
The Pegasus Review: UCF The Pegasus Review: UCF 

Undergraduate Research Journal Undergraduate Research Journal 

(URJ) (URJ) 

Volume 10 Issue 1 Article 1 

2019 

Energy Consumption and Routing Model for First Responder Energy Consumption and Routing Model for First Responder 

Vehicles Vehicles 

Alex Rodriguez 
University of Central Florida 

Find similar works at: https://stars.library.ucf.edu/urj 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Office of Undergraduate Research at STARS. It has been 

accepted for inclusion in The Pegasus Review: UCF Undergraduate Research Journal (URJ) by an authorized editor of 

STARS. For more information, please contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Rodriguez, Alex (2019) "Energy Consumption and Routing Model for First Responder Vehicles," The 
Pegasus Review: UCF Undergraduate Research Journal (URJ): Vol. 10 : Iss. 1 , Article 1. 
Available at: https://stars.library.ucf.edu/urj/vol10/iss1/1 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236308356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/urj
https://stars.library.ucf.edu/urj
https://stars.library.ucf.edu/urj
https://stars.library.ucf.edu/urj/vol10
https://stars.library.ucf.edu/urj/vol10/iss1
https://stars.library.ucf.edu/urj/vol10/iss1/1
https://stars.library.ucf.edu/urj
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/urj/vol10/iss1/1?utm_source=stars.library.ucf.edu%2Furj%2Fvol10%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


THE PEGASUS REVIEW:
UNIVERSITY OF CENTRAL FLORIDA 

UNDERGRADUATE RESEARCH JOURNAL

1www.URJ.ucf.edu

Vol. 10.1: 1-13
Published

September 24, 
2018

Energy Consumption and Routing Model for 
First Responder Vehicles

By: Alex Rodriguez 
Faculty Mentor: Dr. Stephen Medeiros

UCF Department of Civil, Environment, and Construction Engineering

ABSTRACT: The ongoing research and prototyping of electric vehicles (EVs) offers numerous opportunities to 
investigate their performance in various service contexts. As EVs are integrated into society, the reliable prediction of 
fuel consumption and routing time becomes particularly important in emergency response services. This project 
develops a preliminary stochastic model that can route and predict the energy consumption and travel time for 
hypothetical emergency vehicles operating on an electric battery cell. Using a Monte-Carlo framework, we constructed 
a routing model designed to minimize travel time and resource consumption under various simulated conditions. In 
doing so, we establish the foundation for balancing the demands of time and energy in a relatively unexplored context 
and determined the impact of elevation, distance, time, and other factors on energy consumption for these large vehicle 
types. My model computes likely travel times, power consumption, and best-suited resulting route for emergency 
vehicles from the Orange County Fire Station to four locations on the University of Central Florida campus: Millican 
Hall, Lake Claire, Jay Bergman Field, and the Creative School for Children. My model provides consistent results that 
are comparable to real-world travel times recorded by the Orange County Fire Station. Future work will include more 
robust and accurate iterations of the model that could ultimately be a useful tool for both first responders as well as 
other EV services that require efficient resource allocation and time forecasting in routing.
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INTRODUCTION

As technology moves towards the use of renewable 
energy sources, it becomes necessary to identify how 
these energy sources are implemented in various 
systems. The demand for and research into electric 
vehicles has increased dramatically in past decade; 
continuously improving electric (EV), hybrid-electric 
(HEV), and fuel-cell vehicles (FC) (Chan, 2007) has 
created an opportunity for their application in personal 
and emergency vehicles. Hybrid transit buses have 
experienced 50% or more fuel savings due to their fixed 
routes and stop-and-go pattern, and emergency vehicles 
are modeled similarly (Chan, 2007). Therefore, the use 
of hybrid EVs in emergency vehicles can be considered 
imminent. 

In preparation for these upcoming technologies, I have 
developed a routing operations model for emergency 
vehicles operating on an electric battery cell. With this 
model, I intend to lay the foundation for emergency 
vehicle routing in this hypothetical context under a variety 
of conditions. Not only have relatively few travel time 
studies been published for emergency vehicles, there is 
also a need to investigate the use of this technology under 
realistic road conditions (Zhang et al., 2016). Simulation 
models have enabled us to find optimal solutions as well 
as observe the emergency vehicle system under various 
assumptions and constraints (Haghani et al., 2003). In 
pursuit of a preliminary set of results that can be used to 
guide future research, this project examines the energy 
dimensions of electric emergency vehicles under realistic 
deployment patterns within a confined service area.

One important potential outcome of this research is the 
ability to predict costs for municipalities associated with 
the transition to a hybrid or fully electric emergency 
vehicle fleet and determine the return on investment. 
Such a transition requires predictive data on how 
vehicles will perform, and in turn, how often they can 
operate, where they may operate from, and how far their 
operations can extend. A lack of reliable forecast data can 
have adverse impacts to routing vehicles in a transitioning 
infrastructure, such as the failure to accurately anticipate 
charging time requirements in such a time-sensitive yet 
unpredictable context. In response to this knowledge 
gap, I created a prototype model designed to simulate 
emergency response by EVs accounting for energy 
consumption alongside recharging time.

My stochastic prototype model routes and predicts the 

energy and time efficiencies for hypothetical emergency 
vehicles operating on an electric battery cell under a 
limited set of constraints. The time efficiency of an 
emergency first response is crucial to saving lives, as 
evidenced by the proposed 1974 Emergency Medical 
Services Systems Act, which attempted to mandate that 
95% of all calls must be responded in 10-30 minutes 
(P. Law 93-154). Likewise, the proper management of 
resources—particularly energy—is absolute necessary, as 
it minimizes time spent restocking/refueling and enables 
real-time responses from disparate locations. Laying the 
groundwork for a suitable solution between these two 
competing forces is the focus of this project. 

Specifically, my model provides statistical information 
regarding the consumption of energy in this unexplored 
context, where quick responses to various locations from 
a single origin point and recharging stations is required. If 
proven reliable, the model can be subsequently leveraged 
to determine the impact of distance, time, and other 
factors on energy consumption for these large vehicle 
types. There are few presently published studies on 
emergency vehicle fuel consumption (Chan, 2007), and 
even less so in this specific context. The creation of this 
model explores this space while providing the foundation 
for more advanced forms that could be integrated into 
future practice for emergency response operators to use 
in mission critical workflows.

METHODOLOGY

I recreated the stochastic prototype model for the time 
and energy efficiency of emergency vehicles using the 
Anaconda Python 3 distribution. In doing so, the model 
and all its dependencies are platform independent, 
and all code is open-source and freely available. The 
Python modules used included Pylab, SciPy, NetworkX, 
and MatplotLib. Many of the statistical, networking, 
and graphical display functions could not be readily 
performed without these existing packages. For 
experimentation purposes, the current model uses the 
University of Central Florida campus as its simulated 
service area due to the proximity of Orange County Fire 
Station 62 and its relatively small size (compared to an 
actual municipality). The initial network diagram began 
as a simple set of nodes to key locations on campus, as 
shown in Figure 1. The network was then projected onto 
a geographical map and the nodes were given both a 
set of “relative” and real-world coordinates, as shown in 
Figure 2. 
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From there, I recorded travel times between each node 
at various times of the day and on different days. These 
sampled travel times were then used to model the 
distribution of travel times. For simplicity, I assumed 
these were independent distributed samples that followed 
a Gaussian distribution due to how my gathered data 
fitted during the collection phase. This procedure was 
due to the limitations involved in our sampling process; 
for example, traffic signals are equipped with preemption 
control to give emergency vehicles the right-of-way at 
intersections when they are near, unlike normal passenger 
vehicles (Zhang et al., 2016). For the purposes of a 
prototype model that can display consistency in results 
and provide directional guidance for energy consumption 
as a significant factor in emergency vehicle routing, my 
Gaussian distribution assumption was sufficient.

After the network was created and sample input data 
were gathered, the model was encoded in Python. At its 
most basic level, the model calculated a “weight” value for 
each link between nodes for each hour of the standard 
24 hour day. This weight value was calculated based 
on the mean of randomly sampled travel times. These 
travel times were sampled from a Gaussian distribution 
based on the mean (most probable) value and standard 
deviation of the input data. As the expected travel time 
from a source node to a destination node increased, 
so did the weight value for the corresponding link. As 
the weight value for a link increased, the less desirable 
it became as an option for travel. Despite requiring a 
variety of input data from the developer, this approach 
was necessary to compensate for a lack of real-time data 

inputs. In the future, a comprehensive corpus of routing 
data from the fire station could be leveraged to calculate 
time-dependent route weights, with continuous updating 
based on the stream of real-time routing data.

After calculating the weight values for each link, the 
model used the Dijkstra algorithm (Dijkstra, 1959) to 
find the best path using every possible combination of 
links between nodes. This task was performed over a 
user-defined number (typically on the order of 10,000) 
of iterations with a different generation of weights for 
each iteration in order to introduce a sufficient amount 
of realistic noise into the system. The concept of travel 
time variability (reliability) is accepted as one of the key 
indicators for the performance of transport systems (Tu 
et al., 2012); thus, I built this noise into the model to 
reflect this property. Two matrices were then formed 
from these results: one that contained the best paths 
based on time, and one that contained the best paths 
based on energy efficiency. All path results were stored 
electronically for reference. 

From a user-defined origin to destination, the model then 
referenced these two matrices to suggest to the user the 
most optimal path to take. It determines this “optimum” 
path based on the differences between the travel time 
efficient path and energy efficient path. The projected 
travel time a vehicle takes to go from an origin to a specific 
destination was considered first to simulate time as the 
dominant factor in emergency vehicle routing. Then, if 
the energy efficient path caused a delay greater than the 
time efficient path, plus 0.5 standard deviations of all 
recorded trips the vehicle has thus far taken, the model 
would recommend the time efficient route. Otherwise, 
the model would recommend the most energy efficient 
route. This logic is based on the possibility of back-to-
back service calls, where the emergency vehicle may 
have to respond to a second incident without returning 
to the station to recharge. Thus, the conservation of on-
board energy is given priority when it does not cause a 
significant delay in response. 

Along this thread and in anticipation of other possible 
emergencies, the model recommends the next best 
course of action after the primary incident is resolved. 
A sample is drawn from a binomial distribution of the 
probability that an emergency would occur for each hour 
of the day. Two random scenarios are drawn over many 
iterations: one for the next hour, and one for the hour 
after that. If the dominant probability was that both 
sample integers were 0 (no emergency), the model would 
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recommend that the vehicle return to base to recharge. If, 
on average, at least one of these samples indicated that an 
emergency would occur within the next two hours, the 
model recommended that the emergency vehicle remain 
mobile. However, if the vehicle did not have sufficient 
energy to respond to a subsequent emergency, the model 
would recommend a return to base.

The model continuously simulates the energy 
consumption and times for predicted emergency 
locations and times in which they would theoretically 
occur until user intervention to stop the model run. The 
energy consumed is modeled based on the fuel tanks of 
transit vehicles in Kyoto, Japan. While this benchmark 
has been proven to be a good analog for estimating 
power demand in the past (Koyanagi & Uriu, 1997), this 
assumption has limitations. At the end of the simulation, 
the model provided aggregate statistical output based 
on what it had calculated on startup. The model then 
performed a sensitivity analysis for each generated travel 
time to display the consistency and convergence of its 
results.

While flexible in its operation, a carefully constructed 
series of input data were required to develop the model’s 
operations. A coordinate map containing various 
attributes was also required. Each node had its own 
attributes and its own set of input data. Each node had 
to possess the following elements: coordinates on the 
image map, GPS coordinates, elevation in feet with 
respect to a consistent datum (i.e. mean sea level), mean 
number of emergencies per year, and the fraction of these 
occurrences compared to other nodes. The elevation was 
intended to include energy consumption, but could not 
be properly implemented due to time constraints. Each 
link also needed a series of actual measured travel times 
used to model the distribution. All model input data was 
readable from a format-specific excel file, or alternatively 
by a combination of text file and program configuration 
parameters. 

A sample of the excel file is displayed in Tables 1, 2 and 
3. Table 1 displays the basic inputs for the experiment, 
including starting time and fuel amount (based on gauge 
read). The inputs shown in Table 2 focuses primarily on 
each property for the nodes in the model, such as display 
parameters and geographical data. The node connections 
and sample times between each node are inputs as well 
and are shown in Table 3. Emergency frequency data 
was also required; one specific input was a table listing 
the number of emergencies per year for each hour of 

the day. This table, a sample of which is shown in Table 
4, also needed to include a computed probability of an 
emergency occurring, the calculated probabilities for 
emergency occurring each hour of the day based on this 
parameter and the table listings.

Table 1: Basic input parameters used for experiment's Monte-Carlo 
run

Table 2: Hypothetical input parameters for each node in a sample 
experiment and Google Map

Table 3: Gathered travel time input data for each node-link pair

10.1: 1-13
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The basic input parameters required for the model to 
run include the location of each node, its connectivity, 
a sample of travel times, the number of iterations to 
perform, the probability that a road obstruction is 
present, the vehicle’s starting gauge read fuel, and the 
starting time in seconds. As input data, the model used 
sampled time data from drives throughout the UCF 
campus. Although the travel time along a road link will 
theoretically vary based on time of day, the travel time 
remained regularly consistent. My experiment accounted 
for this variation through random sampling from a 
realistic distribution. 

Table 4: Emergency call frequencies for each hour of the day based 
on occurrence per year

Further required background input included the 
frequency of calls during each time of the day. The above 
data in Table 4 was graciously provided by Fire Station 
62 near UCF; these probabilities are based on frequency 
of real emergency calls made in 2015.

RESULTS

A sample output for the shortest path time and route from 
the Fire Station to a random node is depicted in Figure 
3. This route sample was based on the averaged shortest 
times for all potential paths from source to destination—
in this instance, from the Fire Station to Lake Claire. 
This output of the model also provided average travel 
time and energy consumption for conveying the costs of 
travel along the route.

The weights of each node-node connector are represented 
by the values in white bubbles shown in Figure 3. Higher 
weight values indicate higher travel times and delays, thus 
the route with the minimum total weight is displayed. 
These weights were calculated based on distance, travel 
time, and energy consumption.

Similarly, the program provides a “final report” output 
with this information depicted in greater detail, as Figure 
4 illustrates. The report compares the time-efficient 
path and energy-efficient path, states whether there is 
a significant enough difference in time between the two, 
and recommends the path based on how enough this 
difference is. The likelihood of a subsequent or concurrent 
emergency during response was also displayed, and the 
model suggested whether the operator is to remain on 
standby in anticipation of a subsequent emergency or to 
return to the station due to a low likelihood of another 
emergency within the hour.

Figure 4: Report provided at the end of a single routing run

10.1: 1-13

Figure 3: Recommended route graphical output from a single 
routing run
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The average path travel times for each iteration the 
program performed in the sample run is displayed in 
Figure 5 through a graphical sensitivity analysis. The 
predicted values were averaged over time and graphed 
on a per-iteration basis. By the Law of Large Numbers, 
the expected value should theoretically converge towards 
a single value (Hsu & Robbins, 1947). In this instance, 
the predicted total path times did indeed converge after 
about 2000 iterations.

Model validation was performed by analyzing the 
average values and comparing it to field data. Model 
reliability was also tested. First responders must 
minimize as much travel time as possible to respond to 
the emergency quickly. Travel time optimization would 
be very difficult to perform if there was high variability. 
Thus, I also conducted a sensitivity analysis based on 
the range of values produced, as shown in Figure 6. The 
decreasing ranges after about 2500 iterations indicates 
there were smaller differences between the longest and 
shortest travel times. Thus, the travel times were more 
easily predictable after this point.

Figure 7: Sensitivity Analysis for shortest destination times based 
on number of Monte-Carlo runs

To provide further evidence towards the decreasing 
variability of the model, I also performed a sensitivity 
analysis using the shortest path time, as shown in Figure 
7 above, as well as on the variance of the path times, 
as shown in Figure 8 below. Although range aided in 
displaying the differences in extremes, displaying the 
actual values of one of the extremes shows that the target 
value (the shortest path) converged earlier than the range 
of values, after about 2000 iterations.  Conversely, the 
variance curve smoothed out after 2000 iterations, but 
did not attain a single flat value until 8000 iterations 
were performed. Figure 5 (top): Sensitivity Analysis for average destination times based on 

number of Monte-Carlo runs
Figure 6 (bottom): Sensitivity Analysis for path time ranges based on number 
of Monte-Carlo runs

10.1: 1-13
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Figure 8: Sensitivity Analysis for variance shortest destination 
times for Monte-Carlo runs

DISCUSSION

As displayed in Figure 5, the predicted travel time values 
stabilized completely after approximately 2,000 runs, with 
a gradually reducing variance as expected. The shortest 
potential travel time shown in Figure 7 also converged 
after approximately 2,000 runs, but the variance of the 
system depicted in Figure 8 did not completely converge 
until after approximately 8,000 runs. This result signifies 
that while the shortest path time—the “ideal” value—
became more easily predictable, the “true” value of each 
individual run still had a degree of uncertainty. This 
result is a natural consequence of introducing noise into 
the system by generating scenarios of varying inputs, and 
coupled with the early converging averages and ranges, 
it is likely that any edge cases of improbable scenarios 
(such as all roads being blocked), the model produced 
did not have a significant impact overall on the expected 
travel time.  Thus, even with the introduction of new data 
and noise, the predictions continued to exhibit patterns 
of consistency, as shown in the smoothing curves of 
Figure 8.  Thus, the model can be considered usable for 
purpose of making consistent predictions.

Using the Kolmogorov–Smirnov test in MatLab, I found 
that there was a significant difference between the output 
travel time data and the travel time data provided by the 

Orange County Fire Station based on a significance 
level of 0.05; the lack of consideration to traffic signals 
very likely played a prominent role in this difference. As 
such, the real-world data likely did not follow a normal 
distribution as originally assumed based on sampled data. 
To be explicitly used as a predictive tool in its current state, 
the model would need to generate values based on an 
empirical distribution, as I could not identify any suitable 
distribution fit for the real-world data. Furthermore, the 
fundamental issue lies in the assumption of ignoring 
traffic signals; traffic signals would only add significantly 
more variance as well as shift the values forward with 
regards to time, thus also changing fuel consumption. 
The acceleration changes and starting-and-stopping 
motions that would be required to abide by traffic signals 
would also play a major role in these factors. Although 
a distribution change is as simple as changing a single 
line in the code and can be experimented with in future 
iterations of the model; the model itself would require 
major changes due to one its core assumptions being 
invalidated. In future iterations, the model could readily 
be modified to more accurately reflect what prior studies 
have found: response times dependent on a 3-parameter 
inverse Gaussian distribution, with the 3rd parameter 
being location (Zhang et al., 2016). The network mapping 
and corrective routing capabilities were successful, but 
this only verifies rather than validates the model.

The model was built upon both self-sampled data, 
performed via timing the route in a non-emergency 
vehicle (which may have resulted in data skew), as well 
as data provided by Fire Station 62, which had over one 
hundred times as many samples. The concept of travel 
time variability is accepted as one of the key indicators 
for the performance of transport systems (Tu et al., 2012); 
thus, our model’s consideration of a realistic level of 
noise is further consistent with the reality of emergency 
transportation. Furthermore, my predictions were based 
upon on the concept of aggregating "micro-trips" 
(making predictions for each route to and from each 
destination) providing the best confidence for energy 
consumption (Cauwer et al., 2015). In this respect, the 
model functioned well as a tool for emergency response 
teams to determine fuel and time efficient routes.

In this model, all path weights were pre-computed at 
the start of the simulation, and the vehicle path simply 
referenced one of these pre-computed pathways. The 
advantage of this approach is that the simulation could 
run many times over without using a large amount of 
resources, and can present results for long periods of 

10.1: 1-13
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time without requiring constant computations. As such, 
the model can be expanded to encompass larger, more 
complex networks without having to re-compute the 
link weights in real-time. This procedure would allow 
for scheduled matrix computations throughout the day, 
thereby making computing costs relatively fixed and 
independent of the number of requests. The disadvantage, 
however, is that unlike similar routing models, the travel 
time input data cannot be updated in real-time, as the 
predictions are computed a priori. Instead, the simulation 
would need to be re-run after updating the necessary 
input data. However, it is likely that an optimal frequency 
for weight matrix computations could be determined 
with additional research. For example, the advent of 
serverless or “lambda” function technology could enable 
the real time update of individual links throughout the 
day. A secondary matrix of multiplier values indicating 
the deviation from normal conditions could augment the 
primary matrix and adjust travel times based on current 
observed conditions in the service area.

While this model uses the terms “best” and 
“recommended” route, we caution that the “optimal 
route” an operator should take differs based on the 
decision maker’s priorities and values. For example, the 
model in its present form displays only a single suggested 
route rather than a series of alternatives. In anticipation 
of this possibility, the model supports rejection of its 
suggestions and continues predictions according to 
the route decisions made by the user instead. Another 
notable limitation of the model is that it only considered 
emergencies occurring in series and not simultaneously. 
While the probability that an emergency would occur in 
an area of the size simulated at more than one location is 
sufficiently low (Badri et al.,1997), the possibility should 
be considered in future versions of the model. This 
possibility is especially salient in light of mass casualty 
events that first responders currently train for on an 
annual basis.

Further possible sources of error could be attributed 
to the assumptions made in the creation of the model. 
For instance, there was a lack of concrete electrical 
engine data on emergency vehicles for analysis, thus 
the calculations for energy consumption were based on 
public transportation systems. Data for fuel consumption 
was based on transit vehicles in Kyoto, Japan due to lack 
of reliable engine data for emergency vehicles, though 
this was proven to be a good analog for estimating power 
demand (Koyanagi & Uriu, 1997). This assumption, like 
the input data, can be easily remedied through single-

line changes in the model code as more research is 
performed. Precision was also preferred over accuracy in 
this experiment due to my intended goal of modeling the 
routing itself and performing a factor analysis. 

Moreover, the model, despite having used a real location, 
employed straight paths rather than following exactly 
along the roads for its simulation. Although the use of 
sampled times for calculations, rather than a second-the-
second simulation of distance, mitigated the impact of 
this error, future work should focus on addressing this 
limitation. There was also a small amount of uncaptured 
variance due to traffic conditions and stoplights. 
Emergency vehicles are provided right-of-way by law 
and stoplights have sensors to turn green when they are 
near, thus average times are likely to be somewhat shorter 
in a more realistic scenario (Zhang et al.,  2016). The 
consideration of traffic conditions is an avenue that this 
research can be continued upon, as the groundwork for 
such considerations have already been laid out in medical 
vehicles (Haghani et al.,  2003) and can be expanded for 
all emergency vehicles.

The model also assumed the independence of service 
and stations—that no overlap occurred in serviced 
areas and emergencies were on a first-come, first-serve 
basis (Cauwer et al.,  2015) as noted by the presence of 
only one fire station present in the model. It was also 
assumed that the emergency vehicles are standardized 
and have equal capability. These assumptions are made in 
other probabilistic models (Beraldi & Bruni, 2009) due 
to the complexity of simulating communications and 
individual vehicles, but these factors are simply beyond 
the scope of this research at this stage. Nonetheless, the 
factors involved in the status of the individual vehicles 
are an avenue that should be considered in future work. 
My hypothetical electric engine does not consider 
energy consumption due to auxiliary items (AC, heat, 
radio, etc.), nor does it account for the possibility of other 
on-board equipment drawing electric power (Cauwer et 
al.,  2015). Moreover, driving in extreme temperatures 
can result in range reduction for batteries (Hayes, et al.,  
2011). 

Regardless of these limitations, the model fulfilled its 
primary purpose in reliably routing and predicting the 
energy efficiency and time efficiency for emergency 
vehicles operating on an electric battery cell. With the 
creation of this model, we have laid the groundwork 
for routing analysis of vehicles with regards to energy 
rather than solely as a time efficiency optimization 
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problem. This groundwork can be particularly useful 
for projects regarding energy considerations of private 
ride-share transportation and courier routing, as many 
upcoming renewable energy technologies would likely 
be implemented in the private sector rather than solely 
emergency vehicles.

CONCLUSION

In this paper, we developed a prototype stochastic 
model to predict the best route for an emergency vehicle 
based on both time and energy efficiency, as shown in 
Figure 3. This model was able to consistently predict an 
emergency vehicle’s travel time and make key routing 
decisions during emergencies. Through sensitivity 
analysis and a variety of different inputs within a limited 
set of constraints, this model converges over a reasonable 
number of iterations, and as displayed by Figures 5, 6, 7, 
and 8, yields consistent results after a number of these 
iterations. 

Through the construction of this model, I have laid the 
foundational work for assessing upcoming technological 
changes and implementation in emergency operations. 
This demand, which has been established in the literature, 
necessitates predicting travel times for emergency 
vehicles, exploring energy consumption for emergency 
vehicles, and understanding both aspects under various 
assumptions and constraints.

Nevertheless, my model has some limitations, including 
a lack of concrete engine data for predicting energy 
consumption. Another limitation is that the network 
model was simplistic rather than fully geospatially 
mapped. Moreover, the model assumed that all vehicles 
and stations were standardized and independent, and 
stoplights/traffic were indirectly considered through 
the time study rather than explicitly considered as 
elements within the model. Nevertheless, continued 
research in these aspects can yield much more accurate 
predictions for practice by operators in preparation for 
these upcoming technologies. At that time, a tool such 
as my model can enable municipalities and emergency 
service operators to evaluate the possibility and return on 
investment associated with the transition to an electric 
vehicle fleet.
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Figure 2: Google map displaying georeferenced node locations for the roadway network
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Table 5: Full gathered travel time input data for each node-link pair
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Table 6: Emergency call frequencies for each hour of the day based on occurrence per year
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