the WLC chain model has been
studied by many analytic techniques assuming that for moder-
ate chain lengths and stiff enough chains the EV effect will not
dominate. Since we already established the severe dominance
of the EV effect, Gaussian regime is absent for a 2D swollen
chain. Here, we compare the radial distribution functions for
chains with different stiffness. In particular, we compare the
results from our simulation with analytic results of Wilhelm
and Frey55 in 2D. For the WLC model, Wilhelm and Frey55

have derived expressions for the radial distribution functions
G(r) (both in 2D and 3D) in terms of infinite series. In 2D, the
expression for G(r) is given as follows:

G(r) = const × t

∞∑
l=0

(2l − 1) !!

2l l !

[
1

2t(1 − r)

]5/4

× exp

[
− (l + 1/4)2

2t(1 − r)

]
D3/2

[
2l + 1/2√
2t(1 − r)

]
, (24)

where t = �p/L, r = RN/L, and D3/2(x) is a parabolic cylinder
function. For the whole range of values of κ in our simula-
tion, when we plot the analytic result of Eq. (24) we find that
this series is fully dominated by the first term and we did not
see visual differences from the plot that includes the first four
terms. Therefore, in Fig. 8 we plot only the first term of this
series (l = 0) term given by

Gl=0(r) = const × t ×
[

1

2t(1 − r)

]5/4

× exp

[
− (1/4)2

2t(1 − r)

]
D3/2

[
1/2√

2t(1 − r)

]
. (25)

Please note that for the radial distribution function Wilhelm
and Frey55 does not take into account excluded volume ef-
fects. In Fig. 8, we have also included the distribution for
a completely flexible chain (κ = 0) for comparison pur-
poses. For κ = 4 and 8 (i.e., L/�p ≈ 16), the simulated
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FIG. 8. (a)–(f) Comparison of the radial distribution for Eq. (25) and the
simulation for N = 128 and 256 with various values of κ .

distribution still is intermediate between the behavior of fully
flexible chains (which we expect to result for N → ∞ for all
κ!) and the distribution of the Kratky-Porod model.

B. Dynamics

We now look at the dynamics of a swollen semi-flexible
chain. We are using a BD scheme and therefore, HD effects
are not included in our studies. However, for polymers ad-
sorbed on a flat surface simulation studies have shown that the
HD effects are negligible for no-slip boundary conditions.48

Thus, we expect the results are relevant for a fair comparison
of experimental studies. Also we would like to point out that
unlike equilibrium properties, computational time increases
dramatically to study time dependent properties for the same
chain length. Thus, the diffusion and relaxation studies for
the longest chain length reported in this paper took significant
time for well converged runs. We verified that the diffusion
constant D is independent of the persistence length �p and de-
pends only on the chain length N and scales as D ∼ kBT/N
with very good accuracy, as expected in a BD formalism.

Next, we consider monomer relaxation dynamics of the
chain. Following previous work for the relaxation of a fully
flexible chain,60, 73–75 we have monitored various quantities
pertaining to a single monomer relaxation. These quantities
have been studied in the past using BD algorithm,60 and dy-
namical Monte Carlo algorithms (DMC),73, 74 including the
bond-fluctuation model (BFM).75 The dynamics of the indi-
vidual monomers and the collective dynamics for the whole
chain have been characterized by the functions g1(t), g2(t),
g3(t), g4(t), and g5(t). They are defined as follows:

g1(t) = 〈[rN/2(t) − rN/2(0)]2〉, (26a)

g2(t) = 〈[(rN/2(t) − rCM (t)) − (rN/2(0) − rCM (0))]2〉,
(26b)

g3(t) = 〈[rCM (t) − rCM (0)]2〉, (26c)

g4(t) = 〈[rend (t) − rend (0)]2〉, (26d)

g5(t) = 〈[(rend (t) − rCM (t)) − (rend (0) − rCM (0))]2〉.
(26e)

The quantities g1(t), g3(t), and g4(t) reflect the time de-
pendence of the position of the middle monomer, the center
of mass, and the end monomer of the chain, respectively. At
late times for distances greater than the gyration radius, the
functions g1(t), g3(t), and g4(t) will describe the motion of the
entire chain. Consequently,

g1(τ (N, �p)) ∼ g3(τ (N, �p) ∼ g4(τ (N, �p) ∼ t, (27)

for t ≥ τ 2(N, �p) where τ 2 is given by Eq. (12). The quan-
tities g2(t) and g5(t) on the contrary measure the relative
displacement of the middle and the end monomer with re-
spect to the center of mass of the chain. The functions g2(t)
and g5(t) saturate at finite static values 2〈(	rN/2 − 	rCM )2〉 and
2〈(	rend − 	rCM )2〉, respectively, since for t → ∞ the orienta-
tions of the vectors 	rN/2(t) − 	rCM (t), 	rend (t) − 	rCM (t) are un-
correlated with their counterparts at t = 0.

To study monomer dynamics, we have carried out BD
simulation for various chain lengths N = 64–1024 and for
chain stiffness κ = 0–64. We only show a limited set of data.
As a reference and for comparison with the data for chains
with κ �= 0, we first show data for a fully flexible chain where
we expect to see a single crossover dynamics from g1(t) ∼
t0.6 at an early time for 0 < t < τ 2 to a purely diffusive
dynamics for the entire chain (g1(t) ∼ t). This is shown in
Fig. 9 for chain length N = 512 and 1024, respectively. We
have checked that the graphs for other chain length are simi-
lar and have the t0.6 dependence for the fully flexible chain. At
late times, the functions g2 and g5 saturate and the functions
g1, g3, and g4 grow linearly as a function of time, becoming

FIG. 9. (a) gi(t) ∼ t (i = 1–5) for a fully flexible chain (κ = 0.0) of
length N = 512. (b) gi(t) ∼ t (i = 1–3) for a fully flexible chain of length
N = 1024.
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FIG. 10. (a) Plot for g1(t) (black), g2(t) (red), and g3(t) (green) as a function
of time on a log-log scale for chain length N = 512 and κ = 2.0. The blue
and magenta dashed lines correspond to straight lines g1(t) = At0.75 and g1(t)
= Bt0.60, respectively, where A and B are constants. (b) Same but for
N = 1024 and κ = 2.0. (c) Same but for N = 1024 and κ = 4.0. Note that
for a fully flexible chain the slope of the curve log(gi) versus log(t) would
monotonously increase with time, unlike the present case.

practically indistinguishable from each other. Similar stud-
ies have been reported earlier by Grest and Kremer60 and by
Gerroff, Milchev, Paul, and Binder.73–75 However, our stud-
ies are much more exhaustive and quantitatively captures the
crossover from t0.6 to the purely diffusive regime which were
only qualitative in previous studies and for shorter chains.

We now show data for the double crossover to support
our scaling analysis for κ �= 0. In particular, we show data for
chain length N = 512 with κ = 2.0 and N = 1024 with
κ = 2.0, 4.0 respectively. Unlike Fig. 9 for κ = 0, plots for
g1(t), g2(t) shown in Fig. 10 are characterized by a t0.75 slope
which then crosses over to the regime characterized by g1(t)
∼ g2(t) ∼ t0.6 and that g1(t) eventually merges with g3(t).
When we compare Figs. 10(a) and 10(b) consistent with the
prediction of scaling theory we observe that the extent of the
t0.75 region in both the graphs are the same as they have the
same value of κ = 2, although the chain lengths are different.
Likewise, comparing Figs. 10(b) and 10(c) we note that since
both plots have the same chain length the beginning of the
second crossover occur almost at the same time (τ 2 ∝ N2.5)
but since the latter chain is twice as stiff it has a wider t0.75

regime resulting in a narrower span of t0.6 regime. Thus,
Fig. 10 unambiguously confirms predictions from the scaling
theory. We observe that at early time g1(t) = g2(t); however,
the width of the region g2(t) ∼ t0.6 is narrower than that of
g1(t) ∼ t0.6 and it exhibits a slightly lower value of slope be-

FIG. 11. Log-log plot of g1(t)/t0.75 as a function of t corresponding to the
plots of Fig. 10(a) (red), (b) (blue), and (c) (green), respectively. In each
graph, the minimum occurs in the intermediate regime characterized by t0.6.

fore saturation. Considering that the crossovers are broad, we
believe that this is due to finite size effect as it is evident if we
compare Figs. 10(a) and 10(b). In the latter case, which is for
a larger chain length, the difference between g1(t) and g2(t)
are much smaller and we notice that the difference begins at a
later time. Ideally, for very large system the point when g1(t)
would change its slope towards g1(t) ∼ t, g2(t) also tend to
saturate. The sharpness of this feature would require a much
larger system. We also note the same feature in Fig. 9. But the
plots for g1(t) quite clearly show three distinct scaling regimes
of g1(t) ∼ t0.75 crossing over to g1(t) ∼ t0.6 and then merging
with g3(t) ∼ t at late times. We have further confirmed the ex-
istence of this double crossover by plotting g1(t)/t0.75 ∼ t as
shown in Fig. 11. The existence of an initial plateau (t < τ 1),
followed by a decay (∝ t−0.15), and of a minimum (near τ 2)
before the diffusion (∝ t0.25) starts further demonstrates quite
conclusively that the exponent changes from t0.75 → t0.6

→ t. We would like to mention that because of the width of the
t0.6 regime becomes narrower for stiffer chains we were un-
able to see this regime unambiguously in simulation of shorter
chains and/or larger κ (e.g., for N = 512 and κ ≥ 4). While
for N = 512 the double crossover is clear for κ = 2.0, but
becomes ambiguous for κ ≥ 4.0 which required an increased
chain length of N = 1024. As expected, the crossovers are
rather gradual, spread out over a decade in time t each, and
hence for chains that are not long enough the existence of
these regimes is missed in previous work.

The interplay of Rouse modes and the bending modes
with respect to the monomer dynamics of semiflexible chains
was considered in early work by Harnau et al.,50 in the frame-
work of a Rouse model generalized by higher order terms to
account for chain stiffness. They ignored excluded volume,
and considered a single chain length, attempting to model
C100 alkanes in a melt. They found that their results were
neither consistent with the Rouse behavior (g1(t) ∼ t1/2) nor
with the power law due to bending modes (g1(t) ∼ t3/4). In
our view, the chain length studied in this work was too small
to observe both power laws separately, rather all their data
fall in a regime of smooth crossover. Having established the
double-crossover we now further investigate the consequence
of scaling prediction that the first crossover occurs at time
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FIG. 12. Plot for g1(t)/�2
p and g2(t)/�2

p as a function of t/�3
p on a log-log

scale for chain lengths N = 512, 1024 with κ = 2.0, 4.0, respectively. The
dotted-dashed and dashed lines correspond to slopes 0.75 (maroon) and 0.6
(magenta), respectively.

τ1 ∝ �3
p when g1(τ1) ∝ �2

p. Fig. 12 shows a plot of g1(t)/�2
p

as a function of rescaled time t/�3
p which shows data collapse

for g1(t)/�2
p ≤ 1.0 and t/�3

p ≤ 1.0 for various combinations
of chain length N and κ confirming the length and the time
scales for these crossovers. Note that the scaling theory of
Sec. III implies

gi(t)/�
2
p = g̃(t/τ1, t/τ2), (28)

where τ 1, τ 2 are the times defined in Eqs. (8) and (12). If
the first argument of the scaling function g̃, t/τ 1 is small in
comparison to unity, we can approximate Eq. (28) as g1(t)/�2

p

≈ g̃(t/τ1, 0) ∝ (t/τ1)3/4, which reduces to Eq. (7). For t/τ 1

> 1, we can rewrite the scaling function as

gi(t)/�
2
p = ˜̃g(t/τ1, τ2/τ1) = ˜̃g(t/τ1, (L/�p)5/2). (29)

Note that τ 2/τ 1 remains constant when we increase N and �p

by the same factor: this observation explains that the scaling
of the data in Fig. 12 encompasses the full range of times.

VI. SUMMARY AND DISCUSSION

In conclusion, we have studied conformations, fluctua-
tions, and crossover dynamics of a swollen semiflexible chain
in 2D. We first developed a scaling theory which generalizes
early time monomer dynamics of a fully flexible chain for
a semiflexible chain characterized by its contour length and
the persistence length. We predict a double crossover which
arises due to the presence of an additional length scale intro-
duced through the chain persistence length. Monomer dynam-
ics up to a length scale �p is independent of chain length and
is characterized by the t0.75 power law. At a later time t > τ 1

when the size of the fluctuations becomes bigger than �p the
dynamics begin to look like that of a fully flexible chain and
characterized by the well known t2ν/1+2ν growth. Both of these
exponents have been discussed in the literature separately but
have not been emphasized that before the entire chain reaches
purely diffusive regime, there ought to be two and not one
crossover, the first crossover differentiates chains of different
stiffness. Previously, the dynamics of monomer MSD of semi-
flexible polymers has also been studied by Harnau et al.,50 us-
ing a Rouse-type model generalized to include chain stiffness.
They saw a gradual crossover, in between bending modes and

Rouse modes, but did not consider the scaling description of
the crossover. Note that excluded volume effects were absent
in their model, and hence it is not applicable in d = 2 dimen-
sions.

Motivated by recent lattice MC results for a swollen
chain in 2d predicting the absence of a Gaussian regime we
undertook similar studies in 2D continuum using BD simula-
tion. While checking our data for the RMS end-to-end dis-
tance for chain of different contour length and persistence
length we discovered that we regain the well known results for
the end-to-end distance due to Schaefer, Joanny, and Pincus39

and Nakanishi66 provided we use the definition of the persis-
tence length given by either the lattice or continuum version
of the Kratky-Porod WLC model. We explain this by noting
that the persistence length being a local property of a chain
does not depend on the EV interaction. This is further reas-
sured when we note that the persistence length calculated this
way does not depend on the chain length unlike well used
textbook definition of persistence length where the projection
of the end-to-end vector on the first bond is used as the def-
inition and does depend on the chain length. Therefore, we
emphasize that the latter definition needs to be discarded.

We also confirm the absence of the Gaussian regime in
the continuum bead-spring model where the swollen chain for
L/�p � 1 behaves like a rod and thereafter always behaves like
a swollen chain. Considering that there are increased number
of activities to explore the properties of biomolecules on a sur-
face, our result (Fig. 4) will be extremely valuable to analyze
the experimental data correctly for stiff molecules on flat sur-
faces. It has not escaped our attention that many such reported
analyses are still done using the WLC model and/or calculat-
ing the chain persistence length from projected end-to-end to
the first bond.

Transverse fluctuations in a stiff chain has been addressed
analytically in the literature only in the extremely stiff chain
limit where one finds that it is described by the roughening ex-
ponent. Analytic calculations for moderately stiff chains are
hard to carry out, and to date there are no results for trans-
verse fluctuations spanning the entire regime from a stiff to a
fully flexible chain. We have numerically obtained this result
and pointed out that the appropriate length variable to analyze
the data is to use the persistence length as the unit of length.
When we use L/�p as the length scale to plot transverse fluctu-
ation we discover the non-monotonic behavior of this fluctua-
tion reaching a maximum for some L � �p. We point out that
this universal scaling of the transverse fluctuation can be used
to measure the persistence length of the chain. Another ac-
companying consequence of the absence of Gaussian regime
for a swollen chain in 2D is the decay of the bond correlation
function which exhibits a power law decay. Again, by choos-
ing the normalized contour segment s/�p as the appropriate
variable we regain the exponent β = 0.5 which describes the
decay of bond autocorrelation for a fully flexible chain. We
must point out that many of these results and analyses on
chain conformations and equilibrium fluctuations point to a
common theme. In the limit L/�p � 1, we recover the ex-
pected behavior of a fully flexible chain and chains with dif-
ferent stiffness exhibit universal scaling behavior when per-
sistence length is chosen as the unit of length.
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This general idea extends to our study of monomer dy-
namics as well. We have provided a new scaling theory of
monomer dynamics for semiflexible polymers in 2D. Our
theory predicts novel crossover dynamics at an intermedi-
ate time when the fluctuations of the monomers g1(τ1) ∼ �2

p.
Around this time the monomer dynamics become the same as
that of a fully flexible swollen chain characterized by g1(t)
∼ t2ν/(1 + 2ν) = t0.6 in 2D. The theory expands the existing
scaling theory for monomer dynamics for a WLC and that
of a fully flexible chain to include the effect of the chain per-
sistence length. Fully flexible swollen chains are self-similar
objects, while a polymer segment up to its own persistence
length is not. Therefore, it is expected that for length scales
up to �p the dynamics will have different characteristics due
to bending modes arising out of the chain stiffness. The EV
effect is almost negligible for the t0.75 regime and therefore,
our result is the same as that of previous studies using WLC
Hamiltonian.56, 57 For the t0.6 regime originating from the EV
effect, where the monomer dynamics are governed by Rouse
relaxation of a fully flexible chain, our theory elucidates the
exact role of chain persistence length neither contained in
WLC model nor studied before. We also validate our new
scaling theory by extensive BD simulation results.

A subtle issue concerns the limit κ towards infinity while
keeping the contour length L fixed. Then transverse motions
of the monomers relative to each other, in a coordinate sys-
tem where the x-axis is fixed along the rod-like polymer,
are completely suppressed. In the “laboratory coordinate sys-
tem,” however, the rod still can make random transverse mo-
tions, namely, rigid body rotations and translations. However,
in addition to those motions still motions of the monomers
relative to each other along the axis of the rod are possible.
These motions may give rise to a transient t1/2 behavior, as
a model calculation for a one-dimensional harmonic chain
shows.76 However, our data for gi(t) for large κ due to the
smoothness of crossovers did not allow to clearly separate this
mode of motions from the displacements due to transverse
fluctuations.

In the present paper, we have ignored HD interactions as
they are not significant for 2D swollen chains on a substrate.
However, we now present simple estimates of generalization
of our results in 3D and/or in presence of HD interactions
which will be relevant for a 3D swollen chain. In the free
draining limit, the results t0.75 will remain the same in 3D,56, 57

but the intermediate Rouse relaxation regime will be charac-
terized by t2ν/(1+2ν) = t0.54 (ν = 0.59 in 3D), for the case where
the EV is relevant (i.e., MSDs exceeding R∗2 = �2

p/b2). For
MSD in between �2

p and R*2 Gaussian behavior prevails, ν

= 1/2, and hence g1(t) ∝ t1/2 in that regime. The crossover
between flexible and stiff chain dynamics in 3D in the free
draining limit was studied by Steinhauser et al.,47 but no scal-
ing analysis is done.

Replacing Rouse relaxation by Zimm relaxation one im-
mediately sees that in presence of HD interaction the inter-
mediate regime is characterized by t2ν/3ν = t2/3.44–46 Notice
that in this case ν cancels out and this relaxation should be
the same in 2D and 3D. However, as shown by Hinczewski
and Netz,44, 46 very complicated crossovers occur in this
case.

We now make some comments about some recent exper-
iments to study monomer dynamics. This is typically done
using fluorescence correlation spectroscopy (FCS) where a
tagged monomer can be directly watched in real time. How-
ever, as has been mentioned by Petrov et al.43 that since the
t0.75 regime or the intermediate regimes (either t0.5 or t2/3)
occur at much shorter time scales compared to the longest
relaxation time, unless extreme caution is taken for the mea-
surement of MSD of a labeled particle, the interpretation can
be misleading, especially for shorter DNA fragments.42 For
dsDNA of length 102 − 2 × 104 base pairs (which is equiva-
lent to L/�p ∼ 0.7 − 140), FCS studies of Petrov et al.43 ob-
served the Zimm regime characterized by a t2/3 power law.
However, a clear demonstration of the double crossover is
lacking in recent experiments with biopolymers.42, 43, 71, 77, 78

This is partly due to lack of resolution of the experiments and
partly due to the fact that lacking any theoretical predictions
for this phenomenon, researchers did not specifically investi-
gate the precise behavior of MSD before the onset of overall
chain diffusion very carefully. We will provide some physi-
cal arguments why the experimental detection can be hard:
a simple calculation for Fig. 1 shows that in order for the
width of the t0.75 and t0.60 to be equal (in logarithmic scale)
one needs N = �2.2

p in 2D. In other words, for a stiffer chain
one needs a very long chain to see the t0.60 regime. Indeed,
in our simulation we found (not shown here) that for κ = 16,
32, and 64, the results with chain length up to N = 512 are
largely dominated by the t0.75 regime and we did not clearly
see the t0.60 regime. It is only after we lowered the value of
κ and used longer chain (N = 1024), we identified these two
regimes quite conclusively (Fig. 10). We suspect that the same
might happen in experiments.77 For extremely stiff chains, the
t0.6 (or t0.54 in 3D) region can be extremely narrow and could
either be missed or the rather smooth double crossover might
be mistakenly interpreted as a single crossover (with t2/3 in
2D). Therefore, we believe that these results will not only
promote new experiments but will be extremely valuable in
identifying and interpreting different scaling regimes for the
monomer dynamics of semiflexible polymers.
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