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Abstract. Recently Gramstad and Trulsen derived al Introduction

new higher order nonlinear Saidinger (HONLS) equation

which is Hamiltonian Gramstad and Trulser2011). We Some theoretical models attribute the development of
investigate the effects of dissipation on the developmentogue waves in deep water to a nonlinear focusing of
of rogue waves and downshifting by adding an additonaluncorrelated waves in a very localized region of the
nonlinear damping term and a uniform linear dampingsea. This focusing may be related to the Benjamin-
term to this new HONLS equation. We find irreversible Feir (BF) instability, described to leading order by the
downshifting occurs when the nonlinear damping is thenonlinear Schisdinger (NLS) equationHenderson et gl.
dominant damping effect. In particular, when only nonlinear 1999 Kharif and Pelinovsky 2001, 2004. Homoclinic
damping is present, permanent downshifting occurs for a||0|'bitS of modulationally unstable solutions of the NLS
values of the nonlinear damping paramegerSignificantly, ~ €quation which undergo large amplitude excursions away
rogue waves do not develop after the downshifting becomedrom their target solution exhibit many of the observed
permanent. Thus in our experiments permanent downshiftingProperties of rogue waves and can be used to model rogue
serves as an indicator that damping is sufficient to prevenivaves Osborne et al200Q Calini and Schobe20032).

the further development of rogue waves. We examine the A more accurate description of the water wave dynamics
generation of rogue waves in the presence of damping fofS obtained by retaining higher order terms in the asymptotic
sea states characterized by JONSWAP spectrum. Using théxpansion for the surface wave displacement. A commonly
inverse spectral theory of the NLS equation, simulations ofused higher order NLS equation is the Dysthe equation
the NLS and damped HONLS equations using JONSWAP(Dysthe 1979. Homoclinic orbits of the unstable Stokes
initial data consistently show that rogue wave events are wellvave have been shown to be robust to the higher order
predicted by proximity to homoclinic data, as measured bycorrections in the Dysthe equation. Laboratory experiments
the spectral splitting distande We defineS ot by requiring conducted in COﬂjUﬂCtiOﬂ with numerical simulations of
that 95% of the rogue waves occur kK Scuiorr. We find the Dysthe equation established that the generic long-time
thatdcutof decreases as the strength of the damping increase§volution of initial data near an unstable Stokes wave
indicating that for stronger damping the JONSWAP initial With two or more unstable modes is chaotigb{owitz
data must be closer to homoclinic data for rogue waves tcet al, 2000 200]). Subsequent studies of the Dysthe
occur. As a result when damping is present the proximitye€quation showed that for a rather general class of such
to homoclinic data and instabilities is more crucial for the initial data, the modulational instability leads to high
development of rogue waves. amplitude waves, structurally similar to the optimal phase
modulated homoclinic solutions of the NLS equation, rising
intermittently above a chaotic backgroun€alini and
Schober2002 Schober2006. These earlier studies relating
homoclinic solutions and rogue waves ignored the fact
that the Dysthe equation is not Hamiltonian and neglected
damping which, even when weak, can have a significant
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384 A. Islas and C. M. Schober: Rogue waves and downshifting

Recently Gramstad and Trulsen (2011) brought the Dysthafter permanent downshifting occurs, rogue waves do not
equation into Hamiltonian form obtaining a new higher order appear in the nonlinearly damped evolution. Thus in our
nonlinear Schidinger (HONLS) equationGramstad and experiments permanent downshifting serves as an indicator
Trulsen 2011). In this paper we investigate the effects that there has been sufficient cumulative damping to inhibit
of dissipation on the development of rogue waves andthe further development of rogue waves.
downshifting in one space dimension by adding a nonlinear Developing sea states, where nonlinear wave-wave
damping term (thg-term which damps the mean fldtato interactions continue to occur, are described by the Joint
and Oikawal1995 and a uniform linear damping term to this North Sea Wave Project (JONSWAP) power spectrum. A
new HONLS equation. The governing equations and theirspectral quantity, the splitting distanéebetween simple
properties are set up in Sect. 2. periodic points of the Floquet spectrum of the associated

Downshifting in the evolution of nearly uniform plane AKNS spectral problem of the initial condition may be
waves was first observed blyake et al.(1977. Their used to measure the proximity in spectral space to unstable
experiment showed that after the wavetrain becomes stronglywaves and homoclinic data of the NLS equation. Islas
modulated, it recurs as a nearly uniform wavetrain with theand Schober2005 Schober 2006, simulations of both
dominant frequency permanently downshifted. Permanenthe NLS and Dysthe equations using JONSWAP initial data
downshifting has been confirmed in other laboratory consistently show that rogue wave events are well predicted
experiments on the evolution of the Stokes wa®u ( by proximity to homoclinic data, as measureddy
1982 Huang et al.1996. Conservative models have been In Sect. 5 we examine the generation of rogue waves
inadequate in describing permanent downshifting and severah the presence of damping for sea states characterized by
damped models have been suggested, e.g. where the dampid@NSWAP spectrum. Using the damped HONLS equation
is modeling wave breaking or eddy viscosity to capturewe find that both the strength and likelihood of rogue waves
downshifting {Trulsen and Dysthel199Q Hara and Mei occuring in a given simulation are typically smaller when
1991 1999. damping is present. We defidg,off by requiring that 95%

Our previous studies of rogue waves show thatean of the rogue waves occur fér < Scutoi.  Significantly, we
neighborhood of the unstable plane wave (the same regiménd that Scuioff IS generally decreasing as the strength of
in which Lake examined downshifting) is effectively a rogue the damping increases. Thus when damping is present the
wave regime for the Dysthe equation since the likelihood JONSWAP initial data must be closer to instabilities and
of obtaining a rogue wave is extremely high. We re- homoclinic data for rogue waves to occur. The proximity to
examine this issue in Sect. 3 using the new HONLS equationhomoclinic data and instabilities becomes more essential for
In Sect. 4, using initial data for an unstable modulatedthe development of rogue waves when damping is present.
wavetrain we examine whether irreversible downshifting
(although here downshifting of the wave number is )
considered) occurs in our damped HONLS equation and® Analytical background
what characterizes the damped wave train evolution on
short and long time scale.

We find that rogue waves may emerge in both the linear

and nonlinear damped regimes that were not present withOute equations for inviscid deep water waves, as well as
damping. ~Although damping decreases the growth rate§ne nonjlinear Sclidinger (NLS) equation, can be derived
of the individual modes, the modes may coalesce due G, 5 Lagrangian. Ideally, a higher order NLS equation
changes in their focusing times, thus resulting in larger waves,q,id retain this feature. The commonly used higher
?n the damped regime. Even so, on average, the st'rengtgrder NLS equation Qysthe 1979, often referred to
is smaller and fewer rogue waves occur when damping iS;s pysthe’s equation, is not Hamiltonian and does not
present. While downshifting is not expected in the linearly .,nserve momentum. Recently, Gramstad and TRulsen
damped case, we examine the effect of linear damping ORseq the zakharov equation enhanced with the Krasitskii
the development of rogue waves due to its widespread use iRerne| Krasitskii, 1994 to bring the Dysthe equation into
modeling dissipative processes. . Hamiltonian form, obtaining a new higher order nonlinear
The nonlinear f-term models damping of the mean gcpgginger (HONLS) equation Gramstad and Trulsen
flow and since it is large only near the crest ofthe 5419
envelope, the damping is localized when the wavetrain is |, order to examine rogue waves and downshifting in deep

strongly modulated. Due to the BF instability, irreversible \, ~iar we consider the HONLS equation of Gramstad and
downshifting occurs when the nonlinear damping is theq,isen with periodic boundary conditions(x,r) = u(x +
dominant damping effect. In particular, when only nonlinear ; 1), and add damping as follows:

damping is present, permanent downshifting occurs for all
values of the nonlinear damping parameger appearing
abruptly for larger values oB. Significantly, we find that

%1 Anew damped higher order nonlinear Schodinger
equation
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A. Islas and C. M. Schober: Rogue waves and downshifting 385

iu; + u”+2|u|2u +iTu Using the Fourier spectrum of(x,?), iy, two different
1 choices of diagnostic frequencies can be used to measure
Yie (7umx—8|u|2ux—2ui(1+iﬂ)[H(|“|2)] >=o, (1)  downshifting. On the one hand, the dominant mode or
2 x S . A
spectral peak intuitively corresponds to théor which |i |
where H(f) represents the Hilbert transform of. achieves its maximum and is denotedkgsy On the other
Throughout this paper “HONLS equation” refers g {ith hand, Uchiyama and Kawahara defined the wave number for
I’ =0 andB = 0. The Hamiltonian for the HONLS equation the spectral center or mean frequency of the spectrum as

is given by (Uchiyama and Kawahara994):
L € 1P
H:/O {—ilux|2+i|u|4—z(uxu§x—uju“) km:—EE. (5)
T 26|u|2(u*ux—uuj)+ie|u|2[H<|u|2>] }dx. @) The wave train is. understood to experience a permanent
x frequency downshift when the spectral centgrdecreases

Uniform linear damping occurs fdf > 0 andg =0 and has  monotonically in “time” or there is a permanent downshift of
been used extensively to study damping of wave trains withthe spectral peakpeak (Trulsen and Dysthel9973.
comparisons to physcial wave-tank experimeSeur et aJ. Given that the energy and momentum are conserved by
2009. Localized nonlinear damping of the mean flow occurs the HONLS equation, the spectral center, which is given by
for ¢, >0 andI’ = 0 and it was introduced to investigate their ratio, is also conserved. In the linearly damped model,
downshifting in deep water wavek4to and Oikawa1999.  I'>0,8=0, from Eqs. §) and @) it follows that the energy
and momentum have a simple time dependence:
2.1.1 Energy, energy flux, and the spectral center
E(t) = E(0)exp(—2T't) (6)
The mass or wave energy, and the momentum or total P(r) = P(0)exp(—2I't) . @)

energy flux,P, are defined by _ o )
Thus the spectral centgy, is constant in time for the linearly

L L ; . ;
damped HONLS equation and downshiftin Il not occur.
E=/ lu|?dx, and P=i/ (uuy —uu})dx . P quat WnShitling wi !
0 0 2.1.2 Linear stability of the Stokes wave
To show damping occurs for positiyieor I", one finds that
The HONLS equation admits a uniform wave train solution,

dE L
EZ_Z/ |u|2(F+25ﬁ[H(|u|2)] )dx. the Stokes wave,
0 x A
i 2 - , N a (x,1) = ae?e (8)
Expanding and |«|? in Fourier seriesy = Y 3o ige'*,
u|? =322 o (Bre'™ + Bf ™), Fourier analysis shows that this plane wave solution is
unstable to sideband perturbations. When its amplitude
dE N . 2 o 2 is sufficiently large, for O< wn/L < a, the solution of the
dar —2L {Fk;mw"l +2€ﬂ};k|3k| : 4 linearized NLS equation about, has M linearly unstable

modes (UMs)! @ +27x/L) \with growth ratess, given by
Thus the total energy is conserved for the HONLS equation

(I = B =0) and is dissipated if eithdt or  is positive. 02=p? (Mz - 4a2) . un=2mn/L, 9)
The total energy flux is related to the symmetry of the
Fourier modes sinc® can be written as whereM is the largest integer satisfying<OM < alL /x. We
00 refer to this as the M-unstable mode regime.
P=—2LZk(|ﬁ_k|2—|ﬁk|2). . .
= 2.2 Integrable theory of the nonlinear Schibdinger

i . } equation
Since the evolution of the total energy flux is

In previous studies of sea states described by the JONSWAP

dp L : ]

—=—2i/ (u*ux—uuj)<1‘+26ﬂ [H(|M|2)] )dx, power spectrum we showed a nonllne_ar spec_tral decom

dt 0 x position of the data provides relevant information on the
(4) likelihood of rogue waves. Here we briefly review the

spectral theory of the nonlinear Sélinger (NLS) equation,
the momentum is conserved by the HONLS equation. In
contrast the momentum for the Dysthe equation exhibited
small oscillations in timel§las and Schobe2010. it 4ty +2lul’u=0. (20)

www.nat-hazards-earth-syst-sci.net/11/383/2011/ Nat. Hazards Earth Syst. Sci., 3932841
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The NLS equation is equivalent to the solvability condition
of the AKNS system, the pair of first-order linear systems
(Zakharov and Shabgt972):

LP¢=0 LPD¢=0, (11)

for a vector-valued functiop. The operatoC™ is given by

er=(73%,)

and depends om andr through the potentiak and on the
spectral parametey.

The nonlinear spectral decomposition of an NLS initial
condition (or in general of an ensemble of JONSWAP

O +ik

u*

—u

Oy —iA
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Fig. 1. Spectrum of(a) a generic unstable N-phase solution and
(b) the plane wave solution. The simple periodic eigenvalues are

initial data) is based on the inverse spectral theory of theabeled by circles and the double points by crosses.

NLS equation. For periodic boundary conditiongx +
L,t)=u(x,t), the Floquet spectrum associated with an NLS
potentialu (i.e. the spectrum of the linear operat®h atu)
can be described in terms of the Floquet discriminant,of

As a concrete example consider the plane wave solution,
;2 . .. . .
ua(x,t) = ae®®!, whose Floquet discriminant is given by

defined as the trace of the transfer matrix of a fundamentalx (4, 1) = 2cogv/a2+2L). The resulting Floquet spectrum

matrix solution® of (11) over the interval [0L] (Ablowitz
and Segurl981):

A A) :Trace(d>(x,t;k)’ld>(x+L,t;k)> .
Then, the Floguet spectrum is defined as the region
ouw)=LeC|lA(u;M) eR,—2<A<2}.

Points of the continuous spectrum wfare those for which

(Fig. 1b) consists of the continuous bands JR-ia,ia], and

a discrete part containing the simple periodic/antiperiodic
eigenvaluestia, and the infinite sequence of double points
M=(jn/L)?—a®,  jeZ. (12)
The number of imaginary double points, obtained fer f <
aL/m, coincides with the number of unstable modes &q.
computed directly from the linearization. Each imaginary

the eigenvalues of the transfer matrix have unit modulus, and@louble point “labels” the associated unstable madalifi

thereforeA (u; 1) is real and between 2 aneR; in particular,

and Schober2002.

the real line is part of the continuous spectrum. Points of

the L-periodic/antiperiodic discrete spectrumuoére those
for which the eigenvalues of the transfer matrix até,
equivalentlyA(u; A) = +2. Points of the discrete spectrum

3 Rogue waves in the NLS and HONLS equations

which are embedded in a continuous band of spectrum ar8.1 Homoclinic solutions of the NLS equation as models

critical points for the Floquet discriminant (i.e.AddA must
vanish at such points).

for rogue waves

Since the transfer matrix only changes by conjugationThe NLS equation admits modulationally unstable periodic

when we shift inx or ¢, A is independent of those variables. solutions with homoclinic orbits that can undergo large
An important consequence of this observation is that theamplitude excursions away from their target solution. Such
Floquet discriminant is invariant under the NLS flow, and homoclinic orbits can be used to model rogue waves. An
thus encodes an infinite family of constants of motion €xample is provided by the unstable plane wave solution
(parametrized by). ug(x,t) — ae?9’t where the number of unstable modes
The continuous part of Floquet spectrum of a generic NLS(UMs) is provided by Eq.q). For each UM there is a
potential consists of the real axis and of complex bandscorresponding homoclinic orbit. A global representation of
terminating in simple points.’ (at which A = £2, N #£ the homoclinic orbits can be obtained by exponentiating the
0). The N-phase potentials are those characterized by #near instabilities via Bcklund transformationsMatveev
finite number of bands of continuous spectrum (or a finiteand Salle1991 McLaughlin and Schobel992. Moreover,
number of simple points). Figurka shows the spectrum of for NLS potentials with several UMs, iterateda&klund
a typical N-phase potential: complex critical points (usually transformations will generate their entire stable and unstable
double points of the discrete spectrum for whith=0 and  manifolds, comprised of homoclinic orbits of increasing
A" #£0), such as the one appearing in the figure, are indimension up to the dimension of the invariant manifolds.
general associated with linear instabilitiesuofind label its ~ Such higher-dimensional homoclinic orbits are also known
homaoclinic orbits Ercolani et al, 1990. as combination homoclinic orbits.

Nat. Hazards Earth Syst. Sci., 11, 38389, 2011 www.nat-hazards-earth-syst-sci.net/11/383/2011/



A. Islas and C. M. Schober: Rogue waves and downshifting 387

3.1.2 Phase modulated rogue waves

As the number of UMs increases, the space-time structure of
the homoclinic solutions becomes more complex. When two
or more UMs are present the initial wave train can be phase
modulated to produce additional focusing.

The family of homoclinic orbits of the plane wave
potential with two UMs is given by an expression of the form

2ia®t g(x’ t)
flx.1)’ 13)

where the expression fof (x,¢) and g(x,7) depend on the
two spatial modes cé&uwx/L), cog2mmx/L), and on
temporal exponential factors exp.r + 0,), €EXPont + om),

u(x,t)=ae

Time with growth rateso; = i1/ u? —4a?, = 2xl/L. (The
Space complete formulas can be found@alini et al, 1996 Calini

and Schober2002)
Fig. 2. Amplitude plot of a homoclinic orbit of the Stokes wave As in the one-UM case, this combination homoclinic
with a =05, L =2v/2r. orbit decays to the plane wave potential as> +oo,
and the associated rogue wave remains hidden beneath
the background plane wave for most of its lifetime. The
) temporal separation of the two spatial modes depends upon a
3.1.1 One unstable mode rogue wave solutions parametep related to the differencg, — p,, in the temporal
phasesCalini et al, 1996 Calini and Schobg2002).
A single (i.e. lowest dimensional) homoclinic orbit of the In turn, p affects the amplitude amplification factor.

plane wave potential is given by Figure 3a—b shows the combination homoclinic orbit5)
obtained with all parameters set equal except gor In

i 142008 px)en! TAPFL | Ag2ont T4+ Fig. 3a, p=.1, the modes are well separated, and the
u(x,t)=ae amplitude amplification factor is roughly three. In F&h,

1+2c08 px)eoii+P + Ae2oni+2p

(13) the value ofp is approximately—0.65, corresponding to the

two UMs being simultaneously excited or coalesced. For this
value of p the amplitude amplification factor is maximal and
whereA = 1/co¢, 0, = £py/4a? — p?, ¢ =sin"1(p/2a),  the rogue wave rises to a height of 4.1 times the height of the
andp = u, =2nn/L < a for some integen. Each UM has  carrier wave. The surface plot pf(x,7)| has been rotated in
an associated homoclinic orbit characterized by mpde Fig. 3b to facilitate comparison with Figla.
Hn - Figure 3a shows focusing due to only weak amplitude
Figure 2 shows the space-time plot of the amplitude modulation of the initial wave train; the growth in amplitude
lu(x,t)| of a homoclinic orbit with one UM, fom = 0.5, beginning at ~ 10 and at ~ 25 is due to the BF instability.
L =227 andp =27/L. Ast — +o0, solution (L3) limits However, in Fig.3b focusing due to both amplitude and
to the plane wave potential; in fact, the plane wave behaviophase modulation occurs. The amplitude growth &t10
dominates the dynamics of the homoclinic solution for mostis due to the BF instability, while the additional very rapid
of its lifetime. Ast approaches; =0, nonlinear focusing focusing atr ~ 18.4 is due to the phase modulation. In
occurs due to the BF instability and the solution rises togeneral it is possible to select the phases in a combination
a maximum height of 24 Thus, the homoclinic solution homoclinic orbit withN spatial modes so that any numker
with one UM can be regarded as the simplest model of rogu€2 < n < N) of modes coalesce at some fixed time.
wave.

An almost equally dramatic wave trough occurs close to

the crest of th? rogue wave as a re;ult of wave cqmpressiom this section we examine the robustness of homoclinic
due to wave dislocation. The amplitude amplification factorsolutions of the NLS equation, as well as frequency

3.2 Rogue waves in the higher order NLS equation

is given by downshifting, when higher order terms are included in
the wave dynamics. The HONLS equatiol) s solved
Af = MaXefo. LRI D] 5 4 (14)  numerically using a smoothed exponential time differencing
limy— o0 [u(x,1)] integrator. The details of the method are provided in Sect. 4

www.nat-hazards-earth-syst-sci.net/11/383/2011/ Nat. Hazards Earth Syst. Sci., 3932841
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a=0.5 L=4V2r, piz =21

Fig. 3. Amplitude plots of the combination homoclinic orbita) Fig. 4. Rogue waves solutions for the HONLS equatien=(.05,
the phases are selected to produce well separated spatial riigdes; I = 8 = 0) when(a) two and(b) three unstable modes are present.
shows a coalesced homoclinic orbit.

459 a rogue wave rises with a maximum wave amplitude

2009. As expected, we find permanent downshifting doesmax~ 2.15. Comparing Fig4a with Fig. .3b. one finds
that the structure of this rogue wave is similar to that of

not occur in the HONLS equation. We find that the chaoticth bination h lini lutiort. ith | d

background increases the likelihood and amplitude of rogue € tpcim 'Ea Ionbt szc '?]'C S0 uo'gs @It\rl:” ﬁ?{ﬁ esce

waves as compared to predictions obtained with the NL patial modes obtained when= —1.6o, aithough the wave
amplification factor is slightly smaller. The symmetry

equation. breaking effects of the higher order terms in the HONLS

We choose initial data that are small perturbations of the . .
. equation prevent a complete spatial coalescence of the
unstable plane wave potential, !
nonlinear modes.

(16 Numerical simulations of the HONLS equation in the
three-UM regime, e.g. initial conditionl§) with a = 0.7,
where the amplitude is varied to be in the two or three show a similar phenomenon: after the onset of chaotic
unstable mode regime with = 27/L and L = 4y/2. dynamics, rogue waves rise intermittently above the chaotic
Figure 4a illustrates a prominent rogue wave solution of background (see Figb). At~ 245 a rogue wave develops,
Eq. (1), e = 0.05,8 =T =0 for initial data (L6) in the two- Umax ~ 3.59, which is close to the coalesced homoclinic
UM regime witha = 0.5, 456< 1 < 461. The solution solution of the NLS equation in the three-UM regime.
rapidly becomes chaotic (aroumd= 27) with rogue waves Extensive numerical experiments were performed for the
emerging intermittently afterwards. For example,:at HONLS equation in the two- and three-UM regime, varying

and in referencesQox and Matthew;s2002 Khaliq et al,

u(x,0)=a(1+0.1cosux),

Nat. Hazards Earth Syst. Sci., 11, 38389, 2011 www.nat-hazards-earth-syst-sci.net/11/383/2011/
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the perturbation strengté, the amplitudez and adding in
some random phaseés's in the initial data. In all cases, the
coalesced homoclinic NLS solution emerges generically as a

(@)

structurally stable feature of the perturbed dynamics.

The occurence of rogue wave in the HONLS equation &
is distinct from their occurence in the NLS or the damped
HONLS equations. In the HONLS equation, rogue waves
will occur intermittently throughout very long time series. In
the NLS equation they occur only once or twice, depnding
on whether the modes are coalesced or not. In the damped
HONLS, they occur irregularly over a short time period but
eventually are damped out.

STRENGTH

b
«
T

The chaotic regime produces additional focusing by

effectively selecting optimal phase modulations and the
chaotic dynamics singles out the maximally coalesced
homoclinic solutions of the unperturbed NLS equation as
physically observable rogue waves. Moreover, the likelihood
of larger amplitude waves (see e.g. F#). increases for
the HONLS equation, as substantiated by the diagnostics
developed in Sech, correlating wave strengths in the NLS
and HONLS models to proximity to homoclinic data. Thus,
for initial data in the neighborhood of an unstable plane wave
the underlying chaotic dynamics of the HONLS equation 2
favors the occurrence of large amplitude rogue waves, as  °f
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compared to predictions obtained from the NLS equation. 0¢
To investigate downshifting we varied the perturbation

20

i
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L
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120

strengthe in the HONLS equation and the parameters in the

initial data in the two- and three-UM regime. Typical results .

obtained with the HONLS equatior)(are shown in Figs

for initial data

u(x,0) = 0.7(140.1(cosux +0.2(cosu(x — L /4)
+ 0.38cos3(x —L/3)))),

with L = 4+/27 ande = 0.05.
Figure 5a shows the time evolution of the strength of
u(x,r),

Unmax(?)

17

SPECTRAL CENTER

S(t) = (18)

’

Hs(t)

L
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.
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L
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100 120
TIME

L
80

whereUmax(t) = MaXcc(o,.|u(x,7)| and Hs(¢) is the signifi-

cant wave height, defined as 4 times the standard deviation
of the surface elevation. Rogue waves occur throughout

the time series whenever the strength exceeds the threshold
criteria of 2.2. Figureb shows the time evolution of the

e
N
©

main Fourier modes$A (¢)| for k=0, £+1,...,+4. During

each of the modulation stages the zeroth mode loses energy
as the upper and lower higher harmonics become excited.
For O< ¢t < 200 the total energy and the total energy flux are
constant. This allows the energy to flow back to the zeroth
mode keeping the spectral cenkgr constant (Figsc). The

CTRAL PEAK

E 128
(%2}

126

125

plot of kpeak (Fig. 5d) confirms that permanent frequency
downshifting does not occur. As expected, even when steeper

waves are obtained, permanent frequency downshifting doebig. 5. The HONLS equationI' =0, ¢ =0.05, g =0: time

not occur in the HONLS numerical experiments, indicating evolution of (a) the strengths(z), (b) the main Fourier mode(c)
the spectral centem, and(d) the spectral peakpeak

the necessity of a dissipative or nonconservative process.
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4 Rogue waves and downshifting in the presence 4 ‘
of damping (a)

In the last section we saw that aaneighborhood of the
unstable plane wave with two or more UMS is effectively
a rogue wave regime for the HONLS equation as the  2sf
probability of obtaining a rogue wave is high. In the
numerical experiments we choose initial data that are small
perturbations of an unstable plane wave to study the effects
of linear and nonlinear damping on the development of rogue
waves and downshifting. We consider the damped HONLS
equation in non-dimensional form with the damping terms
on the same order or smaller than the higher order NLS
terms. Consequently we vary the damping coefficients to be
0<eB, T’ < O(¢), wheree is the coefficient of the higher
order NLS terms. 4 ‘

STRENGTH

In the numerical experiments Eql)(is solved using (b)
a smoothing fourth-order exponential time differencing * |
integrator Cox and Matthew2002 Khalig et al, 2009 that st
avoids inaccuracies when inverting matrix polynomials by
using Pade approximations. We use= 256 Fourier modes 28r /\

in space and a fourth-order Runge-Kutta discretization
in time (Ar =107%). The high frequency modes were

STRENGTH

eliminated at every time step to avoid aliasing by setfipg sl i |

0 for |k| > 120. Eliminating the high frequencies does not J\ ’

have a significant effect on the exchange of energy between : g AN RN \\ PR

the dominant low wave number modes and thus does not 05?/,/ o Y
impact our results related to frequency downshifting and

rogue waves. 0 LI ‘ ‘ ‘ ‘ ‘ ‘ ‘

5 10 15 20 25 30 35 40 45 50

This temporal and spatial resolution allows for the three
integral invariants of the conservative HONLS equatisn, ~ Fi9- 6. StrengthS(z) (solid line) andUmax (dashed line) for
P, and’H, to be conserved with an accuracy@(10_8), (a) HQNLS equatione = 0.05; (b) HONLS equation with linear
0(10_2)’ 0(10_2)' respectively. The nonlinear mode damping,e =0.05,T =0.006, for ICug=0.5(1+0.1cogux).
content of the data is numerically computed using the direct
spectral transform described above, i.e. the system of ODE®as not present in the undamped evolution (Ba). This
(1) is numerically solved to obtain the discriminant The  typically occurs for small values dtf or 8 where the smaller
zeros of A +2 are then determined with a root solver basedgrowth rates of the individual modes due to damping can be
on Muller's method Ercolani et al. 1990. The spectrum offset by a coalescence of the modes due to changes in their
is computed with an accuracy @(10-%), whereas the focusing times.

spectral quantities we are interested in range f@@02) We examined the HONLS equation with linear damping

to ©(10°1). for 0.005<I" < 0.05. Although individual simulations may
yield larger amplification factors in the damped regime, we

4.1 The HONLS equation with linear damping find that on average, in the presence of linear damping

(see Sect. 5.2 for confirmation with the nonlinear spectral
We begin by examining the evolution of damped uniform diagnostics), the strength is smaller and fewer rogue waves
wavetrains with initially one to three pairs of sidebands occur. Figure7 shows the results obtained with Ed.) (
excited. It is important to note in comparisons of the for ¢ =0.05, I' = 0.01, 8 = 0 for initial condition (7) for
damped and undamped dynamics that atypical cases may <t < 200. In the linearly damped evolution, Figa, the
arise. Figureba—b shows the strength of the wavetrain last rogue wave occurs atx~ 10; in contrast, in Figba
(solid line) andUnax (dashed line) for the undamped and rogue waves occur throughout the unperturbed HONLS time
linearly damped I = 0.005) HONLS equatione(= 0.05), series. The total energy exponentially decays @and the
respectively, for initial datal) in the two-UM regime:  Fourier modes are uniformly damped. The total energy flux
a=05, un=2r/L andL =4/27. Contrary to what one is constant, keeping the spectral certgrzero. Permanent
might expect, Figéb shows a rogue wave occuringrat 23 downshifting does not occur for the linearly damped HONLS
in the damped case with an enhanced strergth8 that  equation.
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A. Islas and C. M. Schober: Rogue waves and downshifting 391

35 T T T T T T T T T Time = 22.7

3l 4

N
@
T
I
o
o
T

STRENGTH

N
T
I

151 ~

0 20 4‘0 (;O 8‘0 TIl,(\‘);I)E 1‘20 14;0 1&‘30 1éo 200
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Fig. 8. Spatial distribution ofu (x,*)| (solid line) and of the8-term
(b), (dashed line) at* = 22.7 for initial condition (L6), for ¢ = 0.05,

p=0.1,T=0.

term is large. This produces an abrupt rapid decay in the
energy (Fig.9d) and growth in the flux (Fig9e), resulting

in a rapid shift in the spectral centép, (Fig. 9f). The
downshifting becomes irreversible after: 17 when the
wavetrain is demodulated and the lower modes—1,—4
AN ‘ ‘ J become dominant. In the demodulation stagegkerm is
R T = small so that the energy and flux change at a much slower
rate. Thusiy, remains negative and does not upshift back.

Permanent downshifting is obtained for all valuegof\s
an example consider the solution of Ed) (vith ¢ =0.05,
B =0.04,T =0 for initial data (7), 0 <t < 200. For small
B there is a slow gradual decay in the total energy and flux
rather than the abrupt rapid decay obtained for laggeXks a
result the last rogue wave appears &51 (Fig.10a), much
later than forg = 0.5. The plot of the evolution of the main
Fourier modes (Figl0b) shows permanent downshifting
occurs atr ~ 65. Figurell, which shows the evolution of
kpeakfor the nonlinearly damped HONLS equatian 0.05,
I' =0) with 8 =0.04 or 8 = 0.5, provides an alternate view
of permanent downshifting fop # 0 and its occurence at
later times for smaller values @f.

FOURIER MODES

Fig. 7. The HONLS eq. with linear damping? = 0.01, ¢ = 0.05,
B =0. The time evolution ofa) the strengthS(z) (b) the main
Fourier modes, & ¢ < 200.

4.2 The HONLS Equation with nonlinear damping

The perturbation of the Hilbert tranform term in Ed.),(
Bu[H (lu|?)],. is referred to as thep-term” and models
nonlinear damping of the mean flow. FiguBeshows the
spatial distribution ofu(x,#*)| (solid line) and of thes-term
(dashed line) of the nonlinearly damped HONLS equation
for € =0.05, B =0.1, ' =0, for initial condition (L6).
At r =227 the wavetrain is strongly modulated and we ] ) )
find that thep-term is significant only near the maximum  When both linear and nonlinear damping are present
crest of the envelope. In general, steeper waves result i@nd the nonlinear damping is dominant, the mechanism for
stronger damping and the effects of the nonlingderm are ~ Permanent downshifting is the same. Figd@shows the
concentrated in space-time when the wavetrain is stronghygolution of Eqlwith € =0.05,=0.5, T =0.005 for initial
modulated. data (7), 0<t <50. Comparing to Fig9, the rogue waves

To illustrate the effects of nonlinear damping on down- occur at approximately the same time with slightly smaller

shifting we consider the solution of Eql)(with e — amplitudes. An abrupt rapid decay in the energy and growth
0.05, 8= 0.5 andT" = 0, for initial data (7), 0 < ¢ < 50. in the flux occurs as before leading to a rapid shift in the

Figure 9a—b shows the surface amplitugie(x,7)| and the ~ SPectral centélm.

time evolution of the strength, respectively. Two rogue waves

occur early in the time series,< 10, before damping has Characterization of the nonlinearly damped evolution

a chance to significantly alter the growth rate of the modes

and prevent further rogue waves from forming. ComparingTo characterize the effects of nonlinear damping on rogue
Fig. 9b and9c, the onset of downshifting occurs when the waves we fixe =0.05 andI" =0 in Eqg. (1) and vary the
first rogue wave appears at approximately 6 when thes- nonlinear damping coefficient, © 8 < 0.75, as well as the

www.nat-hazards-earth-syst-sci.net/11/383/2011/ Nat. Hazards Earth Syst. Sci., 3932841
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Fig. 9. Continued.

amplitude of the initial data in the three-UM regime:
u(x,0)=a(1+0.01cosux), (29)

with 0.57 < a < 0.67, u=2n/L, L =4y2r. Figure13
shows, as a function @#: (a) the final value of the spectral
centetkm, (b) the maximum strength maxo, 20 S(#), () the
number of rogue waves obtained foxG < 200, and (d) the
time of the last rogue wave. The solid curve represents the
averages over the initial data. In the numerical experiments
we observe the following:

1. The spectral centety(z) is a decreasing function of
¢t for all 8 > 0. Figurel3a is not showing the time
evolution ofkm, (see e.g. Figof for a typical example),
but rather the final value éf,, atr =200, where smaller
values mean a downshift to a lower mode. Thus,
permanent downshifting is observed for Al 0 with
the onset occuring rapidly for larger valuesfof

2. Figure 13b—c shows that for small values ¢ the
average maximum strength in time and average number
of rogue waves exhibit irregular behavior. We may
obtain more or larger rogue waves in the damped regime
than without damping for this time frame due to changes
in the focusing time and coalescence of the modes.
However for larges, the maximum strength in time and
number of rogue waves are, in general, decreasing.

www.nat-hazards-earth-syst-sci.net/11/383/2011/
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Fig. 11. The evolution ofkpeakfor the nonlinearly damped HONLS
equation withe =0.05, " =0 and(a) 8 =0.04 or (b) 8 =.5 for
initial data (7).

3. For all values of the initial amplitude, the first rogue g - B < 0.75. Figurelda shows the comparison for initial
wave is only slightly delayed ¢ 6) for all  considered  gata (9) with « = 0.63: we observe that for all values
(not shown). The time of the last rogue wavR,  of g rogue waves do not occur after the downshifting
may slightly increase for smafi. As g increasesfi  pecomes irreversible. Further, rogue waves do not develop
significantly decreases, indicating fewer rogue wavesafter permanent downshifting occurs for any other pair of
occur.  For g > B, only the initial pair of rogue  parameter values:( 8) considered in the experiments. This
waves develop (Figl3d) as largep values trigger s summarized in Figl4b which compares, for @ 8 <
sufficient nonlinear damping that inhibit further rogue o,.75, the average time of the last rogue wave (box) with the
wave formation. average time at which downshifting is irreversible (x), where

the averages are over the six simulations with initial data

amplitude 0567 <a < 0.67. These results imply permanent
downshifting serves as an indicator that the cumulative

It is significant in Figs. 9b—c and 10a-b that permanenteffects of damping are sufficient to prevent the further
downshifting occurs after the last rogue wave in the timedevelopment of rogue waves.
series. In other words, rogue waves do not occur after Finally we consider the case when both linear and
the downshifting becomes irreversible in these examplesnonlinear damping are present and the nonlinear damping
To generalize this result we analyze the previous series ofs dominant to allow permanent downshifting to occur.
numerical experiments using initial data%9 with 0.57 < Figure 15 compares the times for permanent downshifting
a < 0.67 to determine (1) the time of the last rogue wave andand the last rogue wave for the damped HONLS equation
(2) the last timekpeak is equal tokg, indicating permanent  with € =0.05, ' =0.005 and O< 8 < 0.75. The same
downshifting, as the perturbation strengglis varied. relation between downshifting and the last rogue wave are
Figure 14 compares the time at which downshifting observed to hold, i.e. rogue waves do not occur after the
becomes irreversible (labeled by an x) with the time at whichdownshifting is permanent. However, due to the additional
the last rogue wave occurs (labeled by a box) for the HONLSIlinear damping there is a longer time lag between the last
equation with only nonlinear damping,=0.05I" =0 and  rogue wave and permanent downshifting.

Relation of downshifting and rogue waves

www.nat-hazards-earth-syst-sci.net/11/383/2011/ Nat. Hazards Earth Syst. Sci., 3932841
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Fig. 13. Continued.

5 Damped random oceanic sea states

In this section we examine the generation of rogue waves in
the presence of damping for sea states characterized by the
Joint North Sea Wave Project (JONSWAP) spectrum:

ag?  _5(f)’ f%(";}{,"o)z 0.07 f < fo
5¢ NS ye , O
(2 f) 0.09 f > fo

—
-
~—

S(fH)=

Here f is spatial frequencyf,, =k, /2r, fois the dominant
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frequency determined by the wind speed at a specified heig
above the sea surface agdis gravity. Developing storm

dynamics are governed by this spectrum for a range of
parametery anda. Herey is the peakedness parameter and
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Fig. 15. The damped HONLS egn. with=0.05, " =0.005 and

0 < B < 0.75. The time downshifting is irreversible (x) and the time
the last rogue wave occurs (box) as a functio@ndI” = 0.005,
ug=a(1+0.01coqwx), where(a) a = 0.63 and(b) averaged over
0.57<a <0.67.

hg.l Nonlinear spectral diagnostic for determining rogue

waves

« is related to the amplitude and energy content. The putativén previous work we proposed a nonlinear spectral decom-
region of validity for the NLS equation and its higher order position of the JONSWAP data and introduced the splitting
generalizations is 2 y < 8 and 0008< « < 0.02

The initial data for the surface elevation is of the form to measure the proximity to homoclinic data of the NLS
(Onorato et al.2007)

N
n(x,00=Y C,costkyx — ),

n=1

wherek, = 2nn/L, the random phaseg, are uniformly
distributed on(0,27) and the spectral amplitudes,, =
/' S(fn)/2L. The relation ofj to the solution of the nonlinear
Schibdinger equatiom(x, t) is given byn =

G
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(20)

1 - ik
—ZkRe{zue’ x}.

distance between two simple poiné§A ., A_) = |A; —A_]

equation [slas and SchobeR005 Schober2006. Briefly,
homoclinic solutions arise as an appropriate degeneration
of a finite gap solution, i.e. a&X4,A_) — 0 the resulting
double point is complex. Such a potential possesses no
linear unstable modes (simple points and real double points
are in general associated with neutrally stable modes),
although the solution is “close” in the spectral sense to an
unstable solution. Consequentbymeasures the proximity

in the spectral plane to complex double points and their

Nat. Hazards Earth Syst. Sci., 3932841
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Fig. 16. (a)Spectrum andb) evolution of Umay “near” to Fig. 17. (a) Spectrum and(b) evolution of Umax “far” from
homoclinic data. homoclinic data.

corresponding instabilities and can be used as a criterium for
predicting the strength and occurrence of rogue waksas(
and Schober2005.

We begin by determining the nonlinear spectrum o
JONSWAP initial data given by2Q) for combinations of
« =0.0080.0120.016,0.02, andy =1,2,4,6,8. For each
such pair ¢, ), fifty simulations were performed, each with
a different set of randomly generated phases. As expecte
the spectral configuration depends on the er?“%"d. the homoclinic data varies significantly and can be quite “near”
peakedness. prever, thg phase information is just 35S asin Fig.16a, or “far’ from homoclinic data as in Fid.7a.
important to the final determination of the spectrum. Typical . ] ) .
examples of the numerically computed nonlinear spectrum The most str_lklng f_eature is that irrespective of the values
for JONSWAP initial data ¥ = 4, « = 0.016) with two of ¢ andy, in simulations of the NLS equatiod@) extreme

different realizations of the random phases are shown invaves develop for JONSWAP initial data that is “near”
Figs. 16a and17a. Since the NLS spectrum is symmetric NLS homoclinic data, whereas the JONSWAP data that is

with respect to the real axis only the spectrum in the upper /& from NLS homoclinic data typically does not generate
half complexa.-plane is displayed. extreme waves. Figurd$h and17b show the corresponding

evolution of Umax (Umax = MaX.o,r1lu(x,?)|), obtained
with the NLS equation. Umax is given by the solid curve
and as a reference the threshold for a rogue wave, 2.2times

We find that JONSWAP data may correspond to “semi-
stable” solutions, i.e. JONSWAP data can be viewed as
¢ perturbations of N-phase solutions with one or more unstable
modes (compare Figl6a with Fig. 1a, the spectrum of
an unstable N-phase solution). In Figjga the splitting
distances(A4,A_) ~ 0.07, while in Fig.17a §(A4,A_) ~
.2. Thus, for fixede andy as the phases are randomly
aried, the spectral distanéef typical JONSWAP data from
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5.2 JONSWAP experiments with the NLS and HONLS

() equations
z The results of hundreds of simulations of the NLS and
2 A oo e ° | HONLS equations consistently show that proximity to
% ° . f o homoclinic data is a crucial indicator of rogue wave events.
% 8 o&e @ o e Figure 18 provides a synthesis of 250 random simulations
2sf © :ﬁmﬁ‘%z@@@@go o 0 1 of (a) the NLS equation and of (b—c) the HONLS equation
“ _ B 28,50 o @ (B=T =0) for e =0.025 ande = 0.05, respectively, using
I S S = | JONSWAP initial data for differenty, «) pairs withy =
°c0 8o oz&’goo o%go;ooo £ Fa 1,2,4,6,8 anda = 0.008 0.0120.016,0.02 and randomly
° generated phases. Our considerations are restricted to
o LTINS DISTANGE € 0 os semi-stable N-phase solutions near to unstable solutions
. ‘ of the NLS with one UM. Each circle represents the
(b) maximum strength, maxo,20;5(¢), attained in time during
one simulation, as a function of the splitting distance
s 7 8(A4+,2_). A horizontal line atUnmax/ Hs = 2.2 indicates the
E % o reference strength for rogue wave formation. We identify
E sk 2 g OO Lo ° 7 two critical valuess1(¢) andéz(¢) that clearly show that (i)
3 g@@o ° o o if § <&, (near homoclinic data) the likelihood of a rogue
2257 ° o 0wy 33?00230%%0 Je o o | wave is extremely high; (ii) i1 < § < 82, the likelihood of
o Zao%g B0 R 0 o ° . obtaining rogue waves decreasesidncreases and, (iii) if
28 oge? o%;ifg)@f‘; Ry - 8 > 8, the likelihood of a rogue wave occurring is extremely
2 %00 & f’o o§%goo 85 & @§%°o; small. . o
° o As o and y are varied the behavior is robust. The
15} o - maximum wave strength and the occurrence of rogue waves
SPLITTING DISTANCE  =0.025) ' are well predicted by the proximity to homoclinic solutions.
4 ‘ The individual plots of the strength vs. the splitting distance
’ (©) 8 for particular pairs ¥, «) are qualitatively the same
asl °5 i regardless of the pair chosen. Comparing Rifla—b we
. 6 ° o find that enhanced focusing and increased wave strength
2 0 58 % ° occur in the chaotic HONLS evolution as compared with the
5 °f o 0, oo | NLS evolution. Figurel8 shows that as the perturbation
% °q 800@0‘2 ° o %0 strengthe increases, the maximum wave strength and the
22.57(;3 Zooooé’g;o%@% §000%, | likelihood of rogue waves occuring in a given simulation
o® © 26050, O O s increases.
Nl ° ooooo g @ ° Oo g%)o ) o]
o % oooo8 g g%oo
oc® o 0 o ° o ®
© 5.3 JONSWAP experiments with the damped HONLS

0.2
SPLITTING DISTANCE (€ = 0.05)

Fig. 18. Maximum strength versus the splitting distad¢e, 1)
for (a) the NLS equation and the HONLS equation with)

€=0.025, andc) ¢ =0.05.

equations

In this section we show that, in the presence of damping, the
nonlinear spectrum and the proximity to homoclinic data is
likewise an important indicator of the maximum strength in
time and likelihood of rogue waves.

the the significant wave height,.2Hs, is given by the Figure 19 shows the maximum wave strength vs. the
dashed curve. Figurééb shows that when the nonlinear splitting distances§(r,A_) for 250 random simulations
spectrum is near homoclinic dat&max exceeds 2Hs (a of the damped HONLS equatior £ 0.05), with either
rogue wave develops at~ 40). Figurel7b shows that (a) linear dampings =0, I = 0.025, or with (b) nonlinear
when the nonlinear spectrum is far from homoclinic data,dampings =0.5,T" =0. As before, JONSWAP initial data
Umax is significantly below 2Hs and a rogue wave does was used for different)(, «) pairs with y =1,2,4,6,8

not develop. As a result we can correlate the occurrence oénd o = 0.0080.012 0.016,0.02 and randomly generated
rogue waves characterized by JONSWAP spectrum with theohases. Each circle represents the maximum strength
proximity to homoclinic solutions of the NLS equation. attained during one simulation,<0r < 20.
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Fig. 20. The damped HONLS equatior £ 0.05): (ggstrgf?edas a

function of " (circles) and: (boxes).

offset by a coalescence of the modes due to changes in the
focusing times. The overall decay #ior*“indicates that

for rogue waves to occur the JONSWAP initial data must lie
in a shrinking neighborhood of the homoclinic data. Thus
the proximity to instabilities and homoclinic data is more
essential for the development of rogue waves when damping
is present.

The observations from the nonlinear spectral diagnostic
complement the earlier results characterizing the nonlinear
damped evolution. In Sect. 4, the numerical simulations
start very close to homolinic data (for initial datd9f
the splitting distance is on the order of 1) an effective
rogue wave regime). The first pair of rogue waves were
not significantly altered by the damping. However after

In Fig. 19 it is evident that the strength and likelihood permanent downshifting occured any further rogue waves

of rogue waves occuring in a given simulation is typically were inhibited.

Here we are generalizing to JONSWAP

smaller when damping is present (compare to results of thenitial data which are not necessarily close to homoclinic

HONLS equation, Figl8c). A cutoff vaue ofs exists such
that rogue waves typically do not occurdf> Scyiori. We

data. We are monitoring the maximum strength in time as a
function of§ which is a separate issue from the total number

determinescutoft by requiring that 95% of the rogue waves of rogue waves in a given simulation.

occur fors < deutoff. FOr example, the cutoff values for the
linear (" =0.02) and nonlineare = 0.02) damped HONLS

damped

equation ared . «

Finally we remark that we recently examined rogue waves
and downshifting in the damped Dysthe equatidslag

~ 0.16,0.17, respectively, which are and Schober2010Q. While the Dysthe equation does

less than the cutoff value for the undamped HONLS equatiomot conserve momentum, we have obtained qualitatively

undamped._

where,cSCUItOff

~0.2. Significantly, this implies that when similar results. For the nonlinearly damped Dysthe equation,

damping is present the JONSWAP initial data must beirreversible downshifting also occurs for all values ,@,f
closer to homoclinic data and instabilities to obtain roguealthough on a slightly longer timescale. Rogue waves do not

waves.

Figure 20 shows sdamped

cutoff

as a function of the damping Similarly, §

occur in the time series after the downshifting is permanent.

gjt@f’?edgenerally decreases as the strength of the

parameterd” (circles) andef (boxes). For each of the ten damping increases suggesting the heightened importance of

values ofI" and ofeB, 0< T, €8 < 0.04, 250 simulations

proximity to homoclinic data when obtaining rogue waves in

of the damped HONLS equation were carried out. We findthe damped Dysthe regime.

damped .
cutoff

that §

is generally decreasing as the strength of the
damping increases. The cutoff valuesifior the nonlinearly

AcknowledgementsThis work was partially supported by NSF

damped case is not monotonically decreasing as atypicabrant # NSF-DMS0608693.
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