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ABSTRACT 

Amongst its numerous functions, the liver is responsible for the synthesis and secretion of very 

low-density lipoprotein (VLDL). VLDL particles play the important role of facilitating the 

transport of lipids within the aqueous environment of the plasma; yet high plasma 

concentrations of these particles result in the pathogenesis of atherosclerosis, while low VLDL 

secretion from the liver results in hepatic steatosis. VLDL synthesis in the hepatocyte is 

completed in the Golgi apparatus, which serves as the final site of VLDL maturation prior to its 

secretion to the bloodstream. The mechanism by which VLDL’s targeted transport to the 

plasma membrane is facilitated has yet to be identified. Our lab has identified this entity. Our 

findings suggest that upon maturation, VLDL is directed to the plasma membrane through a 

novel trafficking vesicle, the Post-Golgi VLDL Transport Vesicle (PG-VTV). PG-VTVs containing 

[3H] radiolabeled VLDL were generated in a cell-free in vitro budding assay for study. First, the 

fusogenic capabilities of PG-VTVs were established. Vesicles were capable of fusing with the 

plasma membrane and delivering the VLDL cargo for secretion in a vectorial manner. The next 

goal of our study is to characterize key regulatory molecular entities necessary for PG-VTV 

biosynthesis. A detailed analysis was undertaken to determine the PG-VTV proteome via 

western blot and two-dimensional difference in gel electrophoresis. The identification of key 

molecular regulators will potentially offer therapeutic targets to control VLDL secretion to the 

bloodstream. 
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CHAPTER ONE: GENERAL INTRODUCTION 

For anything to have a significant impact it not only must be made correctly, but must 

be transported to its destination intact and functional. This is an absolute truth at the cellular 

level. 

Lipoproteins are particles consisting of proteins and lipids that facilitate the movement 

of lipids through the aqueous environment of the bloodstream. Lipoproteins are formed in 

order to protect the cell from the cytotoxic effect of high cytosolic concentrations of free Fatty 

Acids (FA) which lead to the disruption of the cell membrane and would result in cell death (1, 

2). VLDL is secreted into circulation where it is then digested into Intermediate Density 

Lipoprotein (IDL) and more importantly the atherogenic particle Low Density Lipoprotein (LDL). 

The vesicle-mediated secretory pathway, specifically the lipoprotein secretory pathway 

is an issue of high significance in the regulation of circulating lipoproteins implicated in 

coronary heart disease. Increased plasma concentrations of apolipoprotein B (apoB) containing 

lipoproteins, specifically LDL, have been shown to stimulate the pathogenesis of atherosclerosis 

(3, 4). Atherosclerosis currently poses an egregious predicament in the United States where 1 

out of every 6 deaths in 2008 was attributed to coronary heart disease and it is estimated that 

each minute an American dies due to a coronary event (5). The pathogenic atherogenic 

particles in circulation originate from hepatic secretion VLDL, which upon metabolism 

generates IDL and then LDL. VLDL biogenesis occurs in the liver where upon maturation is 

secreted into the circulatory system. 
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Absorption and metabolism of lipids is necessary for all forms of life, but due to the 

innate chemical properties of lipids which render them insoluble in the aqueous environment 

of blood a specialized organ is necessary for proper lipid metabolism. The liver is the organ that 

specializes in this process in mammalian species. It is here where potentially cytotoxic non-

esterified free fatty acids are converted to a more physiologically useful form of triacylglycerol 

(TAG) in the ER, which are then incorporated into TAG-rich VLDL molecules that are eventually 

secreted into the bloodstream. This is imperative not only due to the hydrophobic chemical 

properties of lipids which render them insoluble in the aqueous environment of the blood, but 

also in order to create a process which can be regulated depending on the fluctuating dietary 

needs of the organism. Therefore the liver must adapt to the FA influx and bind these 

hydrophobic lipids to lipoproteins that confer aqueous solubility and indirectly facilitate a 

process that allows for the regulation of lipid secretion into circulation. 

The sources of FA to the liver include the chylomicron remnants, dietary FA from the 

portal hepatic vein, and FA influx from adipocytes (1). The chylomicron is the lipoprotein 

particle synthesized and secreted from the intestine. Within the intestine, the nascent 

chylomicron is transported from the ER, its site of synthesis, to the Golgi membranes, its site of 

maturation, via a unique vesicle termed the Pre-Chylomicron Transport Vesicle (PCTV) (1, 6). 

The PCTV signifies the importance of transport vesicles in intracellular lipoprotein trafficking 

and alludes to the mechanism that mediates VLDL transport within the hepatocyte. 
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VLDL Biogeneration 

VLDL consists of a core of neutral triacylglycerol (TAG), cholesterol esters, specific 

apolipoproteins, surrounded by a monolayer of amphipathic phospholipids and unesterified 

cholesterol (7, 8). Newly synthesized VLDL particles range in size between 30-100 nm in 

diameter (7, 9). The main apolipoprotein associated with VLDL is apoB, which serves as the 

structural backbone for VLDL, IDL, and LDL (3, 10). Each VLDL particle contains one and only one 

apoB molecule, and thus understanding this protein is of great importance. 

There exist two major forms of apoB, the fully translated apoB100 and apoB48. ApoB is 

a large hydrophobic glycoprotein with the fully translated apoB100 sequence consisting of 4536 

amino acids and molecular weight of 520 kDa (11-13). The apoB48 form corresponds to the 

peptide of 48% of the full-length protein of approximately 250 kDa. This occurs due to an 

apobec-1 mediated mRNA editing of the apoB transcript which causes a C-to-U deamination of 

a cytidine at nucleotide 6666 which normally would encode a glutamine codon (CAA), resulting 

in a premature translational stop codon (UAA) (14, 15). In humans, apoB100 is associated with 

VLDL produced in the liver, while apoB48 is associated with chylomicrons produced in the 

intestine (1). In rodents however, both apoB100 and apoB48 are synthesized and secreted by 

the liver (15). ApoB100 has a pentapartite structure (NH2−α1−β1−α2−β2−α3−COOH) consisting of 

three alpha helix domains that bind lipid reversibly and two beta sheet domains that 

irreversibly bind lipids (12). This association allows the peptide to be exposed on the surface 

while interacting with lipids and thus allows its associated lipids to traverse the aqueous 
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environment of the bloodstream. The synthesis and regulation of this protein are unique and 

allude to its significant role in the hepatocyte. 

 

 

Figure 1 – VLDL Molecule 

Cross-section of a Very Low Density Lipoprotein particle. 

 

 

Amongst the liver’s many vital functions, the synthesis and secretion of VLDL is a 

complex pathway of utmost importance. The first step of VLDL biogeneration begins at the 

surface of the hepatic Endoplasmic Reticulum (ER) with the synthesis of apoB. Nascent apoB is 

targeted into the ER by its N-terminal signal-peptide sequence of 27-amino acids. The 

translocation of nascent apoB occurs through translocons occurs simultaneously with 

translation, however this translocation is not continuous (16, 17).  
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The level of apoB100 in the liver is regulated not by its synthesis, but by the level of 

degradation (18). Nascent apoB100 that fails to be lipidated in the lumen of the ER is directed 

to the ubiquitin-proteasome pathway for degradation in a process called ER Associated 

Degradation (ERAD). While most protein that are directed to the ERAD are degraded due to 

improper translation ultimately leading to misfolding, apoB100 is unique in that when it is 

poorly lipidated, it is sent for degradation, thus regulating its synthesis based on the availability 

of core lipids (18). This has been shown through the use of MTP inhibitors which reveal that 

upon inhibition of MTP function, apoB is degraded and if proteasome inhibitors are also 

introduced there leads to an accumulation of secretion-incompetant apoB100 within the 

hepatocytes (19). The mechanism of ERAD degradation involves the partial translation and 

translocation of the nascent apoB100, then interaction with the cytosolic chaperone Hsp70, 

followed by polyubiquitinylation and association with Hsp90 that directs the peptide to the 

proteasome (20-22). This process also involves the association of P58IPK, Hsp110, p97, and BiP, 

which regulate the secretion of apoB through the ERAD (23-26). 

VLDL assembly occurs via a two-step process (27). This newly synthesized apoB100 

molecule is first partially lipidated on its N-terminus through the action of microsomal 

triglyceride transfer protein (MTP). MTP is a lipid transfer enzyme consisting of a dimer of two 

polypeptides, a 55 kDa ‘P’ subunit which is an ER resident enzyme protein disulfide isomerase 

(PDI), and a 97 kDa ‘M’ subunit which is the subunit responsible for catalyzing the transfer of 

phospholipids, cholesterol esters, and TAG to apoB100 (28, 29). MTP has three functional 

domains, an apoB binding domain, a lipid transfer domain, and a membrane associating domain 
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(28). The second step of VLDL formation involves the conjugation of this poorly-lipidated VLDL 

particle with the bulk of its lipid (30). 

 

VLDL Trafficking 

Upon synthesis, this premature VLDL particle must be transported from the ER to the 

Golgi apparatus for maturation (31, 32). The VLDL Transport Vesicle (VTV) has been identified 

as the vesicle that mediates this transport step (33). The VTV is unique to other ER-to-Golgi 

transport vesicles characterized presently, such as the Protein Transport Vesicles (PTVs) 

responsible for transporting protein to the Golgi (7, 33). The VTV is unique in both its proteome, 

morphology, tethering proteins and cargo (33, 34).  

The formation of the VTV from the ER membranes is dependent upon coat-complex II 

(COPII) proteins. These are a group of cytosolic proteins that facilitate the formation of vesicles 

and mediate cargo-selection for these vesicles. The COPII complex consists of the proteins Sar1, 

Sec23-Sec24, and Sec13-Sec31 (35-38). The formation of the COPII coat begins with the guanine 

nucleotide exchange factor Sec12, which mediates the exchange of the GDP form of Sar1 to 

Sar1-GTP (39). Sar1-GTP then recruits the heterodimer Sec23-Sec24, which is followed by the 

recruitment of the Sec13-Sec31 heterotetramer. This formation triggers membrane 

deformation and the budding of the vesicle from the ER membrane (7, 38). It is important to 

note that there are two mammalian isoforms of Sar1. Sar1a is responsible for the ER-to-Golgi 

transport of nascent proteins, while Sar1b is the isoform that mediates the transport of 
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lipoproteins (40-42). To accommodate the larger cargo, the COPII cage is expanded by complex 

with the cideB protein (43). 

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) 

proteins are the tethering proteins responsible for the targeted delivery of vesicles to their 

destination and allow for the formation of the vesicular fusion complex (44, 45). The SNARE 

complex required for fusion of VTV with Golgi membranes consists of the vesicular-SNARE (v-

SNARE) Sec22b on the VTV, and the target-SNAREs (t-SNARE) syntaxin5, rBet1, and GOS28 on 

the Golgi membranes (46). 

Upon arrival within the Golgi lumen, several important modifications occur to VLDL that 

are prerequisites to its secretion from the hepatocyte including additional phosphorylation and 

glycosylation of its structural apoB100 protein (47-50). It is within the Golgi lumen that VLDL 

matures further by the incorporation of apolipoproteinAI (apoAI) and apolipoproteinE (apoE) 

(49).  

Mature VLDL must then be delivered to the plasma membrane (PM) for secretion from 

the hepatocyte. Its large size of approximately 80-100nm in diameter suggests that it requires a 

specific intracellular compartment to facilitate this trafficking step (33). The presence of lipases 

and proteases in the cytosol also strongly suggest the need for a sealed compartment to 

protect its cargo from digestion. Moreover the mature VLDL molecule must be specifically 

directed towards the plasma membrane for secretion. 
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Figure 2 – VLDL Transport Pathway 

Overview of the intracellular VLDL trafficking pathway. VLDL is synthesized in the ER lumen and 

transported via the VTV to the cis-Golgi for maturation. Upon maturation it is transported to 

the plasma membrane for secretion from the hepatocyte via the newly isolated PG-VTV vesicle. 

 

 

The transport of mature VLDL to the plasma membrane is a prerequisite for its eventual 

secretion from the hepatocyte. This trafficking step is a directed means and thus alludes to the 

fact that a vesicle must facilitate this transport. The fact that this cargo is unique in size and 

biochemical composition to other molecules suggests that a specific vesicle must be responsible 

for the transport step. Moreover this specific vesicle must have the capability to enclose its 

mature VLDL cargo, traverse the cytosol and specifically deliver its cargo to the plasma 

membrane for secretion.  
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Vesicle budding and fusion is of utmost importance for transport of specific cargo 

between subcellular organelles and eventual secretion out of cells (51). Regulation of vesicular 

transport at the level of the trans-Golgi network (TGN) is physiologically vital to the generation 

of basolateral and apical membranes in polarized cells, and for sorting cargo for transport from 

the TGN (52-55). The significance of Golgi regulation has been shown with studies on protein 

containing vesicles where Golgi lipids such as phosphoinositides have been shown to play a role 

in the recruitment of trafficking components such as clatherin coats (56, 57), while 

glycosphingolipids and cholesterol levels have been hypothesized to play a role in segregating 

components into lipid rafts (58). Furthermore these studies have indicated the significance of 

the continuous membrane flow characteristic to the Golgi as being important for directing 

cargo for secretion (59), and have identified that these Golgi derived vesicles are initially 

formed by a tubule like extension of trans-Golgi network membranes and their subsequent 

membrane fission resulting in vesicles (60, 61). 

Although much is known on clathrin- (mediate plasma membrane to TGN vesicular 

transport of endosomes), COPI- (retrograde vesicle transport from Golgi to the ER and more 

recently retrograde transport from endosomes to TGN), and COPII- vesicles (anterograde ER to 

Golgi transport) (62, 63), the synthesis, protein composition, and tethering SNARE protein 

complex responsible for directional trafficking and targeting of Golgi-to-Plasma membrane 

vesicles is not yet fully characterized.  

It is for these reasons that the hypothesis is that mature VLDL exits the Golgi in a unique 

specialized vesicle which is unique in morphology, size, proteomic composition, and that this 
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vesicle is functional in its ability to deliver its VLDL cargo to the plasma membrane for secretion 

from the hepatocyte. The mechanism by which this investigation will be carried out involves 

first, generating Golgi-derived lipoprotein vesicles, followed by conducting morphological and 

biochemical studies on these vesicles. Upon confirmation that these vesicles are indeed unique 

and are capable of enclosing mature VLDL cargo, a proteomic analysis will be conducted to 

analyze these vesicles and compare them to previously identified hepatic lipoprotein vesicles, 

specifically the VTV. The intent of this study is to elucidate the requirements for Golgi-derived 

VLDL transport vesicle biogeneration and to identify its proteome. This study indicates that the 

PG-VTV is a novel Golgi to plasma membrane vesicle unique in size, buoyant density, cargo, and 

proteome and is responsible for the secretion of fully matured VLDL from hepatocytes. The 

significance of these studies are vast, as this will provide a basic tool for cardiovascular, and 

more specifically, lipoprotein research. 
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CHAPTER TWO: EXPERIMENTAL PROCEDURES 

Materials 

[3H]OA (oleic acid; 45.5 Ci/mM) was acquired from Perkin Elmer Life Sciences (Boston, MA). 

Protease inhibitor cocktail tablets were acquired from Roche Applied Science (Indianapolis, IN). 

Gel electrophoresis and immunoblotting reagents were acquired from Bio-Rad (Hercules, CA). 

Enhanced chemiluminescence (ECL) reagents were acquired from GE Healthcare Life Sciences 

(Pittsburgh, PA). Other reagents used were of analytical grade and purchased from local 

companies. Sprague-Dawley rats (150-200 g) were acquired from Harlan (Indianapolis, IN). All 

procedures involving animals were conducted according to the guidelines of the University of 

Central Florida’s Institutional Animal Care and Use Committee (IACUC) and strictly following the 

IACUC-approved protocol. 

 

Antibodies 

Rabbit polyclonal anti-apolipoproteinB (apoB) antibodies were generated commercially (Protein 

Tech Group, Chicago, IL) using a synthetic peptide corresponding to amino acids 2055-2067 of 

rat apoB. Goat polyclonal anti-apoAIV, anti-apoE, anti-calnexin, anti-GOS28, anti-syntaxin 

antibodies; rabbit polyclonal anti-L-FABP antibody; and mouse monoclonal anti-Sec22b, anti-

TGN38 antibodies were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Rabbit 

polyclonal anti-Sar1 antibodies were generated commercially and have been described 

previously. Rabbit polyclonal antibodies against rat VAMP7 (vesicle-associated membrane 
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protein 7; amino acids 105-123) have been described previously. Rabbit polyclonal antibodies 

to apoAI; and Mouse monoclonal antibodies to alpha 1 Sodium Potassium ATPase were 

purchased from Abcam (Cambridge, MA). Goat anti-Mouse IgG, Goat anti-Rabbit IgG, and 

Rabbit anti-Goat IgG conjugated with horseradish peroxidase (HRP) were purchased from Sigma 

Chemical Co. (St. Louis, MO). 

 

Isolation and Purification of Subcellular Organelle Samples 

Preparation of Radiolabelled Hepatic ER, cis-, and trans-Golgi 

Perfusion of rat liver with calcium-free Kreb’s Buffer [119 mM NaCl, 4.7 mM KCl, 1.2 mM 

MgSO4, 1.2 mM KH2PO4, 25 mM NaHCO3; pH 7.4] followed by collagenase perfusion [11,000 

units per liver (51 mg Type II collagenase per 150ml Kreb’s buffer)] was performed. The liver 

was immediately harvested and primary hepatocytes were immediately isolated by chopping 

the liver and pushing the sample through a 100-micron sieve. Cells were washed in Kreb’s 

buffer twice, then incubated in Buffer B [136 mM NaCl, 11.6 mM KH2PO4, 7.5 mM KCl, 0.5 mM 

dithiothreitol, 8mM Na2HPO4; pH 7.2] with BSA complexed to [3H]OA (150 μCi) for 35 minutes 

at 37°C. Cells were then washed twice with 2% BSA in PBS to remove excess [3H]OA. Cells were 

then homogenized in [0.25 M Sucrose in 10 mM HEPES pH 7.2, 50mM EDTA, and protease 

inhibitor] using a Parr Bomb at 1,000 psi for 40 minutes. A post-nuclear supernatant (PNS) was 

prepared, then pelleted and the resulting pellet was adjusted to 1.2 M sucrose in 10 mM 
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HEPES. ER, cis- and trans-Golgi fractions were separated using a sucrose step gradient (1.15 M, 

0.86 M, 0.25 M). 

Preparation of Hepatic Cytosol 

Rat primary hepatocytes were washed in Kreb’s buffer following isolation from freshly 

harvested rat liver perfused with collagenase. Cells were washed with cytosol buffer [25 mM 

Hepes, 125 mM KCl, 2.5 mM MgCl2, 0.5 mM DTT and protease inhibitors; pH 7.2], and 

homogenized with a Parr bomb at 1,000 psi for 40 minutes, followed by ultracentrifugation at 

165,000 × g for 95 minutes (Beckman Rotor Type 70 Ti). To remove endogenous ATP and GTP, 

supernatant was dialyzed against ice-cold cytosol buffer overnight at 4°C.  Cytosol was 

concentrated using a centricon filter (Amicon, Beverly, MA) and ultra filtration membrane 

(Millipore, Billerica, MA) with a cut- off of 10 kDa. 

Preparation of Hepatic Plasma Membrane 

Rat liver was harvested following perfusion with Kreb’s buffer, chopped, washed with 0.25 M 

Sucrose with protease inhibitor and EDTA, then centrifuged at 600 × g for 10 minutes. The Post 

Nuclear Supernatant (PNS) was collected, homogenized with 0.25 M sucrose and centrifuged at 

38,400 × g for 10 minutes (Fiberlite F21S-8x50y rotor). The pellet was homogenized with 57% 

(w/v) sucrose until 47% sucrose (w/v) based on reading in refractometer and laid under a 

discontinuous sucrose step gradient of 37.2% (w/v) sucrose and 0.25 M sucrose, then 

ultracentrifuged at 106,600 × g (Beckman SW 32 Ti) for 16 hours at 4°C. The fraction was 

collected at the interface of the 0.25 M sucrose and 37.2% (w/v) fractions. Sample was then 
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adjusted to 14.6% sucrose and the PM was purified from Golgi membranes by being overlaid on 

a discontinuous sucrose gradient (23.7%, 30.8%, 38.1%), ultracentrifuged at 124,800 × g 

(Beckman Rotor SW 41 Ti) for 2 hours at 4°C. PM was collected at the 38.1% (w/v) and 30.8% 

(w/v) interface by aspiration. 

Determination of Protein Concentration and Assessment of Sample Purity 

The protein concentration of the samples was determined using the Bradford method. Samples 

were assessed for purity by testing for the presence of marker protein via immunoblotting. 

 

In vitro Golgi-derived Vesicle Budding Assay 

PG-VTVs were generated in a cell-free in vitro vesicular budding assay. Rat hepatic Golgi 

membranes (200 μg of protein) were incubated with hepatic cytosol (500 μg of protein), an 

ATP-generating system [1 mM ATP, 5 mM phospho-creatine and 5 units of creatine 

phosphokinase], 1 mM GTP, 1mM E600, 5 mM Mg2+, 5mM DTT and 5mM Ca2+, and the reaction 

mixture volume was adjusted to 500 μl by addition of transport buffer [30 mM Hepes, 250 mM 

sucrose, 2.5 mM MgOAc, 30 mM KCl; pH 7.2] for 30min at 37°C in the absence of Plasma 

Membrane acceptor. The reaction was terminated by placing the tubes on ice and diluted to 0.1 

M with cold 10 mM HEPES. The reaction mixture was then overlaid on top of a continuous 

sucrose gradient (0.1 M to 0.86 M sucrose in 10 mM HEPES), ultracentrifuged at 115,000 × g 

(Beckman Rotor SW 41 Ti) for 2 hours at 4°C. Fractions of 500 μl were collected by aspiration 

and dpm of fractions was determined using a liquid scintillation counter. 
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In vitro PG-VTV – Plasma Membrane Fusion Assay 

To demonstrate fusion, PG-VTV (150 μg of protein) was incubated with rat hepatic PM (150 μg 

of protein), cytosol (500 μg of protein), an ATP regenerating system, Mg2+, Ca2+, DTT, E600, 

Transport Buffer and incubated at 37°C for 35 minutes. Reaction was stopped by placing tubes 

on ice and reaction mixture was adjusted to 14.6% (w/v) with 23.7% (w/v) cold sucrose in 10 

mM HEPES and overlaid upon a discontinuous sucrose gradient (23.7%, 30.8%, 38.1% sucrose in 

10 mM HEPES) and ultracentrifuged at 124,800 × g (Beckman Rotor SW 41 Ti) for 2 hours at 4°C. 

500 μl Fractions were collected at intermediate of 38.1% and 30.8% (w/v) interface by 

aspiration and dpm was determined using a liquid scintillation counter. 

 

Measurement of Radioactivity 

Radioactivity associated with [3H]TAG was quantitated in terms of disintegrations per minute 

(dpm) using the single-isotope mode on a liquid scintillation analyzer (TriCarb, Model 2910, 

Perkin Elmer Life and Analytical Sciences, Shelton, CT). 

 

Electron Microscopy 

The negative staining technique of electron microscopy was utilized to examine the 

morphology of PG-VTVs. A formvar-carbon coated nickel grid was placed on a drop of 

concentrated PG-VTV fraction for 2–3 minutes, rinsed with PBS and water. The grid was then 
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stained with 0.5% aqueous uranyl acetate, air-dried, and examined at 10,000x magnification 

using an FEI Morgagni 268(D) transmission electron microscope (FEI, Hillsboro, Oregon). 

 

Gel Electrophoresis and Immunoblot Analysis 

Samples (40 μg of protein) were solubilized in Laemmli’s Buffer (1X final concentration) and 

resolved via SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) (12% gel for single percentage 

gels, 4-20% gel for gradient gels) at 20 mAmp until tracking dye reached the end of the gel. 

Proteins were then transblotted onto nitrocellulose membranes (Bio-Rad) at 50 mAmp 

overnight at 4°C. The membrane was then blocked with 10% (w/v) non-fat dried skimmed milk 

in PBS-T, incubated with specific primary and then the appropriate secondary antibodies 

conjugated with HRP. Protein was detected using ECL reagents and exposing to Film (MIDSCI, 

St. Louis, MO). 

 

Two-Dimensional Gel Electrophoresis (2D-Gel) 

Sample (150 μg of protein) was incubated in Rehydration Sample Buffer [7 M urea, 2 M 

thiourea, 2% (w/v) CHAPS, 0.5% (v/v) carrier ampholyte (pharmalyte pH 3-10), 0.002% 

Bromophenol blue, 20 mM DTT] and incubated at 37°C for 1 hour. 

Sample was immediately loaded via anodic cup loading onto 11 cm IPG strip (pH 3-10 linear 

gradient) (GE Healthcare) that had been rehydrated at room temperature overnight in 

Rehydration Buffer [7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 0.5% (v/v) carrier ampholyte 
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(pharmalyte pH 3-10), 0.002% bromophenol blue, 1.2% DeStreak Reagent]. The IPGphor III 

system was used to subject samples to isoelectric focusing for 52,000 Volt hours at 20°C at 50 

μAmp/strip.  

The IPG strip was then equilibrated for SDS-PAGE immediately following IEF by incubating for 

15 minutes in SDS Equilibration Buffer I (Reducing Buffer) [6 M urea, 75 mM Tris-HCl (pH 8.8), 

29.3% (v/v) glycerol, 2% (w/v) SDS, 0.002% (w/v) bromophenol blue, 1% DTT] at room 

temperature, then subsequently incubated for 15 minutes in SDS Equilibration Buffer II 

(Alkylation Buffer) [6 M urea, 75 mM Tris-HCl (pH 8.8), 29.3% (v/v) glycerol, 2% (w/v) SDS, 

0.002% (w/v) bromophenol blue, 2.5% iodoacetamide] at room temperature. The IPG strip was 

then loaded onto a 10% SDS-PAGE gel, sealed with 0.75% agarose, and resolved at 15 mAmp for 

1 hour, then at 20 mAmp until the dye reached the end of the gel. 

The gel was immediately silver stained and scanned. 

 

Two-Dimensional Difference In Gel Electrophoresis (2D-DIGE) 

Sample Preparation and Minimal Fluorescent Labeling 

Samples (50 μg of protein) were incubated with Lysis Buffer [7 M urea, 2 M thiourea, 30 mM 

Tris, 4% (w/v) CHAPS; pH 8.5] for 15 minutes on ice. No primary amines, DTT, or carrier 

ampholytes were in the lysis buffer as these could react with the N-hydroxysuccinimide ester 

group of the CyDye resulting in reduced concentration of fluorophore available for protein 

labeling. Samples were separately labeled with 400 pmol Cy3 or Cy5 fluorescent dye, vortexed, 
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briefly centrifuged, and incubated on ice for 30 minutes in the dark. The labeling reaction was 

stopped and unreacted dye was quenched by the addition of 10 mM L-lysine to each sample 

and incubation on ice for 10 minutes in the dark. Both of the labeled samples were then 

combined and incubated with 2D DIGE Sample Buffer [7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 

2% (v/v) carrier ampholyte (pharmalyte pH 3-10), 0.002% Bromophenol blue, 15 mM DTT] and 

incubated on ice for 15 minutes in the dark. 

Isoelectric Focusing (IEF) and SDS-PAGE 

Samples were immediately loaded via anodic cup loading onto 11 cm IPG strip (pH 3-10 linear 

gradient) (GE Healthcare) that had been rehydrated at room temperature overnight in 

Rehydration Buffer [7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 0.5% (v/v) carrier ampholyte 

(pharmalyte pH 3-10), 0.002% bromophenol blue, 1.2% DeStreak Reagent]. The IPGphor III 

system was used to subject samples to isoelectric focusing for 52,000 Volt hours at 20°C at 50 

μAmp/strip.  

The IPG strip was then equilibrated for SDS-PAGE immediately following IEF by incubating for 

15 minutes in SDS Equilibration Buffer I (Reducing Buffer) [6 M urea, 75 mM Tris-HCl (pH 8.8), 

29.3% (v/v) glycerol, 2% (w/v) SDS, 0.002% (w/v) bromophenol blue, 1% DTT] at room 

temperature, then subsequently incubated for 15 minutes in SDS Equilibration Buffer II 

(Alkylation Buffer) [6 M urea, 75 mM Tris-HCl (pH 8.8), 29.3% (v/v) glycerol, 2% (w/v) SDS, 

0.002% (w/v) bromophenol blue, 2.5% iodoacetamide] at room temperature. The IPG strip was 

then loaded onto a 10% SDS-PAGE gel, sealed with 0.75% agarose, and resolved at 15 mAmp for 

1 hour, then at 20 mAmp until the dye reached the end of the gel.  
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Image Scan and Data Analysis 

The gel was immediately scanned using a Typhoon TRIO scanner (GE Healthcare) at the 

manufacturer specified excitation and emission wavelengths at 100 μm resolution. Scanned 

images were generated and analyzed using ImageQuant software (version 5.2, GE Healthcare). 
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CHAPTER THREE: PG-VTV BIOGENERATION 

In order to study the downstream steps of VLDL trafficking within the hepatocyte, a cell 

free in vitro budding assay was utilized to study the formation of the VLDL containing vesicles 

from Golgi membranes. Golgi membranes, cytosol, ER, and PM subcellular organelles were 

isolated from hepatocytes for use in this cell free assay. The aim was to establish that VLDL exits 

the Golgi apparatus in a process mediated by a specialized vesicle; to establish this vesicle’s 

functionality and specificity in targeting the plasma membrane for delivery of its VLDL cargo; 

and to identify the requirements for its biogenesis. 

 

Assessment of Hepatic Subcellular Organelle Purity 

As our means of studying VLDL vesicles is under cell free in vitro assays, organelle purity 

is of great importance. In order to proceed with confidence, the purity of isolated organelle 

samples were initially assessed by the presence of their specific marker proteins. Marker 

proteins were utilized in order to verify isolation of organelles was indeed successful and that 

no contamination was present. Specific marker proteins, or proteins unique to that organelle 

were tested for by western blot analysis. Table 1 shows the organelle marker proteins used for 

assessing purity. 
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Table 1 – Hepatic Subcellular Organelle Marker Proteins 

Organelle Marker Protein Protein Molecular Weight 

Endoplasmic Reticulum Calnexin 90 kDa 

Golgi Apparatus GOS28 

TGN 38 

28 kDa 

38 kDa 

Plasma Membrane Na-K ATPase 112 kDa 

 

 

 

Figure 3 – Organelle Purity 

Western blot data for hepatic cytosol, Golgi, and ER samples (left); and Golgi, Plasma 

Membrane, and Cytosol samples (right). Samples (40 μg of protein) were resolved on a 12% 

SDS-PAGE gel. 
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As shown in Figure 3, isolated Golgi membranes contained GOS28 and TGN38, marker 

proteins for the cis-Golgi and trans-Golgi, respectively. The Golgi membranes isolated were free 

of ER contamination as shown by the absence of Calnexin, a resident ER protein. Isolated ER 

membranes contained Calnexin and sample purity was assessed by the absence of GOS28 and 

TGN38. As expected, PM fractions contained the Na-K ATPase protein. Purity of the cytosol 

sample was assessed by the absence of organelle specific marker proteins Calnexin, GOS28, 

TGN38, and Na-K ATPase while containing the cytosolic protein L-FABP. 

To further demonstrate that each organelle sample was unique in proteome, two 

dimensional electrophoresis gel (2D-Gel) analysis was conducted. The 2D-gel spot pattern for 

each organelle was unique as shown in Figure 4. 

 

 

Figure 4 – Organelle 2D-Gels 

Hepatic cytosol, ER, and Golgi membranes were resolved on 2D-Gel (pH 3-10 first dimension, 

10% SDS-PAGE second dimension). Cytosol and ER samples (150 μg protein) were silver stained 

immediately after the second dimension. Golgi sample (50 μg protein) was labeled with Cy3 and 
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scanned immediately following the second dimension. Gels were analyzed for general shape 

and spot pattern. 

 

 

Together, western blotting data and 2D-gel data indicate that the isolated hepatic 

subcellular organelle samples were of sufficient purity to use in subsequent experiments. 

 

Cell-Free in vitro Golgi Budding Assay and Assessment of VLDL 

Prior to isolating the organelle samples, VLDL within hepatocytes were radiolabeled by 

incubating the hepatocytes with [3H]Oleic Acid, which would then be incorporated into [3H]TAG 

and conjugated with VLDL. This allowed the detection of VLDL in downstream assays by 

assessment of radioactivity. Golgi membranes containing radiolabeled mature VLDL were 

incubated at 37°C in the presence of cytosol and an ATP regenerating system under conditions 

that promoted vesicular generation, or budding, from the Golgi membranes. The reaction was 

terminated and immediately resolved on a continuous sucrose gradient (0.1 M to 0.86 M). 

Under these conditions it is expected that vesicles containing VLDL would float to the top due 

to their light buoyant density as a result of their high TAG content, while the remaining Golgi 

membranes would pellet. This technique is illustrated in Figure 5. 
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Figure 5 – Budding Assay for PG-VTV Biogeneration 

Overview of the cell-free in vitro budding assay utilized to generate PG-VTVs. Rat primary 

hepatocytes were isolated from freshly harvested rat liver and incubated with radiolabelled 

[3H]OA. Organelles containing radiolabeled VLDL were isolated and incubated under conditions 

to promote vesicle formation. Vesicles were isolated on a continuous sucrose gradient. 

 

 

This gradient was then separated into sequential fractions and assessment of 

radioactivity by dpm count of each fraction was conducted. The presence of VLDL was indicated 

by a high dpm count indicating the presence of [3H]TAG. As shown in figure 6, the lightest 

density fractions contained a peak in radioactivity indicating the presence of VLDL containing 

vesicles of Golgi origin.  
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Figure 6 – [
3
H]TAG Radiolabelled VLDL Along Continuous Sucrose Gradient 

Total dpm count along the continuous sucrose gradient. Green line corresponds to the 

increasing sucrose gradient. Orange line corresponds to the negative control (no cytosol), while 

the blue line is the actual experiment. Data reveals the high concentration of dpm in the first 

three fractions. 

 

 

Vesicle Purity from Organelle Contamination 

Isolated PG-VTVs did not contain organelle marker proteins, suggesting they were 

specifically formed VLDL transport compartments and not merely fragments of broken 

organelle membranes. As shown in Figure 7 PG-VTVs did not contain the Golgi marker protein 
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GOS28, nor the SNARE protein Sec22B, which is present on VTVs and localizes to ER 

membranes. 

 

 

Figure 7 – PG-VTV Purity From Organelle Contamination 

Western blot analysis of Cytosol, Golgi, PG-VTV, and ER. Samples (40 μg protein) were resolved 

on a 4-20% gradient SDS-PAGE gel. 

 

 

Morphology of PG-VTV 

The negative staining technique of electron microscopy was utilized to examine the 

morphology of the PG-VTVs. Fractions 1-3, which contained peak dpm counts, were 

concentrated and observed. As shown in the figure 8, these light-density fractions contained 

several vesicles. Moreover, these vesicles were approximately 300nm in diameter, an adequate 

size to harbor a VLDL sized particle (80-100nm diameter). 
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Figure 8 – Morphology of PG-VTV 

PG-VTV vesicles were concentrated from fractions 1-3 of continuous sucrose gradient and 

analyzed utilizing negative staining technique of electron microscopy. 

 

 

Requirements for PG-VTV Budding 

The requirements for PG-VTV biogenesis from Golgi membranes were identified. The 

post-Golgi budding assay was repeated under several conditions. To assess the requirement of 

physiological temperature, the assay was repeated at 4°C. PG-VTV budding requires energy in 

the form of ATP as vesicular formation was significantly abrogated when the ATP regenerating 

system was replaced with apyrase, an enzyme which digests ATP. Cytosolic proteins are 

necessary for proper PG-VTV formation, as no budding occurs when cytosol was replaced with 

cytosolic buffer. As figure 9 shows, the formation of VLDL containing vesicles requires ATP, 
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cytosolic protein, and incubation at 37°C. When these conditions are not met, budding was 

significantly abrogated. 

 

 

Figure 9 – PG-VTV Budding Requirements 

Cell-free in vitro budding assay was performed under conditions of apyrase replacing ATP, 4°C, 

and no hepatic cytosol. Each condition significantly abrogated dpm signal. 

 

Fusion with Plasma Membrane 

The functionality of PG-VTVs was assessed by their fusogenic properties, specifically 

fusion with the plasma membrane and delivery of their VLDL cargo to the plasma membrane. 

This was characterized through a cell free in vitro fusion assay with isolated hepatic plasma 

membrane sample. A characteristic of vesicle-mediated trafficking is the ability of the specific 
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vesicle to deliver its cargo to its destination through a directed mechanism. This fusion assay is 

illustrated in figure 10.  

PG-VTVs incubated with hepatic plasma membrane were successful in transferring their 

VLDL cargo to plasma membrane destination. Importantly this trafficking step required access 

to the cytosolic side of the plasma membrane. Isolation of plasma membrane results in vesicle 

like compartments oriented identical to the intact hepatocytes. A series of freeze/thaw cycles 

in liquid nitrogen are required to flip the plasma membrane vesicles and expose their cytosolic 

side. Figure 11 illustrates the steps required to expose cytosolic side of plasma membrane to 

the vesicles for fusion. Upon exposure of the cytosolic side, the PG-VTVs are able to bind with 

the plasma membrane and deliver their VLDL cargo to these PM compartments. 

 

 

Figure 10 – Fusion Assay 

PG-VTVs were incubated with hepatic cytosol and plasma membrane. Reaction was then 

resolved on a discontinuous sucrose gradient and PM interface was isolated at its expected 

density. Fusion of vesicles with plasma membrane was signified by VLDL becoming isodense 

with the plasma membrane signifying a transfer of dpm to the plasma membrane interface. 
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Figure 11 – Plasma Membrane Orientation 

Shown is a model illustrating the necessity to flip plasma membrane in order to expose its 

cytosolic side to vesicles. Upon isolation of plasma membrane from intact hepatocytes, vesicle-

like structures form with the same orientation as intact hepatocyte. To expose cytosolic side, 

plasma membrane sample was freeze/thawed in liquid nitrogen and 20°C water bath for 5 

cycles. 

 

 

Importantly, this transport was unidirectional; vesicles were able to fuse with the 

plasma membrane but not with Golgi membranes indicating their specificity in transporting 

VLDL in a vectorial manner along the secretory pathway. As shown in figure 12, PG-VTVs were 

capable of transferring VLDL, indicated by a transfer of dpm, to the plasma membrane under 
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conditions of 37°C, access to properly oriented plasma membrane, and presence of cytosolic 

protein. 

 

 

Figure 12 – Transfer of [3H]TAG dpm 

Total dpm count of PG-VTV fusion under conditions of no cytosol, 4°C, inverted plasma 

membrane, and incubation with Golgi membranes. 

 

 

Taken together, this data strongly suggests the isolation of a specialized VLDL transport 

vesicle. This vesicle facilitates VLDL exit from the trans-Golgi face, directed transport to the 

plasma membrane, and delivery of cargo for secretion from the hepatocyte. The biogenesis of 
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the PG-VTV requires the presence of cytosol, energy in the form of ATP, and incubation at 37°C. 

The fusion and delivery of the cargo requires the presence of cytosol, incubation at 37°C, access 

to the cytosolic side of the plasma membrane, and importantly is a unidirectional means of 

transporting mature VLDL from the Golgi to the PM. 

This vesicle is unique in its proteome and is fully functional and can not only specifically 

select its cargo for secretion from the hepatocyte, but transports this cargo in a unidirectional 

manner further attesting to its specificity and novelty. 

 

  



 33 

CHAPTER FOUR: PROTEOMIC ANALYSIS 

The next aim of the study was to conduct a proteomic profile of the newly isolated PG-

VTV. Fully describing the PG-VTV proteome will create a new research tool that may prove to 

be an aid in ultimately elucidating the lipoprotein secretory pathway. This tool may potentially 

facilitate the identification of key regulatory proteins in the intracellular trafficking of matured 

VLDL and potentially identify key molecular targets for cardiovascular drug therapy. Moreover, 

a proteomic analysis will aid in understanding the mechanism PG-VTV function, necessary as its 

function is a vital downstream step in the secretion of VLDL from the hepatocyte.  

 

Proteomic Analysis via Immunoblot 

The first step in the proteomic analysis was to probe for the presence of proteins that 

are known to be associated with VLDL. ApolipoproteinB100 is the main structural protein of 

VLDL (7, 33, 64). As shown in Figure 13, the PG-VTV concentrated both the 520 kDa apoB100 

isoform and the 250 kDa apoB48 forms, indicating the fact that these vesicles do indeed 

facilitate the transport of VLDL. As expected, the 46 kDa apolipoproteinAIV (apoAIV) was also 

detected in PG-VTVs, apoAIV serves in interacting with apoB enhancing the ability to expanding 

VLDL’s size thus facilitating the secretion of TAG (65). Interestingly as shown in figure 14, apoAI, 

which is not present on the VTV was present on the PG-VTV, signifying that it is transported to 

the Golgi apparatus by a mechanism separate from the lipoprotein vesicle. The v-SNARE VAMP7 

was detected on the PG-VTV which alludes to its potential role in being the tethering molecule 
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responsible for directing this vesicle to the plasma membrane. Syntaxin5, a t-SNARE was not 

detected on the PG-VTV. 

 

 

Figure 13 – PG-VTV Western Blot Analysis 

Western blot analysis of hepatic ER, Golgi, and PG-VTV. Samples (40 μg of protein) were 

resolved on a 4-20% gradient SDS-PAGE gel. 
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Figure 14 – ApolipoproteinAI added to PG-VTV 

Western blot analysis of hepatic ER, Golgi, PG-VTV, and VTV. Samples (40 μg of protein) were 

resolved on a 4-20% gradient SDS-PAGE gel and probed with anti apoAI antibody and its 

corresponding secondary antibody and developed on film. 

 

 

2D Comparative Proteomic Analysis 

A comparative proteomic analysis was undertaken to compare the PG-VTV proteome 

with the currently known VTV proteome. The method utilized was 2D-DIGE as it allows the 

simultaneous resolution between two samples in the same gel. The scans shown in figure 15 

show the VTV protein that was labeled with Cy3 a fluorescent dye that appears in green, and 

the PG-VTV protein that was labeled with Cy5, a fluorophore that appears in red.  
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Figure 15 – 2D-DIGE Comparative Analysis 

A 2D-DIGE analysis was performed on VTV and PG-VTV samples (50 μg of protein). VTV was 

labeled with Cy3 fluorescent dye (left), PG-VTV sample was labeled with Cy5 dye (center), and 

overlay was analyzed (right). 

 

 

As shown in figure 14, the proteomic profile of the PG-VTV was very similar to the VTV 

proteome in both shape and composition, however there were several spots that were unique 

to the post Golgi vesicle. As shown in the merge in figure 16, these spots have been highlighted. 

These spots are of interest for future study as they may be indicative to regulatory entities that 

are necessary for PG-VTV biogeneration and direction towards the plasma membrane. 
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Figure 16 – Analysis of 2D-DIGE Merge 

The overlay of the VTV & PG-VTV 2D-DIGE analysis was analyzed for differences. Circled spots 

are indicative of protein unique to the PG-VTV sample.  
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CHAPTER FIVE: CONCLUSION 

The data resulting from these studies were indicative of the fact that a unique, 

specialized vesicle is responsible for transporting mature VLDL from its site of maturation, 

which is the Golgi lumen, to the plasma membrane for its eventual secretion to the 

bloodstream. This step is required for the secretion of matured VLDL from the hepatocyte and 

thus studying its required steps are necessary to fully elucidate the hepatic lipoprotein 

secretory pathway. 

The overall secretion pathway, with regards to trafficking, is shown in Figure 2. The VLDL 

synthesis begins in the lumen of the ER. Upon initial assembly, this premature VLDL molecule is 

transported to the Golgi lumen for maturation. This first transport step is mediated by the VTV, 

a unique COPII-dependent vesicle. Upon docking and fusion with the cis-Golgi membranes VTV 

delivers VLDL Golgi lumen. It is here where the VLDL molecule undergoes several modifications 

as it traverses the cisternae of the Golgi including the incorporation of apoAI and apoE 

lipoproteins, and the phosphorylation and glycosylation of the apoB100 protein backbone. 

Upon maturation, this VLDL molecule is ready for secretion from the hepatocyte. In a complex 

process involving cargo selection, membrane deformation, and curvature, the matured VLDL 

molecule is incorporated in a vesicle, the PG-VTV.  

The PG-VTV facilitates VLDL exit from the trans-Golgi face and encloses it in a vesicle of 

300-320 nm in diameter, one that is large enough to facilitate a VLDL sized molecule (80-100 

nm). This vesicle’s morphology is one that confirms the fact that it is a vesicle shaped enclosed 
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intracellular compartment, which could enclose the VLDL and protect it from the cytosolic 

lipases and proteases. 

The vesicle is free of contamination from organelle marker proteins, and does not 

contain Sec22b, which is present on the VTV and functions as its v-SNARE. These indicate that 

the PG-VTV is a newly isolated vesicle unique to the VTV and not fragments of broken organelle 

membranes. 

The formation of this vesicle requires the physiological temperature of 37°C, the 

presence of energy in the form of ATP, and cytosolic protein. All these conditions that are 

established conditions for vesicular formation. If any of these conditions are altered, then the 

presence of [3H]TAG, our marker for VLDL, is severely abrogated in the light density fractions 

where we normally find the PG-VTV.  

The vesicle is functional in its ability to transfer VLDL, indicated by a transfer of dpm, to 

the plasma membrane. More importantly, this transport step is unidirectional as shown by data 

indicating the vesicle does not fuse with the Golgi membranes and cannot deliver VLDL to the 

Golgi lumen. The PG-VTV does indeed deliver VLDL to the plasma membrane successfully. 

Furthermore, the correct orientation of the plasma membrane is necessary, the PG-VTVs can 

only deliver their VLDL cargo if the cytosolic side of the plasma membrane is exposed for 

reaction. The fusion of PG-VTV with correctly oriented plasma membrane also requires the 

presence of cytosolic protein and the correct physiological temperature of 37°C. These 

requirements further indicate the function of these vesicles under physiological conditions and 

correlates with widely established requirements for vesicular fusion. 
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The vesicle’s proteomic profile is unique and contains lipoproteins necessary and known 

to exist in matured VLDL present in the bloodstream. The comparative 2D gel analysis 

undergone signifies that this vesicle furthermore is similar to the VTV, stating the fact that it is 

indeed a vesicle responsible for transporting VLDL, yet this vesicle transports matured VLDL and 

contains unique protein necessary for the post-Golgi transport step. 

Table 2 summarizes key points and differences between the PCTV or the vesicle 

responsible for transporting nascent chylomicrons in the intestine, the VTV, and the PG-VTV. 

 

Table 2 – Summary of Lipoprotein Transport Vesicles 

 PCTV VTV PG-VTV Reference 

Size 142-500nm 100-120nm 300-320nm (33, 66) 

v-SNARE VAMP7 Sec22b VAMP7 (33, 66-68) 

t-SNAREs Syntaxin5, rBet1, 

vti1a 

Syntaxin5, rBet1, 

GOS28 

Syntaxin1, SNAP23 

(Hypothesized) 

(33, 66-68) 

Coat COPII independent COPII dependent  (33, 68) 

GTP 

requirement 

No Yes Yes (33, 66) 

Initiator L-FABP Sar1  (33, 67) 

Direction ER to Golgi - intestine ER to Golgi - liver Golgi to PM - liver (33, 66) 
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In the study herein, the PG-VTV has been shown to be the unique specialized vesicle 

responsible for transport of mature VLDL from the Golgi apparatus to the plasma membrane for 

secretion. This vesicle is unique in proteome and morphology from currently known vesicles. 

Moreover, this vesicle requires physiological conditions for its biogenesis. The vesicle is 

functional in its ability to fuse with the plasma membrane and deliver its VLDL cargo for 

secretion. The proteomic profile of PG-VTV that has been conducted will provide a basic tool for 

studies with focus on lipoprotein and may prove to have vast implications for the future of 

cardiovascular research. 
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APPENDIX: IACUC ANIMAL PROTOCOL APPROVAL LETTER 
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