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ABSTRACT 

In recent years, non-Hermitian degeneracies also known as exceptional points (EPs) have 

emerged as a new paradigm for engineering the response of optical systems. EPs can appear 

in a wide class of open non-Hermitian configurations. Among different types of non-

conservative photonic systems, parity-time (PT) symmetric arrangements are of particular 

interest since they provide an excellent platform to explore the physics of exceptional points. 

In this work, the intriguing properties of exceptional points are utilized to address two of the 

long standing challenges in the field of integrated photonics- enforcing single mode lasing in 

intrinsically multimode cavities and enhancing the sensitivity of micro-resonators. 

In the first part of this work, I will describe how stable single mode lasing can be 

readily achieved in longitudinally and transversely multi-moded microring cavities through 

the systematic utilization of abrupt phase transitions at exceptional points. This technique 

will be first demonstrated in a parity-time laser that is comprised of a gain cavity coupled to 

an identical but lossy counterpart. A detailed study of the behavior of this system around the 

exceptional point will be presented. Furthermore, we report the first experimental 

realization of a dark state laser in which by strategically designing the spectral locations of 

exceptional points, widely tunable single-mode lasing can be attained even at high pump 

levels. Despite the presence of loss in such open laser systems, the slope efficiency remains 

virtually intact. Our results demonstrate the potential of exceptional points as a versatile 

design tool for mode management in on-chip laser configurations.   
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In the second part of my dissertation, I will show how the exceptional points and their 

underlying degeneracies can be used to significantly boost the intrinsic sensitivity of 

microcavities. I will demonstrate the enhanced sensitivity in a binary PT-symmetric coupled 

cavity arrangement that is biased at an exceptional point. Then I will report the first 

observation of higher-order exceptional points in a ternary parity-time symmetric microring 

laser system with a judiciously tailored gain-loss distribution. The enhanced response 

associated with this ternary system follows a cubic root dependence on externally 

introduced perturbation, which can in turn be detected in the spectral domain. Using such 

arrangements, more than one order of magnitude enhancement in the sensitivity is observed 

experimentally. These results can pave the way towards improving the performance of 

current on-chip micro-cavity sensors. 
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CHAPTER 1: INTRODUCTION 

Non-Hermitian degeneracies, also known as exceptional points (EPs) represent singularities 

in parameter space where the eigenvalues involved and their corresponding eigenstates 

tend to simultaneously coalesce [1]–[4]. In the last decade, the physics and properties of such 

degeneracies have been intensively studied particularly as a result of the emergence of PT-

symmetric configurations in optics [5]. In this regard, the abrupt nature of the phase 

transitions encountered around EPs has been shown to lead to a number of intriguing and 

counter-intuitive phenomena such as loss-induced transparency [6], unidirectional 

invisibility [7]–[10], band merging [5], [11], [12], and topological chirality [13], [14], to 

mention a few. In this work, we used these non-Hermitian degeneracies to address some of 

the existing challenges in the on-chip micro-cavity lasers and sensing applications. This 

dissertation contains two main segments; first we show that the properties associated with 

the exceptional points can be utilized as an effective design tool to obtain desired 

functionalities like single mode operation in integrated semiconductor microring laser 

systems, and second we demonstrate that the sensitivity of PT-symmetric micro-cavity 

arrangements to external perturbations can be dramatically enhanced by exploiting the 

physics of EPs.  

Microring resonators exhibit several attractive features such as high Q-factors, small 

footprints, and simplicity of fabrication [15]–[18]. These qualities make them a promising 

candidate for on-chip laser sources. However, despite their small size, microrings tend to 

support several modes with comparable quality factors. The ensuing multi-mode operation 
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compromises the coherence and spectral purity of the laser, which in turn can cause power 

fluctuation and instability. In this respect, controlling the modal content of laser cavities has 

been a long standing challenge in laser science and engineering [19], [20]. This problem 

becomes particularly acute in semiconductor laser arrangements where the gain spectrum 

is rather broad [21] and thus multimode operation is inevitable. During the years, a number 

of schemes have been proposed to enforce single mode behavior in semiconductor laser 

systems. These include the use of external cavities [22]–[25] and intra-cavity dispersive 

elements [26]–[30], specially modulating the pump [31], or by extreme confinement of light 

in sub-wavelength structures using metallic cavities [32]–[34]. However, implementing such 

techniques can sometimes become exceedingly demanding, especially in micro-scale 

monolithically integrated lasers. Thus, devising alternative methods for mode management 

in integrated settings is of great importance. 

Due to their small size and high quality factor, micro-cavities have also been 

employed as on-chip sensors in various configurations [35], [36]. Perturbing such resonance 

structures through an external effect can induce a shift or splitting of the corresponding 

eigenvalues- something that can be exploited for detection purposes. In Hermitian settings, 

like single-resonator optical gyroscopes [37] and microcavity sensors [35], [38], the induced 

separation in the eigen-spectrum is at most of the same order as the perturbation 𝜖𝜖 itself 

(where |𝜖𝜖| ≪ 1). This type of response is typically manifested in shifting of the resonance 

frequencies via index or gain variations. In recent years, there has been a growing realization 

that non-conservative systems operating around degeneracies or exceptional points can 
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provide a new avenue towards enhanced sensing capabilities [39]. In such configurations, 

the eigenfrequency splitting can be accentuated by orders of magnitude given that it follows 

a 𝜖𝜖
1
𝑁𝑁-dependence, where 𝑁𝑁 represents the order of the exceptional point involved. In general, 

the dimensionality of an EP is determined by the number of eigenvalues that simultaneously 

coalesce at this point. What makes this class of singularities so reactive to variations is the 

fact that in addition to the eigenvalues, all the corresponding eigenvectors also tend to merge 

at this point in parameter space. In essence, around EPs, the system suddenly loses 

dimensionality because the vector space becomes severely skewed. Given the dependency 

on 𝜖𝜖
1
𝑁𝑁, it is clear that the sensitivity of the system will increase with the order of the 

exceptional point used- a property highly desirable in detection applications.  

In this dissertation, PT-symmetric coupled resonator arrangements are proposed, 

fabricated, and characterized using a InP-based semiconductor gain platform.  Mode 

management techniques based on the physics of exceptional points are successfully 

employed to achieve single mode operation at high pump powers. Furthermore, the 

enhanced sensitivity associated with second and third order exceptional points is 

demonstrated in binary and ternary PT-symmetric photonic molecules. In this regard, the 

structure of this document is as follows. Chapter 2 provides a brief introduction to PT-

symmetry in the realm of optics and photonics. In chapter 3, some of the main aspects of 

microring resonators are discussed, and the dynamics of the energy transfer between two 

coupled microrings is investigated. In chapter 4, the PT-symmetric dual microring laser 

arrangement is introduced, and details of different operation regimes along with the design 
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considerations are presented. Longitudinal and transverse mode selection in such PT-

symmetric lasers is studied in chapter 5. Chapter 6 proposes a potential approach to improve 

the modulation speed of PT-symmetric semiconductor lasers based on the notion of 

exceptional points. In chapter 7, a theoretical model of the dark state laser along with the 

experimental demonstration of single mode lasing and wide-range wavelength tuning in this 

structure is provided. In chapter 8, the response of binary and ternary PT-symmetric 

photonic molecules to external perturbations and the associated enhanced sensitivities are 

investigated when the systems are biased at their exceptional points. The details of 

techniques used for the fabrication and characterization processes are provided in chapter 

9. Finally, chapter 10 concludes this work.  
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CHAPTER 2: PARITY-TIME (PT) SYMMETRY IN OPTICS 

In 1998, it was discovered that a wide class of non-Hermitian Hamiltonians can exhibit 

entirely real eigenvalues if they commute with the parity-time (𝑃𝑃�𝑇𝑇�) operator [40]. To some 

extent, this counterintuitive result is against the commonly held view that real eigenvalues 

are only associated with Hermitian observables [4]. Starting from the aforementioned 

premise, one can directly show that a necessary (but not sufficient) condition for PT 

symmetry to hold is that the complex potential involved in such a Hamiltonian should 

satisfy 𝑉𝑉(𝑥𝑥) = 𝑉𝑉∗(−𝑥𝑥) [40]–[44]. In other words, the real part of the complex potential must 

be an even function of position, while the imaginary must have an odd spatial distribution. 

In such configurations the eigenfunctions are no longer orthogonal, i.e., ⟨𝑚𝑚|𝑛𝑛⟩ ≠ 𝛿𝛿𝑚𝑚𝑚𝑚, and 

hence the vector space is skewed. Even more intriguing is the possibility for a sharp 

symmetry-breaking transition once a non-Hermiticity parameter exceeds a certain critical 

value [40]. In this latter regime, the Hamiltonian and the 𝑃𝑃�𝑇𝑇�  operator no longer display the 

same set of eigenfunctions (even though they commute) and as a result the eigenvalues of 

the system are no longer entirely real. More importantly, this broken PT-symmetry phase is 

associated with the appearance of the so-called exceptional points [45]. 
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Figure 1. (a) Isomorphic relations between the Schrödinger equation and the paraxial equation in 

optics (b) Schematic of a binary PT-symmetric system. 

While the implications of these mathematical theories are still a matter of debate 

(since the realization of complex potentials in quantum mechanics is inherently out-of-

reach), it has been recently recognized that photonics can provide a fertile ground where PT 

symmetry concepts can be experimentally investigated [5].  The transition from quantum 

mechanics to optics can be formally justified by considering the isomorphism between the 

Schrödinger equation and the paraxial wave equation (see Fig. 1(a)). In this regard, the 

complex refractive index profile plays the role of an optical potential, i.e. 𝑉𝑉(𝑥𝑥) = 𝑘𝑘0(𝑛𝑛𝑅𝑅(𝑥𝑥) +

𝑖𝑖𝑛𝑛𝐼𝐼(𝑥𝑥)). In optical systems, PT symmetry demands that the spatial distribution of the 

refractive index is an even function (𝑛𝑛𝑅𝑅(𝑥𝑥) = 𝑛𝑛𝑅𝑅(−𝑥𝑥)), whereas the imaginary component 

(representing gain or loss) is an odd function of position (𝑛𝑛𝐼𝐼(𝑥𝑥) = −𝑛𝑛𝐼𝐼(−𝑥𝑥)). One can also 

show that in high contrast settings, where the electrodynamic problem must be treated fully 

vectorially, the condition for PT symmetry is expressed through the complex permittivity, 

e.g. 𝜀𝜀(𝒓𝒓) = 𝜀𝜀∗(−𝒓𝒓) [46]. Nonetheless, since in most systems the imaginary part of the 



7 
 

complex refractive index function is considerably smaller than its real counterpart, the PT 

condition in these two scenarios is almost equivalent. 

To elucidate some of the physics of exceptional points, we here provide a simple 

example of such a non-Hermitian PT-symmetric arrangement: a binary PT-symmetric 

system. For example, in optics this can describe two coupled resonators or waveguides, one 

exhibiting gain while the other experiences an equal amount of loss. In the case of two 

cavities, energy exchange occurs in time, while for a coupled waveguide arrangement, it 

takes place in space. A schematic of such a configuration is depicted in Fig. 1(b). In the case 

of two identical coupled single mode resonators, the field evolution dynamics can be 

described by: 

�
𝑖𝑖 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑖𝑖 𝑔𝑔

2
𝑎𝑎 + 𝜅𝜅𝜅𝜅 = 0

𝑖𝑖 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑖𝑖 𝑔𝑔
2
𝑏𝑏 + 𝜅𝜅𝜅𝜅 = 0

. ( 2.1 ) 

Here 𝑎𝑎 and 𝑏𝑏 represent the modal field amplitudes in the gain and loss cavities, respectively, 

𝑔𝑔 stands for the gain/loss coefficient, and 𝜅𝜅 is the coupling strength. This system supports 

two supermodes with distinct characteristics depending on the ratio between gain/loss (𝑔𝑔) 

and coupling (𝜅𝜅). When 𝑔𝑔 2𝜅𝜅⁄ < 1, the two eigenvalues are real and are given by 𝜆𝜆1,2 =

±cos (𝜃𝜃) where 𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠−1(𝑔𝑔/2𝜅𝜅) and the corresponding eigenvectors are |1⟩ = [1   𝑒𝑒𝑖𝑖𝑖𝑖]𝑇𝑇 

and  |2⟩ = [1    −𝑒𝑒−𝑖𝑖𝑖𝑖]𝑇𝑇. Note that these eigenvectors are not orthogonal in spite of the fact 

that the spectrum is real.  In this case, neither of the two modes experiences a net gain or loss 

i.e. they remain neutral, and hence they oscillate.  

On the other hand, the characteristics of the supermodes drastically change as soon 

as the gain-loss contrast exceeds the coupling strength ( 𝑔𝑔 2𝜅𝜅⁄ > 1). In this regime, the 
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eigenvalues are expressed by 𝜆𝜆1,2 = ±sinh (𝜃𝜃) where 𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ−1(𝑔𝑔/2𝜅𝜅), and their 

corresponding non-orthogonal eigenvectors turn out to be |1⟩ = [1   𝑖𝑖𝑖𝑖𝜃𝜃]𝑇𝑇 and |2⟩ =

[1   𝑖𝑖𝑖𝑖−𝜃𝜃]𝑇𝑇 , indicating that the symmetry of each mode is broken such that one of them 

resides mostly in the gain cavity while the other one inhabits the lossy resonator.  As a result, 

one of the eigenmodes enjoys amplification whereas the other experiences attenuation. 

Obviously, the supermode that mostly occupies the gain/loss region is amplified/attenuated. 

Figure 2 displays the complex eigenvalues as a function of 𝑔𝑔 2𝜅𝜅⁄ . 

 

Figure 2. The imaginary part of the eigenvalue with respect to the gain/loss to coupling ratio for a 

PT-symmetric binary system. Beyond the exceptional point (PT-symmetry breaking point), one of 

the supermodes experiences amplification, while the other attenuation. 

The transition point ( 𝑔𝑔 2𝜅𝜅⁄ = 1) between these two different regimes is called the 

exceptional point, or EP. At this crossing, the dimensionality of the vector space is abruptly 

reduced from 2 to 1. This is evident from the fact that the two eigenvectors become entirely 

identical [1   𝑖𝑖]𝑇𝑇 and neither oscillate nor vary exponentially. 
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The above example demonstrates the role that the exceptional points can play in 

controlling light transport. Initial theoretical and experimental works carried out by several 

groups indicate that light propagating through non-Hermitian or PT-synthetic media can 

exhibit surprisingly unusual behavior [6]–[10], [5], [12], [42], [45], [47]–[67]. Among the 

numerous properties that such systems can display are: absorption enhanced transmittivity, 

unidirectional invisibility, double refraction, and band-merging. Most of these arrangements 

are designed to exploit the abrupt transitions at their associated exceptional points in order 

to achieve the desired functionalities.  
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CHAPTER 3: MICRORING RESONATORS 

Microring resonators possess several interesting features like high quality factors, small 

footprints, and simplicity of fabrication. Therefore, they are one of the popular components 

in many integrated photonic devices such as sensors [35], [36], [38], modulators [68]–[70], 

filters [71]–[73], etc. Furthermore, the reflection-free nature of these cavities makes them 

an ideal choice for laser applications. In the first part of this chapter, we provide a study of 

spatial and temporal modal content of ring resonators utilized in our work. These microrings 

are comprised of six InGaAsP quantum wells in their high contrast active region and 

surrounded by low index dielectrics, i.e. SiO2 and air. In the second section, the dynamics of 

energy transfer between two adjacent identical microrings is characterized using continuous 

wave coupled mode analysis.   

3.1. Modal content of a microring resonator 

A schematic and the cross-section of the microring cavity used in our experiments is shown 

in Fig. 3. The height of the waveguide is determined by the thickness of quantum well layers 

and it is set to be 210 𝑛𝑛𝑛𝑛.  The width of the waveguide is designed to be 500 𝑛𝑛𝑛𝑛 in most of 

our experiments to insure single transverse mode behavior. Figure 4 depicts the electric field 

amplitude for transverse electric (TE) and transverse magnetic (TM) polarizations in this 

structure, which is obtained by COMSOL finite element simulations. The interaction of the 

TM modes with the active region is negligible due to their very low confinement and also the 

orientation of the quantum wells, hence these modes are extraneous in our analyses and 
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experiments. On the other hand, the TE polarized modes have a considerable overlap with 

the active region and consequently enjoy a much lower lasing threshold. 

 

Figure 3. A schematic of the microring resonator used in this work along with its cross-section. 

 

Figure 4. Field amplitude of the TE and TM polarizations in a single transverse mode waveguide. The 

overlap of the mode with the active guiding region is much larger in the TE case.  

Every spatial mode of the waveguide is associated with a series of longitudinal 

resonance modes in the ring. In a passive cavity, the linewidth of these resonances is only 

determined by the quality factor. However, the resonance linewidth is a more complicated 

function of the Q-factor, output power, modal confinement, and nonlinearities in a lasing 

cavity. Different longitudinal modes are separated in the spectral domain by the free spectral 
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range or FSR (Δ𝜔𝜔) of the resonator. In the following, an analytical method is presented to 

find this value for a microring resonator with a radius of 𝑅𝑅 and a refractive index of 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 =

𝑛𝑛(𝜔𝜔) (Fig. 5). 

 

Figure 5. A 2D schematic of a microring resonator with a radius of 𝑅𝑅, and a dispersive effective 

refractive index of 𝑛𝑛(𝜔𝜔) along with its spectrum showing the FSR of Δ𝜔𝜔. 

The propagation constant for the microring shown in Fig. 5 can be written as 𝛽𝛽 =

𝜔𝜔𝜔𝜔(𝜔𝜔)/𝑐𝑐. Using this expression one can simply find the group index of the structure to be: 

𝑛𝑛𝑔𝑔 = c 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑛𝑛(ω) + ω𝑑𝑑𝑑𝑑(𝜔𝜔)
𝑑𝑑𝑑𝑑

 ( 3.1 ) 

On the other hand, any longitudinal resonance must satisfy the phase condition in the cavity, 

i.e. 𝛽𝛽𝛽𝛽 = 2𝑚𝑚𝑚𝑚. Therefore, for two subsequent longitudinal modes, one can write, 

𝜔𝜔0𝑛𝑛(𝜔𝜔0)
𝑐𝑐

𝐿𝐿 = 2𝑚𝑚𝑚𝑚 ( 3.2 ) 

and 

(𝜔𝜔0+∆𝜔𝜔)𝑛𝑛(𝜔𝜔0+∆𝜔𝜔)
𝑐𝑐

𝐿𝐿 = 2(𝑚𝑚 + 1)𝜋𝜋 ( 3.3 ) 
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By subtracting Eq. (3.2) from Eq. (3.3) and substituting 𝑛𝑛(𝜔𝜔0 + Δ𝜔𝜔) by its Taylor series 

expansion around 𝜔𝜔0,  one can find,  

(𝜔𝜔0+∆𝜔𝜔)(𝑛𝑛(𝜔𝜔0)+𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑∆𝜔𝜔)−𝜔𝜔0𝑛𝑛(𝜔𝜔0)

𝑐𝑐
𝐿𝐿 = 2𝜋𝜋 ( 3.4 ) 

Δ𝜔𝜔 is simply derived from Eq. (3.4) to be,  

∆𝜔𝜔 = 2𝜋𝜋𝜋𝜋
𝐿𝐿� × 1

𝑛𝑛(𝜔𝜔0)+𝜔𝜔0
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. ( 3.5 ) 

As indicted in Eq. (3.1), the denominator of Eq. (3.5) in fact represents the group velocity of 

the waveguide. In this respect, the expression for the FSR of a ring resonator is given by, 

∆𝜔𝜔 = 2𝜋𝜋𝜋𝜋
𝐿𝐿𝑛𝑛𝑔𝑔� . ( 3.6 ) 

The group index and effective index of the fundamental TE mode of the arrangement shown 

in Fig. 4 is plotted in Fig. 6 for the range of wavelengths from 1500 to 1600 𝑛𝑛𝑛𝑛. While the 

effective index acquires a value around 2.5, the group index of such a structure is 

approximately 4. This translates to a FSR of ~10 𝑛𝑛𝑛𝑛 for a microring with an outer radius of 

10 𝜇𝜇𝜇𝜇. 

 

Figure 6. The group index and effective refractive index of a waveguide with a width of 500 𝑛𝑛𝑛𝑛 and 

a height of 210 𝑛𝑛𝑛𝑛. 
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When higher order transverse modes are desired, the width of the ring’s cross-section 

can be increased. In this study, the width of the transversely multi-moded microrings is 

chosen to be 1.5 𝜇𝜇𝜇𝜇. This way, the structure can support three distinct spatial resonant 

modes. Figure 7(a) shows the corresponding mode profiles in the cross-section of a ring with 

outer radius of 6 𝜇𝜇𝜇𝜇. Surprisingly, the peak of the mode is shifted towards the ring’s center 

as a result of the curvature. However, the confinement still decreases for higher order 

transverse modes. The resonance wavelength of the associated longitudinal resonances are 

depicted in Fig. 7(b) for the wavelength range from 1520 to 1610 𝑛𝑛𝑛𝑛. Note that these 

resonance wavelengths are approximately calculated via finite element method, and their 

value can change in the order of a couple of nanometers by slight variations of the refractive 

indices of the involved materials.  

 

Figure 7. (a) Mode profiles of different spatial resonances in a microring resonator with a radius of 

6 𝜇𝜇𝜇𝜇 and width of 1.5 𝜇𝜇𝜇𝜇. (b) The wavelength resonances of longitudinal resonances associated with 

the three different spatial distributions shown in (a).  
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3.2. Energy transfer dynamics between two coupled microrings 

In this section we employ spatial coupled mode analysis to investigate the dynamics of 

energy transfer between two coupled microrings. Moreover, we provide the results of 

experimental characterization of the coupling factors. This value can be extracted from the 

lasing spectrum of two adjacent rings when they are both pumped.   

 

Figure 8. Two coupled microrings. The coupling region can be treated as a phase matched directional 

coupler with length of 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 and spatial coupling constant of Κ. 

A schematic representing a dual coupled microring structure is depicted in Fig. 8 in 

which two identical, passive, and transversely-single-mode resonators of radius 𝑅𝑅, are 

evanescently coupled to each other. The field distribution in the two rings can then be 

described via a system of spatial coupled mode equations. Here, we assume that the coupling 

strength is approximately constant over an effective coupling distance 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒- locally it can be 

treated as a phase-matched directional coupler. Therefore, the modal amplitudes in the two 

cavities (𝑎𝑎(𝑧𝑧) and 𝑏𝑏(𝑧𝑧)) within the coupling region are governed by the following relations, 
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�
𝑎𝑎𝑜𝑜 = 𝑎𝑎𝑖𝑖 cos�Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒� + 𝑖𝑖𝑏𝑏𝑖𝑖sin (Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒)
𝑏𝑏𝑜𝑜 = 𝑖𝑖𝑖𝑖𝑖𝑖 sin�Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒� + 𝑏𝑏𝑜𝑜cos (Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒)

  ( 3.7 ) 

where Κ represents the spatial coupling constant which is a function of the field overlap 

between the two resonators. Similarly, light propagation in the closed path of the two 

resonators demands that 

�
𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑜𝑜exp (𝑖𝑖𝑖𝑖)
𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑜𝑜exp (𝑖𝑖𝑖𝑖) ( 3.8 ) 

where 𝜙𝜙 = 𝜔𝜔𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿/𝑐𝑐  is the accumulated phase of the mode in one round trip. In this 

equation, 𝜔𝜔 is the resonance frequency, 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 is the effective refractive index of the mode, 𝐿𝐿 =

2𝜋𝜋𝜋𝜋 is circumference of the ring, and 𝑐𝑐 is the speed of light in the vacuum. Using (3.7) and 

(3.8), one can show that:  

�−1+exp (𝑖𝑖𝑖𝑖)cos (Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒) 𝑖𝑖 exp (𝑖𝑖𝑖𝑖)sin (Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒) 
𝑖𝑖 exp(𝑖𝑖𝑖𝑖) sin�Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒� −1+exp (𝑖𝑖𝑖𝑖)cos (Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒)� × �𝑎𝑎𝑜𝑜𝑏𝑏𝑜𝑜� = 0 ( 3.9 ) 

In order for this system to have nontrivial solutions, the determinant of the matrix in Eq. 

(3.9) should be equal to zero. This leads to 

cos(𝜙𝜙) = cos�𝛫𝛫𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒�. ( 3.10 ) 

The above equation can be solved to directly find the resonant frequencies of the system. In 

this case, one can simply find 𝜙𝜙 to be  

𝜙𝜙 = 𝜔𝜔𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿
𝑐𝑐

= 2𝑚𝑚𝑚𝑚 ± Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 ( 3.11 ) 

Here, different values of 𝑚𝑚 represent different longitudinal modes, while the term Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 

determined the mode splitting due to the coupling induced breaking of the degeneracy. The 

frequency splitting is twice the temporal coupling strength and can be derived from Eq. 

(3.11) to be, 
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𝛿𝛿𝛿𝛿 = 2𝜅𝜅 = 2Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐
𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒2𝜋𝜋𝜋𝜋 

 ( 3.12 ) 

From (3.11) and (3.12), one can infer that the maximum achievable coupling between two 

resonator in time domain is 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = Δ𝜔𝜔𝐹𝐹𝐹𝐹𝐹𝐹/4 . This scenario occurs when the total amount 

of light entering the coupling region is transferred from one ring into the adjacent cavity, i.e. 

Κ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜋𝜋/2. 

 

Figure 9. (a)–(d) Lasing spectra from evenly pumped microring pairs with separations of 50, 100, 

200, and 300 nm, respectively. (e) The coupling coefficient depends exponentially on the separation 

distance between the two rings. The resolution of the spectrometer is set at 0.4 nm. 
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The coupling factor between dual cavities with different separation are 

experimentally characterized through the splitting of the corresponding lasing modes in the 

spectral domain, when both rings are evenly pumped. The results of this measurements are 

shown in Fig. 9. From Eq. (3.12), one can easily find 𝛿𝛿𝛿𝛿 = 𝜅𝜅𝜆𝜆2/𝜋𝜋𝜋𝜋. Figures 9(a)–9(d) show 

the lasing spectra for a system of two coupled microrings separated by 50, 100, 200, and 300 

nm, respectively. As expected, the wavelength splitting (coupling strength) monotonically 

decreases as the distance between the two rings is increased. Figure 9(e) confirms the 

exponential dependence of the coupling factor with respect to the spacing between the rings. 

For the rings separations at hand, coupling strengths on the order of ∼ 1012 𝑠𝑠−1 are obtained, 

which is in agreement with simulation results. 
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CHAPTER 4: PT-SYMMETRIC COUPLED MICRORING LASERS  

Coupled micro-resonators provide a viable platform to explore the physics and applications 

of parity-time symmetry in optics [9], [61]. In a coupled micro-cavity arrangement, PT-

symmetry can be realized if one resonator is subject to gain while the other experiences an 

equal amount of loss. In this section, we employ the temporal coupled mode theory to 

present a linear analysis of this system. Through this method, we can show the modal 

behavior in parameter space and the dynamics of emergence of exceptional points. Using the 

same analysis, we study the lasing threshold in terms of different parameters of the PT-laser. 

We also present a qualitative nonlinear analysis of the system to study the effects of gain 

clamping and saturation above lasing threshold. The results in this chapter have been 

published in [74] and [75].   

4.1. PT-symmetric coupled microring laser operating around an EP 

A schematic representing such a dual cavity structure and an SEM image of the structure in 

an intermediate fabrication section are depicted in Fig. 10. Considering a pair of identical 

microring resonators, each of them supports a number of modes throughout the 

amplification bandwidth. The coupling between the two rings is dictated by the mutual 

overlap of their respective modal fields at the interaction region. In this study, the rings’ 

dimensions and index contrast are selected so as to support a single transverse mode and to 

also favor the TE polarization as discussed in chapter 3. In the time domain, the interplay 

between the 𝑛𝑛𝑡𝑡ℎ longitudinal modes in the two rings obeys a set of two coupled differential 
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equations for their respective modal amplitudes an , bn. By considering the 𝑛𝑛𝑡𝑡ℎ longitudinal 

mode in these two rings, one finds that 

�
𝑑𝑑𝑎𝑎𝑛𝑛
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔𝑛𝑛𝑎𝑎𝑛𝑛 + 𝑖𝑖𝜅𝜅𝑛𝑛𝑏𝑏𝑛𝑛 + 𝛾𝛾𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛  
𝑑𝑑𝑏𝑏𝑛𝑛
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔𝑛𝑛𝑏𝑏𝑛𝑛 + 𝑖𝑖𝜅𝜅𝑛𝑛𝑎𝑎𝑛𝑛 + 𝛾𝛾𝑏𝑏𝑛𝑛𝑏𝑏𝑛𝑛  
 ( 4.1 ) 

where 𝛾𝛾𝑎𝑎𝑛𝑛and 𝛾𝛾𝑏𝑏𝑛𝑛represent the net gain (positive) or loss (negative) in each ring and ωn is 

the 𝑛𝑛𝑡𝑡ℎ longitudinal resonance frequency of an isolated passive ring. Assuming an evolution 

of the form (𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛) = (𝐴𝐴𝑛𝑛,𝐵𝐵𝑛𝑛)−𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡, the eigenfrequencies 𝜔𝜔𝑛𝑛
(1,2) of the two supermodes of 

this system are given by 

𝜔𝜔𝑛𝑛
(1,2) = 𝜔𝜔𝑛𝑛 + 𝑖𝑖 𝛾𝛾𝑎𝑎𝑛𝑛+𝛾𝛾𝑏𝑏𝑛𝑛

2
± �𝜅𝜅𝑛𝑛2 − �𝛾𝛾𝑎𝑎𝑛𝑛−𝛾𝛾𝑏𝑏𝑛𝑛

2
�
2

. ( 4.2 ) 

When both rings are subject to the same level of gain or loss ( 𝛾𝛾𝑎𝑎𝑛𝑛 = 𝛾𝛾𝑏𝑏𝑛𝑛), Eq. 3 reveals that 

the real parts of the eigenfrequencies split by 2𝜅𝜅𝑛𝑛, while their imaginary components remain 

degenerate. According to Eq. (4.2), an interesting situation arises when one of the rings is 

subject to gain, while the other one to the same amount of loss (𝛾𝛾𝑏𝑏𝑛𝑛 = −𝛾𝛾𝑎𝑎𝑛𝑛). In this case, 

depending on the relationship between the strength of coupling (2𝜅𝜅𝑛𝑛) and the gain-loss 

contrast (�𝛾𝛾𝑎𝑎𝑛𝑛 − 𝛾𝛾𝑏𝑏𝑛𝑛�), the splitting either takes place in the real domain or along the 

imaginary axis. In particular, when the gain-loss contrast between the rings exceeds the 

coupling (�𝛾𝛾𝑎𝑎𝑛𝑛 − 𝛾𝛾𝑏𝑏𝑛𝑛� ≥ 2𝜅𝜅𝑛𝑛), the real parts of the eigenfrequencies coalesce while the 

imaginary components lose their degeneracy. The point at which the two eigenfrequencies 

and their respective eigenvalues fuse (�𝛾𝛾𝑎𝑎𝑛𝑛 − 𝛾𝛾𝑏𝑏𝑛𝑛� = 2𝜅𝜅𝑛𝑛) is better known as an exceptional 

point and marks the threshold for parity-time symmetry breaking [5], [47].  
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Figure 10. (a) Schematic of a PT symmetric microring laser. The pump beam is selectively withheld 

from one of the rings using a knife edge (b) Scanning electron microscope image of a typical set of 

microring resonator pairs with different separations at an intermediate fabrication step. 

Figure 11 illustrates the trajectories of the eigenfrequencies associated with the 

aforementioned coupled micro-cavity system in the complex domain, as they transition 

through an exceptional point. In this example, we start with an equally pumped coupled 

micro-ring arrangement entailing two modes separated by 2𝜅𝜅𝑛𝑛 along the real frequency axis. 

As one gradually reduces the gain in one of the resonators and replaces it with loss, while 

the other ring is kept fixed at the initial gain level, the splitting of the resonant frequencies 

in the real domain monotonically decreases. At the same time, the imaginary components of 

the eigenfrequencies are reduced due to the lower available net gain. Nevertheless, the 

imaginary parts of both eigenfrequencies remain equal, indicating that the supermodes are 

evenly distributed between the two rings. This trend continues until the system reaches the 

exceptional point. At this juncture, the eigenfrequencies become fully identical in both their 

real and imaginary parts. Beyond this point and as the gain in the second ring is further 

reduced, the resonant frequency of the two modes become degenerate, while the imaginary 
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parts bifurcate. These changes reflect the fact that in the broken-symmetry regime one of the 

supermodes primarily resides in the gain region (therefore experiencing more 

amplification), while the other one mainly occupies the lossy ring (hence attenuates). 

 

Figure 11. Evolution of eigenfrequencies as the gain in one of the double active cavities is being 

gradually replaced with loss. Below the exceptional point, the eigenfrequencies split along the real 

axis, while keeping the same imaginary components. Above the exceptional point, the real parts of 

the eigenvalues merge while the imaginary parts bifurcate. At the exceptional point, the 

eigenfrequencies become completely identical in the complex domain. 

In order to experimentally study the response of a non-Hermitian coupled system 

around an exceptional point, a number of microring pairs are nano-fabricated. The 

microrings are comprised of six InGaAsP quantum wells, so that one can achieve different 

amounts of gain and loss in each cavity by selectively supplying an appropriate optical pump 

intensity to the quantum wells.  The rings in these experiments have an outer radius of 

10 𝜇𝜇𝜇𝜇, a width of 500 𝑛𝑛𝑛𝑛, and a height of 210 𝑛𝑛𝑛𝑛. The emissions from these structures were 
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visually and spectrally characterized by imaging the surface of the rings onto a CCD camera 

and by sending their radiation to a spectrometer, respectively. To realize the PT-symmetric 

arrangement, a knife-edge is utilized to selectively withhold the pump illumination from one 

of the rings. A detailed description of the fabrication process and measurement setup is 

provided in chapter 9.  

We study the effect of applying a non-uniform pump distribution to observe the 

transition of the system in the parameter space. For our subsequent experiments, we choose 

rings with a separation of 150 𝑛𝑛𝑛𝑛 which leads to the coupling strength of ~7 × 1011 𝑠𝑠−1. 

First, an evenly distributed pump is illuminating both cavities (Fig.12 (a)). Gradually loss is 

introduced to one of the rings by partially blocking the pump with a knife edge. Figures 12 

(a-d) show the corresponding evolution of the output spectra. The associated intensity 

profiles of the rings are also depicted in the insets of Figs. 12 (a-d). As the loss is increased, 

the two resonant peaks associated with the two supermodes move towards each other, while 

their respective intensities gradually decrease due to a reduced overall gain. A drastic 

change, however, happens when the system passes the exceptional point (Fig. 12(d)). At this 

point, the two supermodes become spectrally degenerate and only the broken-symmetry 

mode with the higher Q-factor experiences sufficient amplification to lase. There are two 

unique characteristics that distinguish this system: i) the PT-broken mode occurs at the 

center of the two resonant peaks of the evenly pumped system, ii) the PT-mode primarily 

resides in the pumped cavity (Fig. 12(d) inset). As a result, it is expected that the efficiency 

of such mode in the PT configuration not to be compromised by the presence of the lossy 

cavity as long as it operates in the broken symmetry regime. In the next chapter, we show 
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how this abrupt breaking of PT-symmetry in double microring systems can be fruitfully 

utilized to enforce single mode lasing with considerably enhanced mode discrimination in 

microring arrangements. 

 

Figure 12. Evolution of the emission spectra of a double ring structure as a knife-edge gradually 

covers the right ring, thus introducing loss. The insets show the intensity profile in the two rings 

collected from the scattered emission. The resolution of the spectrometer is set at 0.4 nm. High-

resolution linewidth measurements (see the appendix) show that the linewidth in (d) is ~10 GHz. 

4.2. Lasing threshold 

In this section, the lasing threshold condition for a PT-symmetric microring arrangement is 

derived. For this analysis, we use temporal coupled mode equations that describe the time 

evolution of the modal fields for the 𝑚𝑚𝑡𝑡ℎ longitudinal mode in the active cavity (E1m) and in 

the lossy resonator (E2m):  
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�
𝑑𝑑𝐸𝐸1𝑚𝑚
𝑑𝑑𝑑𝑑

= −𝛾𝛾𝐸𝐸1𝑚𝑚 + 𝜎𝜎(𝑝𝑝−1)
1+𝜀𝜀|𝐸𝐸1𝑚𝑚|2 𝐸𝐸1𝑚𝑚 + 𝑖𝑖𝑖𝑖𝐸𝐸2𝑚𝑚

𝑑𝑑𝐸𝐸2𝑚𝑚
𝑑𝑑𝑑𝑑

= −𝛾𝛾𝐸𝐸2𝑚𝑚 − 𝜎𝜎
1+𝜀𝜀|𝐸𝐸2𝑚𝑚|2 𝐸𝐸2𝑚𝑚 + 𝑖𝑖𝑖𝑖𝐸𝐸1𝑚𝑚

 ( 4.3 ) 

Here, 𝜅𝜅 denotes a temporal coupling coefficient between these two cavities, and it is related 

to the spatial coupling 𝜃𝜃 described above through 𝜅𝜅 = 𝜃𝜃𝑣𝑣𝑔𝑔/(2𝜋𝜋𝜋𝜋), where 𝑣𝑣𝑔𝑔 is the group 

velocity, and 𝑅𝑅 is the radius of the ring resonator. The linear loss 𝛾𝛾 (scattering, radiation 

losses, out-coupling, etc.) is taken to be the same in both resonators and it relates to quality 

factor 𝑄𝑄 via 𝛾𝛾 = 𝑐𝑐/(𝜆𝜆0𝑄𝑄). In these equations 𝜎𝜎(𝑝𝑝 − 1) and 𝜎𝜎 respectively represent the small 

signal gain (for 𝑝𝑝 > 1) due to the pumping parameter 𝑝𝑝 of the quantum wells and absorption 

loss in the absence of pumping, where 𝜎𝜎 = 𝛤𝛤𝑣𝑣𝑔𝑔𝐴𝐴𝑁𝑁0, with 𝐴𝐴 being the gain constant, 𝑁𝑁0 the 

transparency carrier population density, and 𝛤𝛤 the confinement factor. Moreover, 𝑝𝑝 =

𝜏𝜏𝑒𝑒𝑅𝑅𝑝𝑝/𝑁𝑁0 is the pump parameter, where the carrier generation rate is given by 𝑅𝑅𝑝𝑝 =

𝜂𝜂𝐼𝐼/(ℏ𝜔𝜔𝑝𝑝𝑑𝑑) and 𝐼𝐼, 𝜂𝜂, 𝑑𝑑 represent the pump intensity, external quantum efficiency, and the 

height of the multiple quantum wells in each micro-ring, respectively. In addition,𝜏𝜏𝑒𝑒  is the 

carrier lifetime and ℏ𝜔𝜔𝑝𝑝 is the energy of a pump photon. The parameter 𝜀𝜀 is inversely 

proportional to the saturation intensity 𝜀𝜀 = 𝑛𝑛𝑛𝑛𝜏𝜏𝑒𝑒𝜖𝜖0𝐴𝐴𝐴𝐴/(2ℏ𝜔𝜔), where n is the refractive index 

of the structure [76].  

To find the lasing threshold, the above equations are first linearized (small field amplitudes). 

Then, by adopting the parameters 𝐺𝐺𝑚𝑚 = 𝜎𝜎(𝑝𝑝 − 1) and (𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚) = √𝜀𝜀 (𝐸𝐸1𝑚𝑚,𝐸𝐸2𝑚𝑚), we arrive 

at:  

�
𝑑𝑑𝑎𝑎𝑚𝑚
𝑑𝑑𝑑𝑑

= −𝛾𝛾𝑎𝑎𝑚𝑚 + 𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑏𝑏𝑚𝑚
𝑑𝑑𝑏𝑏𝑚𝑚
𝑑𝑑𝑑𝑑

= −𝛾𝛾𝑏𝑏𝑚𝑚 − 𝜎𝜎𝑏𝑏𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑎𝑎𝑚𝑚 
 ( 4.4 ) 
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In the linearized region, the eigenvalues of this system, 𝜁𝜁, can be obtained through 

(𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚) = (𝑎𝑎0𝑚𝑚, 𝑏𝑏0𝑚𝑚)𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖𝑖𝑖𝑖𝑖), where 𝑎𝑎0𝑚𝑚 and 𝑏𝑏0𝑚𝑚 are in general complex constants. 

Hereby, two regimes can be identified, depending on the value of (𝐺𝐺𝑚𝑚 + 𝜎𝜎). In the first case, 

where (𝐺𝐺𝑚𝑚 + 𝜎𝜎) < 2𝜅𝜅, the modal solutions of Eq. (4.4) are associated with the symmetry-

preserved case and are given by, 

�
𝑎𝑎𝑚𝑚
𝑏𝑏𝑚𝑚� = � 1

±𝑒𝑒±𝑖𝑖𝑖𝑖� 𝑒𝑒
�𝐺𝐺𝑚𝑚−𝜎𝜎

2 −𝛾𝛾�𝑡𝑡𝑒𝑒±𝑖𝑖(𝜅𝜅 cos(𝛿𝛿))𝑡𝑡  ( 4.5 ) 

where sin(𝛿𝛿) = (𝐺𝐺𝑚𝑚 + 𝜎𝜎)/2𝜅𝜅. If on the other hand, (𝐺𝐺𝑚𝑚 + 𝜎𝜎) > 2𝜅𝜅, the solutions are, 

�
𝑎𝑎𝑚𝑚
𝑏𝑏𝑚𝑚� = � 1

𝑖𝑖𝑒𝑒±𝛿𝛿� 𝑒𝑒
�𝐺𝐺𝑚𝑚−𝜎𝜎

2 −𝛾𝛾�𝑡𝑡𝑒𝑒∓𝜅𝜅(sinh(𝛿𝛿))𝑡𝑡  ( 4.6 ) 

where 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛿𝛿) = (𝐺𝐺𝑚𝑚 + 𝜎𝜎)/2𝜅𝜅. These latter solutions are characteristics of a broken PT-

symmetry phase, since the fields in the two cavities are now unequal. If the system operates 

in the unbroken PT-symmetry regime, given by Eq. (4.5), then, according to the exponential 

term, linear amplification takes place if the gain is above the total loss in the system, i.e. 𝐺𝐺𝑚𝑚 >

(2𝛾𝛾 + 𝜎𝜎). However, in the broken PT-symmetric phase, Eq. (4.6), growth occurs if 𝐺𝐺𝑚𝑚 >

𝜅𝜅2(𝛾𝛾 + 𝜎𝜎)−1 + 𝛾𝛾. To derive this latter condition, one has to consider the 𝜅𝜅(𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛿𝛿)) term in 

the exponent. From these two threshold conditions, it can be directly inferred that if (𝛾𝛾 +

𝜎𝜎) > 𝜅𝜅, then the PT-broken phase has a lower threshold and hence is the one to lase. 

Conversely, if (𝛾𝛾 + 𝜎𝜎) < 𝜅𝜅, the situation is reversed and the unbroken PT eigenstate will be 

the one to experience amplification. These two lasing thresholds can be summarized by the 

following relationship  

𝐺𝐺𝑡𝑡ℎ = min � 𝜅𝜅
2

𝛾𝛾+𝜎𝜎
+ 𝛾𝛾, 2𝛾𝛾 + 𝜎𝜎� ( 4.7 ) 
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To contrast these results to the lasing threshold of a single ring, one should consider the field 

dynamics described by Eq. (4.4) in the absence of coupling (𝜅𝜅 = 0). In this case, the lasing 

threshold is simply given by 𝐺𝐺𝑚𝑚𝑡𝑡ℎ = 𝛾𝛾. A typical set of parameter values in such semiconductor 

quantum well structures can provide a good comparison between a single ring and a PT-

symmetric laser arrangement. Assuming 𝑄𝑄 = 120,000, hence the photon decay rate at 𝜆𝜆 =

1.55 𝜇𝜇𝜇𝜇 is 𝛾𝛾 =  1.5 × 109 𝑠𝑠−1. The unsaturated absorption loss σ for 𝛤𝛤 = 0.5, 𝑣𝑣𝑔𝑔 = 𝑐𝑐/3.8, 𝐴𝐴 =

2 × 10−20 𝑚𝑚2 and 𝑁𝑁0 = 1024 𝑚𝑚−3, is estimated to be 𝜎𝜎 = 8 × 1011 𝑠𝑠−1. The coupling 𝜅𝜅 can be 

determined from the splitting of the longitudinal modes i.e. 𝛥𝛥𝛥𝛥 = 2𝜅𝜅. From our experiments, 

we find that κ is in the order of 5 × 1011 𝑠𝑠−1. These values clearly indicate that (𝛾𝛾 + 𝜎𝜎) > 𝜅𝜅 

and therefore lasing in our structure is initiated in the broken symmetry mode, which is a 

necessary condition in our PT-symmetric mode management scheme. In this case, the 

threshold pump parameter for the PT-symmetric case is given by: 

𝑝𝑝𝑃𝑃𝑃𝑃 = 1 + 𝛾𝛾
𝜎𝜎

+ 𝜅𝜅2

𝜎𝜎(𝛾𝛾+𝜎𝜎)
 ( 4.8 ) 

In comparison, the lasing threshold for a single ring is 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1 + (𝛾𝛾/𝜎𝜎). Given that for the 

aforementioned values, 𝛾𝛾 ≪ 𝜅𝜅 < 𝜎𝜎, one can arrive at the interesting conclusion that these 

two thresholds are fairly close to each other. Figure 13 illustrates the ratio 𝑝𝑝𝑃𝑃𝑃𝑃/𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as 

function of the coupling strength when unsaturated absorption in the quantum well cavities 

is varying from 50 to 200 𝑐𝑐𝑚𝑚−1. 
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Figure 13. Ratio of lasing thresholds for PT-symmetric arrangement to single microring, at different 

coupling coefficients and for various absorptions in the quantum wells 

4.3. Gain clamping and saturation 

The linear analysis in section 4.1 can provide insights and predict the behavior of a PT-

symmetric coupled cavity laser. However, every laser is an inherently nonlinear device due 

to the gain clamping and saturation. Therefore, to fully understand the dynamics of 

operation in a PT-symmetric laser, these nonlinear aspects should be taken into account. In 

this section, we qualitatively explain their nonlinear behavior. A detailed analysis including 

these nonlinearities has been performed in our group, the results of which is publish in [77]. 

In many amplifier settings, increasing the pump power leads to an increase in the 

resulting optical gain. However, during lasing action, the gain is firmly clamped to a precise 

value (total optical losses in the structure), which cannot be surpassed even with very high 

pump powers. Therefore, the extra pump energy results in boosting of the field amplitude 
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within the cavity and subsequently higher output intensity.  This is also the case in a PT-

symmetric coupled cavity laser. When both rings are pumped, the total gain in both 

resonator is equal to the total scattering and radiation losses (i.e. linear loss) in the structure, 

𝜎𝜎1 + 𝜎𝜎2 = 2𝛾𝛾, ( 4.9 ) 

here, 𝜎𝜎1 and 𝜎𝜎2 represent the material gain/loss in the resonators and 𝛾𝛾 is the linear loss of 

each cavity which is related to the quality factor as indicated in the previous section. Now, if 

material loss gradually replaces the gain in one of cavities (selectively reducing the pump 

power), the gain in the active ring should compensate for this new source of loss in order to 

preserve lasing as well as PT-symmetry in the structure. Hence, 

𝜎𝜎1 = 𝜎𝜎2 + 2𝛾𝛾. ( 4.10 ) 

In this case the gain-loss contrast in the structure is given by, 

Δ𝑔𝑔 = (𝜎𝜎1 − 𝛾𝛾) − (𝜎𝜎2 + 𝛾𝛾) = 2𝜎𝜎2. ( 4.11 ) 

Equation (4.11) indictaes that the gain-loss contast in a PT-laser is related to the material or 

nonlinear loss in the dark cavity. In this regard, if 𝜎𝜎2 < 𝜅𝜅, the system continoues lasing in an 

un-broken PT-symmetric fashion. On the other hand, once this loss exceed the coupling 

strength (𝜎𝜎2 > 𝜅𝜅), the energy transfer between the two resonators can no longer supply the 

required light to maintain the lasing in the lossy resonator, and therefore, the PT-symmetry 

will break.  Since 𝜅𝜅 is a fixed value defined by the geometry of the structure, in a PT-

symmetric laser the regime of operation is dictated by the material loss in the lossy 

resonator, which can easily be controlled by changin the supplied pump power to this cavity. 

On the other hand, the gain’s role is only to ensure the occurance of the lasing action in 

structure. Therefore, the amount of gain, in any regime of operation, should be higher than 
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the lasing threshold. This threshold is given in Eq. (4.7) for both un-broken and broken PT-

symmery regims.  

 In order to observe the PT-symmetry breaking phase transition at relatively low 

pump powers, it is necessary to start with double pumped ring and then gradually replace 

the gain in one of the resonators with loss. Because, when one cavity is subject to 

amplification in an initially un-pumped arrangement, the system will start lasing whether in 

broken or un-broken PT-regime, depending on the loss and coupling values. In this case, the 

configuration remains in the same state of operation throughout a vast range of pump 

powers. Although the broken PT-symmetry can change to un-broken at very high power 

levels due to loss saturation in the dark cavity [77], the high amount of pumping makes this 

reverse transition very hard to reach and challenging to use.  
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CHAPTER 5:  
MODE MANAGEMENT IN PT-SYMMETRIC MICRORING LASERS  

In this section, we show that PT-symmetry breaking can be effectively exploited to enforce 

single longitudinal mode operation in inherently multi-moded micro-ring lasers. This is 

accomplished in a coupled arrangement of two structurally identical ring resonators, where 

one experiences gain, and the other one is subjected to an appropriate amount of loss. The 

key idea behind this mechanism is the fact that the threshold of symmetry breaking depends 

solely on the relation between gain/loss and coupling. Whereas any active resonator is in 

principle capable of displaying single-wavelength operation, selective breaking of PT-

symmetry can be utilized to systematically enhance the maximum achievable gain of this 

mode, even in presence of a large number of longitudinal or transverse modes with similar 

quality factor. The differential amplification of the modes due to the gain bandwidth is used 

for longitudinal mode selection, while single transverse mode operation is enforced via the 

difference in the coupling factors. Finally, we investigate the system’s stability and its 

robustness to perturbations. The results in this chapter have been published in [78] and [79].   

5.1. Longitudinal mode management 

Following the same discussion as in section 4.1, we consider two coupled microrings. The 

small structure size associated with such devices necessitates a high refractive index 

contrast. The interaction between two adjacent rings is mediated by the mutual overlap of 

their fields in the narrow region of greatest proximity, and the coupling coefficient 𝜅𝜅 

determines the frequency splitting 𝛿𝛿𝛿𝛿 between mode pairs. As shown in chapter 3, the free 
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spectral range, or mode spacing, of a ring with radius 𝑅𝑅 and effective group index 𝑛𝑛𝑔𝑔 is given 

by Δ𝜔𝜔 = 𝑐𝑐/𝑅𝑅𝑛𝑛𝑔𝑔. Assuming an active medium with an inhomogeneously broadened 

amplification profile 𝑔𝑔(𝜔𝜔), each and every mode whose gain exceeds the resonator losses 

can lase (see schematic in Fig.14 (a)). 

In this coupled arrangement, PT-symmetry is established when the gain experienced in 

one ring is balanced by the loss in the other. If PT-symmetry is unbroken, the modes neither 

decay nor grow, but rather remain neutral. By contrast, once the gain-loss contrast is 

increased beyond the coupling constant, this symmetry is broken and the respective modes 

experience gain or loss in conjugate pairs [64]. This phase transition lies at the heart of our 

approach.  

When two identical resonators are placed next to one another, the degeneracy between 

their respective modes is broken (see Fig. 14 (b)). The frequency splitting 𝛿𝛿𝛿𝛿 of the resulting 

supermode doublets 𝜔𝜔𝑛𝑛
(1,2) is directly proportional to the coupling coefficient, i.e., 𝛿𝛿𝛿𝛿 = 2𝜅𝜅. 

The resulting eigenfrequencies of such an active system can in general be complex, and their 

imaginary part describes amplification or attenuation. Meanwhile, in PT-symmetric 

arrangements, the relationship between eigenfrequencies and coupling is by nature different 

as described in Eq. (4.2). If the amount of gain and loss in the rings are considered to be equal 

(𝛾𝛾𝑎𝑎𝑛𝑛 = −𝛾𝛾𝑎𝑎𝑛𝑛 = 𝛾𝛾𝑛𝑛), Eq. (4.2) simplifies to 

𝜔𝜔𝑛𝑛
(1,2) = 𝜔𝜔𝑛𝑛 ± �𝜅𝜅𝑛𝑛2 − 𝛾𝛾𝑛𝑛2. ( 5.1 ) 
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Figure 14. Schematic principle of mode suppression in PT-symmetric microring lasers. (a) An isolated 

ring resonator allows lasing of all longitudinal modes with positive net gain. To achieve single-mode 

operation, maximum permissible gain is limited by the gain contrast between the resonances. (b) In 

a coupled arrangement of two identical and evenly pumped rings, the degeneracy of resonator modes 

is broken and mode pairs emerge; their frequency splitting is a measure for the coupling strength. 

(c) PT-symmetric arrangement: As long as the coupling exceeds the amplification, loss and gain in 

the two respective rings balance each other, whereas above this threshold, PT symmetry breaking 

occurs. This mechanism can be exploited to enforce stable single-mode operation in otherwise highly 

multi-moded resonators. Note that the gain contrast is systematically enhanced with respect to the 

single-resonator scenario. 
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When Any pair of modes, whose gain-loss contrast 𝛾𝛾𝑛𝑛 remains below the coupling 

coefficient 𝜅𝜅𝑛𝑛, undergoes bounded neutral oscillations. The absence of any overall gain or 

loss is easily understood considering that the modes reside equally in the amplifying and 

lossy regions, as shown in Fig.15. However, as soon as 𝛾𝛾𝑛𝑛 exceeds 𝜅𝜅𝑛𝑛, a conjugate pair of 

amplifying and decaying modes emerges. Clearly, a judicious placement of this PT threshold 

will allow a complete suppression of all non-broken mode pairs in favor of a single amplified 

mode associated with the aforementioned conjugate pair (see Fig.14 (c)). As the imaginary 

parts of the eigenvalues diverge, degeneracy between their real parts is restored. We 

emphasize that even in the absence of a lossy counterpart (PT-symmetry), any laser cavity 

with a spectrally non-uniform gain distribution 𝑔𝑔(𝜔𝜔) can in principle exhibit single-mode 

operation, provided that the losses overcompensate the gain for all but one resonance. 

However, in this regime, the amplification cannot exceed the gain contrast 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑔𝑔0 – 𝑔𝑔1 

(see Fig.14 (a)). Here, 𝑔𝑔0 refers to the gain of the principal mode, whereas 𝑔𝑔1, to that of the 

next-strongest competing resonance. Obviously, this approach will impose severe 

constraints on the operating parameters— especially in the case of broad gain windows 

and/or closely spaced resonator modes, where 𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥 is very small. By contrast, in a PT-

symmetric setting, the coupling 𝜅𝜅 now plays the role of a virtual loss, and all undesirable 

modes must fall below its corresponding threshold. According to Eq. (5.1), we find that in 

this case, the maximum achievable gain differential is given by 

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑃𝑃 = �𝑔𝑔02 − 𝑔𝑔12 = 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 × �𝑔𝑔0\𝑔𝑔1+1
𝑔𝑔0\𝑔𝑔1−1

 ( 5.2 ) 
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Given that 𝑔𝑔0 ≥ 𝑔𝑔1, a selective breaking of PT-symmetry can therefore systematically 

increase the available amplification for single-mode operation. The square root behavior of 

this enhancement (a direct outcome of the PT symmetry breaking and the associated 

exceptional point), as characterized by the factor 𝐺𝐺 = 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑃𝑃/𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚, can provide 

substantially higher selectivity, especially when the initial contrast between adjacent modes 

is small (𝑔𝑔1 → 𝑔𝑔0, see Fig.14 (c)). This type of mode discrimination is resilient and remains 

valid even when PT-symmetry does not exactly hold for all modes involved. On a 

fundamental level, the mechanism is related to the presence of an exceptional point in the 

system which is discussed and experimentally investigated in chapter 4. The influence of 

deviations from ideal PT-symmetry conditions is investigated in Section 5.3. It can be shown 

that the strong coupling between rings, makes this arrangement relatively immune to local 

perturbations introduced by fabrication errors, nonlinearities, and/or temperature 

gradients. 
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Figure 15. Transverse intensity distributions at the point of closest proximity between the rings. 

Below the threshold of PT symmetry breaking (left), the supermodes are evenly distributed between 

the gain and loss regions, respectively. In contrast, above the threshold (right), the modes 

predominantly reside in one of the rings, and consequently experience a net loss/gain. (b) 

Enhancement G of the maximum achievable differential gain for single-mode operation in a PT-

symmetric setting compared to a single active resonator. 

To experimentally verify this approach, three possible configurations (single ring, 

evenly pumped double ring and PT-symmetric ring arrangement) are realized and the mode 

selectivity in a PT symmetric scenario is demonstrated. Accordingly, the effective pump 
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powers are calculated from the geometric overlap between the active medium and the pump 

profile. Figures 16(a,b) illustrate the behavior of a single ring (radius 10 µm, ring width 500 

nm, height 210 nm) when exposed to an effective peak pump power of 4.9 mW (15 ns pulses 

with a repetition rate of 290 kHz). Under these conditions, at least four modes contribute 

significantly to lasing in the isolated ring. When two such rings are placed at a distance of 

200 nm from one another, and both exposed to the same pump power, one can clearly see 

the coupling-induced mode splitting (Figs. 16 (c,d)), which occurs symmetrically around the 

resonance wavelengths of each ring in isolation. In this coupled regime, both structures are 

contributing equally. Once PT-symmetry is established by withholding the pump from one 

of the resonators (Figs. 16(e,f)), lasing occurs exclusively in the active ring, where single-

mode operation is now achieved. The presence of the lossy ring only serves to suppress the 

unwanted longitudinal modes with a contrast exceeding 20 dB.  

Figure 17(a) shows the characteristic light-light curves for all three arrangements 

involving the 10 µm rings. In all cases the transition to the lasing regime, defined by the 

sudden onset of emission, is clearly visible. The PT-symmetric arrangement appears almost 

indistinguishable from the single ring, indicating that the presence of the lossy element does 

not decrease the overall slope efficiency. Of course, a spectrally resolved comparison of these 

two scenarios (Fig. 17(b)) reveals that the PT system actually offers superior performance, 

since the emission from the single ring includes contributions from several modes. The 

collected data represents the scattering off the ring resonators. 
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Figure 16. Experimental observation of mode suppression by PT-symmetry breaking. (a) Emission 

spectrum of a single resonator (radius 10µm, ring width 500 nm, height 210 nm) when exposed to a 

peak pump power of 4.9 mW. (b) Corresponding intensity pattern within the ring as observed from 

scattered light. (c) Spectrum obtained from an evenly pumped pair of such rings (4.9 mW + 4.9 mW). 

(d) The intensity pattern shows that both resonators equally contribute. (e) Single-moded spectrum 

under PT-symmetric conditions (0 mW + 4.9 mW pump). The mode suppression ratio exceeds 20dB. 

(f) Lasing exclusively occurs in the active resonator. 
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Figure 17. (a) Characteristic light-light graphs of the single, double, and PT-symmetric microring 

resonator arrangements. (b) Spectrally resolved plots comparing the intensity emitted in the desired 

mode. The PT-symmetric configuration clearly offers superior performance. The onset of parasitic 

modes is indicated by the kinks in the single-ring graph. 

5.2. Transverse mode management 

Integrated photonic laser systems with larger cross sections are desirable for many 

applications since they allow for higher energies within the cavities while managing the 

thermal load and keeping the impact of optical nonlinearities under control. Unfortunately, 

however, merely enlarging the transverse dimensions of the waveguides inevitably gives rise 

to competing higher-order spatial modes. This, in turn, compromises the spectral and spatial 

fidelity of the laser and limits the power allocated within a specific mode [19]. These 

limitations exist on all scales, and may even be exacerbated in chip-scale semiconductor 

lasers, where the large gain bandwidths of the active media already pose a challenge in 

promoting single-mode operation [20].   
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So far, tapering along the direction of propagation, engineering the refractive index in the 

cross section, as well as evanescent filtering are some of the extensively explored techniques 

to enforce single spatial mode operation in such arrangements [80]–[83]. Yet, in spite of their 

success, they are not always compatible with on-chip microcavity structures and in most 

cases are quite sensitive to small fabrication tolerances. In this respect, it would be desirable 

to explore alternative avenues to address these issues. 

In this section, we show that selective breaking of parity-time (PT) symmetry can also be 

utilized in promoting the fundamental transverse mode in spatially multi-moded micro-ring 

lasers. In fact, as shown in [64], the virtual threshold at the exceptional point 𝑔𝑔/𝜅𝜅 = 1 

introduces an additional degree of freedom, e.g., the coupling constant 𝜅𝜅 between the active 

and the lossy cavity, mediated by the evanescent overlap of their respective modes. As it is 

well-known, higher order spatial modes systematically exhibit stronger coupling coefficients 

due to their lower degree of confinement. Consequently, in a PT symmetric arrangement, the 

fundamental mode is the first in line to break its symmetry as the gain increases (when 𝑔𝑔 >

𝜅𝜅), thus experiencing a net amplification. On the other hand, for this same gain level, the rest 

of the modes retain an unbroken symmetry and therefore remain entirely neutral. The 

coupled mode analysis describing the behavior of transversely multi-mode coupled 

resonators are the same as in sections 4.1, except for coupling coefficient which is different 

for various transverse modes.  
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Figure 18. Schematic representation of a multimode isolated ring versus Single mode PT symmetric 

arrangement. (a) In a single microring resonator, multiple transverse and longitudinal modes can 

lase simultaneously (b) on the other hand, in a PT-symmetric arrangement, only one longitudinal 

mode with the lowest order transverse profile can lase, and (c) an SEM image of a PT-symmetric 

double ring structure. 

Figures 18 (a) and (b) schematically illustrate the transition from multimode behavior in 

a microring laser to single mode operation in a twin-ring configuration as enabled by 

preferential PT symmetry breaking. Our experiments were conducted in high-contrast active 

ring resonators based on quaternary InGaAsP (Indium-Gallium-Arsenide-Phosphide) 

multiple quantum wells embedded in SiO2 (silicon dioxide) and air as shown in Fig.18 (c). 

Based on our measurements, we estimate the quality factor of the fabricated microrings to 

be on the order of 120,000. The gain bandwidth of the active medium spans the spectral 

region between 1290 and 1600 nm [34]. In our proof-of-principle design, a ring of an outer 

radius of 6 𝜇𝜇𝜇𝜇 and waveguide dimensions of 0.21 𝜇𝜇𝜇𝜇 ×  1.5 𝜇𝜇𝜇𝜇 are chosen to realize 
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comparably large free spectral range (𝛥𝛥𝜆𝜆𝐹𝐹𝐹𝐹𝐹𝐹~16 𝑛𝑛𝑛𝑛) and readily discernible three sets of 

transverse modes. 

Figures 19 (a-c) depict the transverse intensity profiles of different spatial modes 

supported by such a single microring resonator. The curvature of the ring imposes a radial 

potential gradient, which deforms the mode fields into whispering-gallery-like distributions. 

Whereas the peak of all modes shifts towards the ring center, the exponential decay outside 

the ring still grows strongly with the mode order. As shown in Fig.19 (d-f), for a certain 

coupling coefficient, set by the distance between the two rings, the transverse TE0 field is the 

only mode to break its PT symmetry while all the higher order modes (TE1, TE2) are still in 

the unbroken PT phase and hence occupy both rings equally. This behavior is also evident in 

Fig.19 (g) where the coupling strength between different transverse modes is depicted as a 

function of the separation between the two rings. For a fixed distance, the coupling 

coefficient increases with the order of the transverse mode since the effective indices of 

higher order modes lie closer to that of the surrounding medium, allowing for stronger 

evanescent interactions across the cladding region. This trend persists for all wavelengths, 

and in conjunction with the difference in confinement enables PT symmetry breaking to be 

employed as a mode-selective virtual loss. It should be noted however that coupling 

coefficient also a function of wavelength. As a result, different longitudinal modes experience 

slightly different coupling coefficients (see Fig. 20(a)). In addition, the confinement factor 

(related to the overlap of the field with active regions) also plays a role in determining the 

modal gain, and it is described by 
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Γ =
∫ 𝑑𝑑𝑑𝑑|<𝑆𝑆(𝑟𝑟)>|2𝑉𝑉𝑎𝑎

∫ 𝑑𝑑𝑑𝑑|<𝑆𝑆(𝑟𝑟)>|2+∞
−∞

, ( 5.3 ) 

where |< 𝑆𝑆(𝑟𝑟) >| is the time averaged Poynting vector and the integration in the nominator 

is taken over the cross section of the microring resonator. The coupling strength and 

confinement factor is shown in Fig.20 (b) with respect to the wavelength. Clearly, higher 

order transverse modes exhibit lower confinement and therefore experience less modal 

gain. This behavior is again in favor of selective PT symmetry breaking for the fundamental 

transverse mode.    

 

Figure 19. Spatial mode profiles and coupling strengths for different transverse modes in the 

structure (a-c) Intensity distributions in a microring resonator with a cross section 0.21 µm × 1.5 µm 

and a radius of 𝑅𝑅 = 6 µ𝑚𝑚 as obtained by finite element simulations for the first three transverse 

modes, (d-f) intensity distribution of these same modes within the PT-symmetric ring resonators. 

While the TE0 mode operates in the broken PT symmetry regime and lases, all other modes remain 

in their exact PT phase and therefore they stay neutral (below lasing threshold), and (g) Exponential 

decay of the temporal coupling coefficients 𝜅𝜅 with cavity separation d. Higher order modes exhibit 

larger coupling coefficients than their lower-order counterparts. 
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Figure 20. (a) The coupling coefficient and (b) the confinement factor corresponding to different 

transverse modes of a microring resonator with respect to wavelength when the separation between 

the rings is 100 nm. 

In order to experimentally illustrate the selective breaking of PT symmetry, we consider 

a scenario where a coupled arrangement of identical microring resonators is evenly 

illuminated by the pump beam. In this case, as shown in Figure 21(a), every resonance in 

each ring splits into a doublet. In our system, the modes can be distinguished both 

theoretically and experimentally by considering their wavelength splitting (coupling 

strength) as well as their corresponding free spectral ranges. For example, the TE1 

supermodes exhibit greater frequency splitting compared to the TE0 ones due to their higher 

coupling coefficient. In the PT-symmetric system where only one of the two rings is pumped, 

the TE0 modes preferentially undergo PT-symmetry breaking due to their higher modal 

confinement and fuse into a singlet. In addition, given that different longitudinal modes 

experience different amounts of gain, one can restore the PT-symmetry of one of the TE0 

modes by adjusting the pump level. As a result, global single mode operation (spectrally and 
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spatially) can be achieved in this twin-microring system, as only one single longitudinal 

resonance of the fundamental TE0 mode experiences sufficient gain to induce PT-symmetry 

breaking. Figure 21(b) shows the fusion of a doublet in the frequency domain and the 

formation of a single lasing mode.  

Figure 22 compares the modal behavior of a single ring and a PT-symmetric double ring 

system. Figure 22(a) shows the spectrum obtained from a single microring resonator 

supporting up to three transverse modes. Due to their relatively close lasing thresholds, TE0, 

TE1 and TE2 simultaneously lase. Note that, in an isolated ring, a decrease of the overall pump 

power does in practice yield very small selectivity between these modes. On the other hand, 

when the active ring of the PT-symmetric double-ring arrangement is supplied with the same 

pump power as in Fig. 22(a), the higher order modes are readily suppressed with a fidelity 

of over 25 dB (Fig. 22(b)). 

 
Figure 21. PT-enforced single mode operation in the presence of higher order transverse modes. (a) 

Measured emission spectrum from a coupled arrangement of evenly pumped microrings, comprised 

of various TE0 and TE1 modes. (b) Global single-mode operation in the PT arrangement. Selective 

breaking of PT symmetry is used to suppress the entire set of TE1 modes as well as competing 

longitudinal TE0 resonances. The minimum separation between the coupled rings is 50 nm. 
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Figure 22. Comparison between the spectral evolution of a single microring laser and the 

corresponding PT-symmetric arrangement as a function of the pump power. (a) Higher order 

transverse modes TE1 and TE2 appear in the lasing spectrum of the single microring laser. (b) The PT 

laser remains single-mode. 

It is also instructive to compare the output efficiency of the PT-symmetric laser with 

that of a standalone microring resonator. The characteristic light-light curves shown in 

Figure 23(a) demonstrate that despite a slightly higher lasing threshold, the PT arrangement 

exhibits approximately the same slope efficiency as the single ring.  What is important, 

however, is that in the PT case, the entire power is now emitted into the broken-PT 

resonance, whereas in the single ring system it is shared among a mixture of competing 

modes (Fig. 23 (b)). It should be noted that the threshold in the PT system is set by the 

coupling between the rings and the loss of the un-pumped cavity and can be further modified 

through design (see Section 4.2). 
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Figure 23. Light-light characteristics. (a) Despite a slightly higher lasing threshold, the PT-symmetric 

arrangement exhibits the same slope efficiency as an isolated microring. (b) The desired TE0 mode 

of the PT system carries much higher power than any mode in the single microring. In the single ring, 

different transverse modes can be distinguished from their onset of lasing. 

5.3. Robustness to perturbations and stability 

The analysis in Section 5.1 assumes perfect PT-symmetric conditions, i.e., two entirely 

identical rings exhibiting equal amounts of gain and loss. In practice, however, it may not 

always be possible to fulfill these conditions. To begin with, even if PT-symmetry is exactly 

held for one pair of modes, the wavelength dependence of the gain medium as well as the 

bending and scattering losses may cause deviations from this condition for the rest of the 

modes. In addition, due to the inter-dependence of refractive index and gain/loss (Kramers-

Kronig relations), even structurally identical ring resonators can be detuned when being 

subjected to different pump energies. Yet, as we will show in this section, the strong coupling 

between the ring resonators makes the PT-symmetric mode selection technique resilient to 

some level of perturbation. To study this problem in a systematic way, we formulate a 
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situation where the gain/loss and the resonant frequencies in the two coupled resonators 

are not exactly equal. Following an approach similar to that outlined in section 4.1, we find 

the following self-consistent relationship between the fields in the two resonators (an and 

bn): 

�
𝑑𝑑𝑎𝑎𝑛𝑛
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 + 𝑖𝑖𝜅𝜅𝑛𝑛𝑏𝑏𝑛𝑛 + 𝛾𝛾𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛
𝑑𝑑𝑏𝑏𝑛𝑛
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛 + 𝑖𝑖𝜅𝜅𝑛𝑛𝑎𝑎𝑛𝑛 + 𝛾𝛾𝑏𝑏𝑛𝑛𝑏𝑏𝑛𝑛
 ( 5.4 ) 

where 𝛾𝛾𝑎𝑎𝑛𝑛and 𝛾𝛾𝑏𝑏𝑛𝑛represent the net gain (positive) or loss (negative) in each ring and 𝜔𝜔𝑎𝑎,𝑏𝑏𝑏𝑏 

are the nth longitudinal resonance frequency of each ring (when isolated and passive), and 

𝜅𝜅 represent the coupling between the rings. Note that if caused by perturbations, it is 

generally expected that the mismatch between the resonant frequencies of the rings to be 

small, therefore one can assume 𝜔𝜔𝑏𝑏𝑏𝑏 = 𝜔𝜔𝑎𝑎𝑎𝑎 + Δ𝜔𝜔 where Δ𝜔𝜔 ≪ 𝜔𝜔𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏. On the other hand, 

the gain and loss can, in practice, significantly deviate from their exact PT balance. This is 

due to fact that the loss of the un-pumped ring is dictated by the absorption and scattering, 

while the gain in the pumped cavity can attain a wide range of values depending on the 

intensity of the pump. Again, by assuming an evolution of the form (𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛) = (𝐴𝐴𝑛𝑛,𝐵𝐵𝑛𝑛)𝑒𝑒−𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡, 

one can find the eigenfrequencies 𝜔𝜔𝑛𝑛
(1,2) of the supermodes to be 

𝜔𝜔𝑛𝑛
(1,2) = 𝜔𝜔𝑎𝑎𝑎𝑎 + Δ𝜔𝜔

2
+ 𝑖𝑖 𝛾𝛾𝑎𝑎𝑛𝑛+𝛾𝛾𝑏𝑏𝑛𝑛

2
± �𝜅𝜅𝑛𝑛2 − �𝛾𝛾𝑎𝑎𝑛𝑛−𝛾𝛾𝑏𝑏𝑛𝑛

2
+ 𝑖𝑖 Δ𝜔𝜔

2
�
2
 ( 5.5 ) 

In order to visually illustrate how the system responds to deviations, the evolution of 

eigenfrequencies, when the gain in the active ring changes from 0 to 2𝜅𝜅 are plotted in the 

complex plane for a double ring structure under perfect PT-symmetric conditions (Fig. 

24(a)), and the same system subject to the above perturbations (Fig. 24(b)). As shown in Fig. 
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24(b), for the perturbed system, the eigenfrequencies are of a complex nature and the 

transition from the unbroken to the broken regime occurs in a more adiabatic fashion. 

However, regardless of these differences, as long as the deviations are well below the level 

required to fully decouple the two rings (around 10% of the coupling), the overall behavior 

of the modes remains the same. Therefore, by using strongly coupled resonators as 

demonstrated in this work, it is possible to achieve robust single mode operation despite 

small perturbations due to fabrication imperfections or pump-induced nonlinearities.  

 

Figure 24. The real and imaginary parts of the normalized eigenfrequencies associated with (a) a 

perfectly PT-symmetric, and (b) a perturbed PT-symmetric coupled microring arrangements, where 

the gain in the active ring is varied from 0 to 2𝜅𝜅. The loss in the un-pumped resonator 𝛾𝛾𝑏𝑏𝑛𝑛 , and the 

phase mismatch Δ𝜔𝜔 are set to be 𝜅𝜅 and 0.03𝜅𝜅 respectively. In the perturbed PT system, the general 

trends remain the same as long as the two rings are strongly coupled. 

Along the same lines, the performance of the stability of PT-symmetric laser is also 

tested in the presence of temperature variations. In a single ring configuration, due to the 

presence of multiple competing modes, a slight shift of the amplification envelope may 
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severely impact the ensemble of the lasing modes. Figure 25(a) shows the temperature-

induced shift of the photoluminescence spectrum of the quantum well active medium. Figure 

25(b) compares the evolution of the emission spectra obtained from a conventional ring 

resonator and the PT-symmetric system as the sample temperature is externally varied. 

Interestingly, the self-adjusting properties of PT-symmetric mode stabilization seem to 

prevent mode-hopping effects. As a result, the lasing mode of the PT system remains stable 

and continuously shifts over a range of 3.3 nm by varying the temperature between 270 K 

and 300 K, while single-mode behavior is preserved with high fidelity. Thus, this scheme is 

shown to be substantially robust to ambient temperature changes in enforcing single mode 

operation. 
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Figure 25. Continuous wavelength tuning of a PT-symmetric single-mode microring laser. (a) 

Measured photoluminescence of the InGaAsP wafer at different temperatures. (b) Emitted spectrum 

of the same PT-symmetric scenario shown in (a) (red line) compared to single ring scenario with the 

same ring dimensions (blue line). Continuous single mode tuning is achieved in the PT case while the 

multi-moded spectrum of a single ring laser undergoes severe mode-hoping by changing the 

temperature. (c) Emitted spectrum from a PT-symmetric microring structure at a temperature of 270 

K, 280 K, 290 K and 300 K, and a pump power of 0.8, 1, 1.4, and 1.4 mW, respectively. The observed 

wavelength tuning is approximately 0.1 𝑛𝑛𝑛𝑛𝐾𝐾−1. The rings have a radius of 6 μm and a width of 500 

nm and are placed 200 nm apart from each other. 
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CHAPTER 6:  
DIRECT MODULATION OF PT-SYMMETRIC LASERS 

Telecommunication is one of the fundamental areas of application for semiconductor lasers. 

In order to utilized the lasers for high speed data transmission, one should be able to 

modulate their output with microwave frequencies.  The upper frequency limit of such a 

modulation defines the information carrying capacity of an optical communication system. 

One of the common approaches for these high frequency operations is to directly modulate 

the output amplitude of semiconductor lasers by varying the current flow through the 

device. However, the modulation speed in most of current semiconductor settings is limited 

due to large photon life times in the cavities. In this chapter, we theoretically show that the 

frequency response of a semiconductor laser can be broadened, if the system is paired with 

a lossy partner in a PT-symmetric fashion, and biased close to the exceptional point.  

6.1. Gain derivatives enhancement  

To study the small signal modulation response of PT-symmetric coupled microrings, we 

assume that the laser always operates in the broken PT-symmetric regime. As we know 

material gain approximately is a linear function of number of carriers:  

𝑔𝑔𝑚𝑚 = 𝜎𝜎𝑔𝑔
𝑉𝑉

(𝑁𝑁 − 𝑁𝑁0)     (𝑚𝑚−1) ( 6.1 ) 

where 𝑔𝑔𝑚𝑚 is the material gain at the wavelength of operation, 𝜎𝜎𝑔𝑔 is the gain cross section, N 

is the number of carriers, and 𝑁𝑁0 is the number of carriers at transparency. Thus, the modal 

gain of the active ring can be written as, 

𝐺𝐺𝑟𝑟 = Γ𝑣𝑣𝑔𝑔𝑔𝑔𝑚𝑚 = 𝐺𝐺𝑟𝑟𝑟𝑟(𝑁𝑁 − 𝑁𝑁0)     (𝑠𝑠−1), ( 6.2 ) 
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where 𝐺𝐺𝑟𝑟𝑟𝑟 = Γ𝑣𝑣𝑔𝑔𝜎𝜎𝑔𝑔/𝑉𝑉 and 𝑣𝑣𝑔𝑔 is the mode group velocity in the ring. If the system is lasing 

beyond PT symmetry breaking point, the gain associated with the mode residing in the active 

resonator represents the stimulated emission rate (𝐺𝐺). For a typical microring laser, the 

stimulated emission rate is linearly related to the gain of the cavity. However, in the case of 

the PT laser, it is a more elaborate function of total loss of the un-pumped cavity and the 

coupling strength between the rings, as well as the gain in the pumped resonator (𝐺𝐺𝑟𝑟). 

Equation (6.3) shows the dependence 𝐺𝐺 to the different parameters of the system as derived 

in chapter four.   

𝐺𝐺 = 𝐺𝐺𝑟𝑟−𝛼𝛼
2

+ ��𝐺𝐺𝑟𝑟+𝛼𝛼
2
�
2
− 𝜅𝜅2 ( 6.3 ) 

Using the equation (6.3), the parameters of the system can be designed such that the 

threshold of lasing and PT breaking be equal.  Once the system is designed, we consider the 

attenuation in the lossy ring and the coupling strength to be constant for the calculations 

regarding small signal modulation. Therefor one can find that the dependence of the 

stimulated emission to any parameter in the PT-laser is a linear funcation derivative of the 

gain in the active ring with respect to the same parameter. This relation is showed as  

𝑑𝑑𝐺𝐺
𝑑𝑑𝑑𝑑

= 𝐴𝐴 × 𝑑𝑑𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

 ( 6.4 ) 

where 𝑥𝑥 is number of photons or carriers. We call 𝐴𝐴 the derivative enhancement factor which 

express the difference between an isolated mirroring laser and the corresponding PT-

symmetric microring laser arrangement. Equation (6.5) is the expression for A derived 

simply from applying the chain rule to (6.3),  

𝐴𝐴 = 1
2

+ (𝐺𝐺𝑟𝑟+𝛼𝛼
2

)/ �(𝐺𝐺𝑟𝑟 + 𝛼𝛼)2 − 2𝜅𝜅2. ( 6.5 ) 
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Therefore, 𝐴𝐴 is always equal to one for a single mirroring laser. The amount of 𝐴𝐴 with respect 

to gain/loss to coupling ratio is also plotted in Fig. 26 for the PT scenario when the gain and 

loss in the cavities are equal. According to Fig. 26, the enhancement factor increases 

considerably as the system approaches the PT-symmetry breaking or exceptional point. In 

the next section, we show how this enhancement coefficient can improve the modulation 

response of the system by increasing the relaxation oscillation frequency and the damping 

factor.  

 

Figure 26. Enhancement of the derivative of the modal gain in the PT-symmetric case over isolated 

microring laser with respect to gain/loss over coupling ratio. 

6.2. Small signal modulation response of a PT-laser 

In order to find the modulation response in the PT-symmetric case, one can start with the 

rate equations. If 𝑃𝑃 is the number of photons and 𝑁𝑁 is the number of carriers in the laser 

cavity, following the method in [20] we have 



55 
 

�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐺𝐺𝐺𝐺 + 𝑅𝑅𝑠𝑠𝑠𝑠 −
𝑃𝑃
𝜏𝜏𝑝𝑝

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐼𝐼
𝑒𝑒
− 𝑁𝑁

𝜏𝜏𝑐𝑐
− 𝐺𝐺𝐺𝐺

, ( 6.6 ) 

where 𝐺𝐺 and 𝑅𝑅𝑠𝑠𝑠𝑠  are the net rate of stimulated and spontaneous emissions, respectively, 𝐼𝐼 is 

the injected current, 𝜏𝜏𝑝𝑝 and 𝜏𝜏𝑐𝑐 represent the photon and carrier lifetimes, and e is the electric 

charge of an electron. The equation for 𝐺𝐺 is already derived in the previous section. 𝑅𝑅𝑠𝑠𝑠𝑠 also 

can be ignored, since we are only interested at the behavior of the laser above the lasing 

threshold. Also, for simplicity, one can ignore the injection efficiency and output efficiency in 

the rest of the calculations.    

Let’s consider the laser to be biased at the current 𝐼𝐼0 (number of carriers and photons 

to be 𝑁𝑁𝑡𝑡ℎ and 𝑃𝑃0 respectively) at steady state. From the rate equations, one can derive,  

𝐺𝐺0 = 1
𝜏𝜏𝑝𝑝

 ( 6.7 ) 

𝑃𝑃0 = 𝜏𝜏𝑝𝑝
𝑒𝑒
�𝐼𝐼 − 𝑒𝑒𝑁𝑁𝑡𝑡ℎ

𝜏𝜏𝑐𝑐
� = 𝜏𝜏𝑝𝑝

𝑒𝑒
(𝐼𝐼 − 𝐼𝐼𝑡𝑡ℎ) ( 6.8 ) 

By adding a small modulation current i(t) to the bias current we have:  

�
𝐼𝐼(𝑡𝑡) = 𝐼𝐼0 + 𝑖𝑖(𝑡𝑡)
𝑃𝑃(𝑡𝑡) = 𝑃𝑃0 + 𝑝𝑝(𝑡𝑡)
𝑁𝑁(𝑡𝑡) = 𝑁𝑁𝑡𝑡ℎ + 𝑛𝑛(𝑡𝑡)

 ( 6.9 ) 

The stimulated emission rate also can be approximated by the first order Taylor expansion 

to be, 

𝐺𝐺 = 𝐺𝐺0 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑛𝑛(𝑡𝑡) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑝𝑝(𝑡𝑡), ( 6.10 ) 

where the gain saturation effect is represented in the last term of the equation. Inserting 

(6.9) and (6.10) in (6.6), and ignoring the second order terms of 𝑖𝑖(𝑡𝑡), 𝑝𝑝(𝑡𝑡), and 𝑛𝑛(𝑡𝑡), we have    
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�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= Γ𝑃𝑃𝑃𝑃𝑝𝑝(𝑡𝑡) + Γ𝑃𝑃𝑃𝑃𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= Γ𝑁𝑁𝑁𝑁𝑝𝑝(𝑡𝑡) + Γ𝑁𝑁𝑁𝑁𝑛𝑛(𝑡𝑡) + 𝑖𝑖(𝑡𝑡)/𝑒𝑒
 ( 6.11 ) 

where 

Γ𝑝𝑝𝑝𝑝 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑃𝑃0 ( 6.12 ) 

Γ𝑃𝑃𝑃𝑃 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑃𝑃0 ( 6.13) 

Γ𝑁𝑁𝑁𝑁 = −𝐺𝐺0 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑃𝑃0 ( 6.14 ) 

Γ𝑁𝑁𝑁𝑁 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑃𝑃0 −

1
𝜏𝜏𝑐𝑐

 ( 6.15 ) 

In equation (6.15), it is assumed that carrier lifetime dependence to the number of carriers 

is negligible. In the next step, one can assume that the modulation current to be a sinusoidal 

function with the angular frequency of 𝜔𝜔0. Under small signal approximation, the photon and 

carriers are expected to oscillate sinusoidally with the same frequency around the bias 

values. Thus, 

�
𝑖𝑖(𝑡𝑡) = 𝐼𝐼𝑚𝑚𝑅𝑅𝑅𝑅{𝑒𝑒−𝑗𝑗𝜔𝜔0𝑡𝑡} 
𝑝𝑝(𝑡𝑡) = 𝑃𝑃𝑚𝑚𝑅𝑅𝑅𝑅{𝑒𝑒−𝑗𝑗𝜔𝜔0𝑡𝑡}
𝑛𝑛(𝑡𝑡) = 𝑁𝑁𝑚𝑚𝑅𝑅𝑅𝑅{𝑒𝑒−𝑗𝑗𝜔𝜔0𝑡𝑡}

 ( 6.16 ) 

Using equation (7.16), one can rewrite equation (7.11) as 

�
(Γ𝑃𝑃𝑃𝑃 + 𝑗𝑗𝜔𝜔0)𝑃𝑃𝑚𝑚 + Γ𝑃𝑃𝑃𝑃𝑁𝑁𝑚𝑚 = 0

Γ𝑁𝑁𝑁𝑁𝑃𝑃𝑚𝑚 + (Γ𝑁𝑁𝑁𝑁 + 𝑗𝑗𝜔𝜔0)𝑁𝑁𝑚𝑚 = −𝐼𝐼𝑚𝑚/𝑒𝑒 ( 6.17 ) 

This can be easily solved by Cramer’s rule to find the amount of 𝑃𝑃𝑚𝑚 with respect to 𝐼𝐼𝑚𝑚, 

𝑃𝑃𝑚𝑚 = Γ𝑃𝑃𝑃𝑃𝐼𝐼𝑚𝑚/𝑒𝑒
(Γ𝑃𝑃𝑃𝑃+𝑗𝑗𝜔𝜔0)(Γ𝑁𝑁𝑁𝑁+𝑗𝑗𝜔𝜔0)−Γ𝑃𝑃𝑃𝑃Γ𝑁𝑁𝑁𝑁

 ( 6.18 ) 

which can be written as  
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𝑃𝑃𝑚𝑚 = Γ𝑃𝑃𝑃𝑃𝐼𝐼𝑚𝑚/𝑒𝑒
𝜔𝜔𝑅𝑅
2−𝜔𝜔0

2+𝑗𝑗𝑗𝑗𝜔𝜔0
 ( 6.19 ) 

where 

𝜔𝜔𝑅𝑅 = (Γ𝑃𝑃𝑃𝑃Γ𝑁𝑁𝑁𝑁 − Γ𝑃𝑃𝑃𝑃Γ𝑁𝑁𝑁𝑁)1/2 ( 6.20 ) 

and 

𝛾𝛾 = Γ𝑃𝑃𝑃𝑃 + Γ𝑁𝑁𝑁𝑁 ( 6.21 ) 

𝜔𝜔𝑅𝑅 and 𝛾𝛾 are defined as the relaxation oscillation frequency and the damping factor 

respectively. Hence, the frequency response of the photon number in the system for a small 

signal excitation can be written as  

𝐻𝐻(𝜔𝜔0) = 𝑃𝑃𝑚𝑚(𝜔𝜔0)
𝑃𝑃𝑚𝑚(0)

= 𝜔𝜔𝑅𝑅
2

𝜔𝜔𝑅𝑅
2−𝜔𝜔0

2+𝑗𝑗𝑗𝑗𝜔𝜔0
 ( 6.22 ) 

Now, let’s consider the PT-symmetric laser again. In this system, the gain associated with the 

active resonator can be described by   

𝐺𝐺𝑟𝑟 = 𝐺𝐺𝑟𝑟𝑟𝑟(𝑁𝑁 − 𝑁𝑁0)(1 − 𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃). ( 6.23 ) 

𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠 expresses the gain suppression in the pumped cavity for large values of 𝑃𝑃. Consequently, 

we can find the derivative of 𝐺𝐺𝑟𝑟 with respect to 𝑃𝑃 and 𝑁𝑁 at for a particular bias values, 

𝑑𝑑𝐺𝐺𝑟𝑟
𝑑𝑑𝑑𝑑

= 𝐺𝐺𝑟𝑟𝑟𝑟(1 − 𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃) ≈ 𝐺𝐺𝑟𝑟𝑟𝑟 ( 6.24 ) 

𝑑𝑑𝐺𝐺𝑟𝑟
𝑑𝑑𝑑𝑑

= −𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑟𝑟𝑟𝑟(𝑁𝑁𝑡𝑡ℎ − 𝑁𝑁0) ≈ −𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺0 ( 6.25 ) 

However, using equation (6.4), for the gain of the lasing mode beyond PT symmetry breaking 

we have, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴 𝑑𝑑𝐺𝐺𝑟𝑟
𝑑𝑑𝑑𝑑

≈ 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟 ( 6.26 ) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴 𝑑𝑑𝐺𝐺𝑟𝑟
𝑑𝑑𝑑𝑑

≈ −𝐴𝐴𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺0 ( 6.27 ) 
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where 𝐴𝐴 is the enhancement factor (depends on various parameters of the PT-system), that 

is fully described in the first section. And as mentioned before, it indicates the difference 

between a single microring laser and a PT symmetric microring laser configuration. Also 

𝐺𝐺𝑟𝑟𝑟𝑟 = Γ𝑣𝑣𝑔𝑔𝜎𝜎𝑔𝑔/𝑉𝑉  and 𝐺𝐺0 = 1
𝜏𝜏𝑝𝑝

. Thus, one can rewrite equations (6.12)-(6.15) as, 

Γ𝑃𝑃𝑃𝑃 = −𝐴𝐴𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺0𝑃𝑃0 ( 6.28 ) 

Γ𝑃𝑃𝑃𝑃 = 𝐴𝐴𝐺𝐺𝑟𝑟𝑟𝑟𝑃𝑃0 ( 6.29 ) 

Γ𝑁𝑁𝑁𝑁 = −𝐺𝐺0 ( 6.30 ) 

Γ𝑁𝑁𝑁𝑁 = −𝐴𝐴𝐺𝐺𝑟𝑟𝑟𝑟 −
1
𝜏𝜏𝑐𝑐
≈ − 1

𝜏𝜏𝑐𝑐
 ( 6.31 ) 

Therefore, one can write,  

Γ𝑃𝑃𝑃𝑃PT = 𝐴𝐴Γ𝑃𝑃𝑃𝑃
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ( 6.32 ) 

Γ𝑃𝑃𝑃𝑃PT = 𝐴𝐴Γ𝑃𝑃𝑃𝑃
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ( 6.33 ) 

Γ𝑁𝑁𝑁𝑁PT = Γ𝑁𝑁𝑁𝑁
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ( 6.34 ) 

Γ𝑁𝑁𝑁𝑁PT = Γ𝑁𝑁𝑁𝑁
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ( 6.35 ) 

Hence, from (7.20), one can derive:  

𝜔𝜔𝑅𝑅
𝑃𝑃𝑃𝑃 = √𝐴𝐴𝜔𝜔𝑅𝑅

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ( 6.36 ) 

Figure 27(a) shows the frequency response of a single microring laser versus the PT 

symmetric arrangement when operating at 𝐼𝐼 = 1.005𝐼𝐼𝑡𝑡ℎ  and 𝐼𝐼𝑡𝑡ℎ = 1𝑚𝑚𝑚𝑚. The photon life time 

considered to be the same for both cases. As it is clear in Fig. 27(a), considerable 

improvement in the small signal frequency response can be achieved just by introducing an 

identical but lossy cavity to a semiconductor microring laser. The transient respond of the 

two systems is also compared in Fig. 27(b).  
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Figure 27. (a) Frequency response of an isolated microring laser (dashed blue line) versus the PT-

symmetric configuration of the same resonator (solid red line). (b) transient response of an isolated 

microring laser (dashed blue line) versus the PT symmetric configuration of the same resonator 

(solid red line) when a step current with amplitude of (𝑙𝑙0 − 𝐼𝐼𝑡𝑡ℎ)/2 is applied to the pumped cavity. 
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CHAPTER 7: DARK STATE LASERS 

In this section, we present the theoretical analysis and the experimental demonstration of 

single mode operation in dark state lasers through the physics of non-Hermitian EPs. The 

structure is based on a coupled microring layout [84]. This dual cavity configuration is 

implemented on the same InP based multi-quantum-well semiconductor gain material as in 

previous chapters. In this system, single frequency emission was enforced with more than a 

30 dB side-lobe mode suppression. In addition, over one free spectral range of continuous 

wavelength tunability is demonstrated by simply adjusting the ambient temperature. Figure 

28(a) provides a schematic of the configuration used in our experiments. This arrangement 

is comprised of two dissimilar microring resonators (same widths and heights, different 

radii), indirectly coupled to each other via a central waveguide. The cross-section of the three 

identical guides is designed so as to favor a single transverse TE mode. Fig. 28(b) depicts an 

SEM image of the fabricated structure. The results in this chapter have been published in 

[85]. 

 

Figure 28. (a) Schematic of a dark state laser. The dots on the middle waveguide are used to scatter 

the light in this channel for detection. (b) An SEM image of the dark state laser system at an 

intermediate fabrication step. 
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7.1. Theoretical model 

The presence of exceptional points and the ensuing mode discrimination in the above dark 

state arrangement can be understood by investigating the corresponding eigenvalue 

spectrum (Fig. 29). The passive dark state arrangement without any intrinsic gain or loss is 

considered in this analysis. Here, the eigenfrequencies and eigenmodes of the system can be 

determined using temporal coupled mode formulations. By considering a longitudinal 

resonance frequency of the system, the equations representing the evolution of the fields in 

the two resonators and the bus waveguide can be written as follows: 

�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔1𝑎𝑎 − 𝛾𝛾𝛾𝛾 − 𝛾𝛾𝛾𝛾 + 𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖
𝑏𝑏𝑜𝑜 = 𝑏𝑏𝑖𝑖 + 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝜔𝜔2𝑐𝑐 − 𝛾𝛾𝛾𝛾 − 𝛾𝛾𝛾𝛾 + 𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖

 ( 7.1 ) 

In this model, the ring resonators are viewed as two oscillators with field amplitudes 𝑎𝑎(𝑡𝑡) 

and 𝑐𝑐(𝑡𝑡), normalized in such a way that |𝑎𝑎(𝑡𝑡)|2 and |𝑐𝑐(𝑡𝑡)|2 represent stored energies, 𝑏𝑏𝑖𝑖 and 

𝑏𝑏𝑜𝑜 represent the amplitudes of the input and output waves in the bus channel normalized to 

the power, 𝜔𝜔1,2 are the resonance frequencies of the rings, and finally 𝜇𝜇 is the coupling 

coefficient between each resonator and the bus waveguide. In this analysis, 𝛾𝛾 represents the 

out-coupling loss of the two cavities. Note that 𝜇𝜇 and 𝛾𝛾 are not independent parameters and 

conservation of energy demands that 𝜇𝜇 = �2𝛾𝛾 [86]. Assuming eigenmode solutions of the 

form (𝑎𝑎, 𝑐𝑐) = (𝑎𝑎0, 𝑐𝑐0)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, one can find the longitudinal eigenfrequencies to be: 

𝜔𝜔𝑛𝑛
(1,2) = �𝜔𝜔1+𝜔𝜔2

2
� − 𝑖𝑖𝑖𝑖 ± ��𝜔𝜔1−𝜔𝜔2

2
�
2
− 𝛾𝛾2. ( 7.2 ) 
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Moreover, the associated eigenmodes can be written as: 

�
𝑎𝑎0
𝑐𝑐0�1,2

= � 1
𝑖𝑖𝑖𝑖 ± √1 − 𝛿𝛿2� ( 7.3 ) 

where 𝛿𝛿 = (𝜔𝜔2 − 𝜔𝜔1)/(2𝛾𝛾).  

When the resonance frequency of the two dissimilar rings are relatively far away from 

each other ((𝜔𝜔1 − 𝜔𝜔2)2 ≫ 4𝛾𝛾2), Eq. (7.2) reveals that the eigenfrequencies bifurcate in the 

real domain. In this scenario, such uncoupled modes endure a significant amount of loss as a 

result of the power out-coupling to the central channel and remain below lasing threshold 

as indicated in Fig. 29(c). The system is exactly at the exceptional point when the detuning 

between the two rings satisfies (𝜔𝜔1 − 𝜔𝜔2) = ±2𝛾𝛾. At this singular point, the two 

eigenfrequencies and their respective eigenvectors coalesce as indicated by Eqs. (7.2) and 

(7.3). Finally, if (𝜔𝜔1 − 𝜔𝜔2)2 ≪ 4𝛾𝛾2, the system is operating beyond the phase transition 

point. In this case, the two coinciding resonances tend to fuse in the real domain while they 

split along the imaginary axis. In other words, the two emerging supermodes will resonate 

at the same frequency, having two very different quality-factors (𝑄𝑄 = |𝜔𝜔𝑅𝑅 ⁄ (2𝜔𝜔𝐼𝐼)|). 
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Figure 29. Principle of operation of a microring-based dark state laser. (a) Due to out-coupling losses, 

all the longitudinal modes of the upper microring have a low Q-factor and therefore a high lasing 

threshold (dashed line). (b) Similarly, modes of the lower microring cannot reach lasing threshold. 

(c) In a dark state arrangement, the spectrally coinciding modes form a pair of bright and dark modes. 

While the bright state loses a significant fraction of its energy to the central waveguide, the dark state 

has zero overlap with this channel and therefore has a high Q-factor and a low lasing threshold. The 

difference between Q-factors are conveyed in the depicted linewidths of the resulting dark and bright 

states. 
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Intuitively, one can understand this process as follows. In a dark state laser, the 

central waveguide plays the role of a mode dependent loss element. Equation (7.3) indicates 

that in such a configuration, the fields of the two coalesced supermodes are approximately 

in-phase and π-out-of-phase within these two rings. Given that the symmetric in-phase mode 

strongly excites the central waveguide through constructive interference, a considerable 

amount of energy is expected to be irreversibly lost through this channel. On the other hand, 

the anti-symmetric π-out-of-phase mode (dark state) does not inject light into the middle 

channel and hence experiences minimum attenuation.  In this latter scenario, the mode 

remains well-confined within the two rings as shown in the inset of Fig. 29(c). Note that, this 

is consistent with the results of the Eqs. (7.2) and (7.3). Since any non-coinciding resonance 

associated with the two dissimilar rings endures a significant amount of loss through 

coupling to the central waveguide, in the presence of gain, the anti-symmetric dark state 

mode is the first in line to lase with a large margin for mode discrimination. Therefore, the 

emergence of an exceptional point in such a non-Hermitian open configuration enables 

single mode lasing. 

7.2. Experimental results 

In this section, we present the experimental results regarding the formation of dark state 

modes in a microring system. The central waveguide as well as the microrings involve 

InGaAsP multiple quantum wells and are surrounded by low index dielectrics (SiO2 and air). 

The microrings were optically pumped with a 1064 nm laser beam (SPI fiber laser) focused 

onto a circular area with the diameter of ~100 μm on the sample surface. The intensity 
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profile is captured via an IR CCD camera, and the emission spectrum is collected using a 

monochromator with the resolution of 0.4 nm. The reported pump power is calculated by 

taking the ratio of the ring top surface area aperture to the pump laser spot size and 

multiplying it by the total pump laser power. Only the output power collected by the 

objective lens is considered for the reported results. Finally, controlling the temperature is 

performed by placing the structures in a continuous-flow cryostat (Janis ST-500). Using a 

closed loop controller, the temperature was varied from room temperature down to 110K. 

Figure 30 shows the emission characteristics of a dark state structure comprising of 

two microrings with radii of 9 𝜇𝜇𝜇𝜇 and 11 𝜇𝜇𝜇𝜇 (width: 500 𝑛𝑛𝑛𝑛, height: 210 𝑛𝑛𝑛𝑛) separated by 

a waveguide of an identical cross section, centered at a distance of 200 nm from each of the 

two rings. Single mode lasing is achieved at room temperature under pulsed pumping 

conditions (pulse width: 15 ns, repetition rate: 290 KHz). In order to ensure that the 

observed mode is of the dark state type, the spectrum of this two-ring configuration (Fig. 

30(e)) is compared to that obtained from the lower and upper rings when they are pumped 

individually (Figs. 30(a,c)).  As expected, independently, each ring exhibits lasing in a 

multiple number of modes. However, when a resonance from the upper microring happens 

to be in close proximity to another one of the lower ring, a dark state mode emerges as the 

fundamental oscillation in this coupled system (Fig. 30(e)). Given that the dark state mode 

has a larger Q-factor and a lower threshold with respect to the rest of the modes, it can 

deliver much higher output power by depleting the pool of charge carriers. This prevents the 

lasing of uncoupled modes in Fig. 30(e), although the supplied pump power is the same as in 

Fig. 30 (a) and (c).  In order to observe the light intensity in the middle waveguide, a set of 
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scatterers has been intentionally implanted in the central channel, away from the coupling 

region as shown in Figs. 28 (a) and (b).  As Fig. 30 (b) and (d) show, the scatterers in the 

middle channel light up when the resonances of the individual rings are excited.  On the other 

hand, these same centers appear dim when only a dark state mode is present, i.e. when both 

rings are pumped simultaneously (Fig. 30(f)).  This also confirms the emergence of a single 

mode spectrum under dark state conditions. The characteristic light-light curve associated 

with the configuration when operating in the dark mode is compared to that when only one 

of the rings is pumped (see Fig. 31). The lower threshold and higher efficiency of the dark 

state mode indicate a significantly larger quality factor, in agreement with theoretically 

anticipated results. Our further measurements show that the dark sate laser remains single-

moded with SMSR of 30 dB (see Fig. 32) throughout a wide range of pump powers (more 

than five times the threshold pump power). 

As Eq. (7.1) indicates, any detuning between the resonances of the two rings 

compromises the quality factor of the dark state but allows some power outflow through the 

central channel [84]. However, using this scheme for out-coupling reduces the mode 

discrimination between the dark state and the adjacent uncoupled modes. Therefore, an 

effective method of extracting light from the device, while preserving the inherent mode 

discrimination, is to incorporate bus waveguides on either ends of the two rings. 
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Figure 30. Experimental demonstration of dark state laser at room temperature. (a) Emission 

spectrum of the upper microring when illuminated by the pump beam (peak pump power: 1.2mW). 

In this regime, several longitudinal modes are lasing within the gain bandwidth. (b) Corresponding 

intensity pattern as obtained from scattering imperfections. The presence of light in the central 

waveguide is observed from the bright scattering centers. (c) and (d), same as in (a) and (b) when 

the lower ring is pumped at the same power level, the dotted line in (c) is depicting the spectrum of 

the upper ring for comparison. (e) When both rings are pumped at the same power densities as in (a) 

and (c), the double ring system lases in a single dark mode emerged from two coalescing longitudinal 

frequencies. (f) In this case, small emission is seen from the scattering dots, indicating insignificant 

excitation of the central waveguide compare to the first two cases. 
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Note that both a dark state laser and a parity-time symmetric laser utilize exceptional 

points of open (non-conservative) systems to enforce single-mode operation in microring 

systems. In a parity-time symmetric arrangement, the exceptional point arises through the 

interplay between gain and loss. (In practice, this was enabled by non-uniform pumping of 

the two rings or by a unidirectional grating.) In a dark state laser, the pump is uniform across 

the two rings, and the exceptional points emerge due to the presence of the central 

waveguide that operates as a mode-dependent loss channel. 

 

Figure 31. Light-light curves associated with dark state mode (when both rings are pumped), and 

when either the upper or lower rings is pumped. In addition to the remaining single mode for the 

entire pump power range, the dark state configuration shows lower lasing threshold, higher slope 

efficiency, and enhanced total output power. 
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Figure 32. (a) Emitted spectrum of the dark state laser at the pump power of 5Pth. The main lobe is 

allowed to be saturated in order to see the side lobes (b) the lasing spectrum under the same pumping 

condition after 17 dB attenuation. Overall, the SMSR of the dark state laser is on the order of 30 dB. 

Finally, due to the Vernier effect, dark state modes occur at a discrete set of 

wavelengths where the resonances of the upper and lower rings are sufficiently close to 

coalesce. As a result, the free spectral range in such a resonator system can be increased 

substantially since it is determined by the relative radii of the two rings. This ability to extend 

the free spectral range without reducing the radii of the microrings (thus avoiding bending 

losses) could have important ramifications in designing laser cavities and spectral filters. 

Evidently, a wider free spectral range is desired in applications where laser wavelength 

tuning is intended. Fig. 33 shows the spectral tuning of a dark state laser. As large as one 

free-spectral-range of hop-free tuning is achieved by means of adjusting the ambient 

temperature. This continuous tunability range can be further extended by applying an offset 

differential temperature to the rings [84]. 



70 
 

 

Figure 33. Wavelength tunability of a double-ring dark state laser. Over 8 nm wavelength tuning is 

demonstrated for a single mode under dark state lasing conditions by just varying the ambient 

temperature. This range is limited only by the temperature-induced photoluminescence shift. The 

radii of the two rings are 10 and 9 μm, associated with a free spectral range of 8 and 9 nm, 

respectively. This leads to a free spectral range of 72 nm for dark state modes. 
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CHAPTER 8:  
ENHANCED SENSITIVITY IN PT-SYMMETRIC COUPLED CAVITIES 

Optical micro-cavities are nowadays the subject of numerous studies, both in the scientific 

and technological domain. Their high quality factors can lead to strong light-matter 

interactions- a highly desirable attribute in many applications, especially those pertaining to 

sensing. Optical sensors can transduce small physical or chemical changes in the cavity’s 

environment into a shift of the resonant frequency, which can be then detected [35]. 

However, improving the detection limit of these devices is often hindered by the resonator’s 

Q-factor and the available spectroscopic resolution. Clearly of importance will be to devise 

new methodologies capable of improving the sensitivity of such devices. Recently, the 

bifurcation properties associated with exceptional points have been proposed as a potential 

means to increase the sensitivity of an optical resonator system to external perturbations 

[39], [87], [88].  

 In this chapter, we propose and demonstrate a novel class of ultra-sensitive photonic 

molecules based on the physics of exceptional points in PT-symmetric coupled microring 

arrangements involving two and three resonators. We show that this effect can be amplified 

by exploiting higher-order exceptional points in PT-arrangements with higher number of 

resonators. These active structure involves InP-based semiconductor quantum wells and the 

gain-loss profile is imposed by actively shaping the optical pump beam. In all cases, the 

resonance frequencies are fine-tuned using micro-heaters. By doing so, one can 

independently control the real and the imaginary components of the refractive index 

distribution, which is essential for establishing higher-order exceptional points in these 
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photonic molecules. The resulting bifurcations in the frequency domain are then monitored 

and characterized by allowing the system to experience net gain. The fabricated micro-

heaters are also utilized to apply thermal perturbations on individual micro-cavities.  

8.1. Binary systems 

In this section, we provide the analysis and experimental demonstration regarding the 

enhanced sensitivity of a binary PT-symmetric photonic molecule to thermally induced 

perturbations. This system can be constructed by coupling an active optical cavity to an 

identical however lossy partner. Figure 34 schematically depicts such an arrangement.   

 

Figure 34. Schematics of a binary PT-symmetric photonic molecule arrangement. 

Here, one cavity (𝑎𝑎) experiencing gain 𝑔𝑔 while its counterpart (𝑏𝑏) is subjected to an 

equal amount of loss (−𝑔𝑔). In the time domain, considering the base 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, the field evolution 

obeys the following coupled differential equations: 

𝑖𝑖 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑎𝑎𝑏𝑏� = �𝑖𝑖𝑖𝑖 𝜅𝜅

𝜅𝜅 −𝑖𝑖𝑖𝑖� �
𝑎𝑎
𝑏𝑏� ( 8.1 ) 

Using the representation (𝑎𝑎, 𝑏𝑏)T = 𝑉𝑉𝑛𝑛𝑒𝑒−𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡, Eq. (7.1) corresponds to the eigenvalue 

equation 𝐻𝐻𝑉𝑉𝑛𝑛 = 𝜔𝜔𝑛𝑛𝑉𝑉𝑛𝑛. The matrix 𝐻𝐻 is  
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𝐻𝐻 = �𝑖𝑖𝑖𝑖 𝜅𝜅
𝜅𝜅 −𝑖𝑖𝑖𝑖�. ( 8.2 ) 

Setting Det(𝐻𝐻 − 𝜔𝜔𝑛𝑛𝐼𝐼) = 0, the corresponding characteristic equation is 

𝜔𝜔𝑛𝑛2 = 𝜅𝜅2 − 𝑔𝑔2 ( 8.3 ) 

which leads to 

𝜔𝜔−1,1 = ±𝜅𝜅�1 − �𝑔𝑔
𝜅𝜅
�
2

 ( 8.4 ) 

In this configuration, PT-symmetry is unbroken under the condition that 𝑔𝑔 < 𝜅𝜅.  this implies 

that the two eigenvalues in Eq. (8.4) are real. However, for 𝑔𝑔 > 𝜅𝜅, the two eigenvalues 

become imaginary and the system is said to have entered a broken symmetry phase. 

Interestingly, when 𝑔𝑔 = 𝜅𝜅, the system is at its second-order exceptional point, where the 

eigenvalues coalesce (𝜔𝜔−1 = 𝜔𝜔1 = 0). Similarly, to the case of third-order exceptional points 

the eigenvectors of the arrangement fuse at the singular point 

𝑉𝑉−1 = 𝑉𝑉1 = � 1
−𝑖𝑖� ( 8.5 ) 

The generalized perturbed Hamiltonian for this binary configuration can be written as,  

𝐻𝐻 = 𝜅𝜅 �𝑖𝑖𝑔𝑔� 1
1 −𝑖𝑖𝑔𝑔�� + 𝜅𝜅 �𝜖𝜖1 0

0 𝜖𝜖2
�, ( 8.6 ) 

where the normalization 𝑔𝑔� = 𝑔𝑔/𝜅𝜅 is applied. Eigenvalues for 𝐻𝐻 can therefore be found  from 

the following determinant, 

�−𝜔𝜔�𝑛𝑛 + 𝑖𝑖𝑔𝑔� + 𝜖𝜖1 1
1 −𝜔𝜔�𝑛𝑛 − 𝑖𝑖𝑔𝑔� + 𝜖𝜖2

� = 0, ( 8.7 ) 

where 𝜔𝜔�𝑛𝑛 = 𝜔𝜔𝑛𝑛/𝜅𝜅. The resulting characteristic equation is given by, 

𝜔𝜔�𝑛𝑛
2 − [𝜖𝜖1 + 𝜖𝜖2]𝜔𝜔�𝑛𝑛 + [𝜖𝜖1𝜖𝜖2 − 𝑖𝑖𝑔𝑔�(𝜖𝜖1 − 𝜖𝜖2) + 𝑔𝑔�2 − 1] = 0. ( 8.8 ) 
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A bias of the system around the EP, i.e. 𝑔𝑔� = 1, transforms the characteristic equation to, 

𝜔𝜔�𝑛𝑛
2 − [𝜖𝜖1 + 𝜖𝜖2]𝜔𝜔�𝑛𝑛 + [𝜖𝜖1𝜖𝜖2 − 𝑖𝑖(𝜖𝜖1 − 𝜖𝜖2)] = 0. ( 8.9 ) 

Without loss of generality, one can assume that the perturbation only affects the gain cavity 

(𝜖𝜖1 = 𝜖𝜖,  𝜖𝜖2 = 0). In this respect, the characteristic Eq. (8.9) reduces to,  

𝜔𝜔�𝑛𝑛
2 − (𝜖𝜖)𝜔𝜔�𝑛𝑛 − 𝑖𝑖𝑖𝑖 = 0. ( 8.10 ) 

Equation (8.10) can be perturbatively expanded using a Newton-Puiseux series, which 

begins with a square root element since the EP is of order two. Hence, the first two terms of 

this series can be written as, 

𝜔𝜔�𝑛𝑛 ~ 𝑐𝑐1𝜖𝜖
1
2 + 𝑐𝑐2𝜖𝜖. ( 8.11 ) 

Inserting the above expansion in Eq. (8.10), one can find the coefficients to satisfy, 

(𝑐𝑐13 − 𝑖𝑖)𝜖𝜖 + (2𝑐𝑐1𝑐𝑐2 − 𝑐𝑐1)𝜖𝜖3/2 + (𝑐𝑐22 − 𝑐𝑐2)𝜖𝜖2 = 0. ( 8.12 ) 

Setting the first two terms in Eq. (8.12) to be zero leads to the following two sets of values 

for 𝑐𝑐1 and 𝑐𝑐2, 

(𝑐𝑐1, 𝑐𝑐2) = �𝑒𝑒
𝑖𝑖𝑖𝑖
4 , 1

2
� , �𝑒𝑒−

𝑖𝑖3𝜋𝜋
4 , 1

2
� ( 8.13 ) 

The resulting eigenvalue bifurcations are given by:  

𝜔𝜔�−1 ~ 𝑒𝑒
𝑖𝑖𝑖𝑖
4 𝜖𝜖1/2 + 1

2
𝜖𝜖 ( 8.14 ) 

𝜔𝜔�1 ~ 𝑒𝑒−
𝑖𝑖3𝜋𝜋
4 𝜖𝜖1/2 + 1

2
𝜖𝜖 ( 8.15 ) 

Equations (8.14) and (8.15) indicates that for a binary arrangement the real part of the 

eigenfrequencies bifurcates with a square root dependence on the applied perturbation 
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(𝑅𝑅𝑅𝑅{Δ𝜔𝜔�𝐸𝐸𝐸𝐸2} = √2𝜖𝜖). By considering the effect of coupling strength, this relation can be 

written as: 

𝑅𝑅𝑅𝑅{Δ𝜔𝜔𝐸𝐸𝐸𝐸2} = √2𝜅𝜅𝜅𝜅. ( 8.16 ) 

Figure 35 illustrates the trajectory of change of the eigenfrequencies of a binary PT-

symmetric photonic molecule in complex domain when the gain/loss contrast is varied from 

0 to 3𝜅𝜅 in presence of different amounts of detuning between the rings. Furthermore, the 

splitting calculated above is plotted in the inset with respect to the induced perturbation, 

when the system is initially biased at the EP. 

 

Figure 35. The trajectory of change of the eigenfrequencies in complex domain when the gain/loss 

contrast is varied from 0 to 3𝜅𝜅 in presence of different amounts of detuning between the rings. The 

splitting between the real parts of the two eigenfrequencies due to the perturbation is considerable 

around the EP. The inset depicts this splitting with respect to the induced perturbation, when the 

system is initially biased at the EP. 
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Figure 36(a) depicts a schematic of the PT-symmetric system comprised of two coupled 

resonators with gain and loss. Two metallic micro-heaters underneath the structure are used 

to phase match the cavities as well as introducing thermal perturbations. An SEM image of 

the rings after etching and microscope images of the fabricated heaters are shown in Fig. 36 

(b) and (c), respectively. A detailed description of the fabrication process can be found in 

chapter 9.  

 

Figure 36. (a) A schematic of the binary PT-symmetric photonic molecule under study. (b)  An SEM 

image of the microrings after etching. (c) Microscope images of the gold micro-heaters with different 

magnifications. 

When the resonators are tuned, the appropriate gain/loss distribution is provided in 

the structure to bring the system to its EP. At this particular point, all the lasing frequencies 

coalesce into one line. Once the configuration is set to operate at such state, the gain cavity 

is then perturbed by supplying current into the corresponding heater. By doing so, the 

change in the refractive index varies linearly with the electrical power dissipated in the 

resistor (𝜖𝜖 ∝ 𝐼𝐼2). As a result, the lasing frequencies begin to diverge and the ensuing splitting 

is then monitored with respect to 𝜖𝜖. The induced differential detuning is experimentally 
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characterized with respect to the power of the heaters by intentionally decoupling the 

microrings. This is technique is discussed in detail in section 8.3.   

In order to characterize the bifurcation behavior of a EP2 singularity associated with 

a PT-symmetric coupled-microring structure, we use microring resonators with a radius of 

10 𝜇𝜇𝜇𝜇, a width of 500 𝑛𝑛𝑛𝑛, and a height of 210 𝑛𝑛𝑛𝑛. The cross-section of the rings is 

appropriately designed so as to ensure single-mode TE conditions at the wavelength of 

operation 𝜆𝜆0~1600 𝑛𝑛𝑛𝑛.  The splitting of the lasing frequency is then monitored with respect 

to heater’s current. Figure 37(a) illustrate this relation.  Clearly, the wavelength splitting has 

a square function dependence on the power dissipated in the heater, in accord with 

theoretical expectations. A log-log plot with a linear slope of 1/2 reaffirms this behavior 

(inset in Fig.3 a). The coupling factor in this binary arrangement is 1012 𝑠𝑠−1. Figure 37(b) 

depicts the measured enhancement in sensitivity as a function of the induced perturbation 

(in terms of shift in resonance frequency). In our study, the enhancement is defined in terms 

of experimentally accessible quantities, as the ratio Δ𝜔𝜔𝐸𝐸𝐸𝐸2/𝜖𝜖.  Figure 37(b) indicates that as 

a result of the presence of an exceptional point, the enhancement factor increases for small 

values of 𝜖𝜖. In this case, we observed up to 13 times enhancement in the detuning range 

below 10 GHz. 
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Figure 37. Observed square root wavelength splitting of the lasing modes as a function of power 

dissipated in the heaters (∝ 𝐼𝐼2) in a binary PT-symmetric system operating around an exceptional 

point (EP2). In this case, the perturbation is imposed on the active cavity.  The corresponding inset 

demonstrates a slope of 1/2 in a log-log scale, characteristic of an EP2 singularity. (b) Measured 

enhancement factor as a function of induced perturbation. An order of magnitude enhancement is 

obtained for a detuning of ~10 GHz between the two resonators. The enhancement is defined in 

terms of experimentally accessible quantities, as the ratio Δ𝜔𝜔𝑛𝑛𝐸𝐸𝐸𝐸/𝜖𝜖, where in this experiment 𝝐𝝐 

represents the detuning observed in a single isolated cavity for the same heater power. 

In order to highlight the role of coupling factor in this approach, we measure the 

response of systems with different coupling factors to an external perturbation. The results 

of this measurements are shown in Fig. 38(a). Clearly, increasing the coupling strength 

between the two resonators leads to improvement in the sensitivity of the structure. 

Moreover, log-log plots of the data in Fig. 38 (b) show the square root behavior of the 

system’s response to the imposed detuning and the superiority of the sensitivity in the PT-

symmetric arrangements over a single cavity. 
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Figure 38. (a) Wavelength splitting with respect to the applied perturbation in PT-symmetric binary 

arrangement with different coupling factors compared to that of a single resonator. The PT-

configurations show superior sensing capability with respect to the single ring. This effect is 

enhanced by increasing the coupling coefficient (b) The log-log plot of the data in (a) illustrating the 

square root behavior of the double microring PT-arrangements. 

8.2. Ternary systems 

In previous section, the bifurcation properties associated with second-order EPs is utilized 

to enhance the sensitivity of an on-chip micro-resonator arrangement to external 

perturbations. Interestingly, one can further amplify the effect of perturbations through the 

use of even higher-order exceptional points (N>2). While a growing number of theoretical 

studies have been devoted to such higher-order singularities [89]–[91], their experimental 

demonstration in the optical domain has so far remained elusive. In this section, we report 

the observation of third-order exceptional points in a ternary parity-time symmetric 

photonic laser molecule with a judiciously tailored gain-loss distribution. The enhanced 

response associated with this system follows a cubic root dependence on induced 
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perturbations. This behavior can be in turn observed by monitoring the lasing emission in 

the spectral domain.  

To realize the third-order EP, we use a PT-symmetric structure that is comprised of 

three resonators (see Fig. 39(a)). The two resonators on the sides are subject to balanced 

amounts of gain and loss, while the one in the center happens to be neutral. As a result, the 

eigenvalues are expected to diverge according to 𝜖𝜖1/3. In principle, higher order exceptional 

points can be synthesized in this manner by following a recursive bosonic quantization 

procedure [92]. 
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Figure 39. (a) Schematics of a ternary PT-symmetric photonic molecule arrangement (b) A PT-

symmetric ternary microring system, with all cavities equidistantly spaced from each other. The two 

side ring resonators are experiencing a balanced level of gain and loss while the one in the middle is 

kept neutral. Three micro-heaters are positioned underneath each cavity for fine-tuning the 

resonance wavelengths and for subsequently introducing thermal perturbations. (c) An SEM image 

of the structure at an intermediate fabrication step. (d) Microscope images of the heating elements. 
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Figure 39(b) provides a schematic of the ternary PT-symmetric coupled microring 

system used in our experiments. The rings are evenly exchanging energy with each other 

with a coupling strength 𝜅𝜅. Three metallic (Au) heaters are positioned underneath each 

cavity. An SEM image of the structure, at an intermediate stage of fabrication and microscope 

images of the heaters are shown in Fig. 39(c) and (d), respectively. Using the same approach 

as in section 7.1, the modal field evolution in this structure obeys 𝑖𝑖𝑖𝑖𝑉𝑉�⃗ /𝑑𝑑𝑑𝑑 = 𝐻𝐻𝑉𝑉�⃗  in the 

absence of any disturbance, where 𝑉𝑉�⃗ = [𝑎𝑎, 𝑏𝑏, 𝑐𝑐]𝑇𝑇 = 𝑉𝑉𝑛𝑛𝑒𝑒−𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡 represents the modal column 

vector and 𝐻𝐻 is the associated 3 × 3 non-Hermitian Hamiltonian, i. e., 

𝐻𝐻 = �
𝑖𝑖𝑖𝑖 𝜅𝜅 0
𝜅𝜅 0 𝜅𝜅
0 𝜅𝜅 −𝑖𝑖𝑖𝑖

� ( 8.17 ) 

Here 𝑔𝑔 accounts for the gain/loss levels and 𝜅𝜅 is the coupling strength between successive 

resonators. In equation (8.17), 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 represent field amplitudes in the amplifying, 

neutral, and lossy cavity, respectively. Meanwhile, 𝜖𝜖 denotes an external perturbation, that 

generally could be introduced anywhere along the diagonal elements of the matrix. Here, 

without loss of generality, the perturbation has been imposed on the cavity with gain. In this 

scenario, one can directly determine the complex eigenfrequencies (𝜔𝜔𝑛𝑛,𝑛𝑛 = −1,0,1) of this 

trimer by solving the following cubic algebraic equation:  

𝜔𝜔𝑛𝑛(𝜔𝜔𝑛𝑛2 − 2𝜅𝜅2 + 𝑔𝑔2) = 0 ( 8.18 ) 

which results in the following three eigenvalues, 

𝜔𝜔0 = 0;𝜔𝜔−1,1 = ±√2𝜅𝜅�1 − � 𝑔𝑔
√2𝜅𝜅

�
2

. ( 8.19 ) 
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Equation (8.19) indicates that when the gain/loss contrast attains a critical value, in this case 

𝑔𝑔 = √2𝜅𝜅, all three eigenfrequencies coalesce at 𝜔𝜔𝑛𝑛 = 0, where the system is operating at a 

third-order exceptional point. Moreover, at this specific point, the three eigenmodes of this 

ternary photonic molecule fuse at [𝑎𝑎, 𝑏𝑏, 𝑐𝑐]𝐸𝐸𝐸𝐸 = 𝐴𝐴0[1,−𝑖𝑖√2,−1], indicating that the energy in 

the central (neutral) cavity is twice as much of that circulating in the other two resonators 

which are subjected to gain and loss.  

In order to study the eigenvalue bifurcation properties, it is convenient to work with 

a normalized description according to 𝑔𝑔� = 𝑔𝑔/𝜅𝜅, in which case the perturbed Hamiltonian 𝐻𝐻 

can be written as, 

𝐻𝐻 = 𝜅𝜅 �
𝑖𝑖𝑔𝑔� 1 0
1 0 1
0 1 −𝑖𝑖𝑔𝑔�

� + 𝜅𝜅 �
𝜖𝜖1 0 0
0 𝜖𝜖2 0
0 0 𝜖𝜖3

� ( 8.20 ) 

For this particular form of the Hamiltonian the perturbation is assumed to not affect the 

coupling. Hence the perturbation manifests itself as three separate terms along the diagonal, 

i.e. 𝜖𝜖1, 𝜖𝜖2 and 𝜖𝜖3 corresponding to the gain, neutral and lossy cavities respectively. The 

determinant of 𝐻𝐻 is given by, 

�
−𝜔𝜔�𝑛𝑛 + 𝑖𝑖𝑔𝑔� + 𝜖𝜖1 1 0

1 −𝜔𝜔�𝑛𝑛 + 𝜖𝜖2 1
0 1 −𝜔𝜔�𝑛𝑛 − 𝑖𝑖𝑔𝑔� + 𝜖𝜖3

� = 0, ( 8.21 ) 

where 𝜔𝜔�𝑛𝑛 = 𝜔𝜔𝑛𝑛/𝜅𝜅. For a system biased around the exceptional point, i.e. 𝑔𝑔� = √2, the 

characteristic equation of Eq. (8.21), becomes, 

𝜔𝜔�𝑛𝑛
3 − (𝜖𝜖1 + 𝜖𝜖2 + 𝜖𝜖3)𝜔𝜔�𝑛𝑛

2 + �𝜖𝜖1𝜖𝜖2 + 𝜖𝜖2𝜖𝜖3 + 𝜖𝜖3𝜖𝜖1 − 𝑖𝑖√2(𝜖𝜖1 − 𝜖𝜖3)�𝜔𝜔�𝑛𝑛 +

�𝜖𝜖1 + 𝜖𝜖3 − 𝜖𝜖1𝜖𝜖2𝜖𝜖3 − 2𝜖𝜖2 + 𝑖𝑖√2𝜖𝜖2(𝜖𝜖1 − 𝜖𝜖3)� = 0. ( 8.22 ) 
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Since 𝜖𝜖1,2,3 ≪ 1, higher order terms can be ignored and Eq. (8.22) simplifies to: 

𝜔𝜔�𝑛𝑛
3 − (𝜖𝜖1 + 𝜖𝜖2 + 𝜖𝜖3)𝜔𝜔�𝑛𝑛

2 + �−𝑖𝑖√2(𝜖𝜖1 − 𝜖𝜖3)�𝜔𝜔�𝑛𝑛 + (𝜖𝜖1 + 𝜖𝜖3 − 2𝜖𝜖2) = 0. ( 8.23 ) 

Three different cases are investigated; (i) The perturbation is on the gain-element; (ii) On 

the neutral element; (iii) Both on the gain and neutral elements with a proportionality 

between them. The latter scenario is closest to the actual experiment. Although the 

perturbation is introduced by a heater located underneath the gain cavity, the generated heat 

perturbs the neutral cavity as well due to thermal diffusion.  

(i) Perturbing the gain cavity 

In this case 𝜖𝜖1 = 𝜖𝜖,  𝜖𝜖2 = 𝜖𝜖3 = 0. Hence Eq. (8.23) reduces to: 

𝜔𝜔�𝑛𝑛
3 − (𝜖𝜖)𝜔𝜔�𝑛𝑛

2 + �−𝑖𝑖√2𝜖𝜖�𝜔𝜔�𝑛𝑛 + 𝜖𝜖 = 0. ( 8.24 ) 

Equation (8.24) can be perturbatively expanded using a Newton-Puiseux series. Considering 

the first two terms only, A 𝜔𝜔�𝑛𝑛 ~ 𝑐𝑐1𝜖𝜖
1
3 + 𝑐𝑐2𝜖𝜖

2
3 , with the coefficients 𝑐𝑐1 and 𝑐𝑐2 being complex 

constants, results in 

(𝑐𝑐13 + 1)𝜖𝜖 + �3𝑐𝑐12𝑐𝑐2 − 𝑖𝑖√2𝑐𝑐1�𝜖𝜖4/3 + �3𝑐𝑐1𝑐𝑐22 − 𝑐𝑐12 − 𝑖𝑖√2𝑐𝑐2�𝜖𝜖5/3 + (𝑐𝑐23 −

2𝑐𝑐1𝑐𝑐2)𝜖𝜖6/3 + (−𝑐𝑐22)𝜖𝜖7/3 = 0. ( 8.25 ) 

Forcing the coefficients of the first two terms to be zero, we obtain three sets of values for 

the coefficients 𝑐𝑐1 and 𝑐𝑐2, corresponding to the three eigenvalues 

(𝑐𝑐1, 𝑐𝑐2) = �𝑒𝑒−
𝑖𝑖𝑖𝑖
3 , 𝑖𝑖√2

3
𝑒𝑒
𝑖𝑖𝑖𝑖
3 � , �𝑒𝑒

𝑖𝑖𝑖𝑖
3 , 𝑖𝑖√2

3
𝑒𝑒−

𝑖𝑖𝑖𝑖
3 � , �−1,− 𝑖𝑖√2

3
�. ( 8.26 ) 

The bifurcations in the eigenvalues now acquire the form: 
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⎩
⎪
⎨

⎪
⎧𝜔𝜔�−1 ~ 𝑒𝑒

𝑖𝑖𝑖𝑖
3 𝜖𝜖1/3 + 𝑖𝑖√2

3
𝑒𝑒−

𝑖𝑖𝑖𝑖
3 𝜖𝜖

2
3

𝜔𝜔�0 ~ 𝑒𝑒−
𝑖𝑖𝑖𝑖
3 𝜖𝜖1/3 + 𝑖𝑖√2

3
𝑒𝑒
𝑖𝑖𝑖𝑖
3 𝜖𝜖

2
3 

𝜔𝜔�1 ~ − 𝜖𝜖
1
3 − 𝑖𝑖√2

3
𝜖𝜖
2
3 

 ( 8.27 ) 

As Eq. (8.27) indicates, the frequency splitting between 𝜔𝜔�0,𝜔𝜔�1, as well as 𝜔𝜔�−1,𝜔𝜔�1 follow the 

cubic root of 𝜖𝜖, while the difference between real parts of 𝜔𝜔�0,𝜔𝜔�1is on the order of 𝜖𝜖2/3. This 

behavior can experimentally be characterized in the spectral domain by monitoring the 

resonant wavelength splitting of for example 𝜔𝜔�0,𝜔𝜔�1. This splitting can be written as 

𝑅𝑅𝑅𝑅{Δ𝜔𝜔�𝐸𝐸𝐸𝐸3} ~ 3
2
𝜖𝜖
1
3 ( 8.28 ) 

(ii) Perturbing the neutral cavity 

For a perturbation of the neutral cavity 𝜖𝜖2 = 𝜖𝜖,  𝜖𝜖1 = 𝜖𝜖3 = 0. As a result, the characteristic 

equation, Eq. (8.23) can be written as 

𝜔𝜔�𝑛𝑛
3 − (𝜖𝜖)𝜔𝜔�𝑛𝑛

2 − 2𝜖𝜖 = 0. ( 8.29 ) 

Again assuming a Newton-Puiseux perturbative expansion as applied in the last section for 

𝜔𝜔�𝑛𝑛, one obtains from Eq. (8.29), 

(𝑐𝑐13 − 2)𝜖𝜖 + (3𝑐𝑐12𝑐𝑐2)𝜖𝜖4/3 + (3𝑐𝑐1𝑐𝑐22 − 𝑐𝑐12)𝜖𝜖5/3 + (𝑐𝑐23 − 2𝑐𝑐1𝑐𝑐2)𝜖𝜖6/3 + (−𝑐𝑐22)𝜖𝜖7/3 = 0 

 ( 8.30 ) 

The three sets of values for the coefficients 𝑐𝑐1 and 𝑐𝑐2 are as follows: 

(𝑐𝑐1, 𝑐𝑐2) = �2
1
3𝑒𝑒−

𝑖𝑖2𝜋𝜋
3 , 0� , �2

1
3, 0� , �2

1
3𝑒𝑒

𝑖𝑖2𝜋𝜋
3 , 0�. ( 8.31 ) 

The resulting bifurcations in the eigenvalues acquire the form: 
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⎩
⎪
⎨

⎪
⎧𝜔𝜔�−1 ~2

1
3𝑒𝑒−

𝑖𝑖2𝜋𝜋
3 𝜖𝜖1/3

𝜔𝜔�0 ~2
1
3𝜖𝜖

1
3  

𝜔𝜔�1 ~2
1
3𝑒𝑒

𝑖𝑖2𝜋𝜋
3 𝜖𝜖

1
3

 ( 8.32 ) 

(iii) Perturbing both the gain and neutral cavities 

In this case, the applied perturbations acquire the values  𝜖𝜖1 = 𝜖𝜖,  𝜖𝜖2 = 𝛼𝛼𝛼𝛼, (𝛼𝛼 < 1), 𝜖𝜖3 = 0. 

Therefore, the characteristic equation, according to Eq. (8.23), is given by, 

𝜔𝜔�𝑛𝑛
3 − 𝜖𝜖(1 + 2𝛼𝛼)𝜔𝜔�𝑛𝑛

2 + �−𝑖𝑖√2𝜖𝜖�𝜔𝜔�𝑛𝑛 + 𝜖𝜖(1 − 2𝛼𝛼) = 0. ( 8.33 ) 

After expanding the eigenvalues by 𝜔𝜔�𝑛𝑛 ~ 𝑐𝑐1𝜖𝜖
1
3 + 𝑐𝑐2𝜖𝜖

2
3, one can obtain, 

[𝑐𝑐13 + 1 − 2𝛼𝛼]𝜖𝜖 + �3𝑐𝑐12𝑐𝑐2 − 𝑖𝑖√2𝑐𝑐1�𝜖𝜖4/3 + �3𝑐𝑐1𝑐𝑐22 − 𝑐𝑐12(1 + 2𝛼𝛼) − 𝑖𝑖√2𝑐𝑐2�𝜖𝜖5/3 +

[𝑐𝑐23 − 2𝑐𝑐1𝑐𝑐2(1 + 2𝛼𝛼)]𝜖𝜖6/3 + [−𝑐𝑐22(1 + 2𝛼𝛼)]𝜖𝜖7/3 = 0. ( 8.34 ) 

By forcing the coefficients of the first two terms to be zero, one can find 𝑐𝑐1 and 𝑐𝑐2 to be: 

(𝑐𝑐1, 𝑐𝑐2) = �(1 − 2𝛼𝛼)
1
3 𝑒𝑒−

𝑖𝑖𝑖𝑖
3 , 𝑖𝑖√2

3
(1 − 2𝛼𝛼)−

1
3𝑒𝑒

𝑖𝑖𝑖𝑖
3 � , �(1 − 2𝛼𝛼)

1
3𝑒𝑒

𝑖𝑖𝑖𝑖
3 , 𝑖𝑖√2

3
(1 − 2𝛼𝛼)−

1
3𝑒𝑒−

𝑖𝑖𝑖𝑖
3 � , �−(1 −

2𝛼𝛼)
1
3,− 𝑖𝑖√2

3
(1 − 2𝛼𝛼)−

1
3�. ( 8.35 ) 

The bifurcations in the eigenvalues now acquire the form: 

⎩
⎪
⎨

⎪
⎧𝜔𝜔�−1 ~ (1 − 2𝛼𝛼)

1
3𝑒𝑒

𝑖𝑖𝑖𝑖
3 𝜖𝜖1/3 + 𝑖𝑖√2

3
(1 − 2𝛼𝛼)−

1
3𝑒𝑒−

𝑖𝑖𝑖𝑖
3 𝜖𝜖

2
3

𝜔𝜔�0 ~ (1 − 2𝛼𝛼)
1
3𝑒𝑒−

𝑖𝑖𝑖𝑖
3 𝜖𝜖1/3 + 𝑖𝑖√2

3
(1 − 2𝛼𝛼)−

1
3𝑒𝑒

𝑖𝑖𝑖𝑖
3 𝜖𝜖

2
3

𝜔𝜔�0 ~ (1 − 2𝛼𝛼)
1
3𝑒𝑒−

𝑖𝑖𝑖𝑖
3 𝜖𝜖1/3 + 𝑖𝑖√2

3
(1 − 2𝛼𝛼)−

1
3𝑒𝑒

𝑖𝑖𝑖𝑖
3 𝜖𝜖

2
3

 ( 8.36 ) 

The similarity of Eq. (8.36) to Eq. (8.27) demonstrates that this scenario is identical to case 

(i), where the perturbation exclusively affects the gain cavity, except for the (1 − 2𝛼𝛼)1/3 

coefficients. Therefore, the bifurcation characteristics of the system analyzed in case (i) are 
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extended to this case. For example, the frequency splitting between 𝜔𝜔�0,𝜔𝜔�1, follows the cubic 

root of the imposed perturbation and can be written as: 

𝑅𝑅𝑅𝑅{Δ𝜔𝜔�𝐸𝐸𝐸𝐸3} ~ 3
2

(1 − 2𝛼𝛼)
1
3𝜖𝜖

1
3. ( 8.37 ) 

Equation (8.37) indicates that the presence of 𝜖𝜖2 reduces the sensitivity of the system is by a 

factor of �|2𝛼𝛼 − 1|3 . Therefore, the sensitivity can be improved when the outer cavities are 

isolated from the introduced perturbation. Although, in our experiment, the heater 

associated with the gain resonator is used to impose the perturbations, as a result of thermal 

diffusion, both gain and neutral resonators were differentially detuned (case (iii)). However, 

due to the analogy of Eqs. (8.36) and (8.27), our experiment can be accurately modeled using 

the analysis of case (i).  

To better illustrate how a small detuning or gain variation may affect this 

arrangement, we assume 𝜖𝜖1 ≠ 0, 𝜖𝜖2 = 𝜖𝜖3 = 0. In this aspect, the three complex 

eigenfrequencies of this PT-symmetric configuration can be numerically obtained by solving 

the characteristic equation (8.24), as depicted in Figures 40(a) and (b). Of particular interest 

is how this system reacts around the EP3 singularity, when 𝑔𝑔 = √2𝜅𝜅. This response is 

highlighted in the two cross sections (in both the real and imaginary domain) in Figs. 40(a) 

and (b) as well as in Figs. 40(c) and (d) (solid curves). The differential between two 

eigenfrequencies (in this case 𝜔𝜔0 and 𝜔𝜔1) is also plotted in Fig. 40(e) (solid curve) as a 

function of 𝜖𝜖. By considering the logarithmic behavior of this latter curve (solid line in Fig. 

40(f)), one finds that the slope of the response is 1/3, thus numerically confirming that 

indeed perturbations around EP3 experience an enhancement of the type 𝜖𝜖1/3.  
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Figure 40. (a) The real parts of the three eigen-frequencies of the ternary PT-symmetric system as a 

function of the gain/loss contrast and detuning. The exceptional point is located at 𝑔𝑔 = √2𝜅𝜅 and 𝜖𝜖1 =

0. (b) Same as in (a) for the imaginary parts of the eigen-frequencies. (c) Analytical results (dashed 

lines) and numeral solutions (solid lines) for the real parts of the eigen-frequencies as the applied 

detuning varies when 𝑔𝑔 = √2𝜅𝜅. (d) Same as in (c) for the imaginary part of the eigen-frequencies. (e) 

Analytical (dashed red line) and numerical (solid green line) results depicting the difference between 

𝜔𝜔0 and 𝜔𝜔1 in the real domain, illustrating a cubic-root behavior. (f) Same result as in (e) only now 

shown in a log-log scale. A slope of 1/3 confirms the cubic-root response with respect to detuning. 

Now one can compare the analytical results to the exact numerical solution. From Eq. 

(8.27), one finds that 𝜔𝜔𝑛𝑛 = 𝑒𝑒−𝑖𝑖(2𝑛𝑛+1)𝜋𝜋/3𝜅𝜅2/3𝜖𝜖1/3 + 𝑖𝑖√2𝑒𝑒𝑖𝑖(2𝑛𝑛+1)𝜋𝜋/3𝜅𝜅1/3𝜖𝜖2/3/3. Based on this 

latter expression, the system response is plotted in Figs. 40(c)-(f) (dashed curves), in close 

agreement to that obtained numerically. Our analysis indicates that the real parts of the pair 

𝜔𝜔−1,𝜔𝜔1 as well as those of 𝜔𝜔0,𝜔𝜔1 diverge from each other in an 𝜖𝜖1/3 fashion, while the 
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differential between 𝜔𝜔0,𝜔𝜔−1 (that happened to be originally degenerate) varies instead 

according to 𝜖𝜖2/3. Hence, in characterizing the sensitivity response of this ternary laser 

arrangement we will monitor the separation of the 𝜔𝜔0,𝜔𝜔1 spectral lines. In this case, by 

involving the coupling coefficient, the anticipated frequency splitting in Eq. (8.28) can be 

rewritten as: 

Δ𝜔𝜔𝐸𝐸𝐸𝐸3 = 3
2

 𝜅𝜅2/3 √𝜖𝜖3 . ( 8.38 ) 

Here, the microring resonators and the experimental setting are the same as those 

used in the previous section. The ternary structure in this experiment is comprised of three 

equidistantly spaced microrings, having a coupling strength of ~7 × 1011 𝑠𝑠−1 . To establish 

PT-symmetry in the system, the pump beam is completely withheld from one of the side 

rings. In addition, the central ring (neutral region) is partially illuminated while the third 

ring is fully pumped. By adjusting the transverse position of the knife edge and the pump 

level, the three lasing modes of this structure gradually coalesce into one line (1602 nm), 

associated with the emergence of the third order exceptional point. The intensity profile (Fig. 

41(a)) of the lasing mode at this point is captured via a CCD camera and is in qualitative 

agreement with that expected from theory. Once the system is set on an EP3, the heater 

underneath the pumped cavity is activated. As a consequence of this perturbation, the single 

lasing mode splits into three distinct branches as anticipated from Fig. 40(c). The spectral 

evolution of this transition is collected using a spectrometer with an array detector (Fig. 

41(b)). As previously indicated, in this experiment we monitor the difference between the 

resonance frequencies 𝜔𝜔0,𝜔𝜔1. Figure 41(c) indicates that indeed the frequency separation 
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Δ𝜔𝜔𝐸𝐸𝐸𝐸3 follows a cubic root function with respect to 𝜖𝜖1. This is also confirmed after plotting 

these data in a log-log scale from where one can directly infer a slope of 1/3 (see the inset of 

Fig. 41(c)). The enhancement factor corresponding to this trimer is plotted in Fig. 41(d). In 

this case, the sensitivity is magnified ~23 times when the detuning between the active and 

neutral resonators is below 5 GHz. In the next section we show that this response can be 

further boosted by a factor of 2 if the perturbation is exclusively acting on one of the cavities.  

 

Figure 41. (a) Image of the intensity profile of the lasing mode in a PT-symmetric ternary laser 

arrangement operating around the exceptional point (EP3). The energy in the central (neutral) cavity 

is approximately twice that in the side resonators. (b) Spectra of the three lasing modes as the system 

departs from the exceptional point due to an imposed perturbation on the gain cavity. (c) Resulting 

cubic-root splitting between two neighboring lasing wavelengths as a function of 𝐼𝐼2. Inset: a log-log 

curve indicates a slope of 1/3. (d) Observed sensitivity enhancement in this arrangement when 

biased at an EP3 point. An enhancement as large as ~23 is now measured when the detuning is below 

10 GHz.  
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8.3. Characterization of the thermally applied perturbations 

This section provides the experimental characterization of the induced perturbations by one 

activated micro-heater in the coupled resonator system. Due to the thermal diffusion, power 

dissipated in the heater (𝑃𝑃 = 𝑅𝑅𝐼𝐼2) linearly affects the refractive index of all cavities with 

different proportionality constants. Therefore, by intentionally decoupling the involved 

microrings, the applied detuning in the resonance wavelength (Δ𝜆𝜆) of the cavities can be 

measured as a function 𝐼𝐼2 (Fig. 42). 

In the binary configuration (Fig 42(a)), the effective imposed perturbation is the 

difference between the shifts in the resonance wavelengths of the two cavities 𝜖𝜖 = Δ𝜆𝜆1 −

Δ𝜆𝜆2, which is measured to be 𝜖𝜖 ≅ 0.01𝐼𝐼2. In this case, the sensitivity enhancement that is 

shown in Fig. 37(b) is defined as Δ𝜆𝜆𝐸𝐸𝐸𝐸2/𝜖𝜖. Note that the relationship between the imposed 

detuning and the power of the heater is a function of various parameters in the system such 

as ohmic resistance and vertical distance of the heaters from the rings, hence it can acquire 

distinct values for different structures.  

On the other hand, in the ternary system (Fig. 41), effectively two different 

perturbations are present. The first one is detuning the closest resonator to the active heater 

by 𝜖𝜖1 = Δ𝜆𝜆1 − Δ𝜆𝜆3, and the second is perturbing the central microring with respect to 𝜖𝜖2 =

Δ𝜆𝜆2 − Δ𝜆𝜆3. These two values were measured to be 𝜖𝜖1 = 0.012𝐼𝐼2, and 𝜖𝜖2 = 0.007𝐼𝐼2. Following 

the calculations in the previous section, one can write 𝜖𝜖2 = 𝛼𝛼𝜖𝜖1, where 𝛼𝛼 is measured to be 

0.6. As discussed above, the presence of 𝜖𝜖2 in the system decreases the sensitivity by 

�|2𝛼𝛼 − 1|3 , which translates to a two-times reduction in the ensuing wavelength splitting and 
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consequently the enhancement factor. For this ternary system, the sensitivity enhancement 

shown in Fig. 41(d) is defined as Δ𝜆𝜆𝐸𝐸𝐸𝐸3/(𝜖𝜖1 − 𝜖𝜖2). 

 
Figure 42. The change in resonance wavelengths (𝛥𝛥𝛥𝛥) of the intentionally decoupled cavities as a 

function of 𝐼𝐼2 (heater power) in (a) a binary structure and (b) a ternary structure. The applied 

perturbation varies linearly with the power of the heater, and is imposed differentially on the 

microrings with respect to their distance from the active heater. The different colors of the rings are 

used for distinction and not for representation of gain/loss.   



93 
 

CHAPTER 9: EXPERIMNTAL SETTING 

In this chapter, details of techniques regarding the sample fabrication process and 

measurement setup are provided.   

9.1. Sample fabrication 

Figure 43(a) shows the general fabrication steps to realize the coupled microring structures 

used in this study. The quantum well gain material forming the microrings is comprised of 

six Inx=0.734Ga 1-xAs y=0.57P 1-y wells (thickness: 10 nm) which are sandwiched by cladding 

layers of Inx=0.56Ga 1-xAs y=0.938P 1-y (thickness: 20 nm) grown on p-type InP substrate. A 10 nm 

thick InP protective layer covers the quantum wells.  The MOCVD epitaxially-grown wafer 

was supplied by OEpic Inc. 

To fabricate the micoring resonators, hydrogen silsesquioxane (HSQ) solution in 

methyl isobutyl ketone (MIBK) was first spin-coated on the wafer as a negative tone electron 

beam resist. Consequentially Ebeam lithography was used to write the ring resonator 

patterns.  These patterns were developed by tetramethylammonium hydroxide (TMAH) and 

subsequently transferred to the wafer through reactive ion etching process. The dry etching 

involves H2:CH4:Ar  gases with flow rate of 40:4:20 SCCM, RIE power of 150 W, and chamber 

pressure of 30 mT. A scanning electron beam (SEM) image of the sample at the end of this 

step is shown in Figs. 10(b), 18(c), 28(b), and 39(c). Next, a 500 nm silicon dioxide (SiO2) 

layer was deposited on the structure using plasma enhanced chemical vapor deposition 

(PECVD) to promote the adhesion of bisbenzocyclobutene (BCB). Next, a 3 µm thick layer of 
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BCB was spin-coated and cured on the sample for planarization. The heaters’ pattern was 

then aligned on the top of the rings and projected onto NR71000PY negative resist via 

photolithography. The pattern was developed in RD6 for 7 sec. Next, we deposited 10 nm of 

Titanium (for adhesion) and 150 nm of gold using thermal evaporation. The sample was then 

immersed in RR41 resist remover heated up to 100⁰ C to lift off the remaining photoresist. A 

microscope image of the sample at this step provided in Fig. 36(c) and 39(d) showing the 

gold heaters fabricated at ~3 µm on top of the rings. This distance is chosen in order to 

eliminate the optical interaction between the cavity and the metallic section. Next, the 

sample was wire bonded to a 16-pin carrier (TO8 header) in order to provide access to the 

heaters during the experiment (Fig. 43(b)). The sample was then covered with SU8 

photoresist for protection and mechanical support. Finally, the InP substrate was removed 

by a wet etching process employing hydrochloric acid (HCl). The wet etching is highly 

selective and hence only removed InP and not the InGaAsP layers. This leaves the microrings 

partially embedded in the SiO2 and exposed to air. After this process, the structure is 

accessible for the measurement from the backside through a gap in the header (Fig. 43(c)). 

Note that, there is no micro-heater structure in the experiments of chapters 3 to 7. Therefore, 

for these samples, removing the InP substrate (steps 9 and 10) is performed right after SiO2 

deposition (step 4), while the rest of the process is similar to that of depicted in Fig. 43(a).  
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Figure 43. (a) Schematic of the sample fabrication process. (b)  The heaters are electrically connected 

to the header’s pins via wire bonding. (c) The microring arrangements are accessible for the 

measurement after removing the InP substrate from the backside through a gap in the header. 

9.2. Characterization setup 

The microring arrangements were optically pumped with a pulsed 1064 nm laser beam (SPI 

fiber laser). A schematic of the measurement setup is depicted in Fig. 44. The diameter of the 

beam was arranged such that at the surface of the sample it had a diameter of ~100 μm. A 

microscope objective with a numerical aperture of 0.42 was used to project the pump beam 
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on the rings, as well as to collect the output light from the samples. Alignment of the pump 

beam to the desired cavity was performed by imaging the sample surface through two 

cascaded 4-f imaging systems onto an IR CCD camera (Xenics Inc.), using a broadband IR 

light source.  Output spectra were obtained using a spectrometer. For the characterization 

of single mode lasing in chapters 3 to 7, we utilized a Princeton Instruments Acton SP2300 

spectrometer with a 600 g/mm grating and an LN2 cooled InGaAs detector (Roper Scientific 

OMA-V). The entrance slit size is set to 500 µm, and the spectra were recorded with a 

resolution of 0.4 nm. Since higher resolution was required to characterize the sensitivity of 

the arrangements, for the experiments in chapter 8, a Hiroba Scientific iHR320 equipped 

with a 900 g/mm grating was used in conjunction with an electrically cooled InGaAs detector 

(Synapse EM). Here, the spectrometer entrance slit was set to 100 µm in order to obtain the 

resolution of ~0.13 nm.  

In order to establish the PT-symmetry in the structures, the microrings were pumped 

selectively by using a transversely movable knife edge imaged on the surface of the sample. 

By adjusting the intensity of the pump beam and position of the knife edge, the required 

gain/loss distribution was realized. Figure 45 shows the intensity profile of the pump beam 

at the place of the sample with and without the knife edge’s image. The current to the heaters 

were supplied by precision current sources (ILX Lightwave) to ensure stability of the 

induced thermal perturbations. Figures 46 (a) and (b) respectively depict three heaters 

imaged on the measurement station using a broadband NIR source and the associated ring 

resonators when they are all evenly pumped. 
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Figure 44. A schematic of the experimental setup 

 

Figure 45. (a) The intensity profile of the pump beam at the place of the sample (a) without and (b) 

with the knife edge’s image. By adjusting the intensity of the pump beam and position of the knife 

edge, the designed gain/loss distribution is realized. 
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Figure 46. (a) Three coupled microring resonators when they are all evenly pumped and (b) the 

associated heaters imaged on the measurement station using a broadband NIR source. 
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CHAPTER 10: CONCLUSION 

In this work, we successfully utilized the peculiar properties of exceptional points to address 

some of the longstanding challenges in integrated photonics. These non-Hermitian 

degeneracies were realized in active semiconductor coupled micro-cavity systems with 

judiciously tailored gain and loss. 

On-chip PT-symmetric microring lasers were implemented on an InP-based gain 

medium by pairing an amplifying microring to an identical but lossy counterpart. In addition, 

the behavior of the system was characterized when operating around their associated 

exceptional point. Single mode lasing was then enforced in this arrangement via selective 

breaking of PT-symmetry. This mode management scheme was utilized to suppress 

unwanted lasing modes in both temporal and spatial domains. In this regard, it was shown 

that the maximum available gain for single mode operation can be systematically boosted in 

PT-symmetric lasers. The proposed method is robust, broadband, and self-adaptive, and can 

in general be implemented using any type of laser cavity. These results can have widespread 

ramifications in both fields of semiconductor lasers and non-Hermitian optics.   

Dark state laser is another resonant configuration that can support EPs due to its 

unique geometrical design. This open system is comprised of two dissimilar microrings 

coupled via a central channel. By appropriately using the dynamics of the system near EP, 

we demonstrated single mode lasing at pump powers way above threshold and also one FSR 

of frequency tuning. 
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Furthermore, we showed that binary and ternary PT-symmetric coupled resonator 

systems are ultra-sensitive to perturbations when biased at the exceptional point. In 

particular, we reported the first observation of higher-order exceptional points in a ternary 

parity-time symmetric photonic laser molecule. The enhanced response associated with this 

system follows a cubic root dependence on externally introduced perturbations, and can be 

detected in the spectral domain. This approach is easy to implement and can in principle be 

adopted in various other photonic configurations. This work can pave the way for utilizing 

exceptional points for enhancing sensitivity of optical micro-cavity arrangements to small 

perturbations. 
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APPENDIX: LASER LINEWIDTH MEASUREMENT 
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The spectral linewidth of a semiconductor laser has a complex dependence on many 

different parameters of the system, such as Q-factor of the cavity, output power, mode 

overlap with the gain region, and nonlinearities in a lasing cavity. Since the linewidth of the 

lasers in this study was too narrow for the spectrometer to resolve, a new method was 

employed to measure this important laser characteristic. Here, we utilized a rotating high 

finesse parallel-plane Fabry-Perot (FP) in the path of the laser emission to perform a high 

resolution spectral measurement. The FSR and linewidth of the Fabry-Perot is 60 and 2 GHz, 

respectively. Therefore, the incoming laser beam should be temporally single mode and 

narrower than 60 GHz.  

 

 

Figure 47. (a) A schematic of experimental setting for high resolution linewidth measurement 

involving a rotating Fabry-Perot and a power meter. (b) A schematic of the measured power with 

respect to tilt angle of the FP for single longitudinal mode input  
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Figure 47(a) shows a schematic of this measurement. By tilting the FP around 3° from the 

normal incident condition, we can monitor the amount of the optical power throughout the 

frequency domain. Figure 47(b) schematically depicts the result of such a measurement, 

when the input is a single lasing mode. As this figure indicates, it is desirable to carry out the 

experiment when the incoming beam is very close to normal incident conditions, since for 

larger tilt angles, finer rotation steps are required to achieve the same spectral resolution. 

To map the measured powers from the tilt angle axis to the frequency axis, one can use the 

known value for the FSR of the FP. 

 For incoming light that satisfies the resonance condition of the FP, one can write, 

2 × 2𝜋𝜋𝜋𝜋
𝑐𝑐

× 𝑛𝑛𝑛𝑛
cos(𝜃𝜃) = 2𝑚𝑚𝑚𝑚  ( A.1 ) 

where, 𝑓𝑓 is the frequency of the laser light, 𝜃𝜃 is the associated tilt angle of the FP, 𝑑𝑑 and 𝑛𝑛 are 

the width and refractive index of the FP, respectively, 𝑐𝑐 is the speed of light in the vacuum, 

and 𝑚𝑚 is the number of the resonance mode. From (A.1), one can simply calculate the 

frequency with respect to the 𝜃𝜃 to be, 

𝑓𝑓 =  𝑚𝑚𝑚𝑚
2𝑛𝑛𝑛𝑛

× cos(𝜃𝜃). ( A.2 ) 

Subsequently,  

𝑓𝑓1 − 𝑓𝑓2 =  𝑚𝑚𝑚𝑚
2𝑛𝑛𝑛𝑛

× (cos(𝜃𝜃1) − cos(𝜃𝜃2)). ( A.3 ) 

So for any two arbitrary angles, Eq. (A.3) can be written as, 

𝛿𝛿𝛿𝛿 = 𝐶𝐶 × (cos(𝜃𝜃1) − cos(𝜃𝜃2)) ( A.4 ) 

where, 𝛿𝛿𝛿𝛿 is the frequency and 𝐶𝐶 = 2𝑚𝑚𝑚𝑚/2𝑛𝑛𝑛𝑛 is a property of the FP, which should be found 

experimentally. 
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Figure 48. (a) The measured transmitted power through the Fabry-Perot with respect to the tilt 

angle. The incoming emission is from a single longitudinal mode of a microring laser, and the FP is 

rotated with the steps of 0.1°. (b) The calculated power in frequency domain showing the laser 

linewidth of ~10 GHz. 

This experiment was performed for a single longitudinal emission from a microring laser. 

Figure 48(a) shows the measured transmitted power with respect to the Fabry-Perot’s angle. 

The tilt angles marking Δ𝜃𝜃𝐹𝐹𝐹𝐹𝐹𝐹  shown in the figure can used in conjugation with Eq. (A.4) to 

find 𝐶𝐶. This value is then used to calculate the spectrum in Fig. 48(b). The two peaks are 

representing the two counter propagating modes associated with the involved longitudinal 

mode. The linewidth of the modes are measured to be ~10 GHz from this resolved spectrum. 

Figure 49 is depicting the high-resolution spectrum measurement for a single microring and 

a dark state microring laser arrangements. These measurements also confirm that the laser 

linewidth is ~10 GHz. Furthermore, Figure 49(b) reveals that the dark state arrangement 
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operates in a single directional mode fashion at the same pump level that make both CW and 

CCW modes lase in the single microring. 

 

Figure 49. The high resolution measurement of the emission spectrum for (a) a single ring (b) a dark 

state laser at the same pump powers. The spectra reveals that the laser linewidths are ~10 GHz. The 

dark state is operating in a single directional mode. 
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