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Modeling and simulation of the horizontal component
of the geomagnetic field by fractional stochastic differential
equations in conjunction with empirical mode decomposition

Zu‐Guo Yu,1,2 Vo Anh,1,3 Yang Wang,4 Dong Mao,4 and James Wanliss5

Received 15 December 2009; revised 7 June 2010; accepted 21 June 2010; published 9 October 2010.

[1] In this paper, we investigate the characteristics and develop a stochastic model for
the horizontal component Bx of the magnetic field at 22 stations of the global near‐real‐
time magnetic observatory network INTERMAGNET. The model is in the form of a
fractional stochastic differential equation. A method to estimate the parameters on the
basis of observed data and to simulate the data using the model is given. The degree of
fractional differentiation and the alpha‐stability exponent of the process are employed to
cluster the stations. The Bx time series possess pronounced local trends, which must be
removed before modeling and simulation can be performed. This trend removal is carried
out by an empirical mode decomposition. An outcome is an efficient method to simulate the
Bx time series by empirical mode decomposition and fractional stochastic differential
equation. The numerical results indicate the existence of two distinct clusters of the
INTERMAGNET: one in the mid‐ and low latitudes consistent with the Dst index, and the
other above geomagnetic latitude 60°N consistent with the AE index. This clustering
corresponds to the inner magnetosphere and the outer magnetosphere, respectively.

Citation: Yu, Z.-G., V. Anh, Y. Wang, D. Mao, and J. Wanliss (2010), Modeling and simulation of the horizontal component
of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition,
J. Geophys. Res., 115, A10219, doi:10.1029/2009JA015206.

1. Introduction

[2] Earlier works by Consolini et al. [1996], Uritsky and
Pudovkin [1998], Chapman et al. [1998], and Chang
[1999] in modeling the magnetosphere in the framework
of self‐organized criticality (SOC) motivated many recent
studies on stochastic properties of the magnetosphere and
related geomagnetic indices. In an SOC model, simple local
interactions produce complex global signatures of a system.
These signatures may appear in the form of power law
scaling in the probability distributions or in the power
spectra. For example, Freeman and Watkins [2002] noted
that the probability distribution of the time when the AE
index exceeds a given threshold follows a power law dis-
tribution. In investigations of the spatial structure of the
aurora using ultraviolet images from NASA’s POLAR
spacecraft, Lui et al. [2000] found a power law relationship
between the number of bright spots and their area, and

Uritsky et al. [2002] found power laws for the probability
distribution of bright spot lifetime and maximum dissipated
energy. An explanation of some aspects of these power laws
was given by Klimas et al. [2004] in an SOC‐like recon-
nection‐based model. A review on the scaling in the AE and
other geomagnetic indices was provided by Watkins et al.
[2005].
[3] Pulkkinen et al. [2006] developed an Itô‐type stochastic

model for the AE index to investigate the role of stochastic
fluctuations in the global dynamics of the magnetosphere‐
ionosphere system. Anh et al. [2008] provided a fractional
stochastic differential equation (FSDE) for the hourly AE
index for the period 1978–1987. The memory of the AE time
series is represented by a fractional derivative, and its heavy‐
tailed behavior is modeled by a Lévy noise with inverse
Gaussian marginal distribution. The equation has the form of
the classical Stokes‐Boussinesq‐Basset equation of motion
for a spherical particle in a fluid with retarded viscosity. The
fractional degree of the equation conforms with the previous
finding [Pulkkinen et al., 2006] that the fluctuations of the
magnetosphere‐ionosphere system as seen in the AE reflect
the fluctuations in the solar wind: They both possess the same
extent of fractional differentiation.
[4] The high‐latitude fluctuations, which typically occur

above geomagnetic latitude 60°N as manifested in the AE
index, reflect solar wind conditions. On the other hand, low‐
latitude geomagnetic fluctuations, as seen in the Dst index,
are believed to reflect the inner magnetosphere. Wanliss and
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Reynolds [2003] suggested that “examination of low‐lati-
tude ground magnetometer signals can provide clues as to
whether the magnetosphere is inherently self‐organized.”
Wanliss and Reynolds [2003, p. 2025] analyzed hourly
magnetometer measurements of total magnetic field strength
from six stations at low latitudes over the period 13–18
January 1993. Using spectral analysis and rescaled range
analysis, they found, at this hourly resolution, a relative
increase of the Hurst exponent with latitude. With regard to
the Dst itself, Wanliss [2004, 2005] and Wanliss and Dobias
[2007] found that the Dst index exhibits a power law spec-
trum with the Hurst parameter varying over different seg-
ments of the time series. This behavior indicates that Dst is a
multifractional process.
[5] Fractal and multifractal approaches have been quite

successful in extracting salient features of physical pro-
cesses responsible for the near‐Earth magnetospheric phe-
nomena [Lui, 2002]. Heavy‐tailed Lévy‐type behavior has
been observed in the interplanetary medium and the mag-
netosphere [Burlaga, 1991, 2001; Burlaga et al., 2003;
Kabin and Papitashvili, 1998; Lui et al., 2000, 2003]. A
method to describe the multiple scaling of the measure
representation of the Dst time series was provided by
Wanliss et al. [2005]. A prediction method was detailed by
Anh et al. [2005], together with some numerical results
evaluating its performance. A two‐dimensional chaos game
representation of the Dst index and prediction of geomag-
netic storm events was proposed by Yu et al. [2007]. The
spatiotemporal scaling properties of the ground geomagnetic
field variations from individual magnetometer stations were
studied by Pulkkinen et al. [2005] and Cersosimo and
Wanliss [2007]. Anh et al. [2007] used multifractal de-
trended fluctuation analysis (MF‐DFA) to analyze ground
magnetic fluctuations for the year 2000. Yu et al. [2009]
found the storm‐flare class dependence through the mea-
sure representation [Yu et al., 2001a] and multifractal
analysis.
[6] In this paper, we examine ground magnetometer

measurements, at high, mid‐, and low latitudes, of the
horizontal component Bx of the magnetic field. We use the
Bx data at 22 stations of the global near‐real‐time magnetic
observatory network INTERMAGNET to classify its dif-
ferent behaviours corresponding to different regions of the
magnetosphere.
[7] The Earth’s magnetic fluctuations are measured

almost continuously by arrays of magnetometers located
around the world. The INTERMAGNET program has
established a global network of cooperating digital magnetic
observatories that currently comprises over 108 observato-
ries. Typical measured parameters include the north (Bx) and
east (By) components of the horizontal intensity, and the
vertical intensity (Bz), or some combination of these. By
constantly measuring the magnetic field through programs
such as INTERMAGNET, researchers can observe how the
field is changing over a period of years and use it to derive a
mathematical representation of the Earth’s magnetic field
and how it is changing. It is noted that the Dst is calculated as
an hourly average of the horizontal component Bx of the
magnetic field at four observatories, namely, Hermanus
(33.3° south, 80.3° in magnetic dipole latitude and longi-
tude), Kakioka (26.0° north, 206.0°), Honolulu (21.0° north,
266.4°), and San Juan (29.9° north, 3.2°). These four

observatories were chosen because they are close to the
magnetic equator and thus are not strongly influenced by
auroral current systems. In this paper, we use the horizontal
component Bx at 22 stations of INTERMAGNET covering
six distinct regions, namely, southwest North America,
northeast North America, central Europe, northern Europe,
Australasia, and Asia.
[8] The time series of Bx at each station is modeled as the

solution of a fractional stochastic differential equation
(FSDE) of the form (1) defined in the next section. In this
paper, we pay particular attention to the degree of fractional
differentiation n and the a‐stability exponent of the noise
process L (t) driving equation (1). These two parameters,
which express the scaling and fractal behavior of the mag-
netic field at different locations, can be employed to cluster
the stations. We show that the Bx component possesses local
trends, which must be removed before the FSDE modeling
and simulation can be performed. This trend removal is
carried out by an empirical mode decomposition (EMD).
The parameter n is estimated by a detrended fluctuation
analysis (DFA), while the parameter a is obtained by fitting
the empirical probability density function (PDF) of the data.
[9] The next section details a description of equation (1)

and the needed techniques of DFA and EMD. An estima-
tion of equation (1) is then performed for each station. The
numerical results are reported in Tables 1 and 2 in section 3
for the cases of raw data without detrending and trend
removed, respectively. We show that the estimates of the
a‐stability exponent are almost similar in both cases and
yield consistent clustering. The estimates of the scaling
exponent after trend removal supports this clustering. Good
simulation of the observed Bx time series is achieved after
trend removal. Hence an outcome of the approach of this
paper is an efficient method and algorithm for simulation of
magnetometer time series by EMD and FSDE. A discussion
of the results and some conclusions is given in section 4.

2. Methods

2.1. a‐Stable Distribution

[10] The Lévy a‐stable distribution is defined by the
Fourier transform of its characteristic function [Nolan, 2009]

f x;�; �; �; �ð Þ ¼
Z 1

�1
’ xð Þe�itxdt;

where ’(t) is given by

’ tð Þ ¼ exp i�t � � tj j� 1þ i� sign tð Þw t; �ð Þ½ �f g;

and

w t; �ð Þ ¼
tan ��

2 ; if � 6¼ 1;

2
� log jtj; if � ¼ 1;

8<:
sign tð Þ ¼

1; if t > 0;

0; if t ¼ 0;

�1; if t < 0:

8>>>><>>>>:
Here, g is the scale parameter, a the stability exponent, d the
shift parameter, and b the skewness parameter. The exponent
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a controls the kurtosis and lies in the range (0, 2]. The value
a = 2 corresponds to a Gaussian distribution (for any b),
while a = 1, b = 0 corresponds to a Cauchy distribution. The
skewness parameter b lies in the range [−1, 1], and when it is
zero, the distribution is symmetric and is referred to as a
Lévy symmetric a‐stable distribution. The scale parameter g
must be larger than 0, and is equal to one half of the variance
in the Gaussian case (a = 2). The shift d is a location
parameter; it is the mean when 1 < a ≤ 2 and the median
when 0 < a < 1 [Nikias and Shao, 1995].
[11] An empirical PDF can be computed from an observed

time series. Then maximum likelihood can be used to esti-
mate the parameters a, b, g, and d in the a‐stable distribution
and fit the empirical PDF of the time series.

2.2. Fractional Stochastic Differential Equations
Driven by Lévy Noise

[12] Anh et al. [2008] provided a description of the non‐
Gaussianity and possible long‐range dependence of the
auroral electrojet (AE) index in the form of a fractional
stochastic differential equation

dX

dt
þ �D�X tð Þ ¼ 	

dL

dt
; � � 0; ð1Þ

where the fractional derivative Dn is defined by [Podlubny,
1999, equation (2.138)]

D�
 tð Þ ¼ 1

G n� �ð Þ

Z t

0
t � �ð Þn���1d

n
 �ð Þ
d�n

d�; ð2Þ

Table 1. The Estimated Values of the Parameters of the Bx Time Series without Detrending at the Selected Stationsa

Group Station LAT (°) min(Bx) max(Bx) a b g d h

NA1 BOU 48.8 20439 20723 1.5879 −0.8989 13.1886 20648.1 1.1959 ± 0.0334
FRN 43.7 22767 23174 1.6511 −0.9008 13.6125 23090.4 1.2217 ± 0.0265
TUC 40.2 24213 24596 1.7114 −0.9900 15.5121 24515.8 1.2492 ± 0.0239
DLR 38.6 24996 25366 1.7012 −0.9900 15.8343 25288.5 1.2481 ± 0.0294

NA2 FCC 68.3 7388.4 9283.7 1.2705 −0.3183 37.4423 8440.47 1.2188 ± 0.0227
PBQ 66.8 10022 12144 1.2703 −0.3248 31.9522 11031.1 1.2249 ± 0.0218
STJ 57.7 17540 18266 1.6525 −0.9253 18.3224 17914.7 1.2192 ± 0.0532
OTT 56.2 16422 17823 1.6929 −0.8602 18.0112 16967.4 1.1738 ± 0.0723

CEUR NGK 51.9 18455 18930 1.6334 −0.8597 12.1750 18780.0 1.2998 ± 0.0362
BDV 48.8 20052 20399 1.5927 −0.8663 11.4755 20296.9 1.3191 ± 0.0300
FUR 48.3 20608 20939 1.5815 −0.8700 11.2065 20842.9 1.3148 ± 0.0275
NCK 46.8 20814 21127 1.6256 −0.8641 10.9772 21040.3 1.3010 ± 0.0291

NEUR ABK 65.9 10189 12258 0.9401 −0.1305 19.9918 11455.2 1.2200 ± 0.0292
SOD 63.7 10129 12277 0.9829 −0.1366 17.0264 11477.4 1.2122 ± 0.0319
LOV 57.9 14531 15664 1.6463 −0.4805 12.8191 15297.0 1.2167 ± 0.0664
NUR 55.1 14041 15352 1.5973 −0.3771 13.1472 14897.1 1.2058 ± 0.0672

AUS KDU −22.5 35056 35470 1.7123 −0.3080 16.8851 35357.8 1.4698 ± 0.0468
CTA −29.1 31239 31617 1.6017 −0.8537 13.6192 31529.0 1.3500 ± 0.0233
ASP −34.2 29665 30014 1.6334 −0.8627 13.6621 29940.2 1.3426 ± 0.0171

ASIA MMB 34.8 25584 25952 1.6389 −0.9450 14.1416 25877.4 1.2761 ± 0.0367
BMT 33.9 28170 28528 1.6517 −0.9435 14.2766 28457.1 1.2653 ± 0.0330
KAK 26.9 29520 29867 1.6464 −0.8909 13.9227 29785.2 1.3146 ± 0.0273

aLAT, geomagnetic latitude of the stations.

Table 2. The Estimated Values of the Parameters of the Detrended Bx Time Series at the Selected Stations

Group Station a b g d h � h error RSE e

NA1 BOU 1.5237 −0.8341 9.98987 5.10507 0.8884 ± 0.0321 1.7100 2.2923 0.001800 0.4674
FRN 1.6169 −0.6796 9.75016 3.42546 0.9423 ± 0.0217 1.4137 2.6347 0.000711 0.3348
TUC 1.6118 −0.4884 9.31218 2.59578 0.9905 ± 0.0158 1.5345 2.5371 0.001600 0.4885
DLR 1.5925 −0.4920 9.30300 2.84548 1.0046 ± 0.0159 0.7182 3.8897 0.000590 0.2949

NA2 FCC 1.2604 −0.1740 35.7932 11.1448 0.7891 ± 0.0516 1.4946 1.5746 0.000061 0.4540
PBQ 1.1022 −0.0650 25.2671 7.05106 0.8242 ± 0.0579 1.5281 1.5281 0.000268 0.8624
STJ 1.3946 −0.7397 9.76454 6.00033 0.7595 ± 0.0354 1.3055 1.6565 0.000258 0.2902
OTT 1.3143 −0.7016 10.5020 6.61395 0.7508 ± 0.0325 1.4963 1.6029 0.000352 0.4776

CEUR NGK 1.5809 −0.6605 9.52715 3.45741 0.8771 ± 0.0376 1.4530 2.5752 0.000385 0.2800
BDV 1.5513 −0.5706 8.53128 3.08720 0.9432 ± 0.0340 1.2553 2.9598 0.000538 0.2708
FUR 1.5457 −0.5333 8.24641 2.90425 0.9544 ± 0.0330 1.4121 2.6619 0.000940 0.4166
NCK 1.5359 −0.5312 7.58381 2.74455 0.9617 ± 0.0313 1.4121 2.6619 0.000940 0.3167

NEUR ABK 1.0559 −0.0396 25.2279 6.86519 0.7397 ± 0.0496 1.4314 1.5732 0.000066 0.4084
SOD 1.0434 −0.0085 20.0871 5.14762 0.7340 ± 0.0471 1.3972 1.6238 0.000248 0.7223
LOV 1.4335 −0.4894 9.81644 3.82705 0.7433 ± 0.0387 1.2118 1.7567 0.000421 0.4593
NUR 1.3905 −0.3972 10.2271 3.66515 0.7346 ± 0.0385 1.4173 1.7327 0.000791 0.6866

AUS KDU 1.5580 0.2269 12.9957 −0.77396 1.0145 ± 0.0397 1.4132 2.5488 0.001100 0.5089
CTA 1.5271 −0.0957 9.43664 1.51390 1.1411 ± 0.0298 1.5722 3.004 0.004200 0.9201
ASP 1.6202 −0.2351 9.77916 1.85506 1.1191 ± 0.0238 0.6305 4.4862 0.000796 0.3407

ASIA MMB 1.5712 −0.6727 10.2512 4.06109 0.9737 ± 0.0382 1.2852 2.7394 0.000671 0.3344
BMT 1.5994 −0.5864 10.1863 3.48716 0.9914 ± 0.0249 1.3488 2.7529 0.000839 0.3680
KAK 1.6003 −0.3849 9.30575 2.41755 1.0954 ± 0.0273 1.2019 2.7582 0.003200 0.6543
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[13] n 2 [n − 1, n), n = 1, 2, …, G is the gamma function,
dL
dt is Lévy noise defined in the distribution sense [see
Mueller, 1998, for example], and �, h are constants. Spe-
cifically for Bx data, the Lévy noise of equation (1) is
assumed to have an a‐stable distribution suggested by the
form of their empirical PDF. Note that for n = 0 and dL

dt =
dW
dt ,

equation (1) is the classical Langevin equation. If the value
of n is equal to 1

2, the equation for the time series then takes
the form

dX

dt
þ �D1

2X tð Þ ¼ 	
dL

dt
; ð3Þ

which is the Stokes‐Boussinesq‐Basset equation in hydro-
dynamics (driven by Gaussian noise).
[14] An algorithm to get an approximate solution of

equation (1) is given in Anh and McVinish [2003] and Anh
et al. [2008]. The algorithm plays an essential role in the
estimation of the parameters of the FSDE described below.
[15] A way to simulate random variables from the a‐

stable distribution is as follows [see Chambers et al., 1976]:
[16] 1. Generate V from a uniform distribution on [−p/2,

p/2] and W from an exponential distribution with mean 1.
[17] 2. For a ≠ 1, compute

X ¼ S�;�
sin � V þ B�;�

� �� �
cos Vð Þ½ �1=�

cos V � � V þ B�;�

� �� �
W

� � 1=��1ð Þ

;

where

B�;� ¼ arctan � tan ��
2ð Þ

� ;

S�;� ¼ 1þ �2 tan2
��

2

� 	h i1= 2�ð Þ
;

for a = 1, compute

X ¼ 2

�

�

2
þ �V

� 	
tanV � � ln

�W cosV

�þ 2�V


 �� �
:

Then the stable variable Y can be computed as

Y ¼
�X þ �; if � 6¼ 1;

�X þ 2
� �� ln � þ �; if � ¼ 1:

8<:
Sample paths of the corresponding Lévy motion can then be
generated as

L nhð Þ ¼
Xn
i¼1

h1=�Yi; ð4Þ

where the Yi have an a‐stable distribution. This algorithm is
needed in the simulation of paths of equation (1).

2.3. Detrended Fluctuation Analysis

[18] To estimate the degree of the fractional derivative, we
performed a detrended fluctuation analysis (DFA) [Peng et
al., 1994; Yu et al., 2001b, 2006, 2009] of the time series.
The DFA is the special case when q = 2 of the multifractal
detrended fluctuation analysis (MF‐DFA) detailed in
Kantelhardt et al. [2002]. We adopt the algorithm in
Kantelhardt et al. [2002] and Movahed et al. [2006] to

estimate the exponent of DFA in this paper. The procedure
consists of five steps. Let {Xk}k=1

N be a time series of length N.
[19] Step 1. The time series is integrated as Y(i) =

Pi
k¼1

[Xk − Xave], i = 1, 2, …, N, where Xave is the sample mean
over the whole time period.
[20] Step 2. The integrated time series is divided into Ns =

[N/s] nonoverlapping segments of equal length s. Here, [N/s]
is the integer part of N/s. Since the length N of the series is
often not a multiple of time scale s, a short part of length le =
N − Nss at the end of Y(i) may remain. In order not to
disregard this part, the same procedure is repeated starting
from the opposite end. Thereby, 2Ns segments are obtained
altogether.
[21] Step 3. Calculate the local trend for each of the 2Ns

segments by a least‐squares fit of the series, then determine
the variance

F2 s; �ð Þ ¼ 1

s

Xs

i¼1

Y � � 1ð Þsþ i½ � � y� ið Þf g2; ð5Þ

for each segment n = 1, 2, …, Ns, and

F2 s; �ð Þ ¼ 1

s

Xs

i¼1

Y � � Ns � 1ð Þsþ iþ le½ � � y� ið Þf g2; ð6Þ

for each segment n = Ns + 1, Ns + 2, …, 2Ns. Here le = N −
Nss, and yn(i) is the first‐order polynomial fitting in the nth
segment.
[22] Step 4. Average over all segments to get the second‐

order fluctuation function

F sð Þ ¼ 1

2Ns

X2Ns

�¼1

F2 s; �ð Þ
� �( )1=2

: ð7Þ

By construction, F(s) is only defined for s ≥ 3.
[23] Step 5. Determine the scaling behavior of the fluc-

tuation function by analyzing the log‐log plots of F(s)
versus s, i.e., the power law

F sð Þ / sh; ð8Þ

in some range of time scale s.
[24] Kantelhardt et al. [2002] pointed out that for sta-

tionary time series, the exponent h for small time scales is
identical to the well‐known Hurst exponent H; for nonsta-
tionary signals, the relation between the exponent h for small
scales and the Hurst exponentH isH = h − 1. It is well known
that for uncorrelated series, the scaling exponent H equals
0.5; the range 0.5 < H < 1 indicates long memory or per-
sistence; and the range 0 <H < 0.5 indicates short memory or
antipersistence. Hence we can use the value of H calculated
from h to detect the nature of memory in time series.
[25] When equation (1) has a stationary solution, Anh et al.

[2008] suggested a method to estimate the fractional order
n on the basis of an estimation of the scaling exponent h,
namely, by the relationship n = h − 1

2.

2.4. Algorithm for Simulation of Fractional Stochastic
Differential Equation

[26] First, the empirical PDF of the given time series is
computed. We denote this empirical PDF as f0 (x). The
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parameters a, b, g, and d of the a‐stable distribution are
then estimated by maximum likelihood. Then we use the
DFA to estimate the parameter h and get an estimate for the
parameter n by the relationship n = h − 1/2. Setting initial
values for � and h, we then generate a sample path of the
process X (t) by the approximation algorithm given in Anh
and McVinish [2003] or Anh et al. [2008] on the basis of
these estimated values for a, b, g, d, and n in the FSDE (1).
Another empirical PDF based on this path of X (t) is then
computed.
[27] The procedure is continued for different sets of values

of the parameters (�, h), and we denote the resulting
empirical PDF in each iteration as bf (x). The estimates of the
parameters of equation (1) are those corresponding to

min
�;	

XN
i¼1

f0 xið Þ � bf xið Þ
� 	2

; ð9Þ

where N is the number of points on the PDF curve we
selected.
[28] We solve problem (9) by using the function fmin-

search in MATLAB version 7.1. This algorithm finds the
minimum of a scalar function of several variables based on
the Nelder‐Mead simplex search method [Lagarias et al.,
1998]. It should be noted that for each initial set of para-
meters, the PDF bf (x) may have to be computed a large
number of times before the minimum is reached.
[29] A solution path of equation (1) on the basis of these

estimates is generated. To compare the patterns of the
original and simulated series, we replaced values higher than
the maximum value or less than the minimum value of the
original time series by a uniformly random number between
the minimum value and the maximum value.

2.5. Empirical Mode Decomposition

[30] Lin et al. [2009] described the traditional empirical
mode decomposition (EMD) and presented a new approach
to EMD. We outline the method of Lin et al. [2009] here.
The traditional EMD for data, which is a highly adaptive
scheme serving as a complement to Fourier and wavelet
transforms, was originally proposed by Huang et al. [1998].
In EMD, a complicated data set is decomposed into a finite,
often small, number of components called intrinisc mode
functions. EMD has been used successfully in many appli-
cations in analyzing a diverse range of data sets in biological
and medical sciences, geology, astronomy, engineering, and
other fields [e.g., Janosi and Muller, 2005; Shi et al., 2008].
[31] The original EMD is obtained through a sifting

algorithm: Let {tj} be the local maxima of a signal X(t). The
cubic spline EU (t) connecting the points {(tj, X(tj))} is
referred to as the upper envelope of X. The lower envelope
EL(t) is similarly obtained from the local minima {sj} of
X (t). Then we define the operator S by

S Xð Þ ¼ X � 1

2
EU þ ELð Þ:

In the so‐called sifting algorithm, the first intrinisc mode
function the EMD is given by

I1 ¼ lim
n!1

Sn Xð Þ:

Subsequent intrinisc mode functions in the EMD are
obtained recursively by

Ik ¼ lim
n!1

Sn X � I1 � . . .� Ik�1ð Þ:

The process stops when Y = X − I1 − I2 −… − Im has at most
one local maximum or local minimum. This function Y(t)
denotes the local trend in X(t).
[32] Lin et al. [2009] proposed a new algorithm called

iterative filtering for EMD. Instead of using the envelopes
generated by spline in the sifting algorithm, in this new
algorithm a low‐pass filter is used to generate a moving
average to replace the mean of the envelopes. The essence
of the sifting algorithm remains. Let L be an operator that is
a low‐pass filter, for which S(X)(t) represents the moving
average of X. We now define

T Xð Þ ¼ X � L Xð Þ:

In this approach, the low‐pass filter L is dependent on the
data X. For a given X(t), we choose a low‐pass filter L1

accordingly and set T 1 = I − L1, where I is the identity
operator. The first intrinisc mode function in the new EMD
is given by limn→∞ T 1

n(X), and subsequently the kth intrinisc
mode function Ik is obtained first by selecting a low‐pass
filter Lk according to the data X − I1 − … − Ik−1 and
iterations Ik = limn→∞ T k

n(X − I1 −… − Ik−1), where T k = I −
Lk. Again, the process stops when Y = X − I1 − … − Im has
at most one local maximum or local minimum. Lin et al.
[2009] suggested using the filter Y = L(X) having the
form Y(n) =

Pm
j¼�m ajX(n + j) and proved the convergence of

the sifting algorithm for a class of filters. We choose the
filter given by aj =

m�j jjþ1
mþ1 , j = −m, …, m for this study,

which is simple but works well and is shown to converge
[Lin et al., 2009].

3. Data Analysis

[33] We use the above methods to model the hourly
averaged time series Bx from 22 INTERMAGNET stations.
We collect the stations into six groups for the year 2000:
southwest North America (NA1), northeast North America
(NA2), central Europe (CEUR), northern Europe (NEUR),
Australasia (AUS), and Asia (ASIA). The NA1 group in-
cludes the stations Boulder (BOU), Fresno (FRN), Tucson
(TUC), and Del Rio (DLR). The NA2 group includes the
stations Fort Churchill (FCC), Poste‐de‐la‐Baleine (PBQ),
St. John’s (STJ), and Ottawa (OTT). The CEUR group in-
cludes the stations Niemegk (NGK), Budkov (BDV), Fur-
stenfeldbruck (FUR), and Nagycenk (NCK). The NEUR
group includes the stations Abisko (ABK), Sodankyla
(SOD), Nurmijarvi (NUR), and Lovo (LOV). The AUS
group includes the stations Kakadu (KDU), Charters Towers
(CTA), and Alice Springs (ASP). The ASIA group includes
the stations Memambetsu (MMB), Beijing Ming Tombs
(BMT), and Kakioka (KAK). The geomagnetic latitudes of
the stations are listed in Table 1. The top of Figure 1 shows
the time series from the BOU station in NA1 as an example.
[34] The empirical density of this time series, as shown in

Figure 2, is consistent with a skewed a‐stable distribution.
Hence we used maximum likelihood (implemented by the
program STABLE downloaded from J. P. Nolan’s web site:
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http://www.academic2.american.edu/jpnolan) to estimate the
parameters a, b, g, and d in the a‐stable distribution and
generate the corresponding PDF to fit the empirical density
of the observed time series. We found that the a‐stable
distribution provides a reasonably good fit to the probability
density of Bx data (see Figure 2). The estimated values of a,
b, g, and d for Bx of these stations are given in Table 1.
[35] Then we performed a DFA on the Bx data. For the

given time series, we found good linear relationships of
log10 F(s) versus log10 s in the time scale range of 5 ≤ s ≤
25 hours (almost a day). The estimated values of the expo-

nent h for Bx are given in Table 1. As an example, the DFA
slope estimation for the Bx at the BOU station is given in
Figure 3. The h values of the Bx time series, which vary in the
range 1.0 < h < 1.5, indicate that the observed Bx time series
are nonstationary. From the relationship H = h − 1 between
the exponent h and the Hurst exponent H for the nonsta-
tionary case, the H values varying in the range 0 < H < 0.5
indicate that the observed Bx time series are antipersistent.
[36] Since the local trends are pronounced in the magnetic

field data, we used the traditional EMD [Huang et al., 1998]
and the new EMD developed by Lin et al. [2009] to get

Figure 1. The hourly Bx component of the magnetic field for the year 2000 at station Boulder (BOU)
and its fractional stochastic differential equation simulation.

Figure 2. The a‐stable fit for the probability density of the hourly component Bx at station Boulder
(BOU).
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these local trends. We found that both EMDs can trace out
the trends, but the new EMD works slightly better. Hence
we only show the results using the new EMD in the fol-
lowing. We used the new EMD to get the intrinisc mode
functions as displayed in Figure 4, which show that the
randomness becomes less from I1 to I4, and I4 is relatively
smooth. Hence we define the local trend of the magnetic
field data as Y = X − (I1 + I2 + I3 + I4) as in Shi et al. [2008].

We then removed the local trend from the raw data by X–Y
to get the detrended data (I1 + I2 + I3 + I4), which appear to
be stationary. As an example, we get the local trend of Bx

data at the BOU station from the bottom of Figure 4 and
show the detrended data in the top left column of Figure 5.
[37] We used the fractional FSDE (1) to simulate the

detrended data (I1 + I2 + I3 + I4). The first step is to fit the
empirical density of the detrended data using an a‐stable

Figure 3. Estimation of the h exponent via the slope of the regression log10 (F(s)) vs. log10 (s) for the Bx

time series at station Boulder (BOU) using detrended fluctuation analysis. The slope is the same as h in
Table 1.

Figure 4. The intrinisc mode functions and trend of the Bx data of station Boulder (BOU) using empirical
mode decomposition.
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distribution. Then we used the slope of DFA in the time
scale range 11 ≤ s ≤ 47, which gives good linear relation-
ships, to infer the exponent h and get an estimate of the
parameter n by the relationship n = h − 1/2. Last we fixed
the estimated values of the parameters a, b, g, d, and n in
the FSDE (1) and used the simulation algorithm given in
Anh et al. [2008] to estimate the coefficients � and h by
equation (9). In the last step, we set the initial value of (�, h)
as (1.5,1.5) for the NA2 and NEUR stations, and (1.5,2.5)
for the other stations, respectively, and set N = 130 in
equation (9) (one can set the value of N as large as possible;
usually a number larger than 100 is sufficient). We found
that the FSDE simulates well all detrended Bx time series.
As an example, we show the simulation of the detrended Bx

time series at the BOU station in the left column of Figure 5
and the corresponding empirical density of the detrended
data in its right column. The estimated values of all the
parameters a, b, g, and d, n, �, and h with the error (i.e., the

minimum value in equation (9)) for the detrended Bx at the
selected stations are listed in Table 2. Since the statistical
estimation of each FSDE is obtained via minimizing the
mean square error between the empirical PDEs of the data
and simulated paths as defined in equation (9), we evaluate
its performance on the basis of the relative standard error
(RSE) e defined as e1/e2, where

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

f xið Þ � bf xið Þ
� 	2

s
;

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

f xið Þ � faveð Þ2
s

:

Here, f (x) is the empirical PDF of the detrended data, with
average value fave, and bf (x) is the PDF of a simulated path.
The goodness of fit is indicated by the result e < 1.0 as
pointed out by Anh et al. [2002a]. The values of the RSE e

Figure 5. (Left): the fractional stochastic differential equation simulation of the detrended data Bx − Y at
station Boulder (BOU). (Right): the corresponding probability density of the detrended data.

Figure 6. The hourly Bx component for the year 2000 at station Nagycenk (NCK) and its fractional
stochastic differential equation simulation (Left), and those at station Alice Springs (ASP) (Right).
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for the detrended Bx at the selected stations are listed in
Table 2. All the values of e are smaller than 1.0 in Table 2,
and most are smaller than 0.5, indicating that the FSDE
performs well in simulating detrended data.
[38] If the FSDE simulation of the detrended data is de-

noted as X̂ detrend, a simulation of each time series Bx is then
obtained as the sum of such a simulated path X̂ detrend and the
fitted trend Y. As examples, we show the simulation of the
Bx time series at the BOU station at the bottom of Figure 1
and the simulations of Bx time series at stations NCK and
ASP in Figure 6. The simulated paths trace very well those
of the observed time series. The results indicate that the
FSDE (1) in combination with EMD provides a good
method to model the Bx component of the magnetic field. In
fact, we also tried the method on the By and Bz components,
and the simulations are also excellent for all 22 stations.
[39] A similar FSDE was considered by Anh et al. [2008]

to model the AE index data. The difference between the
FSDE in this paper and that used by Anh et al. [2008] is the
Lévy noise term. The FSDE used by Anh et al. [2008] is
driven by an inverse Gaussian marginal distribution,
whereas the FSDE in this paper is driven by an a‐stable
distribution. This difference in the selection simply reflects
the form of the empirical density in each case. Another
difference is that the method used by Anh et al. [2008] uses
FSDE alone, while we use FSDE and EMD together here.
We also tried to simulate the Bx data using the method used
by Anh et al. [2008], but the simulation results are inade-
quate. This indicates that the Bx time series are more com-
plicated than the AE index.

4. Discussion

[40] The 22 stations as listed in Table 1 together with their
geomagnetic latitudes represent the low‐latitude stations
(the group AUS), the midlatitude stations (the groups NA1,
CEUR, ASIA, and the stations STJ and OTT in NA2 and
LOV and NUR in NEUR) and those above 60°N (the sta-
tions FCC and PBQ in NA2 and ABK and SOD in NEUR).
For the purpose of clustering of these stations, the two most
significant parameters are the stability exponent a and the
degree of differentiation n (or h as reported). When the time
series is stationary, the value n in the interval (0,1/2) sig-
nifies its long‐range dependence [Anh et al., 2002b]. When n
tends to 1/2, the time series approaches nonstationarity.
On the other hand, it was shown by Jaffard [1999] that
an a‐stable process has multifractal paths; but this multi-
fractality is characterized by a linear singularity spectrum,
whereas a typical multifractal process in turbulence has a
nonlinear (concave) singularity spectrum.
[41] The estimates of a reported in Table 2 based on the

original time series clearly show two distinct clusters: those
stations above 60°N (with a = 1.27 for FCC and PBQ and a
in the interval (0.94,0.98) for ABQ and SOD) and the
remaining stations (with a in the interval (1.58, 1.71). This
grouping based on the empirical densities of the Bx time
series already supports the assertion that the statistical nature
of the magnetospheric activities is different for latitudes
above 60°N (high latitudes) and those below it (mid‐ and low
latitudes). The high‐latitude behavior is consistent with that
of the AE, which is more strongly influenced by the solar
wind, as indicated by the low values of a. On the other hand,

similar values of the exponent a indicate that both mid‐ and
low latitudes have the same statistical nature.
[42] To further examine this latter assertion, we must look

at the estimates of the scaling exponent h obtained from a
DFA. The last column of Table 1 shows that the exponent
h is similar for all the stations. This may be due to the
dominance of the local trend component in each time series.
This trend component is consistent with the storm pattern
apparent in the Dst. We have captured this local trend in an
empirical mode decomposition. Note that in this EMD
approach, there is no need to select a wavelet‐type function
for the decomposition, and a smooth trend component is
obtained after a reasonable number of steps (four intrinisc
mode functions as exemplified in Figure 4). After removing
this trend component, another DFA is performed on the
detrended data; the results are shown in Table 2. It is
interesting that the new estimates of the scaling exponent
h now show two clear clusters: one consisting of NA1,
CEUR, AUS, and ASIA with h = 1 approximately, and the
other consisting of NA2 and NEUR with h = 0.75 approx-
imately. This grouping again confirms that the mid‐ and
low‐latitude stations have the same scaling behavior,
whereas those in NA2 and NEUR are more strongly influ-
enced by the solar wind. The estimates of the a‐stability
exponent mostly remain the same for NA1, CEUR, AUS,
and ASIA, as well as FCC and PBQ in NA2 and ABK and
SOD in NEUR. Those stations STJ and OTT in NA2 and
LOV and NUR in NEUR are slightly affected by the
detrending. The results indicate that trend removal would not
alter in any significant way the clustering obtained in
phase 1 above.
[43] Another purpose of this paper is to construct a sto-

chastic model for the detrended (stationary) component of
the Bx time series. The model suggested is the FSDE (1).
The shape of the empirical density and the estimates of the
parameters in Table 2 suggest the use of an a‐stable noise to
drive the equation. The estimates h = 1 then yield the
Stokes‐Boussinesq‐Basset equation (3) for the mid‐ and
low‐latitude stations. As noted by Anh et al. [2008] in
describing the motion of a spherical particle of mass m and
radius a in a fluid with kinematic viscosity n, Stokes [1850],
Boussinesq [1885], and Basset [1888] proposed a retarded
viscous force given by

F tð Þ ¼ � 1

�

affiffiffiffiffiffi
��

p
Z t

0

1ffiffiffiffiffiffiffiffiffiffi
t � �

p d


d�
d�;

where x (t) is the velocity of the particle and m denotes the
mobility coefficient. On the basis of Newton’s second law
that force = mass × acceleration, the equation of motion of
the particle is described by

m
d


dt
¼ � 1

�

affiffiffiffiffiffi
��

p
Z t

0

1ffiffiffiffiffiffiffiffiffiffi
t � �

p d


d�
d� þ dL

dt
; ð10Þ

where dL
dt denotes a random force arising from rapid thermal

fluctuations. Using the notation of fractional derivative (2)
with n = 1, equation (10) is identical to equation (3) with
suitably defined � and h. The goodness of fit of the prob-
ability densities and realistic simulations from the model
indicate that the mid‐ and low latitudes have the type of
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dynamics and scaling as described by the Stokes‐Boussi-
nesq‐Basset equation (3).

5. Conclusions

[44] The numerical results from DFA show that the Bx

time series are nonstationary and antipersistent. The a‐sta-
ble density fits their empirical densities very well. The time
series have pronounced local trends. EMD is found to be a
suitable technique to fit the local trends of Bx data. These
local trends must be removed before an FSDE can be
developed. It is also found that FSDE in combination with
EMD simulate very well the Bx time series.
[45] Another finding of this paper is the presence of two

distinct scaling behaviors, one in the mid‐ and low latitudes
similar to that of the Dst index and the other above latitude
60°N consistent with that of the AE index. These scaling
behaviors, as depicted by the a‐stability exponent and the
scaling exponent, are characteristic of the two clusters of the
INTERMAGNET. They map into the inner magnetosphere
and the outer magnetosphere, respectively.
[46] The results provide strong evidence that the statistical

nature of magnetospheric activities, driven by the solar
wind, is different from high latitudes to mid‐ and low lati-
tudes. The dynamical properties of the magnetosphere are
less complex at mid‐ and low latitudes and can thus be
described by fewer degrees of freedom than the high‐
latitude magnetosphere.
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