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Laboratory far-infrared spectroscopy of terrestrial sulphides to support
analysis of cosmic dust spectra

T. Brusentsova,1 R. E. Peale,1� D. Maukonen,1 P. Figueiredo,1 G. E. Harlow,2

D. S. Ebel,2 A. Nissinboim,2 K. Sherman2 and C. M. Lisse3

1Department of Physics, University of Central Florida, Orlando, FL 32816, USA
2American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
3The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA

Accepted 2011 November 18. Received 2011 November 17; in original form 2010 December 22

ABSTRACT
As an aid in interpreting data from space far-infrared (far-IR) missions, such as the Her-
schel Space Observatory with its Photodetector Array Camera and Spectrometer, this paper
presents spectroscopic studies of selected naturally occurring terrestrial sulphide minerals in
the wavelength range 15–250 μm. The data can also be used to support the return from other,
both past and planned, IR space missions, such as the Infrared Space Observatory, Spitzer,
SOFIA, SPiCA and Millimetron. In this study, we present far-IR spectra for 11 natural sulphide
minerals in the form of dispersed powders of micron particle dimensions. Samples of various
sulphides from the American Museum of Natural History mineral collection were selected
based on criteria of diversity and potential astrophysical relevancy, based on their identifica-
tion in Stardust, in stratospheric interplanetary dust particle samples, or in meteorites. Mineral
species include digenite, galena, alabandite, sphalerite, wurtzite, covellite, pyrrhotite, pyrite,
marcasite, chalcopyrite and stibnite. Most of the sulphides examined possess prominent and
characteristic features in the far-IR range. Spectra obtained are compared to those available
from previous studies. Far-IR peak frequencies and mass absorption coefficient values are
tabulated. Effects of particle size distribution, low temperature, and provenance on IR spectra
are demonstrated for selected samples.

Key words: line: identification – methods: laboratory – techniques: spectroscopic – circum-
stellar matter – infrared: general – infrared: stars.

1 IN T RO D U C T I O N

Mineralogy of cosmic dust, such as the circumstellar dust of asymp-
totic giant branch stars, that of young stellar objects (YSOs), plan-
etary nebulae, protoplanetary and debris discs, and comets, may
provide information on star and planet formation, petrology of the
planetesimals or forming exoplanets, and other important processes.
Infrared (IR) emission spectra of such dust collected by space IR
missions are useful for the identification of its mineral composition
(e.g. Kemper et al. 2002a,b; Chiavassa et al. 2005; Chen et al. 2006;
Posch et al. 2006; Mutschke et al. 2008; Henning 2010).

The far-IR spectral region (longer than ∼15 μm wavelength) is
especially diagnostic of mineral composition, crystal structure, and
temperature, and thus, in addition to the mid-IR (∼3 to 15 μm), is
valuable in the study of cosmic dust mineralogy. Mineral spectra in
the far-IR range frequently are rich with prominent and characteris-

�E-mail: Robert.Peale@ucf.edu

tic features, which are attributed to vibrations of the crystal unit cell
as a whole. These strongly characteristic bands may differ signifi-
cantly for polymorphs of the same chemical compound (Nyquist &
Kagel 1971; Farmer 1974). Mineral identifications that have been
based until recently on one or a few mid-IR features can be vali-
dated (or refuted) by additional far-IR absorption bands (Molster &
Waters 2003), as measured in this project.

Far-IR spectroscopy of cosmic dust was started with the Kuiper
Airborne Observatory (KAO) in the 1970s (e.g. Harvey, Thronson
& Gatley 1979; Forrest, Houck & McCarthy 1981; Whitcomb et al.
1981; Hanner 1985; Buss et al. 1993; Zhang et al. 1994; Glaccum
1995). Since 1995, far-IR space observations were continued and
extended by the Infrared Space Observatory (ISO) (e.g. Cohen et al.
1999; Crovisier et al. 2000; Chiavassa et al. 2005), Infrared Astro-
nomical Satellite (IRAS) (e.g. Neugebauer et al. 1984; Nesvorny
et al. 2010), Spitzer Space Telescope (e.g. Werner et al. 2004;
Carpenter et al. 2009), and AKARI (also known as ASTRO-F, or
IRIS) (e.g. Murakami et al. 2007). Thus, far-IR spectroscopy has
become more and more important for remote sensing of cosmic dust
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2570 T. Brusentsova et al.

mineralogy (e.g. Henning 2010). Similar efforts are currently un-
derway, including KAO’s successor SOFIA (Gehrz et al. 2009), and
the Herschel Space Observatory (Rowan-Robinson 2009; Pilbratt
et al. 2010). New far-IR missions are being planned for the next
decade, including SPiCA (Kerschbaum, Posch & Nowotny 2009;
Waters 2009) and Millimetron (Wild et al. 2009). Thus, building
on the data base of laboratory far-IR spectra of terrestrial mineral
analogues, representing a wide range of mineral groups, especially
at conditions relevant to those in space (e.g. at cryogenic tempera-
tures), is desirable and timely (Henning 2010).

The mineralogy of various cosmic dust populations is usually
determined by comparing their IR emission spectra with laboratory
mass absorption coefficient spectra of terrestrial mineral analogues.
Interpretive errors may occur due to differences in the physical con-
ditions of the cosmic and laboratory mineral dust grains. One of
the potential artefact sources is that the wavelength and strength
of resonances may be sometimes significantly influenced by the
shape and size of the particles (Mutschke, Min & Tamanai 2009).
Another important factor is the ambient temperature (Posch et al.
2007; Mutschke et al. 2008). While cosmic dust populations exist
over a wide range of temperatures, from very cold to room temper-
ature, most published laboratory spectra have been collected only at
room temperature. Our investigations show significant temperature
dependence for the absorption features, in agreement with the few
previous mineral low-temperature far-IR spectral studies (Bowey
et al. 2001, 2002; Chihara, Koike & Tsuchiyama 2001; Molster
et al. 2002; Koike et al. 2006; Posch et al. 2007; Mutschke et al.
2008).

Variations in chemical composition even within the same mineral,
and variations in crystallinity, are additional sources of interpretive
ambiguity. Such variations are found within the same terrestrial
mineral species of different provenance, due to differences in geo-
logic histories, and similar variations might be expected for different
dust populations in space. We demonstrate such spectral variations
for a few sulphide minerals in this paper.

1.1 Astrophysical relevance of sulphide minerals

After H, He, C, N, O and Ne, the most abundant elements in the
Galaxy and the Sun are those which the majority of astrophysical
rocky materials are composed of, namely Si, Mg, Fe and S. Sulphur
and sulphides are thus extremely common, found wherever solar
abundance material is cooler than ∼800 K, the temperature at which
gaseous sulphur condenses out of a vacuum. Keller et al. (2002)
have discussed the condensation of solid metal sulphide species as
a possible explanation of the deficit of atomic sulphur in dense cold
molecular clouds surrounding YSOs, implying that iron sulphide
might in fact be an important component of the circumstellar dust.
Iron sulphides are also a predicted dust component in carbon-rich
evolved stars. They are diagnostic of the local nebulae and cometary
objects (Keller et al. 2002, 2006).

Pyrite, pyrrhotite, pentlandite and troilite are of potentially great
astrophysical relevance. Two of these – pyrrhotite and pentlandite,
in roughly 3:1 ratio – have been reported extensively in the Stardust
sample return. Troilite has been reported in a few samples tested as
well. Precise bulk abundances of species are inexact due to heating
and alteration effects on the metal sulphides by the hot Stardust
capture.

Many sulphide species, such as troilite (FeS), niningerite
[(Mg,Fe)S], pentlandite [(Fe,Ni)9S8], and some hydrated sulphides,
for example, from the tochilinite {Fe2+

5−6(Mg, Fe2+)5[(OH)10|S6]}
group, are found in meteorites (Rubin 1997). Iron sulphides, such

as pyrrhotite [(Fe1−xS)] and troilite, were found to be the two most
common sulphides in anhydrous (cometary) interplanetary dust par-
ticles (IDPs), while hydrated IDPs contain more of the iron–nickel
sulphides, such as pentlandite (Forrest et al. 1981; Tomeoka &
Buseck 1984; Goebel & Moseley 1985; Rietmeijer 1989, 1993;
Keller, Thomas & McKay 1993; Bradley 1994; Zolensky & Thomas
1995; Hony et al. 2002; Keller et al. 2002). Westphal et al. (2009)
report abundant sulphides and a minimum S/Fe atomic ratio of 0.31
in cometary dust samples. A strong and broad emission feature in
the IR spectra from C-rich evolved stars and planetary nebulae ex-
tending from 25 to 45 μm has been attributed to MgS, which has a
strong absorption feature around 32–36 μm with shoulders at ∼22,
25 and 38 μm (Nuth et al. 1985; Kimura et al. 2005a).

1.2 Previous far-IR spectroscopic studies on sulphides

Relatively few far-IR spectral data exist in the literature on suitably
characterized naturally occurring sulphide minerals to be useful
for astronomical data analysis. However, some thorough studies on
the IR properties of metal sulphides were performed a couple of
decades ago, and these are summarized below to put our work in
context and to present a unified body of work.

When the sulphides have low intrinsic conductivity, that is, have a
large band gap and few free mobile electrons, the lattice vibrational
modes dominate the absorption spectrum. More problematic cases
occur with some sulphides, whose metallic conductivity (Nozaki,
Shibata & Ohhashi 1991; Liang & Whangbo 1993) leads to broad IR
absorption and a featureless spectrum, as, for example, in the case of
pyrrhotite [Fe(1−x)S] and covellite (CuS) (Soong & Farmer 1978).
Far-IR spectra from 50 to 200 μm wavelength were discussed by
Karr & Kovach (1969) for eight sulphides [including CaS, SrS, BaS,
realgar (As4S4), orpiment (As2S3), stibnite (Sb2S3) and bismuthi-
nite (Bi2S3)]. However, only for cinnabar (HgS) was the measured
spectrum actually presented and none of these semimetal sulphides
is likely to be astrophysically relevant. In Liese (1974), the peak
frequencies and relative intensities are provided for 54 natural sul-
phides and sulphosalts, obtained using the KBr disc technique in the
23–40 μm wavelength range. Transmittance spectra in the 2.6–222
μm range for several sulphides (although in the form of chemical
reagents) are given in Nyquist & Kagel (1971). In Gadsden (1975),
IR peak frequencies and relative intensities are given for several
of the sulphides (pyrite, marcasite, sphalerite/blende, galena) (see
Table 1). A very informative study (Soong & Farmer 1978) presents
spectra in the region 24–110 μm for 25 natural sulphides, including
cinnabar, galena, pyrrhotite, alabandite, sphalerite, wurtzite, realgar,
orpiment, stibnite, bismuthinite, arsenopyrite, tetrahedrite, pyrar-
gyrite, proustite, enargite, bournonite, boulangerite, jamesonite and
plagionite. The sulphide samples were finely ground and dispersed
in polyethylene (PE) discs. Laboratory spectra and mass absorp-
tion coefficients of the synthetic chemical reagents MgS, CaS, FeS,
SiS2 and FeS2, over the range 15–125 μm, are presented in Nuth
et al. (1985). Lennie & Vaughan (1992) presented IR transmittance
spectra in the range 16.7–33.3 μm for solid-state transformation of
marcasite (FeS2) into pyrite (FeS2). Begemann et al. (1994) pre-
sented optical data for synthetic Mg–Fe sulphides with different
Mg/Fe ratios in the 10–500 μm wavelength range, allowing a ten-
tative attribution of the 30 μm emission band from circumstellar
protoplanetary and planetary nebulae of carbon-rich stars to Mg-S
vibrations in sulphides. Kimura et al. (2005a) discussed the consid-
erable effect of grain shape and surface effects on the IR spectra of
MgS. A possible contribution of Fe sulphides such as troilite (FeS),
pyrrhotite (Fe1−xS), pentlandite [(Fe,Ni)9S8] and pyrite (FeS2) to
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Table 1. Samples, their origin and AMNH mineral collection catalogue number, composition, crystal system, far-IR absorption peak position in µm, peak
mass absorption coefficient κp (with reference to continuum baseline) and references to previously published far-IR sulphide studies (peak positions in µm
and, where available, κp, in units of cm2 mg−1). The estimated uncertainty in peak positions across the spectrum for well-defined bands is <1 cm−1, which is
1 µm at 100 µm wavelength and 0.5 µm at 50µm wavelength, and so forth.

Mineral Sample origin, Actual sample Crystal λ Peak κp value Previously published
name AMNH # composition system (µm) (cm2 mg−1) far-IR data (µm)

A2−xX
Digenite Silver Bow, Cu8.84Fe0.16S4.95 Trigonal Featureless – Featurelessd

MT, USA,
26782

AX
Galena Rhodope PbS Isometric – – Featurelessd,e

Mountains, 59.2bM 0.73 60bSa

Bulgaria, – – 27Wa

106792 – – 25Wa

Alabandite Allakhnyun, MnS Isometric – – Featurelessd

Russia, 47.6bS 2.2 44bSa

103312 33.7M(sh) 0.83 33sha

Sphalerite (1) TN, (1) Zn0.92Fe0.06S Isometric 32.3–32.9bS 1.8–3.0 32.7–35.7bSa,d,e

USA, (2) Zn0.8Fe0.2S 30.2sh 1.3–1.5 30sha

109954 24We

(2) Trepca, 21.2We

Yugoslavia, 18.8We

25135
Wurtzite Pribram, Zn0.98Fe0.02S Hexagonal 34.5bS 3.1 33bSa

Czechoslovakia, 30.1M(sh) 1.2 30sha

26973
Covellite Bor, Serbia, CuS Hexagonal Featureless – Featurelessd

27339
Pyrrhotite Chihuhua, Fe0.9S Monoclinic Featureless – Featureless a,b,d

Mexico, 23bSc

52603
AX2

Pyrite (1) St. (1) FeS2 Isometric 34.1M 0.52–1.3 34–38M (0.2)a,b,c,d

Agnes, (2) FeS2 28.7S 1.4–2.3 28–29M (0.2)a,b,c,d

England, 25.1sh 0.93 24.3she

1717 24.2vS 2.6–5.1 24S (0.86)a,b,c,d,e

(2) CO,
USA,
37240

Marcasite IL, USA, FeS2 Orthorhombic 40vW – 40Wa

38718 34M 0.5 34Wa

30.5S 1.3 30Ma,d

28S 1.2 28Ma,d (sh)e

25vS 2.7 25Sa,d

24vS 2.7 23.7–24Sa,d,e

23.1sh 1.5 23Sa

– – 20.8she

Chalcopyrite Ontario, Cu1.02Fe1.01S1.97 Tetragonal 37.7W 0.22 38Ma

Canada, 31S 1.2 32Ma,d

29392 27.5S 2.1 28Sa,d

26.6S 1.7 27sha,d

Stibnite type
Stibnite Romania, Sb2S3 Orthorhombic 208.3W(sh) 0.1 –

110042 172.4M 0.28 –
147vW 0.03 –
130W 0.12 –
91M 0.37 100Ma

71S 1.1 70Sa

57.5S 1.05 59Sa

40.6S 1.4 40–41bSa,d

35.2S 0.97 33–35vS(sh)a,d

29.5S 0.59 30Sa,d

Notes. S = strong; M = medium; W = weak; b = broad; sh = shoulder; v = very.
aSoong & Farmer (1978).
bNuth et al. (1985).
cHony et al. (2002).
d Liese (1974).
eGadsden (1975).
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2572 T. Brusentsova et al.

an ∼23 μm feature of the carbon-rich evolved stars and planetary
nebulae was discussed in Hony et al. (2002) and Keller et al. (2000,
2002). IR studies of sulphide minerals, but with no actual spectra
presented, have been reviewed in Wincott & Vaughan (2006). In
Pring et al. (2008), a systematic study of the sphalerite (Zn,Fe)S
spectra for a range of Fe substitution is presented in the range
16.7–66.7 μm.

1.3 Objectives and scope

Objectives were to select and prepare powdered submicrometre-size
sulphide mineral samples that represent the most abundant groups,
to verify composition, homogeneity and structure, to measure the
grain-size distribution, to prepare samples for far-IR spectroscopy,
to collect their transmittance spectra, and to calculate and interpret
mass absorption coefficients in the wavelength range 15–250 μm.
The spectral range of Herschel’s Photodetector Array Camera and
Spectrometer (PACS) instrument falls within this range. A novel
feature compared to previous work is that Stokes settling is used to
achieve a more uniform and narrow size distribution centred around
∼1 μm. This results in more accurate mass absorption coefficients
than would be obtained if the samples included optically-thick par-
ticles. In addition, we present the effects of low temperature and
provenance (on which the chemical composition and density of
structural defects may depend) on the sulphide far-IR spectra.

Sulphide mineral species sampled in this work include digenite,
galena, alabandite, sphalerite, wurtzite, covellite, pyrrhotite, pyrite,
marcasite, chalcopyrite and stibnite. Pentlandite and troilite, two
of the most astronomically relevant sulphides, were not available
for sampling. Consequently, their spectra could not be included in
this paper. Due to the necessity of publishing the other data in a
timely fashion with respect to the ongoing Herschel mission, we
reserve the spectroscopy of pendlandite, troilite and several other
astrophysically-important sulphide minerals for a future supple-
mental publication.

The mineral selection was based on potential relevance to as-
tronomical observations. Included are minerals identified in me-
teorites, in the Stardust return, and (tentatively) in the planetary
nebulae, supernova remnants or circumstellar discs. In some cases,
minerals containing relatively rare elements (e.g. Sb, Zn, Pb, Mn)
were selected as well, because these have very distinct far-IR bands,
whose strength potentially might compensate (i.e. in astronomical
spectra) for their relatively low cosmic abundance.

All spectra are presented with a linear wavenumber scale, because
linewidths then tend to be similar throughout the spectral range. On a
linear wavelength scale, linewidths increase rapidly with increasing
wavelength, causing weaker features at the longest wavelengths to
become invisible in the plot. Wavelength ticks are provided on the
top axis of each plot, though this scale is non-linear. All data files
will be made available online via the planetary data system.

2 EX P E R I M E N TA L M E T H O D S

2.1 Mineral selection and initial characterization

Mineral grains and fragments were selected from the American Mu-
seum of Natural History (AMNH) mineral collection and crushed
to separate intergrowths as appropriate. Clean grains were hand se-
lected under a stereo microscope and crystallographically verified
via X-ray multigrain microdiffraction (Rigaku DMAX/Rapid) and
powder diffraction (Philips 1710 Bragg-Brentano) diffractometers.
Electron microprobe analysis (Cameca SX100) of polished grains

verified chemical composition, stoichiometry, and micrometre-scale
homogeneity.

2.2 IR sample preparation

Mineral samples were ground to powders of average particle size
<10 μm to minimize scattering (Coleman 1993), whose signature
is a decreasing transmittance baseline with decreasing wavelength.
A McCrone Micronizing Mill was used to reduce particles up to
0.5 mm dimension to micron sizes using cylindrical grinding ele-
ments that produce both line contact blows and planar shearing, in
contrast to the random contact blows of a conventional ball mill.
Slurry grinding in cyclohexane or mineral spirits, with either corun-
dum or agate grinding elements, was used for mineral samples to
minimize defect introduction into the crystalline particulates (Bish
& Reynolds 1989). Oxidation of powders is a particular difficulty as
the surface area of metal sulphide grains is increased during com-
minution. Mineral spirits were found optimal for avoiding potential
oxidation of Fe sulphides.

After grinding, the small-size fraction was separated by Stokes
settling. Here the ground mineral powders were suspended in ace-
tone, and the fraction that remained suspended after a certain time
τ was collected and dried at room temperature overnight, as de-
scribed in Mutschke et al. (2008). The sedimentation time τ , as-
suming spherical particles of ∼5 μm radius, was obtained from
Stokes’ formula τ = 9μh/2gR2(ρp − ρf ), where g is the gravi-
tational acceleration, ρp is the mass density of the mineral, ρf is
the mass density of acetone, R is the spherical particle radius, μ

the fluid’s dynamic viscosity, and h is the settling height. Particle
size distribution histograms were determined from scanning elec-
tron microscope (SEM) images (Fig. 1) to confirm the expected
size distributions resulting from Stokes settling. Here, the average
dimension of 100–400 particles with clearly defined borders was
determined from two to four SEM images.

A fine distribution of mineral grains in PE was achieved by thor-
oughly mixing the desired mineral mass with incremental additions
of ∼700 mg of PE powder (Mitsui Chem MIPELON XM-220 PE
microparticles, 30 μm average size). To avoid saturation of the
absorption features in transmittance, the total effective thickness of
mineral in each PE sample must be no more than several μm (which
necessitates the fine particle size distribution). This condition is sat-
isfied by mineral content of ∼4–6 mg per pellet (∼0.6–0.9 wt per
cent) (Brügel 1962; Coleman 1993). The mixture was transferred
to a home-made teflon pelletizer, where plunger rotation levels the

Figure 1. Examples of sulphide powder size distributions, as ground, and
the fine fraction powder collected after Stokes precipitation.
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Far-IR spectroscopy of terrestrial sulphides 2573

sample. Hot pressing at controlled temperature (<130◦C) for ∼30
min transforms the powder to a uniform translucent pellet of 2.9 cm
diameter and ∼1 mm thickness (Brusentsova et al. 2010, 2011).

2.3 Far-IR spectroscopy

A Bomem DA8 vacuum-bench Fourier spectrometer was used to
collect transmittance spectra. Resources used were a globar source,
12- and 3-μm Mylar pellicle beamsplitters, and a 4 K Si bolome-
ter. The useable spectral range was 40–650 cm−1 (250–15.4 μm
wavelength). A spectral resolution of 4 cm−1 was found adequate
to resolve all far-IR mineral features, except in pyrite where 2 cm−1

resolution was required to resolve some of the bands. Two pellets
were measured, one with and one without mineral. The transmit-
tance T was calculated as the ratio of the transmitted power spectra
for the two. The wavenumber accuracy of the spectrometer is spec-
ified as ±0.001 cm−1. The uncertainty in determining the centre
frequencies for well-defined bands throughout the spectrum was
less than 1 cm−1. This corresponds to 1 μm at 100 μm wavelength
and 0.5 μm at 50 μm wavelength, and so forth. The uncertainty in
the baseline is ∼5 per cent, which appears sometimes as a mismatch
of the baselines where the spectral range of different beamsplitters
overlaps.

Low-temperature measurements were obtained by cooling the
pellets down to ∼16 K in a closed cycle refrigerator. The tailstock
of the cryostat cold head was inserted into the spectrometer vac-
uum sample compartment via an o-ring muff-coupler. The windows
on the tailstock were PE. A 1-k� carbon resistor embedded with
Apiezon N-grease in the copper cold finger was used to monitor the
temperature. The pellet under test was attached to the cold finger
with rubber cement.

The absorbance αd = − ln(T ) calculated from the measured
transmittance T is proportional to the effective mineral thicknesses
d , which is the thickness of the imaginary film that would be formed
if all the suspended mineral powder were to condense into a uni-
form continuous layer with the same cross-sectional area S as the
pellet. The absorption coefficient is α in units of cm−1. Values for
d of just a few μm are necessary to avoid saturating the measured
transmittance T . The effective thickness d is m/(Sρ), where m is
the mass of mineral in the pellet and ρ is the mineral density. Ac-
curate determination of absorption coefficients from the measured
T requires uniform mineral thickness across the beam diameter,
which means that the particle sizes must be less than d . The mass
absorption coefficient κ = α/ρ in cm2 g−1 is the absorption cross-
section per ‘molecule’ divided by the mass per ‘molecule’. More
directly κ = (S/m) ln (1/T ).

To determine the quantitative accuracy and repeatability of the
mass absorption coefficients obtained by our technique, pellets with
different loadings of spinel ferrite and of phyllosilicate montmo-
rillonite were measured with absorbance values up to 4.5. The
absorbance values varied monotonically with concentration, with
scatter amounting to less than 10 per cent. The deviation from lin-
ear dependence on concentration at absorbance values of up to 3
(transmittance = 5 per cent) was less than 20 per cent, with a sys-
tematic tendency to overestimate mass absorption by this amount
at the highest absorbance values. In other words, for typical pellet
loading of 4 mg, determined mass absorption coefficient values as
high as ∼5 cm2 mg−1 are possibly overestimated by up to 20 per
cent. The bolometer itself is considered to have a linear response,
so that any systematic non-linear concentration effect is attributable
to some property of the sample itself. However, none of the spectra
presented here approaches such high values of mass absorption co-

efficient. Consequently, we assert that the uncertainty for κ values
presented in this paper is less than 10 per cent.

The thermal emission intensity dI in the frequency range dω per
unit mass of dust is found according to dI = 4π cκ(ω) e0(ω) dω,
where e0(ω) is the Planck blackbody function. This formula is an
approximation that holds for an isothermal dust cloud in the limit
that the absorptance A = 1 − T (neglecting reflectance) never ap-
proaches unity at any wavelength, which holds for particle sizes
less than a few μm. Optically-thick dust populations, which have
nearly unity absorptance at all wavelengths, likewise have spec-
trally uniform emissivity if they are isothermal. In such a case, the
characteristic mineral features contained in κ(ω) would be absent
from the emission spectrum. If temperature gradients occur, char-
acteristic features can appear in either absorption or emission.

3 R ESULTS

3.1 IR features

Minerals sampled are summarized in Table 1. Of all the sulphides
studied, only stibnite and galena have definite and significant fea-
tures within the PACS range (57–210 μm), although chalcopyrite
tentatively has a weak band at 112 μm wavelength. The positions
and intensity of the peaks for both agree well with those in Soong
& Farmer (1978). The characteristic features of the other sulphides
fall at shorter wavelengths. Overall, the comparison of the currently
presented spectra with available published data shows good agree-
ment, with some minor discrepancies.

Fig. 2 presents mass absorption coefficient spectra for the AX2-
type sulphides: pyrite (FeS2), marcasite (FeS2) and chalcopyrite
(CuFeS2). The two Fe-sulphide polymorphs have similar spectra,
except that marcasite has additional lines because its orthorhombic

Figure 2. Mass absorption coefficient spectra at room temperature
for AX2-type sulphides [pyrite (FeS2), marcasite (FeS2), chalcopyrite
(Cu1.02Fe1.01S1.97)]. The uncertainty in absorption values is less than 10
per cent.
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Figure 3. Mass absorption coefficient spectra for AX-type sulphides
[wurtzite (Zn0.98Fe0.02S), sphalerite (Zn0.8Fe0.2S), alabandite (MnS) and
galena (PbS)], at room and low temperatures. The labelled peaks in the low-
temperature galena spectrum are artefacts. The uncertainty in absorption
values is less than 10 per cent. The peak labels are centre wavelengths in
µm.

symmetry is lower than that of cubic pyrite. A particular difference
of note is the splitting in marcasite of the strong band in pyrite near
25 μm. When half the Fe ions are replaced with the heavier Cu to
form tetragonal chalcopyrite, the spectrum redshifts by about 3.1
μm. The lines, especially in the iron sulphides, have a characteristic
asymmetry, being sharper on their shorter wavelength sides.

A weak feature at 73 cm−1 for pyrite and marcasite should be
considered with caution. PE has an absorption here, so that small
differences in the thicknesses of the sample and reference pellets
may result in an artefact at these wavenumbers. A weak band at
89.4 cm−1 for chalcopyrite is sufficiently removed that it may be
considered as real, though is so weak that we do not include it in
Table 1.

Liese (1974) found that for chalcopyrite an increase in Cu content
redshifts the 27-μm band but blueshifts the 27.8-μm band. Soong
& Farmer (1978) reported for chalcopyrite a medium peak at 37.9
μm, a strong peak at 31 μm and a strong doublet at 27.7 and 26.7
μm, while for pyrite two medium peaks at 34 and 28.6 μm, and a
strong peak with a shoulder at 24–25 μm were found. Additionally,
for marcasite were found weak peaks at 40.5 and 33.8 μm, medium
peaks at 30.4 and 28.1 μm, and a strong triplet with peaks at 24.8,
23.6 and 22.9 μm. Nuth et al. (1985) reported two sharp peaks at
38 and 29 μm in pyrite and a stronger and broader feature centred
at 24 μm. Hony et al. (2002) reported for pyrite a dominant line at
24 μm and two weaker but sharp peaks at 28.5 and 34 μm. All the
above-mentioned peak positions and relative intensities from the
reference studies corroborate well with our data (see Table 1).

Fig. 3 presents spectra for AX-type sulphides [wurtzite (ZnS),
sphalerite [(Zn,Fe)S], alabandite (MnS) and galena (PbS)]. The
single bands in wurtzite and sphalerite, which are both predomi-
nantly Zn sulphides, occur at similar positions. Overall, a remark-
able redshift of the characteristic absorption band in the sequence

Figure 4. Mass absorption coefficient spectra for stibnite (Sb2S3), at room
and low temperatures. The uncertainty in absorption values is less than 10
per cent. The peak labels are centre wavelengths in µm.

of cubic sphalerite → alabandite → galena (32.3 → 47.6 → 59.2
μm peaks, respectively) is correlated with an increase in the atomic
radii of the metal cation in this series. For six-fold coordinated,
divalent ions in oxide crystals, we have for the sequence of radii
(in Å) Zn(0.75) < Mn(0.67, 0.83) < Pb(1.18) (see table 2.1 of
Kaminskii 1990).

Liese (1974) reported no absorption features for galena, while for
sphalerite an increase in Zn content was correlated with a redshift.
In contrast, Soong & Farmer (1978) found that galena exhibits a
strong broad absorption band centred at 60.2 μm and two very
weak features at 26.8 and 25.1 μm, while wurtzite, sphalerite and
alabandite spectra show remarkable redshift of the main absorption
band for all three cases (see Table 1 for details) that correlates with
increasing average cation radius in the series Zn → Fe → Mn.

Fig. 4 presents a spectrum of the X2S3 sulphide stibnite (Sb2S3).
This mineral has a rich spectrum, including prominent peaks in the
range of PACS. The Karr & Kovach (1969) absorption frequencies
and relative intensities for stibnite (42S, 37shS, 30M) corroborate
well with our data. Liese (1974) found for stibnite that an increase
in Sb content causes a blueshift to shorter wavelengths in at least
one of the major absorption bands (from 30.1 to 29.8 μm). Soong
& Farmer’s (1978) stibnite spectrum shows a broad structured band
with features at 100, 69.9, 58.8, 41, 35.3 and 29.8 μm. Several
absorption features beyond 100 μm, which were not previously
reported (to the best of our knowledge), are resolved in our spectrum
(Table 1 and Fig. 4).

It was realized by Soong & Farmer (1978) and Liese (1974)
that the conductivity of some of the metallic sulphides, for ex-
ample, troilite, covellite, pyrrhotite (Nozaki et al. 1991; Liang &
Whangbo 1993), leads to broad absorption in the IR and nearly
featureless transmittance spectra, with absorption increasing mono-
tonically towards shorter wavelengths. Nuth et al. (1985) reported
that pyrrhotite (Fe1−xS) possesses such a smoothly sloping spec-
trum for wavelengths below 125 μm. Fig. 5 presents examples of
such relatively featureless spectra for covellite (CuS), pyrrhotite
(Fe0.9S) and digenite (Cu8.84Fe0.16S4.95).
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Figure 5. Examples of nearly featureless absorption spectra for sulphides
with metallic conductivity [covellite (CuS), pyrrhotite (Fe0.9S), digenite
(Cu8.84Fe0.16S4.95)].

3.2 Factors influencing IR-band position and intensity

3.2.1 Particle size effect

The accuracy of the mass absorption coefficient spectra is substan-
tially affected by the particle size distribution within the sample.
Fig. 1 presents the particle size distributions for the mineral spha-
lerite before and after Stokes precipitation, which was designed to
produce a distribution with particle sizes less than 5 μm. In the orig-
inal size distribution, all the particles were already smaller than this,
with a peak in the distribution at 1 μm. However, for the 4.5-μm
particles near the tail of the distribution, using a peak mass ab-
sorption coefficient of 2 cm2 mg−1 from Fig. 3 and the ∼4 g cm−3

density of sphalerite, the transmittance would be less than 3 per cent.
Thus, a pellet made with the original size distribution would have a
rather non-uniform transmittance over the pellet cross-section, with
the larger components acting like ‘Venetian blinds’. Then the actual
mass of mineral in the pellet that is interrogated in the transmittance
measurement would be less than the total mass m that was added to
the pellet and used in calculating the mass absorption coefficient,
resulting in an underestimate of the latter.

After Stokes precipitation, the bulk of the sphalerite particles are
below 1.5 μm with a peak in the distribution less than 1 μm. Fig. 6
shows how Stokes settling leads to higher (and more accurate) mass
absorption coefficient values. The spectra for pyrite before and after
Stokes precipitation are presented. After Stokes precipitation, we
notice the intensities of the absorption lines all increase by fac-
tors of about 3. Additionally, the lines have become sharper. The
ringing in the wings of two of the lines in the Stokes settled sam-
ple is an artefact of boxcar apodization for lines that have become
narrower than the 4 cm−1 instrumental resolution chosen for these
measurements. Such a substantial difference between the spectra
taken for the powdered pyrite sample before and after Stokes set-
tling demonstrates the importance of such pretreatment to eliminate
the optically-thick size fraction and to allow an effective mineral
thickness that is uniform across the pellet.

Another possible size- and shape-related artefact is a shifting of
the peak frequencies. The influence of grain shape and surface on
IR spectral features of MgS has been discussed in Kimura et al.

Figure 6. Example of the particle size distribution effect on the pyrite spec-
trum. IR samples were prepared with the same pyrite (#37240) powder ‘as
ground’ and with the fine fraction powder collected after Stokes precipita-
tion. The uncertainty in absorption values is less than 10 per cent.

(2005a). The main far-IR absorption peak for cubic MgS grains at
∼32 μm was reported to shift to ∼40 μm for spherical or network-
like shaped grains. We do not observe significant changes in peak
positions after our Stokes settling procedure, which rules out any
significant size effect of this nature. As we have no control over
particle shape distributions, shape effects remain a question.

3.2.2 Provenance effect

Liese (1974) reported significant dependence of peak intensities and
frequencies on mineral provenance. These effects can originate from
variations in chemical composition and/or crystallographic defect
density, due to environmental effects during the formation of the
minerals. The dependence of the shape of the absorption features on
variations in chemical composition has been systematically studied
in Pring et al. (2008) for sphalerite [(Zn,Fe)S], where the main
absorption line splits as the FeS content in ZnS increases from 0 up
to 24 mol per cent. The initial single peak at 31.2 μm for 0 per cent
FeS transforms into a doublet with maxima at 31.7 and 33.3 μm,
where 31.7 μm is due to the main ZnS structure, and the 33.3-μm
peak is attributed to FeS impurity.

Fig. 7 demonstrates the variability of the far-IR absorption spectra
for mineral samples of different provenance for sphalerite (see also
Table 1). The two sphalerites demonstrate an increase in the main
line splitting with increasing FeS content, as reported by Pring et al.
(2008) (see also Table 1). In addition, there is a change in the relative
strength of the two components.

3.2.3 Low-temperature effect

The importance of temperature on mineral spectra has been pointed
out in several studies (Bowey et al. 2001, 2002; Chihara et al. 2001;
Molster et al. 2002; Koike et al. 2006; Posch et al. 2007; Mutschke
et al. 2008). The shape and strength of spectral features of many
materials is temperature sensitive (Waters 2009). Cooling tends to
shift line-centre frequencies towards shorter wavelengths, which
is attributed to lattice contraction. Lines tend also to sharpen and
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Figure 7. Example of provenance effect on the IR spectra of sphalerite
[#109954 (Zn0.92Fe0.06S), #25135 (Zn0.8Fe0.2S)]. The uncertainty in ab-
sorption values is less than 10 per cent.

deepen due to decrease in phonon density at lower temperatures.
Such blueshifting and sharpening of the bands with decreasing tem-
perature have been reported in forsterite (e.g. Koike et al. 2006).
More striking is that splitting (or more accurately, the resolution
of overlapping bands) occurs at low T , new features appear, and
the relative strengths of different lines in the spectrum may change.
These effects are particularly important, considering that cold dust
formations are among the main targets of observations by the re-
mote IR missions such as Herschel. Figs 3, 4 and 8 show such
low-temperature effects on the IR spectra.

Fig. 3 presents the temperature dependence of the AX-sulphide
spectra. Cooling causes a remarkable blueshift of the main broad
absorption band for sphalerite, wurtzite and alabandite. The low-
temperature spectrum of galena contains two artefact peaks at 42.6
and 38.3 μm due to a thin layer of ice that is cryopumped on
to the pellet. This non-repeatable effect presumably occurs when
the vacuum jacket of the cryostat is not pumped down enough, or
perhaps due to leaking seals. It was confirmed by collecting a low-
temperature spectrum of the reference pellet with an intentionally
poor cryostat vacuum. This spectrum is presented ‘as is’ to serve
as a caution regarding the appearance of these lines in laboratory
low-temperature spectra. The line at 42.6 μm has been identified by
others as due to water ice (Moore & Hudson 1992, 1994; Maldoni
et al. 1999). The line at ∼38 μm is of uncertain attribution though
definitely also correlated with poor cryostat vacuum.

The low-temperature spectrum of stibnite (Fig. 4) shows an over-
all sharpening of the absorption features and a blueshift for two of
the major peaks. In addition, there is one additional weak absorp-
tion peak resolved at 32.4 μm, which appears as just a shoulder
on the room-temperature spectrum. Also, a peak shows up at 43.9
μm, which nearly coincides with an ice line. However, the room-
temperature spectrum has an unusual line shape at that position,
which could be interpreted as an unresolved shoulder that emerges
as a separate feature at low temperature.

The low-temperature chalcopyrite spectrum (Fig. 8) contains the
two ice artefacts. Similarly, the low-temperature pyrite (#1717)
spectrum (Fig. 8) also has the water ice peak at 42.6 μm, though the

Figure 8. Effect of low temperature on far-IR spectra of chalcopyrite, pyrite
and marcasite. The uncertainty in absorption values is less than 10 per cent,
except for the saturated peaks in the low-temperature spectrum of pyrite.
The peak labels are wavelengths in µm.

∼38 μm artefact is relatively weak. Additionally, possibly pyrite-
attributed features at 24.8 and 22.8 μm appear, which are just shoul-
ders in the room-temperature spectrum. The new feature at 30.5 μm
at low temperature is of uncertain origin. (The two strongest lines
in the pyrite spectrum were saturated in the low-temperature trans-
mittance spectrum, so that these lines are truncated in the Fig. 8
absorption spectrum.) The blueshifts on cooling observed in these
spectra are 2–4 cm−1. Ice artefacts are absent in the spectrum of
marcasite.

4 D I SCUSSI ON

As an example application of the results presented here, our spectra
may help to improve the analysis of material excavated from Comet
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9P/Tempel 1 by the Deep Impact (DI) experiment. On 2005 July
4, the Spitzer imaging spectrometer was used to observe Comet
9P/Tempel 1 during the DI encounter (Lisse et al. 2006). The ma-
terial that was ejected by DI was pristine and unaltered, due to
the weakness of the cometary material and the low escape veloc-
ity (1 m s−1) from the cometary surface. At the same time, it was
de-aggregated from loosely held fractal particles into its individual
subfractal components (A’Hearn et al. 2005; Sunshine et al. 2006).
This resulted in a near-perfect IR spectroscopy experiment, giving
detailed, highly structured 5–35 μm emission spectra of the ejecta,
with over 16 sharp diagnostic spectral features, at a flux level ∼ 1
Jy. The material was all at 1.51 au from the Sun when observed, had
cooled from any effects due to the impact within minutes, and the
separation from the ambient coma dust was cleanly made. Charac-
teristic emission signatures due to abundant rock-forming silicate,
phyllosilicate (e.g. clays), and metal sulphide (e.g. pyrite) species,
organic amorphous carbon, carbonate (chalk) and polycyclic aro-
matic hydrocarbon species, and water ice and gas were found. The
ejecta spectra and the material emitted are very similar to those from
Comet C/1995 O1 (Hale-Bopp), the circumstellar material around
the YSO HD 100546 (Lisse et al. 2007), and the materials found
in the in situ fly-by through the coma of Comet 1P/Halley. DI con-
firmed evidence for very Fe rich olivines, Ca/Al/Mg pyroxenes, and
Mg and Fe carbonates also reported in the Stardust sample return
for Comet 85P/Wild 2. Stardust samples have also proved to be
much more processed, both mineralogically and isotopically, than
a simple pristine collection of pre-solar nebula material would be –
in fact, they look to be more solar like than the most primitive me-
teorites collected on the Earth, believed to be derived from infallen
pieces of processed asteroidal material formed within the a few au of
the Sun. The high crystallinity of the Stardust samples (modulo the
masking of amorphous silicate materials by capture into amorphous
silica aerogel) and solar isotopic abundances support the DI finding
that the early solar nebula was the scene of high radial mixing –
amorphous interstellar medium (ISM) silicates would only anneal
inside the orbit of Mercury, while comets were formed at 5–50 au.

There is, however, currently some disconnect between the Star-
dust and DI results. First, the nature of the (Fe, Al, Na) phyllosili-
cates (clays) reported in Lisse et al. (2006) is uncertain. Secondly,
the Fe/Mg sulphides used as DI models were instead found in the
Stardust sample return to be Fe/Ni sulphides, like pyrrhotite and
pentlandite (Zolensky et al. 2006). The differences between the two
sets of results may be explainable by impact processing or the ac-
tion of warm liquid, associated with the Stardust sample collection,
when the capturing of the cometary particles (which initially could
have contained water ice) into amorphous silica aerogel at ∼6.8
km s−1 velocity was accompanied by heating to ∼500–2000 K. The
latter effect may be responsible for the difference between the lab-
oratory analysis of the returned particles and the remote Spitzer
spectra from DI. Also, mobile water may have affected Tempel 1
material. Such water may have been released during the formation
of the two impact craters straddling the DI excavation site, or water
may have been released during the over 40 close solar perihelion
passages that eroded and altered the heavily processed Tempel 1
surface.

Before the DI and Stardust missions, many researchers viewed
comets as mostly pristine collections of ISM material that were
much too cold to change, even though there were strong indica-
tions of abundant crystalline silicates in the bright and active Comet
Halley (e.g. Campins & Ryan 1989) and comet Hale-Bopp (e.g.
Crovisier et al. 2000), very unlike the amorphous silicates observed
in the ISM (Kemper, Vriend & Tielens 2004). However, now even

the Stardust samples seem altered down to the isotopic level (Brown-
lee et al. 2006), appear to be mixtures of solar abundance materials
(Lisse et al. 2007), and even have petrological characteristics similar
to heavily processed asteroidal IDP material (Ishii et al. 2008). New
work by Nesvorny et al. (2010) also suggests that highly processed
IDPs previously thought to be differentiated asteroidal materials
are of cometary origin. Parent-body alteration may also explain the
apparent lack of abundant troilite in cometary dust, the expected
kinetic product.

Alternatively, the differences could have been due to poor lab-
oratory models for the dust species present. For instance, Fe and
Fe–Ni sulphides such as pyrrhotite (Fe1−xS), troilite (FeS) and pent-
landite [(Fe, Ni)9S8] have been considered as potential candidates
to explain the ‘23.5–24.5 μm’ feature in the ISO spectra of YSOs
and comet Hale-Bopp (Keller et al. 2000, 2002; Hony et al. 2002).
Knowledge of the IR emission spectra of metal sulphides in 2006
was scanty. The best available models were the thin microtome
slab measurements of Keller et al. (2002) on pyrite, pyrrhotite and
troilite, covering a small wavelength range. Such attribution of the
‘23.5–24.5 μm’ feature was based on IR spectra of ultramicrotome
∼70 nm thick sections of both terrestrial sulphides and extrater-
restrial pyrrhotite grains extracted from primitive meteorites and
chondritic anhydrous IDPs (Keller et al 2000). These measurements
revealed strong sharp peaks for both pentlandite and pyrrhotite at
∼24.5 μm, in addition to broad asymmetric absorption centred at
23.5 μm. Next, Keller et al. (2002) performed similar measurements
on thin pyrrhotite sections which showed a strong broad absorption
feature centred at ∼23.5 μm, as found also in pyrrhotite-rich IDPs.
As a result of a comparison of these laboratory spectra with the ISO
spectra, it was concluded that the 23.5–24.5 μm band in ISO spectra
of YSOs should be attributed to nanometre-size pyrrhotite grains,
which supposes pyrrhotite to be a common component of circum-
stellar dust. These laboratory spectra disagree with other studies,
including this work, which find no characteristic far-IR features
for fine pyrrhotite particles embedded in KBr or PE (e.g. Liese
1974; Soong & Farmer 1978; Nuth et al. 1985). Similarly, Kimura
et al. (2005b) found, for pyrrhotite <100 nm particles embedded
in PE, mainly a monotonically sloping absorption in the 15.4–200
μm range with some weakly pronounced structure on top of the
main baseline. The pyrrhotite spectrum presented here (Fig. 5) for
particles of average size < 1 μm is also represented by a nearly
featureless sloping baseline. Such discrepancies are intriguing, and
so far may be explained only by a difference of the spectroscopic or
sample preparation techniques. Deviations of the synthetic spectra
from the observations are possibly related to grain shape effects and
uncertainties in the iron content of the dust grains. The appearance
of 23.5–24.5 μm absorption features in specimens with sub-100 nm
dimensions may be a size effect, in which case the sulphide grains
within space dust formations must have similar dimensions if the
previous interpretation of the 23.5–24.5 μm features in the ISO
spectra is correct. Also, disagreement between the models based
on laboratory spectra and actual ISO spectra arises. For example,
Hony et al. (2002) noted that the 23.5–24.5 μm band strength for
astronomical and laboratory spectra corresponds poorly, and that
this cannot be explained as a temperature effect. Additionally, the
presence of resonances attributable to FeS in the observed spectra
of protoplanetary discs has recently been questioned by Juhász et al.
(2010). The analysis of a large set of spectra of protoplanetary discs
taken with the Spitzer/IRS provided no evidence for FeS, contrary to
studies based on older ISO spectra. Hence, although iron sulphides
like pyrrhotite, troilite and pentlandite are abundant in meteorites
and IDPs, and may be similarly abundant within the space dust
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formations, attribution of the 23–24 μm ISO band to these sul-
phides is uncertain. The question remains as to which spectra best
represent the cosmic dust conditions, the one with submicrometre
sulphide particles equally distributed in IR transparent matrix, or
the one measured on the ultramicrotome thin sections. New and
better laboratory sulphide spectra may help to explain the three
poorly fit features at ∼22, 24 and 29 μm in the 4 July 2005 5–35
μm Spitzer/IRS spectrum of the DI ejecta (Lisse et al. 2006).

5 SU M M A RY

The far-IR mass absorption coefficient spectra of several groups
of natural sulphide minerals have been presented and discussed.
Comparison was made to previous studies, and some of the impor-
tant sulphide-related astrophysical questions were discussed. The
effects of particle size distribution, provenance and temperature
were considered. The observed effects of low temperature on the IR
spectra demonstrate the importance of having such low-temperature
spectral data for all the cosmic matter relevant minerals in order to
provide a basis for an adequate comparison of laboratory and astro-
nomical peak wavelengths and intensities.
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