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ABSTRACT

The traditional pursuit-evasion game considers a situation where one pursuer tries to capture an

evader, while the evader is trying to escape. A more general formulation of this problem is to

consider multiple pursuers trying to capture one evader. This general multi-pursuer one-evader

problem can also be used to model a system of systems in which one of the subsystems decides

to dissent (evade) from the others while the others (the pursuer subsystems) try to pursue a strat-

egy to prevent it from doing so. An important challenge in analyzing these types of problems is

to develop strategies for the pursuers along with the advantages and disadvantages of each. In

this thesis, we investigate three possible and conceptually different strategies for pursuers: (1) act

non-cooperatively as independent pursuers, (2) act cooperatively as a unified team of pursuers, and

(3) act individually as greedy pursuers. The evader, on the other hand, will consider strategies

against all possible strategies by the pursuers. We assume complete uncertainty in the game i.e. no

player knows which strategies the other players are implementing and none of them has informa-

tion about any of the parameters in the objective functions of the other players. To treat the three

pursuers strategies under one general framework, an all-against-one linear quadratic dynamic game

is considered and the corresponding closed-loop Nash solution is discussed. Additionally, different

necessary and sufficient conditions regarding the stability of the system, and existence and defi-

niteness of the closed-loop Nash strategies under different strategy assumptions are derived. We

deal with the uncertainties in the strategies by first developing the Nash strategies for each of the

resulting games for all possible options available to both sides. Then we deal with the parameter

uncertainties by performing a Monte Carlo analysis to determine probabilities of capture for the

pursuers (or escape for the evader) for each resulting game. Results of the Monte Carlo simulation

show that in general, pursuers do not always benefit from cooperating as a team and that acting as

non-cooperating players may yield a higher probability of capturing of the evader.
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CHAPTER 1: INTRODUCTION

Many large enterprises consist of a large number of interacting subsystems. These system of

systems (SoS) often operate optimally when all subsystems have a harmonious non-conflicting

relationship among themselves. When one subsystem decides to operate in a manner that is not

consistent with the others, the operation of the entire enterprise suffers resulting in an adversarial

environment that affects not only the behavior of the dissenting subsystem but also possibly the

behavior of the other conforming subsystems. The disruption caused by one dissenting subsystem

may result in the entire system of systems disintegrating and behaving in a non-cooperative man-

ner within itself. These types of complex system of systems are treated best using concepts from

game theory. If the systems are dynamic in nature, then differential game theory is the appropriate

framework to do the analysis. These types of problems are conceptually similar to multi-pursuer

Pursuit-Evasion (PE) games. Traditional Pursuit-Evasion refers to a game in which a number

of pursuers try to capture one or more evaders while the evaders try to escape. The solution of

these types of games involves the development of movement strategies for both the pursuers and

the evaders simultaneously that will conclude with the evader either escaping or being captured.

Problems that include many evaders can be investigated as a combination of resource allocation

problems involving multiple pursuers and one evader. That is, a wide range of problems can be

covered by studying multi-pursuers one-evader games. Additionally, in real and practical problems

there is barely certain information about the circumstances of the game. So, theoretical analysis

only based on certain data may not be useful in practice and examination of the problem under

uncertainties is vital. One of the most representative examples of the SoS approach to the pursuit

evasion game is a system of entities such as UAVs or robots moving together in a coordinated

fashion to perform a common task. If one entity decides to separate from the group and operate

on its own, the remaining entities will face the problem of deciding how to proceed. For example,
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one UAV or one robot may decide to leave the group and proceed on its own with an objective

that may be contrary or harmful to the group’s common objective. The remaining entities may

or may not agree on how to react. They may decide to pursue a group strategy in an attempt to

prevent it from accomplishing its objective or they may disagree on the proper course of action

resulting in a system-wide breakdown and producing a non-cooperative environment where each

entity acts unilaterally on its own. In many ways, these problems are very similar in formulation

to the traditional multi-pursuer PE problems. Another interesting examples of the SoS in presence

of a dissenting subsystem is the European Union while they’ve been cooperating for years, sud-

denly the Britain stop to govern in coalition with other European countries and Brexit happens.

Obviously, this action will affect not only the Britain, but also all countries around the world. As

a consequence of Brexit, the question is what strategies should other countries in European Union

use to minimize the effects of Brexit or possibly force the Britain to join the European Union again.

They may choose to stay as an union or disintegrate and stop cooperating among themselves since

the situation has changed. Of course that studying such a complicated topic is beyond the scope

of this thesis and it was just a real example of situations where the concept of SoS in present of

a dissenting subsystem may happen. So we restrict ourselves to studying multi-pursuer PE games

under uncertainties in order to make the problem tractable and to simplify explanation of the main

concept and rigorously carry the analysis further.
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CHAPTER 2: LITERATURE REVIEW

In 1957, Berge [1] proposed a PE game in which the evader moves in a prescribed trajectory

and the pursuers move with constant velocities but in directions that point directly towards the

evader. In 1965, Isaacs [2] considered a zero-sum differential game with one pursuer and one

evader. Following his work a variety of different formulations of PE games have been studied in

the literature [3–9] including zero-sum [5], non-zero sum [10] and even Stackelberg [8, 9] games.

The dynamics of the game can be formulated either in terms of velocity control [5,11], or in terms

of constant velocities but direction of movement control [12–14]. In recent years, multi-pursuers

one-evader games have received considerable attention in the literature [3, 7, 15–18]. Compared

to the original single-pursuer single-evader game, these games present numerous challenges in

developing optimal strategies, including the structure, existence and uniqueness of the pursuers

strategies [19–23]. The effectiveness of different strategies in presence of parameters uncertainty

for a dynamic two-step look-ahead game has been studied in [24]. In [15], a multi-pursuers one-

evader game has been studied in the presence of limited state information for the pursuers’ side.

The problem is formulated as a 2-player linear-quadratic game with the pursuers cooperating as

one team (i.e. as one player) against the evader. This necessitated the introduction of so-called

best achievable performance indices for the pursuers. In [25], a two-pursuer one-evader game is

considered and decomposition for reduction of time complexity of the solution is introduced and

comparing the run-time complexity of both the decomposed and the full game has shown that

with increasing cardinality of each player’s strategy space the decomposed game yields a relevant

decrease of the run-time.

In this thesis, and before we investigate multi-pursuers one-evader games, we will consider a gen-

eral framework that can be used to investigate several possible structural solutions for these types

of PE games. More specifically, we consider an (N+1)-player linear quadratic game where N
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players are minimizing quadratic objective functions while the remaining player is maximizing

a similar quadratic objective function. We refer to these games as all-against-one, reflecting the

fact that one player’s objective is directly opposed to all the other players. In chapter 3 we con-

sider a general treatment of all-against-one Linear Quadratic (LQ) games including the derivation

of new sufficient conditions for existence of closed-loop Nash solutions. In chapter 4 we formu-

late the N-pursuers one-evader game as a special case of the all-against-one game and investigate

three different strategies for the pursuers. These strategies include Non-cooperating pursuers, Co-

operating pursuers and Greedy pursuers. In chapter 5 we present several illustrative examples

that describe different pursuit-evasion scenarios and show simulation results for all three pursuers’

strategies when the evader is using a strategy that yields the Nash equilibrium in each case. In the

same chapter, we present some preliminary results where neither the pursuers nor the evader have

knowledge the objective functions of the other side and hence need to implement strategies that

are secure against possible worst strategies by the other side. Results of Monte Carlo simulations

of these incomplete information games are also reported. Concluding remarks are presented in

chapter 6.
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CHAPTER 3: All-AGAINST-ONE GAMES

In this chapter we consider an (N+1)-player game where N players are minimizing similar objective

functions while the remaining player is minimizing another objective function which is completely

opposing to the other players. We refer to these games as all-against-one, reflecting the fact that

one player’s objective is directly opposed to all the others. Let M = N + 1, where player 1 is the

opposing player and players 2 through M are all against player 1. To make the problem tractable,

let the game has linear dynamics and quadratic objective functions for players in the standard

form [10] and [26]

ż = Az +B1u1 +
M∑
j=2

Bjuj, z(t0) = z0; (3.1)

where z is the state vector and u1 through uM are the player’s control input vector. Matrix A is

the open-loop system dynamics, matrices B1 through BM are player’s input matrices, respectively.

Let the objective function of player 1 be of the form

J1 =
1

2
z(tf )

ᵀS1fz(tf ) +
1

2

∫ tf

t0

[z(t)ᵀQ1z(t) + u1(t)
ᵀR1u1(t)]dt, (3.2)

where S1f and Q1 are symmetric negative definite matrices1 and R1 is symmetric positive definite

matrix. Let the objective functions of players 2 through M be of the form

Ji =
1

2
z(tf )

ᵀSifz(tf ) +
1

2

∫ tf

t0

[z(t)ᵀQiz(t) + ui(t)
ᵀRiui(t)]dt; (3.3)

for i = 2, 3, ...,M , where Sif and Qi are symmetric positive semi-definite matrices and Ri is

symmetric positive definite matrix. The main difference between this game and the standard LQ

game considered in the literature is that player 1 has weight matrices S1f and Q1 that are not of the

1We require these matrices to be negative definite instead of negative semi-definite so that player 1 would not have
the option to exclude any of the players who are against it.
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same sign as similar matrices of the other players. In other words, player 1 is trying to unregulate

(drive the state vector of the system away from the origin) while players 2 through M are trying

to regulate the system (drive the state vector of the system to the origin). It is well known that

necessary conditions for the closed-loop Nash strategies for this game are of the form [10]

u∗i = −R−1i BiSiz (3.4)

for i = 1, 2, ...,M , where Si’s satisfy the following M-coupled differential Riccati equations,

Ṡi + SiA+ AᵀSi +Qi + SiBiR
−1
i Bᵀ

i Si −
M∑
j=1

(SiBjR
−1
j Bᵀ

jSj + SjBjR
−1
j Bᵀ

jSi) = 0, (3.5)

where Si(tf ) = Sif . It is well-known that for the standard LQ non-zero-sum game that if Qi ≥ 0

and Sif ≥ 0, then the solution for (3.5) will be Si(t) ≥ 0 for i = 1, 2, ...,M [27]. The following

lemma provides the equivalent result for the all-against-one game.

Lemma 1. For the all-against-one game let Si(t) for i = 1, 2, ...,M be solutions of (3.5) for

t ∈ [t0, tf ], then S1(t) < 0 and Si(t) ≥ 0 for all t ∈ [t0, tf ], for i = 2, 3, ...,M .

Proof. Assume λmaxS1
(t) and v(t) are maximal eigenvalue and corresponding unit eigenvector of

S1(t), respectively. S1(t) is piecewise continuously differentiable and symmetric for t ∈ [t0, tf ]

but not necessarily analytic. So based on Theorem 3.6.1 in [27], λmaxS1
(t) is continuous in time and

at any point that it is differentiable, its derivative satisfies

d

dt

(
λmaxS1

(t)
)

=vᵀ(t)Ṡ1v(t) (3.6)

=− vᵀ(t)(S1A+ AᵀS1 + S1B1R
−1
1 Bᵀ

1S1)v(t) +
M∑
j=1

(
vᵀ(t)S1BjR

−1
j Bᵀ

jSjv(t)

+ vᵀ(t)SjBjR
−1
j Bᵀ

jS1v(t)
)
− vᵀ(t)Q1v(t) (3.7)
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=λmaxS1
(t)vᵀ(t)

[
− 2A− λmaxS1

(t)B1R
−1
1 Bᵀ

1 +
M∑
j=1

(
BjR

−1
j Bᵀ

jSj + SjBjR
−1
j Bᵀ

j

)]
v(t)

− vᵀ(t)Q1v(t). (3.8)

Now for sufficiently small λmaxS1
(t) we have

d

dt

(
λmaxS1

(t)
)
≈ −vᵀ(t)Q1v(t) (3.9)

Since Q1 < 0, d
dt

(
λmaxS1

(t)
)
> 0 holds for sufficiently small λmaxS1

(t). Given S1(tf ) < 0, we know

λ(tf ) < 0 and, hence by (3.9) and the continuity of λmaxS1
(t), the maximal eigenvalue λmaxS1

(t) < 0

for all t ∈ [t0, tf ]. This proves that S1(t) < 0 for all t ∈ [t0, tf ].

Additionally, Let

Ā = A−
M∑
j=1

BjR
−1
j Bᵀ

jSj, (3.10)

following (3.5), Si(t) should satisfy

Ṡi + SiĀ+ ĀᵀSi +Qi + SiBiR
−1
i Bᵀ

i Si = 0; (3.11)

for i = 1, 2, 3, ...,M , and Si(tf ) = Sif . Let Φ(t, τ) be the state transition matrix of −Āᵀ(t). It is

known that for t, τ ∈ [t0, tf ],

dΦ(t, τ)

dt
= −Āᵀ(t)Φ(t, τ), Φ(τ, τ) = I; (3.12)

Then according to [27], Si(t) will satisfy

Si(t) = Φ(t, tf )Si(tf )Φ
ᵀ(t, tf ) +

∫ tf

t

Φ(t, τ)[Qi + SiBiR
−1
i Bᵀ

i Si]Φ
ᵀ(t, τ)dτ. (3.13)

7



Now, since Si(tf ) ≥ 0, Qi ≥ 0 and Ri > 0 for i = 2, 3...,M , it follows from (3.13) that Si(t) ≥ 0

for all t ∈ [t0, tf ] for i = 2, 3, ...,M .

Next, we present a theorem that gives sufficient conditions for uniform exponential stability and

assures that all states of the system are within a defined ball at the end of the game [28]. Later in

section 5, this result is used to guarantee capture of the evader.

Theorem 2. For the all-against-one game let Si(t) for i = 1, 2, ...,M be solution of (3.5) for

t ∈ [t0, tf ], and let

C(t) ,
M∑
j=1

(Qj + SjBjR
−1
j Bᵀ

jSj) and P (t) ,
M∑
j=1

Sj(t).

If C(t) > 0 for all t ∈ [t0, tf ] and P (tf ) ≥ 0, then the system will be uniformly exponentially

stable and P (t) > 0 for all t ∈ [t0, tf ). Furthermore, for any positive scalar δ > 0, if

tf ≥ t0 +
λ̄P

¯
λC

ln

(
λ̄P . ‖z0‖2

¯
λP .δ2

)
(3.14)

then it follows that ‖z(tf )‖ ≤ δ.

In the above theorem, λ̄(.) = max
t∈[t0,tf ]

λmax(.) ,
¯
λ(.) = min

t∈[t0,tf ]
λmin(.) and ‖.‖ refers to the Euclidean norm.

Proof. The matrix P (t) satisfies the differential equation

Ṗ + ĀᵀP + PĀ+ C(t) = 0, P (tf ) = Ptf ; (3.15)

where Ptf =
∑M

j=1 Sjf and Ā(t) is as defined in (3.10). Consequently, following the definition of

8



Φ(t, tf ) in (3.12), P (t) also satisfies

P (t) = Φ(t, tf )P (tf )Φ
ᵀ(t, tf ) +

∫ tf

t

Φ(t, τ)C(τ)Φᵀ(t, τ)dτ.

Since P (tf ) ≥ 0 and C(t) > 0, it follows that P (t) > 0, for all t ∈ [t0, tf ). Now we can define the

Lyapunov function

V (t) = zᵀP (t)z, (3.16)

then

V̇ (t) = żᵀP (t)z + zᵀṖ (t)z + zᵀP (t)ż (3.17)

= zᵀ(ĀᵀP + Ṗ + PĀ)z (3.18)

= −zᵀC(t)z (3.19)

So C(t) > 0 results in the system to be uniformly exponentially stable. Additionally, since

V̇ ≤ −¯
λC
λ̄P
zᵀPz ≤ −¯

λC
λ̄P
V (3.20)

then one can conclude that

V (t) ≤ V (t0) exp[−¯
λC
λ̄P

(t− t0)]. (3.21)

Moreover,

‖z(t)‖2 ≤ 1

¯
λP
V (t) (3.22)

≤ V (t0)

¯
λP

exp[−¯
λC
λ̄P

(t− t0)] (3.23)

≤ λ̄P

¯
λP
‖z0‖2 exp[−¯

λC
λ̄P

(t− t0)]. (3.24)
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Finally, in order to achieve ‖z(tf )‖ ≤ δ, tf should satisfy

λ̄P

¯
λP
‖z0‖2 exp[−¯

λC
λ̄P

(tf − t0)] ≤ δ2 (3.25)

which yields (3.14) and this ends the proof.

Remark 1. The above theorem has been proved for M players with different quadratic cost func-

tions in a linear game while they are implementing their Nash strategies. Later in chapter 4,

different Nash solutions will be presented in which players either utilizes their Nash strategies ac-

cording to an M-player (all-against-one) game or 2-player (greedy or one-against-one) games or

cooperative (one-team-against-one) game. Thus, the above theorem can be applied directly to each

of those scenarios.

The following remark represents usefulness of the above theorem by providing a practical explicit

sufficient condition resulting in exponential stability of the system.

Remark 2. For all-against-one games, let the implemented strategies for player 1, 2, . . . ,M be as

(3.4). Noting that S1f and Q1 are negative semi-definite matrices, if S1f +
∑M

j=2 Sjf ≥ 0 and

Q1 +
∑M

j=2Qj ≥ 0 for all t ∈ [t0, tf ] then the system is exponentially stable regardless of initial

state vector z0. In other words, if the collective weights of players 2 through M overpower the

weights of player 1 (opposing player) in the objective functions then the exponential stability of

the whole system is assured.

Remark 3. Note that not only these results are applied to Pursuit-Evasion Games, but also they can

be utilized in any system of systems (or Multi-agent systems) in presence of a malicious subsystem

(or agent) [29]. The above theorem provides the exponential stability of the whole system only in

Linear Quadratic cases, however, the rest of paper presents a general idea which can be applied to

any kind of system as long as the aforementioned strategies can be calculated.
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Remark 4. As it is shown in the second part of theorem, note that if the hypothesis of theorem is

satisfied and if termination time tf is large enough, then the state of system is guaranteed to end

up in a small ball. In next section, this means that the capturing of the evader in a PE game is

guaranteed no matter how far the pursuers are at the beginning.

A sufficient condition for existence of solutions to (3.5) have been discussed in [27], where all

Q’s and S’s matrices are positive semi definite. The following theorem provides conditions for

existence of solutions to M-coupled differential Riccati equations which arise in the all-against-

one games.

Theorem 3. (Sufficient Condition for Existence of Nash Solution) Let Q ∈ RnN×nN be symmet-

ric and W (t) = −S1 +
∑M

i=2 Si while Si are the solutions of (3.5). Then Si, ∀i ∈ {1, 2, ...,M}

exist for ∀t ≤ tf with

0 ≤ W (t) ≤ LQ(t) (3.26)

while

R(S1, S2, ..., SM , Q) ≥ 0; (3.27)

With

R(S1, ..., SM , Q) = Q+W (
M∑
j=1

BjR
−1
j Bᵀ

jSj) + (
M∑
j=1

SjBjR
−1
j Bᵀ

j )W

+
(
S1B1R

−1
1 Bᵀ

1S1 −
M∑
i=2

(SiBiR
−1
i Bᵀ

i Si)
)

(3.28)

and LQ(t) is the unique solution of following linear terminal value problem (Lyapunov differential

11



equation) while LQ(tf ) = −S1f +
∑M

i=2 Sif

L̇Q(t) = −LQ(t)A− AᵀLQ(t)− (Q−Q1 +
M∑
i=2

Qi). (3.29)

Since R(S1, S2, ..., SM , Q) is not explicitly a second order term in W , the Comparison Theorem

in [27] is not applicable to proof of this theorem. So we will prove the following theorem directly.

Proof. The first inequality of (3.26) is a consequence of Theorem 1. If A, Q and Qi are bounded

then LQ(t) exists for t ≤ tf since it follows a Lyapunov differential equation. Also, W (tf ) =

−S1f +
∑M

i=2 Sif and

Ẇ =−WA− AᵀW − (Q−Q1 +
M∑
i=2

Qi)+

Q+W (
M∑
j=1

BjR
−1
j Bᵀ

jSj) + (
M∑
j=1

SjBjR
−1
j Bᵀ

j )W

+
(
S1B1R

−1
1 Bᵀ

1S1 −
M∑
i=2

(SiBiR
−1
i Bᵀ

i Si)
)

=−WA− AᵀW − (Q−Q1 +
M∑
i=2

Qi)

+R(S1, S2, ..., SM , Q),

(3.30)

Now define Y = LQ −W , then Y (tf ) = 0 and

Ẏ =− (LQ −W )A− Aᵀ(LQ −W )

−R(S1, S2, ..., SM , Q)

=− Y A− AᵀY −R(S1, S2, ..., SM , Q)

(3.31)
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Since R(S1, S2, ..., SM , Q) ≥ 0 then

Ẏ ≤ −Y A− AᵀY. (3.32)

Let’s define Z(t, τ) = Φᵀ
1(t, τ)Y (t)Φ1(t, τ) while Φ1(t, τ) for all t, τ ≤ tf is defined as follows

Φ̇1(t, τ) = AΦ1(t, τ), Φ1(τ, τ) = I. (3.33)

Since Y (tf ) = 0 and det Φ1(t, τ) 6= 0 then Z(tf , τ) = 0 for all τ ≤ tf . Consequently,

∂Z(t, τ)

∂t
= Φᵀ

1(t, τ)
[
AᵀY + Ẏ + Y A

]
Φ1(t, τ) ≤ 0 (3.34)

if Y is a solution of (3.31). Now if we define g(t, τ, v) = vᵀZ(t, τ)v for all t, τ ≤ tf and v ∈ RnN

then ∂
∂t
g(t, τ, v) ≤ 0 for all t ≤ tf . Therefore the mean value theorem yields

0 ≥ g(t1, τ, v)− g(t2, τ, v) = vᵀ[Z(t1, τ)− Z(t2, τ)]v (3.35)

for all t1 ≤ t2 ≤ tf and as a result Z(t1, τ) ≥ Z(t2, τ). So we conclude that Z(t, τ) ≥ Z(tf , τ)

for all t, τ ≤ tf . Finally choosing τ = t yields Y (t) ≥ 0 for all t ≤ tf . This ends the proof.

Remark 5. If we define

S̄1 = −S1, H1 = −Bᵀ
1R
−1
1 B1; (3.36)

S̄i = Si, Hi = Bᵀ
iR
−1
i Bi, ∀i ∈ {2, 3, ...,M} (3.37)
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then the sufficient condition becomes

R(S1, ..., SM , Q) = Q+W (
M∑
j=1

Hj)W −
M∑
i=1

M∑
j=1
j 6=i

M∑
k=1
k 6=j

S̄iHjS̄k (3.38)

Proof. Notice that S̄i > 0 ∀i ∈ {1, 2, ...,M}, on the other hand H1 < 0 and Hi > 0 ∀i ∈

{2, 3, ...,M} while W =
∑M

i=1 S̄i. So the equation follows since

W (
M∑
j=1

Hj)W =(
M∑
j=1

S̄jHj)W +
M∑
i=1

M∑
j=1
j 6=i

M∑
k=1

S̄iHjS̄k

=(
M∑
j=1

S̄jHj)W +W (
M∑
j=1

HjS̄j)

−
M∑
i=1

S̄iHiS̄i +
M∑
i=1

M∑
j=1
j 6=i

M∑
k=1
k 6=j

S̄iHjS̄k.

(3.39)

So we obtain

W (
M∑
j=1

Hj)W −
M∑
i=1

M∑
j=1
j 6=i

M∑
k=1
k 6=j

S̄iHjS̄k = (
M∑
j=1

SjB
ᵀ
jR
−1
j Bj)W +W (

M∑
j=1

Bᵀ
jR
−1
j BjSj)

+ S1B
ᵀ
1R
−1
1 B1S1 −

M∑
i=2

SiB
ᵀ
iR
−1
i BiSi (3.40)

So we can rewrite the sufficient condition of the Theorem 3 as follow

R(S1, S2, ..., SM , Q) = R(−S̄1, S̄2, ..., S̄M , Q) = Q+W (
M∑
j=1

Hj)W −
M∑
i=1

M∑
j=1
j 6=i

M∑
k=1
k 6=j

S̄iHjS̄k

(3.41)
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CHAPTER 4: METHODOLOGY

Following the all-against-one game formulation in chapter 3, and for the sake of tractability of

the problem, we study a linear quadratic Pursuit-Evasion game as an all-against-one game. This

simplifies the explanation of the general concepts of the All-against-one games and its application

to a practical problem. In a multi-player pursuit-evasion game consisting of many pursuers and

one evader, each pursuer’s objective function reflects a desire to minimize the distance between

itself and the evader while the evader’s objective function reflects a need to escape by maximizing

a weighted measure of the distances between itself and the pursuers.

4.1 Pursuit-Evasion Game Formulation

Consider a PE game with N pursuers against one evader. The game is formulated as a finite time

LQ game in which the goal of the i-th pursuer is to minimize its distance with respect to the evader

while the evader’s goal is to maximize a weighted sum of the distances between itself and the

pursuers. In this section we are concerned with developing only strategies for the pursuers. In

doing so, the pursuers will assume that the evader will be using the corresponding Nash strategy

but will not know whether the evader will implement that strategy or not. The first strategy is

characterized by pursuers who cooperate as a team in their effort to catch the evader. The resulting

game is referred to as a Cooperating Pursuers Game. The second strategy is characterized by

non-cooperating pursuers who act in a non-cooperative manner among themselves and the evader.

The resulting game is referred to as a Non-Cooperating Pursuers Game. The third strategy is

characterized by greedy pursuers who act independently and selfishly each on its own in an attempt

to catch the evader. The resulting game is referred to as Greedy Pursuers Game.
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Let x1 ∈ Rn be the evader’s position vector and xi+1 ∈ Rn be i-th pursuer’s position vector and let

zi = x1 − xi+1, (4.1)

for i = 1, 2, ..., N , be the difference between position vector of the i-th pursuer and the evader as

illustrated in Figure 4.1. The system dynamics follows (3.1), where the state vector z is defined as

z =

[
zᵀ1 zᵀ2 . . . zᵀN

]ᵀ
and ui ∈ Rn×1. Since the pursuers’ dynamics are uncoupled, the system

dynamics matrix A = blkdiag{A1, ..., AN} ∈ RnN×nN is block diagonal where Ai ∈ Rn×n for

i = 1, 2, ..., N . The input matrix of the evader is Be = B1 = 1N ⊗ In ∈ RnN×n and the input

matrices of the pursuers are Bpi = Bi+1 = −ei ⊗ In ∈ RnN×n for i = 1, 2, ..., N . In ∈ Rn×n is

the identity matrix, ei ∈ RN denotes the vector with a 1 in the i-th coordinate and 0’s elsewhere,

1N ∈ RN×1 is a vector with all the entries equal to 1 and⊗ is the Kronecker product. Dimension n

can be any positive integer, for example 2 or 3 which represents a PE game with 2 or 3 dimensions,

respectively. Each player should minimize the objective function as defined in (3.2) and (3.3),

where Sif ∈ RnN×nN , Qi ∈ RnN×nN and Ri ∈ Rn×n are the dimensions of weight matrices of the

i-th player. For the player 1, the evader, Qe = Q1 < 0, Sef = S1f < 0 and Re = R1 > 0. For

players 2 thorough M , the pursuers, Qpi = Q(i+1) ≥ 0, Spif = S(i+1)f ≥ 0 and Rpi = R(i+1) > 0

for i = 1, 2, ..., N .

In this thesis, we consider three different strategies for the pursuers which have different Nash

attributes. These strategies are discussed in the following subsections. The weights in the players’

objective functions (3.2) and (3.3) are chosen as follow

Spfi =fpiei ⊗ In, Sef =− diag{fe1 , ..., feN} ⊗ In,

Qpi =qpiei ⊗ In, Qe =− diag{qe1 , ..., qeN} ⊗ In,

Rpi =rpi ⊗ In, Re =re ⊗ In,

(4.2)
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where fei , qei , re and fpi , qpi , rpi for i = 1, 2, ..., N are positive scalar weights for the evader and

corresponding i-th pursuer, respectively. Furthermore, for simplicity, we will assume that t0 = 0.

We should also mention that in developing the pursuers strategies we will assume that all players

have full measurements of the state vectors they need to implement their closed-loop strategies. In

practice, however, full state measurements may not be available. Problems with partial state mea-

surement and problems with information network topology among the players will be considered

in a follow-up paper.

x

y
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P1

P2

PN−1

PN

..
..
.

z 1

z2

zN−1

zN

x1

x2

x 3
x N

x
N

+
1

Figure 4.1: Pursuers and the Evader on an x-y Coordinate System
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Figure 4.2: PE Game Between Cooperative Pursuers (as a Team) and the Evader.

4.1.1 Cooperative Pursuers Strategy

This game describes a situation where the pursuers act as one team against the evader as illustrated

in Figure 4.2. Essentially, it is a 2-player game where all the pursuers’ controls are combined as one

control vector. The cooperation among the pursuers can be formulated as a convex combination

of their cost functions as JP =
∑N

i=1 αiJpi , where αi > 0,
∑N

i=1 αi = 1 and Jpi = Ji+1 for

i = 1, 2, ..., N as they are defined in (3.2) and (3.3). The weight αi can be interpreted as the

fraction of the total effort that the i-th pursuer is contributing towards the team. Consequently, the

cost function for the pursuers as a team becomes

JP =
1

2
z(tf )

ᵀSPf
z(tf ) +

1

2

∫ tf

0

[z(t)ᵀQP z(t) + ui(t)
ᵀRPui(t)]dt (4.3)
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where

SPf
=

N∑
i=1

αiSpfi , QP =
N∑
i=1

αiQpi , RP =
N∑
i=1

αiRpi (4.4)

The evader’s cost function as defined in (3.2) becomes Je = J1. The system dynamics of (3.1)

becomes

ż = Az +Beue +BPuP , (4.5)

where ue = u1 ∈ Rn×1 is the evader’s control vector and uP = [uᵀ2, u
ᵀ
3, ..., u

ᵀ
M ]ᵀ ∈ RNn×1 is the

combined control vector of the pursuers as a team. The matrix Be = 1N ⊗ In is the input matrix

of the evader and BP = −IN ⊗ In is the combined input matrix of pursuers as a team.

The system dynamics (4.5), and objective functions (4.3) and Je form 2-player LQ game. A Pareto

Front solution of cooperation among the pursuers can be obtained by using different values of αi

which impacts the performance of the pursuers as will be illustrated in Section 5.3. The closed-loop

Nash strategies for the pursuers can be obtained from (3.4) as follow

u∗P = −R−1P BPSP z, (4.6)

u∗e = −R−1e BeSez; (4.7)

where the matrices SP and Se are the solutions to the following coupled differential Riccati equa-

tions

ṠP + SPA+ AᵀSP +QP − SPBPR
−1
P Bᵀ

PSP − SPBeR
−1
e Bᵀ

eSe − SeBeR
−1
e Bᵀ

eSP = 0, (4.8)

Ṡe + SeA+ AᵀSe +Qe − SeBeR
−1
e Bᵀ

eSe − SeBPR
−1
P Bᵀ

PSP − SPBPR
−1
P Bᵀ

PSe = 0, (4.9)

where SP (tf ) = SPf
and Se(tf ) = Sef . We note that the evader’s strategy in (4.6) is only calculated

in order to determine the pursuers’ strategy, but there is no guarantee that the evader will actually

use that strategy.
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4.1.2 Non-Cooperative Pursuers Strategies

This game represent a situation where the pursuers are competing among themselves in their effort

to capture the evader as illustrated in Figure 4.3.The Nash equilibrium in this case will involve

all pursuers and evader simultaneously, and the corresponding non-cooperative pursuers strategies

can be determined using (3.4) and (3.5).

E

P1

P2

PN−1

PN

.....

Game

Figure 4.3: PE Game among Non-Cooperative Pursuers and the Evader.

4.1.3 Greedy Pursuers Strategies

This game represent a situation where the pursuers are greedy. That is, each pursuer decides to

ignore all other pursuers and pursue the evader on its own as illustrated in Figure 4.4. Essentially,

in this case we have N separate PE games between each pursuer and the evader. The pursuers’

strategies are similar to the ones proposed in [1] where each pursuer moves exactly toward the

evader at each instant of time, ignoring what the others are doing.
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Figure 4.4: Separate PE Games Between Each Greedy Pursuer and the Evader.

According to the problem formulation (4.2) and (4.1), dynamics of the games can be represented

by N decoupled systems

żi = Aizi +Beiuei +Bpiupi , (4.10)

for i = 1, 2, ..., N , where Bei = Be ◦ (ei ⊗ In) is the corresponding part of the original input

matrix Be as defined in (3.3) with respect to i-th player, with input matrix Bpi ∈ Rn×n, and ◦

is the Hadamard product. If each pursuer ignores the effect of the other pursuers, its game with

the evader assumes that the evader is playing only versus that pursuer and ignoring the others. In

another word, the evader’s cost function against i-th pursuer is as follows

Jei =
1

2
z(tf )

ᵀSeifz(tf ) +
1

2

∫ tf

0

[z(t)ᵀQeiz(t) + uei(t)
ᵀReuei(t)]dt, (4.11)

where Seif = Sef ◦ blkdiag{ei ⊗ In} and Qei = Qe ◦ blkdiag{ei ⊗ In} are the evader weights

instead of Sef , Qe in (4.2), respectively. According to (3.4) and (3.5), the closed-loop Nash greedy
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strategies can be obtained for each pursuer as follows

u∗pig = −R−1pi BpiSpfiz, (4.12)

u∗eig = −R−1e BeiSeiz; (4.13)

where Spfi and Sei are the solutions to the following coupled differential Riccati equations

Ṡpi + SpiĀi + Āᵀ
iSpi +Qpi − SpiBpiR

−1
pi
Bᵀ
pi
Spi − SpiBeiR

−1
e Bᵀ

ei
Sei − SeiBeiR

−1
e Bᵀ

ei
Spi = 0

(4.14)

Ṡei + SeiĀi + Āᵀ
iSei +Qei − SeiBeiR

−1
e Bᵀ

ei
Sei − SeiBpiR

−1
pi
Bᵀ
pi
Spi − SpiBpiR

−1
pi
Bᵀ
pi
Sei = 0

(4.15)

for i = 1, 2, ..., N , where Spi(tf ) = Spif , Sei(tf ) = Seif and matrix Āi = blkdiag{ei ⊗ Ai}. Note

that equation (4.12) is in form of full state closed-loop. However, Spfi contains zeros in all entries

except the ones related to i-th pursuer, indicating that the i-th pursuer needs only measurement of

the distance between itself and the evader to implement its control.
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CHAPTER 5: RESULTS

In this chapter, we demonstrate applications of the strategies (developed in chapter 4) in various

situations by illustrating examples of games with and without uncertainties in parameters and in-

formation about players. Not only the strategies are significantly different, but also the number of

pursuers chasing the evader as well as their initial position and characteristic are crucial factors

that lead to various outcome in different situations. Additionally, it’s significantly useful if one

could predict the outcome of a game given the information about players and their characteristics

in an All-against-one game. In order to make it feasible, we have developed a user-friendly soft-

ware package that provides the opportunity of simulating any planar multi-player Pursuit-Evasion

game by only inputting the information about the players. So if this data were available precisely,

then one could forecast the outcome of a game thoroughly by using that software. However, in

most of the real problems, this information may not be known by other players and only uncertain

estimations of parameters might be feasible. We discuss these kind of problems in section 5.3 and

we study similar problems to the examples in section 5.2 under different scenarios where there are

uncertainties about the strategies and also parameters in the cost function of each player.

5.1 PE Game Software

In this section, we explain the software that we have developed to solve planar PE games with

any number of pursuers chasing an evader. The software gives the opportunity to choose different

strategies for each side of the game as shown in Figure 5.1 . For example, the pursuers can choose

to play non-cooperatively as independent players or they can decide o play cooperatively as a team.

Also, possibility of different team formation has been augmented in the software, i.e. the portion

of contribution of each pursuer towards the team can be chosen in each team formation as shown
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in Figures 5.2a and 5.2b. In the next section, a number of different examples shows the output of

software for simulation of some three-pursuers one-evader games.

Figure 5.1: Software - Compatible with Mac OS X and Windows
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(a) Main Page

(b) Output

Figure 5.2: Software - An example of Cooperative pursuers versus the evader escaping from the
closest pursuer

25



5.2 Illustrative Examples

Consider a three-pursuer one-evader game on the plane (so n = 2) with parameters as described

in Table 5.1. The entries under the position column are the x-y coordinates of each player, under

the f column represent the weights in Sif , under the r column represent the weights in Ri. The

parameters in the evader row are the same against each of three pursuers. For simplicity, the control

input of each player is assumed to be velocity which leads to a system dynamics matrix of A = 0.

The terminal time is assumed to be tf = 3 and the evader is assumed to be captured if it enters a

capture circle of radius δ = 0.1 from any one pursuer. The three pursuers’ strategies are determined

as described in the previous section and the evader in each case is implementing the corresponding

Nash strategy in each case.

Table 5.1: Positions and Parameters of Player in the Example

Position Parameters1

f q r

Evader [3, 3] -10 -10 1
Pursuer 1 [4, 0] 3 3 0.4
Pursuer 2 [0, 3] 3 3 0.8
Pursuer 3 [2, 1] 4 4 2.8
1. Parameters are the diagonal entries in (4.2).

The resulting trajectories of pursuers are illustrated in Figure 5.3a, 5.4a and 5.5a, and the corre-

sponding distances of pursuers to the evader are illustrated in Figure 5.3b, 5.4b and 5.5b. In the

cooperative pursuers game, αi = 0.3̄ are used in the team objective functions, representing equal

contributions by all pursuers.Note that the evader is able to escape when each pursuer uses the

greedy strategy but it gets captured when the pursuers implement either the cooperative or the non-

cooperative strategies. However, the method by which the evader gets captured in these two games

are noticeably different. When the pursuers cooperate as a team they seem to encircle and entrap
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the evader before capturing (Figure 5.3a) while when they do not cooperate they seem to target

the evader directly (Figure 5.4a). In both of these games the conditions of Theorem 2 are satisfied

yielding trajectories that are exponentially stable (Figures 5.4b and 5.3b).

In the greedy pursuers strategy, the fact that each pursuers are moving exactly towards the evader

causes the evader to escape (Figure 5.5a). In this case the condition of Theorem 2 are not satisfied.

We should note that in this example we have assumed that all players have full information about

the parameters of other side, which also may not be feasible in realistic situations.
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Figure 5.3: Example - PE Game with Cooperative Pursuers.
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Figure 5.4: Example - PE Game with Non-Cooperative Pursuers.
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5.3 Monte Carlo Simulation

In the illustrative example in the previous section, we have assumed that each player has full

knowledge of the parameters in the objective functions of all other players (i.e. Table 5.1). In

a practical PE game, however, this may not the case. We have also assumed that in each of the

three pursuers strategies considered, the evader is implementing the strategy that yields a Nash

equilibrium in each case. In a practical PE game, this also may not be the case.

With such lack of knowledge of the game parameters and strategy used by the evader, the pursuers

might be interested in determining the probabilities of capturing the evader under some statistical

distribution of these parameters and for several possible strategies used by the evader.

To accomplish this, we performed Monte Carlo simulations on a 3-pursuers one-evader game ac-

cording to three different scenarios with parameter distributions and initial positions as shown in

Table 5.2. The only difference between these scenarios is the initial position of players. Basically,

this indicates the impact of initial positions of players on the output of the game.

Table 5.2: Positions and Parameters of Pursuers in MC Simulation

Positions Parameters

Scenario 1 Scenario 2 Scenario 3 f q r

Evader [6, 6] [6, 6] [6, 6] ?U [−3,−1] U [−3,−1] U [1, 3]
Pursuer 1 [7, 3] [4, 0] [4, 0] U [0, 2] U [0, 2] U [1, 10]
Pursuer 2 [3, 6] [3, 6] [0, 3] U [0, 2] U [0, 2] U [1, 10]
Pursuer 3 [5, 4] [5, 4] [5, 4] U [0, 2] U [0, 2] U [1, 10]

? U [a, b] indicates the Uniform distribution between a and b.

In the cooperative pursuers strategies we used four different team configurations with different

choices of αi parameters as shown in Table 5.3. In Team 1, 2 and 3 we have given one pursuer a
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higher share of the total effort (0.8) than the other two and in Team 4 we have assigned equal share

of the total effort (0.3) to the three pursuers.

Table 5.3: Value of αi for Each Pursuer in Different Team Formations

Pursuer 1
α1

Pursuer 2
α2

Pursuer 3
α3

Team 1 0.8 0.1 0.1
Team 2 0.1 0.8 0.1
Team 3 0.1 0.1 0.8
Team 4 0.3̄ 0.3̄ 0.3̄

Each sample of the MC simulation represents all different combinations of strategies for the pur-

suers and evader. The outcome of each simulation is defined to be a Bernoulli random variable

of 1 if the pursuers capture the evader with probability of (ρ) and of 0 if the evader escapes with

probability of (1− ρ). Assuming that the error distribution is normal as in [30, 31], the confidence

interval of the simulated mean value would be

[e−, e+] = [ρ− zγ/2.s, ρ+ zγ/2.s] (5.1)

where s =
√

ρ(1−ρ)
n

is the standard deviation of n samples and zγ/2 is the critical value of the

Normal distribution for a given error level γ. The desired margin of error ε is half of the confidence

interval, so the number of required samples can be calculated as follows:

ε = zγ/2.s (5.2)

n =
[zγ/2√ρ(1− ρ)

ε

]2
(5.3)
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Also in terms of desired percentage of margin of error, it can be calculated as:

E = 100×
zγ/2.s

ρ
(5.4)

n = (
1

ρ
− 1)

[100zγ/2
E

]2
(5.5)

For a 95% confidence level, the error level is γ = 0.05 and the critical value would be zγ/2 =

1.96. For a desired margin of error ε = 0.01, the resulting minimum number of required samples

becomes 9, 604 which happens when ρ = 0.5. Consequently, in the worst case, with a confidence

level of 95% we can assert that the percentages of capturing probability will be accurate with a

maximum error of ±1%. In our Monte Carlo simulation we used 10, 000 runs, each consisting of

all possible combinations of strategies by pursuers and evader. This required 15 hours of CPU time

on a super computer with 10 Intel Xeon 64-bit CPUs. The results of the simulation are shown in

Tables 5.4, 5.5 and 5.6.

For each possible strategy of the evader, the pursuers strategy that yields the highest probability of

capturing the evader is indicated by ‡ on Table 5.4. The highest such probability occurs when the

pursuers are using a non-cooperative strategy and the evader uses a Nash Strategy against Team 3.

The lowest capturing probability occurs when the pursuers use also the non-cooperative strategy

and the evader uses a Nash strategy against the closest pursuer. In between these two extremes, the

pursuers could run the risk of attaining very low probabilities of capturing the evader. For example,

if the pursuers cooperate according to Team 3 to achieve a capturing probability of 67%, they run

the risk of attaining 2% probability of capture (or 98% of probability of escape) if the evader uses

a Nash strategy against the closest pursuer. Thus, the safest strategy for the pursuers is to use the

non-cooperative strategy.

On the other side, the evader may perform a similar Monte Carlo simulation to arrive at Table

5.4. From the evader’s perspective, for every strategy that the pursuers use, the strategy that yields
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the lowest probability of capture is indicated with a †. Consequently the safest strategy for the

evader is to use the Nash strategy against the closest pursuer. If both sides use the safest strategy,

this eventually would result in a 46% probability of capture (or 54% probability of escape) of the

evader.

Table 5.4: Scenario 1: Monte Carlo Simulation (Capturing Probability in Percent)

Evader’s Nash Strategies versus:

Team 1 Team 2 Team 3 Team 4
Non-Cooperative

Pursuers
Closest
Pursuer

Pu
rs

ue
rs

N
as

h
St

ra
te

gi
es

vs
E

va
de

r

C
oo

pe
ra

tiv
e

Pu
rs

ue
rs Team 1 64 20† 29 61? 20† 24

Team 2 60 32 14† 56 17 20

Team 3 66? 9 7 7 32 2†

Team 4 23 28 36 15† 25 17

Non-Cooperative
Pursuers 59 69? 74? 53 48? 46?†

Greedy
Pursuers 18 10 11 11 7† 31

? Optimal reaction set of pursuers
† Optimal reaction set of evader

In scenarios 2 and 3, initial position of Pursuer 1 and 2 have been moved further out of the evader,

respectively. As it is shown in Tables 5.5 and 5.6, the probabilities of captures are much lower in

comparison to scenario 1. Also in Scenario 2, if both side of the game choose to play with security

strategy the outcome of the game would be 40% probability of capture of evader. Similarly in

Scenario 3, the secure strategy for the pursuers is Non-cooperative and for the evader is versus the

Closet Pursuer, and if both chooses their security strategy the outcome of the game would be 20%

probability of capture of the evader or 80% probability of escape.
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Table 5.5: Scenario 2: Monte Carlo Simulation (Capturing Probability in Percent)

Evader’s Nash Strategies versus:

Team 1 Team 2 Team 3 Team 4
Non-Cooperative

Pursuers
Closest
Pursuer

Pu
rs

ue
rs

N
as

h
St

ra
te

gi
es

vs
E

va
de

r

C
oo

pe
ra

tiv
e

Pu
rs

ue
rs Team 1 68? 23 10† 60 27 14

Team 2 39 10 5 32 11 3†

Team 3 53 13 8† 36 21 35

Team 4 28 5† 19 20 26 16

Non-Cooperative
Pursuers 61 46? 41? 63? 59? 40?†

Greedy
Pursuers 9 4 7 8 3† 28

? Optimal reaction set of pursuers
† Optimal reaction set of evader

Table 5.6: Scenario 3: Monte Carlo Simulation (Capturing Probability in Percent)

Evader’s Nash Strategies versus:

Team 1 Team 2 Team 3 Team 4
Non-Cooperative

Pursuers
Closest
Pursuer

Pu
rs

ue
rs

N
as

h
St

ra
te

gi
es

vs
E

va
de

r

C
oo

pe
ra

tiv
e

Pu
rs

ue
rs Team 1 51 23 6† 44 19 14

Team 2 39 10 1† 30 10 2

Team 3 35 11 6† 42 12 23?

Team 4 19 2† 16 12 20 8

Non-Cooperative
Pursuers 54? 25? 36? 47? 56? 20†

Greedy
Pursuers 6 3 3 6 1† 23?

? Optimal reaction set of pursuers
† Optimal reaction set of evader
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CHAPTER 6: CONCLUSION

In this thesis we considered an all-against-one LQ game and provided necessary conditions for the

closed-loop Nash strategies as well as sufficient conditions for exponential stability of the result-

ing state trajectory. This all-against-one game was used as a framework to study three different

pursuers strategies in a multi-pursuers one evader PE game. The strategies considered include

cooperating, non-cooperating and greedy pursuers. In each case, these strategies are derived as-

suming that the evader is also using in each case the corresponding Nash strategy. An example is

used to illustrate these strategies and show several different approaches that may be used by the

pursuers to capture the evader. Finally, in the absence of complete information on the parameters

in the objective functions, we performed a Monte Carlo simulation with 10,000 runs to produce

probabilities of capture of the evader under uniform distribution of the parameter spaces and for

several different strategies that could be used by the evader against the three proposed strategies

for the pursuers.

The results indicate that in all-against-one games under parameter uncertainties, the Cooperative

Nash strategy for the pursuers is not always the best choice. Furthermore, the Non-cooperative

Nash strategy turns out to be the safest one in most of the cases. This is due to the existence of an

adversary agent in the system and parameter uncertainties between players, so that it’s not always

safe for the pursuers to rely on the cooperation among themselves. Also, the Greedy Nash strategy

is the worst one in almost all the cases unless the evader also chooses its Nash strategy versus only

one of the pursuers (e.g. the closest one).
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