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Abstract. Recently Gramstad and Trulsen derived a
new higher order nonlinear Schrödinger (HONLS) equation
which is Hamiltonian (Gramstad and Trulsen, 2011). We
investigate the effects of dissipation on the development
of rogue waves and downshifting by adding an additonal
nonlinear damping term and a uniform linear damping
term to this new HONLS equation. We find irreversible
downshifting occurs when the nonlinear damping is the
dominant damping effect. In particular, when only nonlinear
damping is present, permanent downshifting occurs for all
values of the nonlinear damping parameterβ. Significantly,
rogue waves do not develop after the downshifting becomes
permanent. Thus in our experiments permanent downshifting
serves as an indicator that damping is sufficient to prevent
the further development of rogue waves. We examine the
generation of rogue waves in the presence of damping for
sea states characterized by JONSWAP spectrum. Using the
inverse spectral theory of the NLS equation, simulations of
the NLS and damped HONLS equations using JONSWAP
initial data consistently show that rogue wave events are well
predicted by proximity to homoclinic data, as measured by
the spectral splitting distanceδ. We defineδcutoff by requiring
that 95% of the rogue waves occur forδ < δcutoff. We find
thatδcutoff decreases as the strength of the damping increases,
indicating that for stronger damping the JONSWAP initial
data must be closer to homoclinic data for rogue waves to
occur. As a result when damping is present the proximity
to homoclinic data and instabilities is more crucial for the
development of rogue waves.

Correspondence to:C. M. Schober
(cschober@mail.ucf.edu)

1 Introduction

Some theoretical models attribute the development of
rogue waves in deep water to a nonlinear focusing of
uncorrelated waves in a very localized region of the
sea. This focusing may be related to the Benjamin-
Feir (BF) instability, described to leading order by the
nonlinear Schr̈odinger (NLS) equation (Henderson et al.,
1999; Kharif and Pelinovsky, 2001, 2004). Homoclinic
orbits of modulationally unstable solutions of the NLS
equation which undergo large amplitude excursions away
from their target solution exhibit many of the observed
properties of rogue waves and can be used to model rogue
waves (Osborne et al., 2000; Calini and Schober, 2002).

A more accurate description of the water wave dynamics
is obtained by retaining higher order terms in the asymptotic
expansion for the surface wave displacement. A commonly
used higher order NLS equation is the Dysthe equation
(Dysthe, 1979). Homoclinic orbits of the unstable Stokes
wave have been shown to be robust to the higher order
corrections in the Dysthe equation. Laboratory experiments
conducted in conjunction with numerical simulations of
the Dysthe equation established that the generic long-time
evolution of initial data near an unstable Stokes wave
with two or more unstable modes is chaotic (Ablowitz
et al., 2000, 2001). Subsequent studies of the Dysthe
equation showed that for a rather general class of such
initial data, the modulational instability leads to high
amplitude waves, structurally similar to the optimal phase
modulated homoclinic solutions of the NLS equation, rising
intermittently above a chaotic background (Calini and
Schober, 2002; Schober, 2006). These earlier studies relating
homoclinic solutions and rogue waves ignored the fact
that the Dysthe equation is not Hamiltonian and neglected
damping which, even when weak, can have a significant
effect on the wave dynamics.
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Recently Gramstad and Trulsen (2011) brought the Dysthe
equation into Hamiltonian form obtaining a new higher order
nonlinear Schr̈odinger (HONLS) equation (Gramstad and
Trulsen, 2011). In this paper we investigate the effects
of dissipation on the development of rogue waves and
downshifting in one space dimension by adding a nonlinear
damping term (theβ-term which damps the mean flowKato
and Oikawa, 1995) and a uniform linear damping term to this
new HONLS equation. The governing equations and their
properties are set up in Sect. 2.

Downshifting in the evolution of nearly uniform plane
waves was first observed byLake et al. (1977). Their
experiment showed that after the wavetrain becomes strongly
modulated, it recurs as a nearly uniform wavetrain with the
dominant frequency permanently downshifted. Permanent
downshifting has been confirmed in other laboratory
experiments on the evolution of the Stokes wave (Su,
1982; Huang et al., 1996). Conservative models have been
inadequate in describing permanent downshifting and several
damped models have been suggested, e.g. where the damping
is modeling wave breaking or eddy viscosity to capture
downshifting (Trulsen and Dysthe, 1990; Hara and Mei,
1991, 1994).

Our previous studies of rogue waves show that anε-
neighborhood of the unstable plane wave (the same regime
in which Lake examined downshifting) is effectively a rogue
wave regime for the Dysthe equation since the likelihood
of obtaining a rogue wave is extremely high. We re-
examine this issue in Sect. 3 using the new HONLS equation.
In Sect. 4, using initial data for an unstable modulated
wavetrain we examine whether irreversible downshifting
(although here downshifting of the wave number is
considered) occurs in our damped HONLS equation and
what characterizes the damped wave train evolution on a
short and long time scale.

We find that rogue waves may emerge in both the linear
and nonlinear damped regimes that were not present without
damping. Although damping decreases the growth rates
of the individual modes, the modes may coalesce due to
changes in their focusing times, thus resulting in larger waves
in the damped regime. Even so, on average, the strength
is smaller and fewer rogue waves occur when damping is
present. While downshifting is not expected in the linearly
damped case, we examine the effect of linear damping on
the development of rogue waves due to its widespread use in
modeling dissipative processes.

The nonlinearβ-term models damping of the mean
flow and since it is large only near the crest ofthe
envelope, the damping is localized when the wavetrain is
strongly modulated. Due to the BF instability, irreversible
downshifting occurs when the nonlinear damping is the
dominant damping effect. In particular, when only nonlinear
damping is present, permanent downshifting occurs for all
values of the nonlinear damping parameterβ, appearing
abruptly for larger values ofβ. Significantly, we find that

after permanent downshifting occurs, rogue waves do not
appear in the nonlinearly damped evolution. Thus in our
experiments permanent downshifting serves as an indicator
that there has been sufficient cumulative damping to inhibit
the further development of rogue waves.

Developing sea states, where nonlinear wave-wave
interactions continue to occur, are described by the Joint
North Sea Wave Project (JONSWAP) power spectrum. A
spectral quantity, the splitting distanceδ between simple
periodic points of the Floquet spectrum of the associated
AKNS spectral problem of the initial condition may be
used to measure the proximity in spectral space to unstable
waves and homoclinic data of the NLS equation. In (Islas
and Schober, 2005; Schober, 2006), simulations of both
the NLS and Dysthe equations using JONSWAP initial data
consistently show that rogue wave events are well predicted
by proximity to homoclinic data, as measured byδ.

In Sect. 5 we examine the generation of rogue waves
in the presence of damping for sea states characterized by
JONSWAP spectrum. Using the damped HONLS equation
we find that both the strength and likelihood of rogue waves
occuring in a given simulation are typically smaller when
damping is present. We defineδcutoff by requiring that 95%
of the rogue waves occur forδ < δcutoff. Significantly, we
find that δcutoff is generally decreasing as the strength of
the damping increases. Thus when damping is present the
JONSWAP initial data must be closer to instabilities and
homoclinic data for rogue waves to occur. The proximity to
homoclinic data and instabilities becomes more essential for
the development of rogue waves when damping is present.

2 Analytical background

2.1 A new damped higher order nonlinear Schr̈odinger
equation

The equations for inviscid deep water waves, as well as
the nonlinear Schrödinger (NLS) equation, can be derived
from a Lagrangian. Ideally, a higher order NLS equation
would retain this feature. The commonly used higher
order NLS equation (Dysthe, 1979), often referred to
as Dysthe’s equation, is not Hamiltonian and does not
conserve momentum. Recently, Gramstad and TRulsen
used the Zakharov equation enhanced with the Krasitskii
kernel (Krasitskii, 1994) to bring the Dysthe equation into
Hamiltonian form, obtaining a new higher order nonlinear
Schr̈odinger (HONLS) equation (Gramstad and Trulsen,
2011).

In order to examine rogue waves and downshifting in deep
water we consider the HONLS equation of Gramstad and
Trulsen with periodic boundary conditions,u(x,t) = u(x +

L,t), and add damping as follows:

Nat. Hazards Earth Syst. Sci., 11, 383–399, 2011 www.nat-hazards-earth-syst-sci.net/11/383/2011/
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iut + uxx +2|u|
2u+ i0u

+ iε

(
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uxxx −8|u|

2ux −2ui(1+ iβ)
[
H

(
|u|

2
)]

x

)
= 0, (1)

where H(f ) represents the Hilbert transform off .
Throughout this paper “HONLS equation” refers to (1) with
0 = 0 andβ = 0. The Hamiltonian for the HONLS equation
is given by

H =

∫ L

0

{
−i|ux |

2
+ i|u|

4
−

ε

4

(
uxu

∗
xx −u∗

xuxx

)
+ 2ε|u|

2(
u∗ux −uu∗

x

)
+ iε|u|

2
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H

(
|u|

2
)]

x

}
dx. (2)

Uniform linear damping occurs for0 > 0 andβ = 0 and has
been used extensively to study damping of wave trains with
comparisons to physcial wave-tank experiments (Segur et al.,
2005). Localized nonlinear damping of the mean flow occurs
for ε,β > 0 and0 = 0 and it was introduced to investigate
downshifting in deep water waves (Kato and Oikawa, 1995).

2.1.1 Energy, energy flux, and the spectral center

The mass or wave energy,E, and the momentum or total
energy flux,P , are defined by

E =

∫ L

0
|u|

2dx, and P = i

∫ L

0

(
u∗ux −uu∗

x

)
dx .

To show damping occurs for positiveβ or 0, one finds that
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= −2
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2
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2 in Fourier series,u =
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ûke
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2
+2εβ
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k|Bk|
2

]
. (3)

Thus the total energy is conserved for the HONLS equation
(0 = β = 0) and is dissipated if either0 or β is positive.

The total energy flux is related to the symmetry of the
Fourier modes sinceP can be written as

P = −2L

∞∑
k=1

k
(
|û−k|

2
−|ûk|

2
)

.

Since the evolution of the total energy flux is

dP

dt
= −2i

∫ L

0

(
u∗ux −uu∗

x

)(
0+2εβ

[
H

(
|u|

2
)]

x

)
dx ,

(4)

the momentum is conserved by the HONLS equation. In
contrast the momentum for the Dysthe equation exhibited
small oscillations in time (Islas and Schober, 2010).

Using the Fourier spectrum ofu(x,t), ûk, two different
choices of diagnostic frequencies can be used to measure
downshifting. On the one hand, the dominant mode or
spectral peak intuitively corresponds to thek for which |ûk|

achieves its maximum and is denoted askpeak. On the other
hand, Uchiyama and Kawahara defined the wave number for
the spectral center or mean frequency of the spectrum as
(Uchiyama and Kawahara, 1994):

km = −
1

2

P

E
. (5)

The wave train is understood to experience a permanent
frequency downshift when the spectral centerkm decreases
monotonically in “time” or there is a permanent downshift of
the spectral peakkpeak(Trulsen and Dysthe, 1997a).

Given that the energy and momentum are conserved by
the HONLS equation, the spectral center, which is given by
their ratio, is also conserved. In the linearly damped model,
0 > 0,β = 0, from Eqs. (3) and (4) it follows that the energy
and momentum have a simple time dependence:

E(t) = E(0)exp(−20t) (6)

P(t) = P(0)exp(−20t) . (7)

Thus the spectral centerkm is constant in time for the linearly
damped HONLS equation and downshifting will not occur.

2.1.2 Linear stability of the Stokes wave

The HONLS equation admits a uniform wave train solution,
the Stokes wave,

ua(x,t) = ae2ia2t . (8)

Fourier analysis shows that this plane wave solution is
unstable to sideband perturbations. When its amplitudea

is sufficiently large, for 0< πn/L < a, the solution of the
linearized NLS equation aboutua hasM linearly unstable
modes (UMs)ei(σnt+2πnx/L) with growth ratesσn given by

σ 2
n = µ2

n

(
µ2

n −4a2
)
, µn = 2πn/L , (9)

whereM is the largest integer satisfying 0< M < aL/π. We
refer to this as the M-unstable mode regime.

2.2 Integrable theory of the nonlinear Schr̈odinger
equation

In previous studies of sea states described by the JONSWAP
power spectrum we showed a nonlinear spectral decom-
position of the data provides relevant information on the
likelihood of rogue waves. Here we briefly review the
spectral theory of the nonlinear Schrödinger (NLS) equation,

iut +uxx +2|u|
2u = 0 . (10)
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The NLS equation is equivalent to the solvability condition
of the AKNS system, the pair of first-order linear systems
(Zakharov and Shabat, 1972):

L(x)φ = 0, L(t)φ = 0 , (11)

for a vector-valued functionφ. The operatorL(x) is given by

L(x)
=

(
∂x + iλ −u

u∗ ∂x − iλ

)
and depends onx and t through the potentialu and on the
spectral parameterλ.

The nonlinear spectral decomposition of an NLS initial
condition (or in general of an ensemble of JONSWAP
initial data) is based on the inverse spectral theory of the
NLS equation. For periodic boundary conditionsu(x +

L,t)= u(x,t), the Floquet spectrum associated with an NLS
potentialu (i.e. the spectrum of the linear operatorL(x) atu)
can be described in terms of the Floquet discriminant ofu,
defined as the trace of the transfer matrix of a fundamental
matrix solution8 of (11) over the interval [0,L] (Ablowitz
and Segur, 1981):

1(u;λ) = Trace
(
8(x,t;λ)−18(x +L,t;λ)

)
.

Then, the Floquet spectrum is defined as the region

σ(u) = {λ ∈ IC|1(u;λ) ∈ IR,−2≤ 1 ≤ 2}.

Points of the continuous spectrum ofu are those for which
the eigenvalues of the transfer matrix have unit modulus, and
therefore1(u;λ) is real and between 2 and−2; in particular,
the real line is part of the continuous spectrum. Points of
the L-periodic/antiperiodic discrete spectrum ofu are those
for which the eigenvalues of the transfer matrix are±1,
equivalently1(u;λ) = ±2. Points of the discrete spectrum
which are embedded in a continuous band of spectrum are
critical points for the Floquet discriminant (i.e., d1/dλ must
vanish at such points).

Since the transfer matrix only changes by conjugation
when we shift inx or t , 1 is independent of those variables.
An important consequence of this observation is that the
Floquet discriminant is invariant under the NLS flow, and
thus encodes an infinite family of constants of motion
(parametrized byλ).

The continuous part of Floquet spectrum of a generic NLS
potential consists of the real axis and of complex bands
terminating in simple pointsλs

j (at which 1 = ±2,1′
6=

0). The N-phase potentials are those characterized by a
finite number of bands of continuous spectrum (or a finite
number of simple points). Figure1a shows the spectrum of
a typical N-phase potential: complex critical points (usually
double points of the discrete spectrum for which1′

= 0 and
1′′

6= 0), such as the one appearing in the figure, are in
general associated with linear instabilities ofu and label its
homoclinic orbits (Ercolani et al., 1990).

(a)

for a vector-valued functionφ. The operatorL(x) is given by

L(x) =

(

∂x + iλ −u
u∗ ∂x− iλ

)

and depends onx andt through the potentialu and on the
spectral parameterλ.

The nonlinear spectral decomposition of an NLS initial
condition (or in general of an ensemble of JONSWAP initial
data) is based on the inverse spectral theory of the NLS equa-
tion. For periodic boundary conditionsu(x+L,t) = u(x,t),
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in terms of the Floquet discriminant ofu, defined as the trace
of the transfer matrix of a fundamental matrix solutionΦ of
(11) over the interval[0,L] (Ablowitz & Segur, 1981):

∆(u;λ)= Trace
(

Φ(x,t;λ)−1Φ(x+L,t;λ)
)

.

Then, the Floquet spectrum is defined as the region

σ(u)= {λ∈ IC|∆(u;λ)∈ IR,−2≤∆≤ 2}.

Points of the continuous spectrum ofu are those for which
the eigenvalues of the transfer matrix have unit modulus, and
therefore∆(u;λ) is real and between2 and−2; in particular,
the real line is part of the continuous spectrum. Points of the
L-periodic/antiperiodic discrete spectrum ofu are those for
which the eigenvalues of the transfer matrix are±1, equiva-
lently ∆(u;λ) =±2. Points of the discrete spectrum which
are embedded in a continuous band of spectrum are critical
points for the Floquet discriminant (i.e., d∆/dλ must vanish
at such points).

Since the transfer matrix only changes by conjugation
when we shift inx or t, ∆ is independent of those vari-
ables. An important consequence of this observation is that
the Floquet discriminant is invariant under the NLS flow,
and thus encodes an infinite family of constants of motion
(parametrized byλ).

The continuous part of Floquet spectrum of a generic NLS
potential consists of the real axis and of complex bands ter-
minating in simple pointsλs

j (at which∆=±2,∆′ 6= 0). The
N -phase potentials are those characterized by a finite number
of bands of continuous spectrum (or a finite number of sim-
ple points). Fig. 1a shows the spectrum of a typicalN -phase
potential: complex critical points (usually double pointsof
the discrete spectrum for which∆′ = 0 and∆” 6= 0), such
as the one appearing in the figure, are in general associated
with linear instabilities ofu and label its homoclinic orbits
(Ercolani et al., 1990).

As a concrete example consider the plane wave solution,
ua(x,t) = ae2ia2t, whose Floquet discriminant is given by
∆(a,λ)= 2cos(

√
a2 +λ2L). The resulting Floquet spectrum

(Fig. 1b) consists of the continuous bandsIR
⋃

[−ia,ia], and
a discrete part containing the simple periodic/antiperiodic

eigenvalues±ia, and the infinite sequence of double points

λ2
j = (jπ/L)

2−a2, j ∈Z. (12)

The number of imaginary double points, obtained for0≤ j <
aL/π, coincides with the number of unstable modes (eq. 9)
computed directly from the linearization. Each imaginary
double point “labels” the associated unstable mode (Calini
& Schober, 2002).

planeλ−

λ − plane

Fig. 1: Spectrum of a) a generic unstable N-phase solution
and b) the plane wave solution. The simple periodic eigen-
values are labeled by circles and the double points by crosses.

3 Rogue waves in the NLS and HONLS equations

3.1 Homoclinic solutions of the NLS equation as models
for rogue waves

The NLS equation admits modulationally unstable periodic
solutions with homoclinic orbits that can undergo large am-
plitude excursions away from their target solution. Such ho-
moclinic orbits can be used to model rogue waves. An exam-
ple is provided by the unstable plane wave solutionua(x,t)=

ae2ia2t where the number of unstable modes (UMs) is pro-
vided by eq. (9). For each UM there is a correspond-
ing homoclinic orbit. A global representation of the homo-
clinic orbits can be obtained by exponentiating the linear in-
stabilities via Bäcklund transformations (Matveev & Salle,
1991; McLaughlin & Schober, 1992). Moreover, for NLS
potentials with several UMs, iterated Bäcklund transforma-
tions will generate their entire stable and unstable manifolds,
comprised of homoclinic orbits of increasing dimension up
to the dimension of the invariant manifolds. Such higher-
dimensional homoclinic orbits are also known as combina-
tion homoclinic orbits.
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As a concrete example consider the plane wave solution,
ua(x,t) = ae2ia2t , whose Floquet discriminant is given by
1(a,λ) = 2cos(

√
a2+λ2L). The resulting Floquet spectrum

(Fig. 1b) consists of the continuous bands IR
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computed directly from the linearization. Each imaginary
double point “labels” the associated unstable mode (Calini
and Schober, 2002).

3 Rogue waves in the NLS and HONLS equations

3.1 Homoclinic solutions of the NLS equation as models
for rogue waves

The NLS equation admits modulationally unstable periodic
solutions with homoclinic orbits that can undergo large
amplitude excursions away from their target solution. Such
homoclinic orbits can be used to model rogue waves. An
example is provided by the unstable plane wave solution
ua(x,t) = ae2ia2t where the number of unstable modes
(UMs) is provided by Eq. (9). For each UM there is a
corresponding homoclinic orbit. A global representation of
the homoclinic orbits can be obtained by exponentiating the
linear instabilities via B̈acklund transformations (Matveev
and Salle, 1991; McLaughlin and Schober, 1992). Moreover,
for NLS potentials with several UMs, iterated Bäcklund
transformations will generate their entire stable and unstable
manifolds, comprised of homoclinic orbits of increasing
dimension up to the dimension of the invariant manifolds.
Such higher-dimensional homoclinic orbits are also known
as combination homoclinic orbits.
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Fig. 2. Amplitude plot of a homoclinic orbit of the Stokes wave
with a = 0.5, L = 2

√
2π .

3.1.1 One unstable mode rogue wave solutions

A single (i.e. lowest dimensional) homoclinic orbit of the
plane wave potential is given by

u(x,t)= ae−2ia2t 1+2cos(px)eσnt+2iφ+ρ
+Ae2σnt+4iφ+2ρ

1+2cos(px)eσ1t+ρ +Ae2σnt+2ρ

(13)

whereA = 1/cos2φ, σn = ±p
√

4a2−p2, φ = sin−1(p/2a),
andp = µn = 2πn/L < a for some integern. Each UM has
an associated homoclinic orbit characterized by modep =

µn.

Figure 2 shows the space-time plot of the amplitude
|u(x,t)| of a homoclinic orbit with one UM, fora = 0.5,
L = 2

√
2π andp = 2π/L. As t → ±∞, solution (13) limits

to the plane wave potential; in fact, the plane wave behavior
dominates the dynamics of the homoclinic solution for most
of its lifetime. As t approachest0 = 0, nonlinear focusing
occurs due to the BF instability and the solution rises to
a maximum height of 2.4a. Thus, the homoclinic solution
with one UM can be regarded as the simplest model of rogue
wave.

An almost equally dramatic wave trough occurs close to
the crest of the rogue wave as a result of wave compression
due to wave dislocation. The amplitude amplification factor
is given by

Af =
maxx∈[0,L],t∈IR|u(x,t)|

limt→±∞ |u(x,t)|
≈ 2.4 . (14)

3.1.2 Phase modulated rogue waves

As the number of UMs increases, the space-time structure of
the homoclinic solutions becomes more complex. When two
or more UMs are present the initial wave train can be phase
modulated to produce additional focusing.

The family of homoclinic orbits of the plane wave
potential with two UMs is given by an expression of the form

u(x,t) = ae2ia2t g(x,t)

f (x,t)
, (15)

where the expression forf (x,t) andg(x,t) depend on the
two spatial modes cos(2nπx/L), cos(2mπx/L), and on
temporal exponential factors exp(σnt +ρn), exp(σmt +ρm),

with growth ratesσl = µl

√
µ2

l −4a2, µl = 2πl/L. (The
complete formulas can be found inCalini et al., 1996; Calini
and Schober, 2002.)

As in the one-UM case, this combination homoclinic
orbit decays to the plane wave potential ast → ±∞,
and the associated rogue wave remains hidden beneath
the background plane wave for most of its lifetime. The
temporal separation of the two spatial modes depends upon a
parameterρ related to the differenceρn−ρm in the temporal
phases (Calini et al., 1996; Calini and Schober, 2002).

In turn, ρ affects the amplitude amplification factor.
Figure 3a–b shows the combination homoclinic orbit (15)
obtained with all parameters set equal except forρ. In
Fig. 3a, ρ = .1, the modes are well separated, and the
amplitude amplification factor is roughly three. In Fig.3b,
the value ofρ is approximately−0.65, corresponding to the
two UMs being simultaneously excited or coalesced. For this
value ofρ the amplitude amplification factor is maximal and
the rogue wave rises to a height of 4.1 times the height of the
carrier wave. The surface plot of|u(x,t)| has been rotated in
Fig. 3b to facilitate comparison with Fig.4a.

Figure 3a shows focusing due to only weak amplitude
modulation of the initial wave train; the growth in amplitude
beginning att ≈ 10 and att ≈ 25 is due to the BF instability.
However, in Fig.3b focusing due to both amplitude and
phase modulation occurs. The amplitude growth att ≈ 10
is due to the BF instability, while the additional very rapid
focusing att ≈ 18.4 is due to the phase modulation. In
general it is possible to select the phases in a combination
homoclinic orbit withN spatial modes so that any numbern

(2≤ n ≤ N ) of modes coalesce at some fixed time.

3.2 Rogue waves in the higher order NLS equation

In this section we examine the robustness of homoclinic
solutions of the NLS equation, as well as frequency
downshifting, when higher order terms are included in
the wave dynamics. The HONLS equation (1) is solved
numerically using a smoothed exponential time differencing
integrator. The details of the method are provided in Sect. 4
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Fig. 3. Amplitude plots of the combination homoclinic orbit:(a)
the phases are selected to produce well separated spatial modes;(b)
shows a coalesced homoclinic orbit.

and in references (Cox and Matthews, 2002; Khaliq et al.,
2009). As expected, we find permanent downshifting does
not occur in the HONLS equation. We find that the chaotic
background increases the likelihood and amplitude of rogue
waves as compared to predictions obtained with the NLS
equation.

We choose initial data that are small perturbations of the
unstable plane wave potential,

u(x,0) = a(1+0.1cosµx), (16)

where the amplitudea is varied to be in the two or three
unstable mode regime withµ = 2π/L and L = 4

√
2π .

Figure 4a illustrates a prominent rogue wave solution of
Eq. (1), ε = 0.05,β = 0 = 0 for initial data (16) in the two-
UM regime with a = 0.5, 456< t < 461. The solution
rapidly becomes chaotic (aroundt = 27) with rogue waves
emerging intermittently afterwards. For example, att ≈

−5
0

5

243

244

245

246
0

1

2

3

4

Fig. 4. Rogue waves solutions for the HONLS equation (ε = .05,
0 = β = 0) when(a) two and(b) three unstable modes are present.

459 a rogue wave rises with a maximum wave amplitude
Umax ≈ 2.15. Comparing Fig.4a with Fig. 3b one finds
that the structure of this rogue wave is similar to that of
the combination homoclinic solution (15) with coalesced
spatial modes obtained whenρ = −0.65, although the wave
amplification factor is slightly smaller. The symmetry
breaking effects of the higher order terms in the HONLS
equation prevent a complete spatial coalescence of the
nonlinear modes.

Numerical simulations of the HONLS equation in the
three-UM regime, e.g. initial condition (16) with a = 0.7,
show a similar phenomenon: after the onset of chaotic
dynamics, rogue waves rise intermittently above the chaotic
background (see Fig.4b). At t ≈ 245 a rogue wave develops,
Umax ≈ 3.59, which is close to the coalesced homoclinic
solution of the NLS equation in the three-UM regime.

Extensive numerical experiments were performed for the
HONLS equation in the two- and three-UM regime, varying
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the perturbation strengthε, the amplitudea and adding in
some random phasesφi ’s in the initial data. In all cases, the
coalesced homoclinic NLS solution emerges generically as a
structurally stable feature of the perturbed dynamics.

The occurence of rogue wave in the HONLS equation
is distinct from their occurence in the NLS or the damped
HONLS equations. In the HONLS equation, rogue waves
will occur intermittently throughout very long time series. In
the NLS equation they occur only once or twice, depnding
on whether the modes are coalesced or not. In the damped
HONLS, they occur irregularly over a short time period but
eventually are damped out.

The chaotic regime produces additional focusing by
effectively selecting optimal phase modulations and the
chaotic dynamics singles out the maximally coalesced
homoclinic solutions of the unperturbed NLS equation as
physically observable rogue waves. Moreover, the likelihood
of larger amplitude waves (see e.g. Fig.4) increases for
the HONLS equation, as substantiated by the diagnostics
developed in Sect.5, correlating wave strengths in the NLS
and HONLS models to proximity to homoclinic data. Thus,
for initial data in the neighborhood of an unstable plane wave
the underlying chaotic dynamics of the HONLS equation
favors the occurrence of large amplitude rogue waves, as
compared to predictions obtained from the NLS equation.

To investigate downshifting we varied the perturbation
strengthε in the HONLS equation and the parameters in the
initial data in the two- and three-UM regime. Typical results
obtained with the HONLS equation (1) are shown in Fig.5
for initial data

u(x,0) = 0.7(1+0.1(cosµx +0.2(cos2µ(x −L/4)

+ 0.38cos3µ(x −L/3)))), (17)

with L = 4
√

2π andε = 0.05.
Figure 5a shows the time evolution of the strength of

u(x,t),

S(t) =
Umax(t)

Hs(t)
, (18)

whereUmax(t) = maxx∈[0,L]|u(x,t)| andHs(t) is the signifi-
cant wave height, defined as 4 times the standard deviation
of the surface elevation. Rogue waves occur throughout
the time series whenever the strength exceeds the threshold
criteria of 2.2. Figure5b shows the time evolution of the
main Fourier modes|Ak(t)| for k = 0, ±1,...,±4. During
each of the modulation stages the zeroth mode loses energy
as the upper and lower higher harmonics become excited.
For 0< t < 200 the total energy and the total energy flux are
constant. This allows the energy to flow back to the zeroth
mode keeping the spectral centerkm constant (Fig.5c). The
plot of kpeak (Fig. 5d) confirms that permanent frequency
downshifting does not occur. As expected, even when steeper
waves are obtained, permanent frequency downshifting does
not occur in the HONLS numerical experiments, indicating
the necessity of a dissipative or nonconservative process.

the NLS equation they occur only once or twice, depnding
on whether the modes are coalesced or not. In the damped
HONLS, they occur irregularly over a short time period but
eventually are damped out.

The chaotic regime produces additional focusing by effec-
tively selecting optimal phase modulations and the chaotic
dynamics singles out the maximally coalesced homoclinic
solutions of the unperturbed NLS equation as physically ob-
servable rogue waves. Moreover, the likelihood of larger am-
plitude waves (see e. g. Fig. 4) increases for the HONLS
equation, as substantiated by the diagnostics developed in
section 5, correlating wave strengths in the NLS and HONLS
models to proximity to homoclinic data. Thus, for initial data
in the neighborhood of an unstable plane wave the under-
lying chaotic dynamics of the HONLS equation favors the
occurrence of large amplitude rogue waves, as compared to
predictions obtained from the NLS equation.

To investigate downshifting we varied the perturbation
strengthǫ in the HONLS equation and the parameters in the
initial data in the two- and three-UM regime. Typical results
obtained with the HONLS equation (1) are shown in Fig. 5
for initial data

u(x,0) = 0.7(1+0.1(cosµx+0.2(cos2µ(x−L/4)

+0.38cos3µ(x−L/3)))), (17)

with L = 4
√

2π andǫ = 0.05.
Figure 5a shows the time evolution of the strength of

u(x,t),

S(t)=
Umax(t)

Hs(t)
, (18)

whereUmax(t)= maxx∈[0,L]|u(x,t)| andHs(t) is the signif-
icant wave height, defined as 4 times the standard deviation of
the surface elevation. Rogue waves occur throughout the time
series whenever the strength exceeds the threshold criteria of
2.2. Figure 5b shows the time evolution of the main Fourier
modes|Ak(t)| for k = 0,±1,...,±4. During each of the mod-
ulation stages the zeroth mode loses energy as the upper and
lower higher harmonics become excited. For0< t < 200 the
total energy and the total energy flux are constant. This al-
lows the energy to flow back to the zeroth mode keeping
the spectral centerkm constant (Fig. 5c). The plot ofkpeak

(Fig. 5d) confirms that permanent frequency downshifting
does not occur. As expected, even when steeper waves are
obtained, permanent frequency downshifting does not occur
in the HONLS numerical experiments, indicating the neces-
sity of a dissipative or nonconservative process.

4 Rogue waves and downshifting in the presence of
damping

In the last section we saw that anǫ-neighborhood of the un-
stable plane wave with two or more UMS is effectively a
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Fig. 5: The HONLS eq.,Γ = 0, ǫ = 0.05, β = 0: time evolu-
tion of (a) the strengthS(t), (b) the main Fourier mode, (c)
the spectral centerkm, and (d) the spectral peakkpeak.

Fig. 5. The HONLS equation,0 = 0, ε = 0.05, β = 0: time
evolution of (a) the strengthS(t), (b) the main Fourier mode,(c)
the spectral centerkm, and(d) the spectral peakkpeak.
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4 Rogue waves and downshifting in the presence
of damping

In the last section we saw that anε-neighborhood of the
unstable plane wave with two or more UMS is effectively
a rogue wave regime for the HONLS equation as the
probability of obtaining a rogue wave is high. In the
numerical experiments we choose initial data that are small
perturbations of an unstable plane wave to study the effects
of linear and nonlinear damping on the development of rogue
waves and downshifting. We consider the damped HONLS
equation in non-dimensional form with the damping terms
on the same order or smaller than the higher order NLS
terms. Consequently we vary the damping coefficients to be
0 < εβ, 0 < O(ε), whereε is the coefficient of the higher
order NLS terms.

In the numerical experiments Eq. (1) is solved using
a smoothing fourth-order exponential time differencing
integrator (Cox and Matthews, 2002; Khaliq et al., 2009) that
avoids inaccuracies when inverting matrix polynomials by
using Pade approximations. We useN = 256 Fourier modes
in space and a fourth-order Runge-Kutta discretization
in time (1t = 10−3). The high frequency modes were
eliminated at every time step to avoid aliasing by settingûk =

0 for |k| > 120. Eliminating the high frequencies does not
have a significant effect on the exchange of energy between
the dominant low wave number modes and thus does not
impact our results related to frequency downshifting and
rogue waves.

This temporal and spatial resolution allows for the three
integral invariants of the conservative HONLS equation,E,
P , andH, to be conserved with an accuracy ofO(10−8),
O(10−2), O(10−2), respectively. The nonlinear mode
content of the data is numerically computed using the direct
spectral transform described above, i.e. the system of ODEs
(11) is numerically solved to obtain the discriminant1. The
zeros of1±2 are then determined with a root solver based
on Muller’s method (Ercolani et al., 1990). The spectrum
is computed with an accuracy ofO(10−6), whereas the
spectral quantities we are interested in range fromO(10−3)

toO(10−1).

4.1 The HONLS equation with linear damping

We begin by examining the evolution of damped uniform
wavetrains with initially one to three pairs of sidebands
excited. It is important to note in comparisons of the
damped and undamped dynamics that atypical cases may
arise. Figure6a–b shows the strength of the wavetrain
(solid line) andUmax (dashed line) for the undamped and
linearly damped (0 = 0.005) HONLS equation (ε = 0.05),
respectively, for initial data (16) in the two-UM regime:
a = 0.5, µ = 2π/L andL = 4

√
2π . Contrary to what one

might expect, Fig.6b shows a rogue wave occuring att ≈ 23
in the damped case with an enhanced strength≈ 2.8 that

rogue wave regime for the HONLS equation as the probabil-
ity of obtaining a rogue wave is high. In the numerical experi-
ments we choose initial data that are small perturbations ofan
unstable plane wave to study the effects of linear and nonlin-
ear damping on the development of rogue waves and down-
shifting. We consider the damped HONLS equation in non-
dimensional form with the damping terms on the same order
or smaller than the higher order NLS terms. Consequently we
vary the damping coefficients to be0 < ǫβ, Γ < O(ǫ), where
ǫ is the coefficient of the higher order NLS terms.

In the numerical experiments equation (1) is solved using
a smoothing fourth-order exponential time differencing in-
tegrator (Cox & Matthews, 2002; Khaliq et al., 2009) that
avoids inaccuracies when inverting matrix polynomials by
using Pade approximations. We useN = 256 Fourier modes
in space and a fourth-order Runge-Kutta discretization in
time (∆t = 10−3). The high frequency modes were elimi-
nated at every time step to avoid aliasing by settingûk = 0
for |k|> 120. Eliminating the high frequencies does not have
a significant effect on the exchange of energy between the
dominant low wave number modes and thus does not im-
pact our results related to frequency downshifting and rogue
waves.

This temporal and spatial resolution allows for the three
integral invariants of the conservative HONLS equation,E,
P , andH , to be conserved with an accuracy ofO(10−8),
O(10−2), O(10−2), respectively. The nonlinear mode con-
tent of the data is numerically computed using the direct spec-
tral transform described above, i.e. the system of ODEs (11)
is numerically solved to obtain the discriminant∆. The ze-
ros of ∆± 2 are then determined with a root solver based
on Muller’s method (Ercolani et al., 1990). The spectrum is
computed with an accuracy ofO(10−6), whereas the spec-
tral quantities we are interested in range fromO(10−3) to
O(10−1).

4.1 The HONLS Equation with Linear Damping

We begin by examining the evolution of damped uniform
wavetrains with initially one to three pairs of sidebands ex-
cited. It is important to note in comparisons of the damped
and undamped dynamics that atypical cases may arise. Fig-
ures 6a-b show the strength of the wavetrain (solid line) and
Umax (dashed line) for the undamped and linearly damped
(Γ = 0.005) HONLS equation (ǫ = 0.05), respectively, for
initial data (16) in the two-UM regime:a = 0.5, µ = 2π/L
andL = 4

√
2π. Contrary to what one might expect, Fig. 6b

shows a rogue wave occuring att≈ 23 in the damped case
with an enhanced strength≈ 2.8 that was not present in the
undamped evolution (Fig. 6a). This typically occurs for small
values ofΓ or β where the smaller growth rates of the indi-
vidual modes due to damping can be offset by a coalescence
of the modes due to changes in their focusing times.
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Fig. 6: StrengthS(t) (solid line) andUmax (dashed line) for
(a) HONLS Equationǫ = 0.05; (b) HONLS Equation with
Linear Damping,ǫ = 0.05, Γ = 0.006, for IC u0 = 0.5(1+
0.1cosµx).

We examined the HONLS equation with linear damping
for 0.005≤Γ≤ 0.05. Although individual simulations may
yield larger amplification factors in the damped regime, we
find that on average, in the presence of linear damping (see
sec. 5.2 for confirmation with the nonlinear spectral diag-
nostics), the strength is smaller and fewer rogue waves oc-
cur. Figure 7 shows the results obtained with equation (1)
for ǫ = 0.05, Γ = 0.01, β = 0 for initial condition (17) for
0 < t < 200. In the linearly damped evolution, Figs. 7a, the
last rogue wave occurs att≈ 10; in contrast, in Fig. 5a rogue
waves occur throughout the unperturbed HONLS time se-
ries. The total energy exponentially decays (eq. 6) and the
Fourier modes are uniformly damped. The total energy flux
is constant, keeping the spectral centerkm zero. Permanent
downshifting does not occur for the linearly damped HONLS
equation.

Fig. 6. StrengthS(t) (solid line) andUmax (dashed line) for
(a) HONLS equationε = 0.05; (b) HONLS equation with linear
damping,ε = 0.05,0 = 0.006, for ICu0 = 0.5(1+0.1cosµx).

was not present in the undamped evolution (Fig.6a). This
typically occurs for small values of0 or β where the smaller
growth rates of the individual modes due to damping can be
offset by a coalescence of the modes due to changes in their
focusing times.

We examined the HONLS equation with linear damping
for 0.005≤ 0 ≤ 0.05. Although individual simulations may
yield larger amplification factors in the damped regime, we
find that on average, in the presence of linear damping
(see Sect. 5.2 for confirmation with the nonlinear spectral
diagnostics), the strength is smaller and fewer rogue waves
occur. Figure7 shows the results obtained with Eq. (1)
for ε = 0.05, 0 = 0.01, β = 0 for initial condition (17) for
0< t < 200. In the linearly damped evolution, Fig.7a, the
last rogue wave occurs att ≈ 10; in contrast, in Fig.5a
rogue waves occur throughout the unperturbed HONLS time
series. The total energy exponentially decays (Eq.6) and the
Fourier modes are uniformly damped. The total energy flux
is constant, keeping the spectral centerkm zero. Permanent
downshifting does not occur for the linearly damped HONLS
equation.
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Fig. 7: The HONLS eq. with linear damping:Γ = 0.01, ǫ =
0.05, β = 0. The time evolution of (a) the strengthS(t) (b)
the main Fourier modes,0 < t < 200.

4.2 The HONLS Equation with Nonlinear Damping
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Fig. 8: Spatial distribution of|u(x,t∗)| (solid line) and of the
β-term (dashed line) att∗ = 22.7 for initial condition (16),
for ǫ = 0.05, β = 0.1, Γ = 0.

The perturbation of the Hilbert tranform term in equation
(1),βu[H

(

|u|2
)

]x. is referred to as the “β-term” and models
nonlinear damping of the mean flow. Figure (8) shows the
spatial distribution of|u(x,t∗)| (solid line) and of theβ-term

(dashed line ) of the nonlinearly damped HONLS equation
for ǫ = 0.05, β = 0.1, Γ = 0, for initial condition (16). At
t = 22.7 the wavetrain is strongly modulated and we find that
theβ-term is significant only near the maximum crest of the
envelope. In general, steeper waves result in stronger damp-
ing and the effects of the nonlinearβ-term are concentrated
in space-time when the wavetrain is strongly modulated.

To illustrate the effects of nonlinear damping on down-
shifting we consider the solution of equation (1) withǫ =
0.05, β = 0.5 andΓ = 0, for initial data (17),0 < t < 50. Figs.
9(a-b) show the surface amplitude|u(x,t)| and the time evo-
lution of the strength, respectively. Two rogue waves occur
early in the time series,t < 10, before damping has a chance
to significantly alter the growth rate of the modes and pre-
vent further rogue waves from forming. Comparing Fig. 9b
and Fig. 9c, the onset of downshifting occurs when the first
rogue wave appears at approximatelyt≈ 6 when theβ-term
is large. This produces an abrupt rapid decay in the energy
(Fig. 9d) and growth in the flux (Fig. 9e), resulting in a
rapid shift in the spectral centerkm (Fig. 9f). The downshift-
ing becomes irreversible aftert≈ 17 when the wavetrain is
demodulated and the lower modesk =−1,−4 become dom-
inant. In the demodulation stage theβ-term is small so that
the energy and flux change at a much slower rate. Thuskm

remains negative and does not upshift back.
Permanent downshifting is obtained for all values ofβ.

As an example consider the solution of equation (1) with
ǫ = 0.05, β = 0.04, Γ = 0 for initial data (17),0 < t < 200.
For smallβ there is a slow gradual decay in the total en-
ergy and flux rather than the abrupt rapid decay obtained for
largerβ. As a result the last rogue wave appears att≈ 51 (
Fig. 10a), much later than forβ = 0.5. The plot of the evolu-
tion of the main Fourier modes (Fig. 10b) shows permanent
downshifting occurs att≈ 65. Figure 11, which shows the
evolution ofkpeak for the nonlinearly damped HONLS equa-
tion (ǫ = 0.05, Γ = 0) with β = 0.04 or β = 0.5, provides an
alternate view of permanent downshifting forβ 6= 0 and its
occurence at later times for smaller values ofβ.

When both linear and nonlinear damping are present and
the nonlinear damping is dominant, the mechanism for per-
manent downshifting is the same. Fig. (12) shows the so-
lution of equation (1) withǫ = 0.05, β = 0.5, Γ = 0.005 for
initial data (17),0 < t < 50. Comparing to Fig. (9), the rogue
waves occur at approximately the same time with slightly
smaller amplitudes. An abrupt rapid decay in the energy and
growth in the flux occurs as before leading to a rapid shift in
the spectral centerkm.

Characterization of the nonlinearly damped evolution:
To characterize the effects of nonlinear damping on rogue
waves we fixǫ = 0.05 andΓ =0 in equation (1) and vary the
nonlinear damping coefficient,0 < β < 0.75, as well as the
amplitude of the initial data in the three-UM regime:

u(x,0)= a(1+0.01cosµx), (19)

Fig. 7. The HONLS eq. with linear damping:0 = 0.01, ε = 0.05,
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(dashed line) of the nonlinearly damped HONLS equation
for ε = 0.05, β = 0.1, 0 = 0, for initial condition (16).
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a chance to significantly alter the growth rate of the modes
and prevent further rogue waves from forming. Comparing
Fig. 9b and9c, the onset of downshifting occurs when the
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t = 22.7 the wavetrain is strongly modulated and we find that
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alternate view of permanent downshifting forβ 6= 0 and its
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the nonlinear damping is dominant, the mechanism for per-
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lution of equation (1) withǫ = 0.05, β = 0.5, Γ = 0.005 for
initial data (17),0 < t < 50. Comparing to Fig. (9), the rogue
waves occur at approximately the same time with slightly
smaller amplitudes. An abrupt rapid decay in the energy and
growth in the flux occurs as before leading to a rapid shift in
the spectral centerkm.

Characterization of the nonlinearly damped evolution:
To characterize the effects of nonlinear damping on rogue
waves we fixǫ = 0.05 andΓ =0 in equation (1) and vary the
nonlinear damping coefficient,0 < β < 0.75, as well as the
amplitude of the initial data in the three-UM regime:
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Fig. 8. Spatial distribution of|u(x,t∗)| (solid line) and of theβ-term
(dashed line) att∗ = 22.7 for initial condition (16), for ε = 0.05,
β = 0.1, 0 = 0.

term is large. This produces an abrupt rapid decay in the
energy (Fig.9d) and growth in the flux (Fig.9e), resulting
in a rapid shift in the spectral centerkm (Fig. 9f). The
downshifting becomes irreversible aftert ≈ 17 when the
wavetrain is demodulated and the lower modesk = −1,−4
become dominant. In the demodulation stage theβ-term is
small so that the energy and flux change at a much slower
rate. Thuskm remains negative and does not upshift back.

Permanent downshifting is obtained for all values ofβ. As
an example consider the solution of Eq. (1) with ε = 0.05,
β = 0.04, 0 = 0 for initial data (17), 0< t < 200. For small
β there is a slow gradual decay in the total energy and flux
rather than the abrupt rapid decay obtained for largerβ. As a
result the last rogue wave appears att ≈ 51 (Fig.10a), much
later than forβ = 0.5. The plot of the evolution of the main
Fourier modes (Fig.10b) shows permanent downshifting
occurs att ≈ 65. Figure11, which shows the evolution of
kpeakfor the nonlinearly damped HONLS equation (ε = 0.05,
0 = 0) with β = 0.04 orβ = 0.5, provides an alternate view
of permanent downshifting forβ 6= 0 and its occurence at
later times for smaller values ofβ.

When both linear and nonlinear damping are present
and the nonlinear damping is dominant, the mechanism for
permanent downshifting is the same. Figure12 shows the
solution of Eq.1 with ε = 0.05,β = 0.5,0 = 0.005 for initial
data (17), 0< t < 50. Comparing to Fig.9, the rogue waves
occur at approximately the same time with slightly smaller
amplitudes. An abrupt rapid decay in the energy and growth
in the flux occurs as before leading to a rapid shift in the
spectral centerkm.

Characterization of the nonlinearly damped evolution

To characterize the effects of nonlinear damping on rogue
waves we fixε = 0.05 and0 = 0 in Eq. (1) and vary the
nonlinear damping coefficient, 0< β < 0.75, as well as the
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Fig. 9: a-d Nonlinearly damped HONLS eq.ǫ = 0.05, β =
0.5, Γ = 0: a) Surface amplitude|u(x,t)|, and the time evo-
lution of (b) the strengthS(t), (c) the main Fourier modes,
(d) the total energy, for initial data (17).
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Fig. 9: e-f Nonlinearly damped HONLS eq.ǫ = 0.05, β =
0.5, Γ = 0: the time evolution of (e) the total energy flux, and
(f) the spectral centerkm for initial data (17).

with 0.57 < a < 0.67, µ = 2π/L, L = 4
√

2π. Figure 13
shows, as a function ofβ: a) the final value of the spectral
centerkm, b) the maximum strength maxt∈[0,200]S(t), c) the
number of rogue waves obtained for0 < t < 200, and d) the
time of the last rogue wave. The solid curve represents the
averages over the initial data. In the numerical experiments
we observe the following:

1. The spectral centerkm(t) is a decreasing function oft
for all β > 0. Figure 13a is not showing the time evo-
lution of km, (see e.g. Fig. 9f for a typical example),
but rather the final value ofkm at t = 200, where smaller
values mean a downshift to a lower mode. Thus, per-
manent downshifting is observed for allβ > 0 with the
onset occuring rapidly for larger values ofβ.

2. Figures 13b-c show that for small values ofβ the aver-
age maximum strength in time and average number of
rogue waves exhibit irregular behavior. We may obtain
more or larger rogue waves in the damped regime than
without damping for this time frame due to changes in
the focusing time and coalescence of the modes. How-
ever for largeβ, the maximum strength in time and num-
ber of rogue waves are, in general, decreasing.
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(d) the total energy, for initial data (17).
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0.5, Γ = 0: the time evolution of (e) the total energy flux, and
(f) the spectral centerkm for initial data (17).
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0.5, Γ = 0: the time evolution of (e) the total energy flux, and
(f) the spectral centerkm for initial data (17).
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(d) the total energy, for initial data (17).
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Fig. 9: e-f Nonlinearly damped HONLS eq.ǫ = 0.05, β =
0.5, Γ = 0: the time evolution of (e) the total energy flux, and
(f) the spectral centerkm for initial data (17).
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for all β > 0. Figure 13a is not showing the time evo-
lution of km, (see e.g. Fig. 9f for a typical example),
but rather the final value ofkm at t = 200, where smaller
values mean a downshift to a lower mode. Thus, per-
manent downshifting is observed for allβ > 0 with the
onset occuring rapidly for larger values ofβ.

2. Figures 13b-c show that for small values ofβ the aver-
age maximum strength in time and average number of
rogue waves exhibit irregular behavior. We may obtain
more or larger rogue waves in the damped regime than
without damping for this time frame due to changes in
the focusing time and coalescence of the modes. How-
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Fig. 9. Nonlinearly damped HONLS equationε = 0.05, β = 0.5,
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and(f) the spectral centerkm for initial data (17).
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lution of (b) the strengthS(t), (c) the main Fourier modes,
(d) the total energy, for initial data (17).
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Fig. 9: e-f Nonlinearly damped HONLS eq.ǫ = 0.05, β =
0.5, Γ = 0: the time evolution of (e) the total energy flux, and
(f) the spectral centerkm for initial data (17).
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1. The spectral centerkm(t) is a decreasing function oft
for all β > 0. Figure 13a is not showing the time evo-
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but rather the final value ofkm at t = 200, where smaller
values mean a downshift to a lower mode. Thus, per-
manent downshifting is observed for allβ > 0 with the
onset occuring rapidly for larger values ofβ.
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age maximum strength in time and average number of
rogue waves exhibit irregular behavior. We may obtain
more or larger rogue waves in the damped regime than
without damping for this time frame due to changes in
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ever for largeβ, the maximum strength in time and num-
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Fig. 9: e-f Nonlinearly damped HONLS eq.ǫ = 0.05, β =
0.5, Γ = 0: the time evolution of (e) the total energy flux, and
(f) the spectral centerkm for initial data (17).
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for all β > 0. Figure 13a is not showing the time evo-
lution of km, (see e.g. Fig. 9f for a typical example),
but rather the final value ofkm at t = 200, where smaller
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manent downshifting is observed for allβ > 0 with the
onset occuring rapidly for larger values ofβ.
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amplitude of the initial data in the three-UM regime:

u(x,0) = a(1+0.01cosµx), (19)

with 0.57< a < 0.67, µ = 2π/L, L = 4
√

2π . Figure 13
shows, as a function ofβ: (a) the final value of the spectral
centerkm, (b) the maximum strength maxt∈[0,200]S(t), (c) the
number of rogue waves obtained for 0< t < 200, and (d) the
time of the last rogue wave. The solid curve represents the
averages over the initial data. In the numerical experiments
we observe the following:

1. The spectral centerkm(t) is a decreasing function of
t for all β > 0. Figure13a is not showing the time
evolution ofkm, (see e.g. Fig.9f for a typical example),
but rather the final value ofkm at t = 200, where smaller
values mean a downshift to a lower mode. Thus,
permanent downshifting is observed for allβ > 0 with
the onset occuring rapidly for larger values ofβ.

2. Figure 13b–c shows that for small values ofβ the
average maximum strength in time and average number
of rogue waves exhibit irregular behavior. We may
obtain more or larger rogue waves in the damped regime
than without damping for this time frame due to changes
in the focusing time and coalescence of the modes.
However for largeβ, the maximum strength in time and
number of rogue waves are, in general, decreasing.
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Fig. 10: The HONLS eq. with nonlinear dampingǫ = 0.05,
β = 0.04, Γ = 0: time evolution of (a) the strengthS(t) and
(b) the main Fourier modes for initial data (17).

3. For all values of the initial amplitude, the first rogue
wave is only slightly delayed (t≈ 6) for all β considered
(not shown). The time of the last rogue wave,Tl, may
slightly increase for smallβ. As β increases,Tl signif-
icantly decreases, indicating fewer rogue waves occur.
For β > β∗ only the initial pair of rogue waves develop
(Fig. 13d) as largeβ values trigger sufficient nonlinear
damping that inhibit further rogue wave formation.

Relation of Downshifting and Rogue Waves :It is sig-
nificant in Figs. 9b-c and 10a-b that permanent downshifting
occurs after the last rogue wave in the time series. In other
words, rogue waves do not occur after the downshifting be-
comes irreversible in these examples. To generalize this re-
sult we analyze the previous series of numerical experiments
using initial data (19) with0.57 < a < 0.67 to determine 1)
the time of the last rogue wave and 2) the last timekpeak is
equal tok0, indicating permanent downshifting, as the per-
turbation strengthβ is varied.

Figure 14 compares the time at which downshifting be-
comes irreversible (labeled by an x) with the time at which
the last rogue wave occurs (labeled by a box) for the HONLS
equation with only nonlinear damping,ǫ = 0.05,Γ = 0 and
0 < β < 0.75. Fig. 14a shows the comparison for initial
data (19) witha = 0.63 : we observe that for all values of
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Fig. 11: The evolution ofkpeak for the nonlinearly damped
HONLS equation withǫ = 0.05, Γ = 0 and (a)β = 0.04 or (b)
β = .5 for initial data (17).

β rogue waves do not occur after the downshifting becomes
irreversible. Further, rogue waves do not develop after per-
manent downshifting occurs for any other pair of parame-
ter values (a,β) considered in the experiments. This is sum-
marized in Fig. 14b which compares, for0 < β < 0.75, the
average time of the last rogue wave (box) with the average
time at which downshifting is irreversible (x), where the av-
erages are over the six simulations with initial data amplitude
0.57 < a < 0.67. These results imply permanent downshift-
ing serves as an indicator that the cumulative effects of damp-
ing are sufficient to prevent the further development of rogue
waves.

Finally we consider the case when both linear and nonlin-
ear damping are present and the nonlinear damping is dom-
inant to allow permanent downshifting to occur. Figure 15
compares the times for permanent downshifting and the last
rogue wave for the damped HONLS eqn. withǫ = 0.05,Γ=
0.005 and0 < β < 0.75. The same relation between down-
shifting and the last rogue wave are observed to hold, i.e.
rogue waves do not occur after the downshifting is perma-
nent. However, due to the additional linear damping there is
a longer time lag between the last rogue wave and permanent
downshifting.

Fig. 10. The HONLS equation with nonlinear dampingε = 0.05,
β = 0.04,0 = 0: time evolution of(a) the strengthS(t) and(b) the
main Fourier modes for initial data (17).

3. For all values of the initial amplitude, the first rogue
wave is only slightly delayed (t ≈ 6) for allβ considered
(not shown). The time of the last rogue wave,Tl ,
may slightly increase for smallβ. As β increases,Tl
significantly decreases, indicating fewer rogue waves
occur. For β > β∗ only the initial pair of rogue
waves develop (Fig.13d) as largeβ values trigger
sufficient nonlinear damping that inhibit further rogue
wave formation.
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3. For all values of the initial amplitude, the first rogue
wave is only slightly delayed (t≈ 6) for all β considered
(not shown). The time of the last rogue wave,Tl, may
slightly increase for smallβ. As β increases,Tl signif-
icantly decreases, indicating fewer rogue waves occur.
For β > β∗ only the initial pair of rogue waves develop
(Fig. 13d) as largeβ values trigger sufficient nonlinear
damping that inhibit further rogue wave formation.
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occurs after the last rogue wave in the time series. In other
words, rogue waves do not occur after the downshifting be-
comes irreversible in these examples. To generalize this re-
sult we analyze the previous series of numerical experiments
using initial data (19) with0.57 < a < 0.67 to determine 1)
the time of the last rogue wave and 2) the last timekpeak is
equal tok0, indicating permanent downshifting, as the per-
turbation strengthβ is varied.

Figure 14 compares the time at which downshifting be-
comes irreversible (labeled by an x) with the time at which
the last rogue wave occurs (labeled by a box) for the HONLS
equation with only nonlinear damping,ǫ = 0.05,Γ = 0 and
0 < β < 0.75. Fig. 14a shows the comparison for initial
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β rogue waves do not occur after the downshifting becomes
irreversible. Further, rogue waves do not develop after per-
manent downshifting occurs for any other pair of parame-
ter values (a,β) considered in the experiments. This is sum-
marized in Fig. 14b which compares, for0 < β < 0.75, the
average time of the last rogue wave (box) with the average
time at which downshifting is irreversible (x), where the av-
erages are over the six simulations with initial data amplitude
0.57 < a < 0.67. These results imply permanent downshift-
ing serves as an indicator that the cumulative effects of damp-
ing are sufficient to prevent the further development of rogue
waves.

Finally we consider the case when both linear and nonlin-
ear damping are present and the nonlinear damping is dom-
inant to allow permanent downshifting to occur. Figure 15
compares the times for permanent downshifting and the last
rogue wave for the damped HONLS eqn. withǫ = 0.05,Γ=
0.005 and0 < β < 0.75. The same relation between down-
shifting and the last rogue wave are observed to hold, i.e.
rogue waves do not occur after the downshifting is perma-
nent. However, due to the additional linear damping there is
a longer time lag between the last rogue wave and permanent
downshifting.

Fig. 11.The evolution ofkpeakfor the nonlinearly damped HONLS
equation withε = 0.05, 0 = 0 and(a) β = 0.04 or (b) β = .5 for
initial data (17).

0< β < 0.75. Figure14a shows the comparison for initial
data (19) with a = 0.63: we observe that for all values
of β rogue waves do not occur after the downshifting
becomes irreversible. Further, rogue waves do not develop
after permanent downshifting occurs for any other pair of
parameter values (a, β) considered in the experiments. This
is summarized in Fig.14b which compares, for 0< β <

0.75, the average time of the last rogue wave (box) with the
average time at which downshifting is irreversible (x), where
the averages are over the six simulations with initial data
amplitude 0.57< a < 0.67. These results imply permanent
downshifting serves as an indicator that the cumulative
effects of damping are sufficient to prevent the further
development of rogue waves.

Finally we consider the case when both linear and
nonlinear damping are present and the nonlinear damping
is dominant to allow permanent downshifting to occur.
Figure 15 compares the times for permanent downshifting
and the last rogue wave for the damped HONLS equation
with ε = 0.05, 0 = 0.005 and 0< β < 0.75. The same
relation between downshifting and the last rogue wave are
observed to hold, i.e. rogue waves do not occur after the
downshifting is permanent. However, due to the additional
linear damping there is a longer time lag between the last
rogue wave and permanent downshifting.
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Fig. 12: Nonlinearly damped HONLS eq.ǫ = 0.05, β = 0.5,
Γ = 0.005: the time evolution of (a) the strengthS(t), (b) the
main Fourier modes, for initial data (17).

5 Damped random oceanic sea states

In this section we examine the generation of rogue waves in
the presence of damping for sea states characterized by the
Joint North Sea Wave Project (JONSWAP) spectrum:
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Heref is spatial frequency,fn = kn/2π, f0 is the dominant
frequency determined by the wind speed at a specified height
above the sea surface andg is gravity. Developing storm dy-
namics are governed by this spectrum for a range of param-
etersγ andα. Hereγ is the peakedness parameter andα
is related to the amplitude and energy content. The putative
region of validity for the NLS equation and its higher order
generalizations is2 < γ < 8 and0.008 < α< 0.02

The initial data for the surface elevation is of the form
(Onorato et al., 2001)

η(x,0)=

N
∑

n=1

Cncos(knx−φn), (20)

wherekn = 2πn/L, the random phasesφn are uniformly
distributed on(0,2π) and the spectral amplitudesCn =
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Fig. 13: The HONLS eqn. with nonlinear damping0 < β <
0.75, u0 = a(1+0.01cosµx), 0.57 < a < 0.67, (a) spectral
centerkm at t = 200, (b) maxt∈[0,200]S(t), (c) number of
rogue waves, and (d) time of last rogue wave as a function
of β. The solid curves represent the averages.

Fig. 12. Nonlinearly damped HONLS equationε = 0.05, β = 0.5,
0 = 0.005: the time evolution of(a) the strengthS(t), (b) the main
Fourier modes, for initial data (17).
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main Fourier modes, for initial data (17).
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Fig. 13. The HONLS equation with nonlinear damping 0< β <

0.75, u0 = a(1+0.01cosµx), 0.57< a < 0.67, (a) spectral center
km at t = 200, (b) maxt∈[0,200]S(t), (c) number of rogue waves,
and(d) time of last rogue wave as a function ofβ. The solid curves
represent the averages.
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Γ = 0.005: the time evolution of (a) the strengthS(t), (b) the
main Fourier modes, for initial data (17).
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Γ = 0.005: the time evolution of (a) the strengthS(t), (b) the
main Fourier modes, for initial data (17).
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Fig. 13: The HONLS eqn. with nonlinear damping0 < β <
0.75, u0 = a(1+0.01cosµx), 0.57 < a < 0.67, (a) spectral
centerkm at t = 200, (b) maxt∈[0,200]S(t), (c) number of
rogue waves, and (d) time of last rogue wave as a function
of β. The solid curves represent the averages.

0 5 10 15 20 25 30 35 40 45 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

ST
R

EN
G

TH

TIME

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FO
U

R
IE

R
 M

O
D

ES

TIME

(b)

Fig. 12: Nonlinearly damped HONLS eq.ǫ = 0.05, β = 0.5,
Γ = 0.005: the time evolution of (a) the strengthS(t), (b) the
main Fourier modes, for initial data (17).

5 Damped random oceanic sea states

In this section we examine the generation of rogue waves in
the presence of damping for sea states characterized by the
Joint North Sea Wave Project (JONSWAP) spectrum:
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Heref is spatial frequency,fn = kn/2π, f0 is the dominant
frequency determined by the wind speed at a specified height
above the sea surface andg is gravity. Developing storm dy-
namics are governed by this spectrum for a range of param-
etersγ andα. Hereγ is the peakedness parameter andα
is related to the amplitude and energy content. The putative
region of validity for the NLS equation and its higher order
generalizations is2 < γ < 8 and0.008 < α< 0.02

The initial data for the surface elevation is of the form
(Onorato et al., 2001)

η(x,0)=

N
∑

n=1

Cncos(knx−φn), (20)

wherekn = 2πn/L, the random phasesφn are uniformly
distributed on(0,2π) and the spectral amplitudesCn =
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of β. The solid curves represent the averages.
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rogue waves, and (d) time of last rogue wave as a function
of β. The solid curves represent the averages.
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Fig. 13: The HONLS eqn. with nonlinear damping0 < β <
0.75, u0 = a(1+0.01cosµx), 0.57 < a < 0.67, (a) spectral
centerkm at t = 200, (b) maxt∈[0,200]S(t), (c) number of
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Fig. 13. Continued.

5 Damped random oceanic sea states
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Fig. 14: The nonlinear damped HONLS eqn. withǫ =
0.05,Γ= 0 and0 < β < 0.75. The time downshifting is irre-
versible (x) and the time the last rogue wave occurs (box) as
a function ofβ, u0 = a(1+0.01cosµx), where (a)a = 0.63
and (b) averaged over0.57 < a < 0.67.
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5.1 Nonlinear spectral diagnostic for determining rogue
waves

In previous work we proposed a nonlinear spectral decompo-
sition of the JONSWAP data and introduced the splitting dis-
tance between two simple points,δ(λ+,λ−) = |λ+−λ−| to
measure the proximity to homoclinic data of the NLS equa-
tion (Islas & Schober, 2005; Schober, 2006). Briefly, ho-
moclinic solutions arise as an appropriate degeneration ofa
finite gap solution, i.e. asδ(λ+,λ−)→ 0 the resulting double
point is complex. Such a potential possesses no linear unsta-
ble modes (simple points and real double points are in general
associated with neutrally stable modes), although the solution
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Fig. 15: The damped HONLS eqn. withǫ = 0.05,Γ= 0.005
and0 < β < 0.75. The time downshifting is irreversible (x)
and the time the last rogue wave occurs (box) as a function of
β andΓ = 0.005, u0 = a(1+0.01cosµx), where (a)a = 0.63
and (b) averaged over0.57 < a < 0.67.

is “close” in the spectral sense to an unstable solution. Con-
sequently,δ measures the proximity in the spectral plane to
complex double points and their corresponding instabilities
and can be used as a criterium for predicting the strength and
occurrence of rogue waves (Islas & Schober, 2005).

We begin by determining the nonlinear spectrum of JON-
SWAP initial data given by (20) for combinations ofα =
0.008,0.012,0.016,0.02, andγ = 1,2,4,6,8. For each such
pair (γ,α), fifty simulations were performed, each with a
different set of randomly generated phases. As expected,
the spectral configuration depends on the energyα and the
peakednessγ. However, the phase information is just as im-
portant to the final determination of the spectrum. Typical ex-
amples of the numerically computed nonlinear spectrum for
JONSWAP initial data (γ = 4, α = 0.016) with two different
realizations of the random phases are shown in Figs. 16a and
17a. Since the NLS spectrum is symmetric with respect to the

Fig. 14. The nonlinear damped HONLS equation withε =

0.05,0 = 0 and 0< β < 0.75. The time downshifting is irreversible
(x) and the time the last rogue wave occurs (box) as a function ofβ,
u0 = a(1+0.01cosµx), where(a) a = 0.63 and(b) averaged over
0.57< a < 0.67.

frequency determined by the wind speed at a specified height
above the sea surface andg is gravity. Developing storm
dynamics are governed by this spectrum for a range of
parametersγ andα. Hereγ is the peakedness parameter and
α is related to the amplitude and energy content. The putative
region of validity for the NLS equation and its higher order
generalizations is 2< γ < 8 and 0.008< α < 0.02
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and the time the last rogue wave occurs (box) as a function of
β andΓ = 0.005, u0 = a(1+0.01cosµx), where (a)a = 0.63
and (b) averaged over0.57 < a < 0.67.

is “close” in the spectral sense to an unstable solution. Con-
sequently,δ measures the proximity in the spectral plane to
complex double points and their corresponding instabilities
and can be used as a criterium for predicting the strength and
occurrence of rogue waves (Islas & Schober, 2005).

We begin by determining the nonlinear spectrum of JON-
SWAP initial data given by (20) for combinations ofα =
0.008,0.012,0.016,0.02, andγ = 1,2,4,6,8. For each such
pair (γ,α), fifty simulations were performed, each with a
different set of randomly generated phases. As expected,
the spectral configuration depends on the energyα and the
peakednessγ. However, the phase information is just as im-
portant to the final determination of the spectrum. Typical ex-
amples of the numerically computed nonlinear spectrum for
JONSWAP initial data (γ = 4, α = 0.016) with two different
realizations of the random phases are shown in Figs. 16a and
17a. Since the NLS spectrum is symmetric with respect to the

Fig. 15. The damped HONLS eqn. withε = 0.05, 0 = 0.005 and
0< β < 0.75. The time downshifting is irreversible (x) and the time
the last rogue wave occurs (box) as a function ofβ and0 = 0.005,
u0 = a(1+0.01cosµx), where(a) a = 0.63 and(b) averaged over
0.57< a < 0.67.

5.1 Nonlinear spectral diagnostic for determining rogue
waves

In previous work we proposed a nonlinear spectral decom-
position of the JONSWAP data and introduced the splitting
distance between two simple points,δ(λ+,λ−) = |λ+ −λ−|

to measure the proximity to homoclinic data of the NLS
equation (Islas and Schober, 2005; Schober, 2006). Briefly,
homoclinic solutions arise as an appropriate degeneration
of a finite gap solution, i.e. asδ(λ+,λ−) → 0 the resulting
double point is complex. Such a potential possesses no
linear unstable modes (simple points and real double points
are in general associated with neutrally stable modes),
although the solution is “close” in the spectral sense to an
unstable solution. Consequently,δ measures the proximity
in the spectral plane to complex double points and their
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Fig. 16: (a) Spectrum and (b) evolution ofUmax “near” to
homoclinic data.

real axis only the spectrum in the upper half complexλ-plane
is displayed.

We find that JONSWAP data may correspond to “semi-
stable” solutions, i.e. JONSWAP data can be viewed as per-
turbations ofN -phase solutions with one or more unstable
modes (compare Fig. 16a with Fig. 1a, the spectrum of an
unstableN -phase solution). In Fig. 16a the splitting dis-
tanceδ(λ+,λ−)≈ 0.07, while in Fig. 17aδ(λ+,λ−)≈ 0.2.
Thus, for fixedα andγ as the phases are randomly varied,
the spectral distanceδ of typical JONSWAP data from ho-
moclinic data varies significantly and can be quite “near” as
in Fig. 16a, or “far” from homoclinic data as in Fig. 17a.

The most striking feature is that irrespective of the values
of α andγ, in simulations of the NLS equation (10) extreme
waves develop for JONSWAP initial data that is “near” NLS
homoclinic data, whereas the JONSWAP data that is “far”
from NLS homoclinic data typically does not generate ex-
treme waves. Figs. 16b and 17b show the corresponding evo-
lution of Umax (Umax = maxx∈[0,L]|u(x,t)|), obtained with
the NLS equation.Umax is given by the solid curve and
as a reference the threshold for a rogue wave,2.2 times the
the significant wave height,2.2HS, is given by the dashed
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Fig. 17: (a) Spectrum and (b) evolution ofUmax “far” from
homoclinic data.

curve. Fig. 16b shows that when the nonlinear spectrum is
near homoclinic data,Umax exceeds2.2HS (a rogue wave
develops att≈ 40). Fig. 17b shows that when the nonlinear
spectrum is far from homoclinic data,Umax is significantly
below2.2HS and a rogue wave does not develop. As a result
we can correlate the occurrence of rogue waves characterized
by JONSWAP spectrum with the proximity to homoclinic so-
lutions of the NLS equation.

5.2 JONSWAP experiments with the NLS and HONLS
equations

The results of hundreds of simulations of the NLS and
HONLS equations consistently show that proximity to ho-
moclinic data is a crucial indicator of rogue wave events.
Figure 18 provides a synthesis of 250 random simula-
tions of (a) the NLS equation and of (b-c) the HONLS
equation (β = Γ = 0) for ǫ = 0.025 and ǫ = 0.05, respec-
tively, using JONSWAP initial data for different(γ,α) pairs
with γ = 1,2,4,6,8 andα = 0.008,0.012,0.016,0.02 and ran-
domly generated phases. Our considerations are restricted
to semi-stableN -phase solutions near to unstable solutions

Fig. 16. (a)Spectrum and(b) evolution ofUmax “near” to
homoclinic data.

corresponding instabilities and can be used as a criterium for
predicting the strength and occurrence of rogue waves (Islas
and Schober, 2005).

We begin by determining the nonlinear spectrum of
JONSWAP initial data given by (20) for combinations of
α = 0.008,0.012,0.016,0.02, andγ = 1,2,4,6,8. For each
such pair (γ , α), fifty simulations were performed, each with
a different set of randomly generated phases. As expected,
the spectral configuration depends on the energyα and the
peakednessγ . However, the phase information is just as
important to the final determination of the spectrum. Typical
examples of the numerically computed nonlinear spectrum
for JONSWAP initial data (γ = 4, α = 0.016) with two
different realizations of the random phases are shown in
Figs. 16a and17a. Since the NLS spectrum is symmetric
with respect to the real axis only the spectrum in the upper
half complexλ-plane is displayed.
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Fig. 16: (a) Spectrum and (b) evolution ofUmax “near” to
homoclinic data.

real axis only the spectrum in the upper half complexλ-plane
is displayed.

We find that JONSWAP data may correspond to “semi-
stable” solutions, i.e. JONSWAP data can be viewed as per-
turbations ofN -phase solutions with one or more unstable
modes (compare Fig. 16a with Fig. 1a, the spectrum of an
unstableN -phase solution). In Fig. 16a the splitting dis-
tanceδ(λ+,λ−)≈ 0.07, while in Fig. 17aδ(λ+,λ−)≈ 0.2.
Thus, for fixedα andγ as the phases are randomly varied,
the spectral distanceδ of typical JONSWAP data from ho-
moclinic data varies significantly and can be quite “near” as
in Fig. 16a, or “far” from homoclinic data as in Fig. 17a.

The most striking feature is that irrespective of the values
of α andγ, in simulations of the NLS equation (10) extreme
waves develop for JONSWAP initial data that is “near” NLS
homoclinic data, whereas the JONSWAP data that is “far”
from NLS homoclinic data typically does not generate ex-
treme waves. Figs. 16b and 17b show the corresponding evo-
lution of Umax (Umax = maxx∈[0,L]|u(x,t)|), obtained with
the NLS equation.Umax is given by the solid curve and
as a reference the threshold for a rogue wave,2.2 times the
the significant wave height,2.2HS, is given by the dashed
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Fig. 17: (a) Spectrum and (b) evolution ofUmax “far” from
homoclinic data.

curve. Fig. 16b shows that when the nonlinear spectrum is
near homoclinic data,Umax exceeds2.2HS (a rogue wave
develops att≈ 40). Fig. 17b shows that when the nonlinear
spectrum is far from homoclinic data,Umax is significantly
below2.2HS and a rogue wave does not develop. As a result
we can correlate the occurrence of rogue waves characterized
by JONSWAP spectrum with the proximity to homoclinic so-
lutions of the NLS equation.

5.2 JONSWAP experiments with the NLS and HONLS
equations

The results of hundreds of simulations of the NLS and
HONLS equations consistently show that proximity to ho-
moclinic data is a crucial indicator of rogue wave events.
Figure 18 provides a synthesis of 250 random simula-
tions of (a) the NLS equation and of (b-c) the HONLS
equation (β = Γ = 0) for ǫ = 0.025 and ǫ = 0.05, respec-
tively, using JONSWAP initial data for different(γ,α) pairs
with γ = 1,2,4,6,8 andα = 0.008,0.012,0.016,0.02 and ran-
domly generated phases. Our considerations are restricted
to semi-stableN -phase solutions near to unstable solutions

Fig. 17. (a) Spectrum and(b) evolution of Umax “far” from
homoclinic data.

We find that JONSWAP data may correspond to “semi-
stable” solutions, i.e. JONSWAP data can be viewed as
perturbations of N-phase solutions with one or more unstable
modes (compare Fig.16a with Fig. 1a, the spectrum of
an unstable N-phase solution). In Fig.16a the splitting
distanceδ(λ+,λ−) ≈ 0.07, while in Fig. 17a δ(λ+,λ−) ≈

0.2. Thus, for fixedα and γ as the phases are randomly
varied, the spectral distanceδ of typical JONSWAP data from
homoclinic data varies significantly and can be quite “near”
as in Fig.16a, or “far” from homoclinic data as in Fig.17a.

The most striking feature is that irrespective of the values
of α andγ , in simulations of the NLS equation (10) extreme
waves develop for JONSWAP initial data that is “near”
NLS homoclinic data, whereas the JONSWAP data that is
“far” from NLS homoclinic data typically does not generate
extreme waves. Figures16b and17b show the corresponding
evolution of Umax (Umax = maxx∈[0,L]|u(x,t)|), obtained
with the NLS equation.Umax is given by the solid curve
and as a reference the threshold for a rogue wave, 2.2 times
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Fig. 18: Maximum strength versus the splitting distance
δ(λ+,λ−) for a) the NLS equation and the HONLS equation
with b) ǫ = 0.025, and c)ǫ = 0.05 .

of the NLS with one UM. Each circle represents the maxi-
mum strength, maxt∈[0,20]S(t), attained in time during one
simulation, as a function of the splitting distanceδ(λ+,λ−).
A horizontal line atUmax/HS = 2.2 indicates the reference
strength for rogue wave formation. We identify two criti-
cal valuesδ1(ǫ) andδ2(ǫ) that clearly show that (i) ifδ < δ1

(near homoclinic data) the likelihood of a rogue wave is ex-
tremely high; (ii) if δ1 < δ < δ2, the likelihood of obtaining
rogue waves decreases asδ increases and, (iii) ifδ > δ2 the
likelihood of a rogue wave occurring is extremely small.

As α andγ are varied the behavior is robust. The maxi-
mum wave strength and the occurrence of rogue waves are
well predicted by the proximity to homoclinic solutions. The
individual plots of the strength vs. the splitting distanceδ
for particular pairs(γ,α) are qualitatively the same regard-
less of the pair chosen. Comparing Figs. 18a-b we find that
enhanced focusing and increased wave strength occur in the
chaotic HONLS evolution as compared with the NLS evo-
lution. Figure 18 shows that as the perturbation strengthǫ
increases, the maximum wave strength and the likelihood of
rogue waves occuring in a given simulation increases.

5.3 JONSWAP experiments with the damped HONLS
equations

In this section we show that, in the presence of damping, the
nonlinear spectrum and the proximity to homoclinic data is
likewise an important indicator of the maximum strength in
time and likelihood of rogue waves.

Figure 19 shows the maximum wave strength vs. the
splitting distanceδ(λ+,λ−) for 250 random simulations of
the damped HONLS equation (ǫ = 0.05), with either (a)
linear damping,β = 0,Γ = 0.025, or with (b) nonlinear
dampingβ = 0.5,Γ = 0. As before, JONSWAP initial data
was used for different(γ,α) pairs with γ = 1,2,4,6,8 and
α = 0.008,0.012,0.016,0.02and randomly generated phases.
Each circle represents the maximum strength attained during
one simulation,0 < t < 20.

In Fig. 19 it is evident that the strength and likelihood
of rogue waves occuring in a given simulation is typically
smaller when damping is present (compare to results of the
HONLS equation (Fig. 18c). A cutoff vaue ofδ exists such
that rogue waves typically do not occur ifδ > δcutoff . We
determineδcutoff by requiring that95% of the rogue waves
occur forδ < δcutoff . For example, the cutoff values for the
linear (Γ =0.02) and nonlinear (ǫβ = 0.02) damped HONLS
equation areδdamped

cutoff ≈ 0.16,0.17, respectively, which are
less than the cutoff value for the undamped HONLS equation
where,δundamped

cutoff ≈ 0.2. Significantly, this implies that when
damping is present the JONSWAP initial data must be closer
to homoclinic data and instabilities to obtain rogue waves.

Figure 20 showsδdamped
cutoff as a function of the damping

parametersΓ (circles) andǫβ (boxes). For each of the ten
values ofΓ and of ǫβ, 0 < Γ,ǫβ < 0.04, 250 simulations
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Fig. 18: Maximum strength versus the splitting distance
δ(λ+,λ−) for a) the NLS equation and the HONLS equation
with b) ǫ = 0.025, and c)ǫ = 0.05 .

of the NLS with one UM. Each circle represents the maxi-
mum strength, maxt∈[0,20]S(t), attained in time during one
simulation, as a function of the splitting distanceδ(λ+,λ−).
A horizontal line atUmax/HS = 2.2 indicates the reference
strength for rogue wave formation. We identify two criti-
cal valuesδ1(ǫ) andδ2(ǫ) that clearly show that (i) ifδ < δ1

(near homoclinic data) the likelihood of a rogue wave is ex-
tremely high; (ii) if δ1 < δ < δ2, the likelihood of obtaining
rogue waves decreases asδ increases and, (iii) ifδ > δ2 the
likelihood of a rogue wave occurring is extremely small.

As α andγ are varied the behavior is robust. The maxi-
mum wave strength and the occurrence of rogue waves are
well predicted by the proximity to homoclinic solutions. The
individual plots of the strength vs. the splitting distanceδ
for particular pairs(γ,α) are qualitatively the same regard-
less of the pair chosen. Comparing Figs. 18a-b we find that
enhanced focusing and increased wave strength occur in the
chaotic HONLS evolution as compared with the NLS evo-
lution. Figure 18 shows that as the perturbation strengthǫ
increases, the maximum wave strength and the likelihood of
rogue waves occuring in a given simulation increases.

5.3 JONSWAP experiments with the damped HONLS
equations

In this section we show that, in the presence of damping, the
nonlinear spectrum and the proximity to homoclinic data is
likewise an important indicator of the maximum strength in
time and likelihood of rogue waves.

Figure 19 shows the maximum wave strength vs. the
splitting distanceδ(λ+,λ−) for 250 random simulations of
the damped HONLS equation (ǫ = 0.05), with either (a)
linear damping,β = 0,Γ = 0.025, or with (b) nonlinear
dampingβ = 0.5,Γ = 0. As before, JONSWAP initial data
was used for different(γ,α) pairs with γ = 1,2,4,6,8 and
α = 0.008,0.012,0.016,0.02and randomly generated phases.
Each circle represents the maximum strength attained during
one simulation,0 < t < 20.

In Fig. 19 it is evident that the strength and likelihood
of rogue waves occuring in a given simulation is typically
smaller when damping is present (compare to results of the
HONLS equation (Fig. 18c). A cutoff vaue ofδ exists such
that rogue waves typically do not occur ifδ > δcutoff . We
determineδcutoff by requiring that95% of the rogue waves
occur forδ < δcutoff . For example, the cutoff values for the
linear (Γ =0.02) and nonlinear (ǫβ = 0.02) damped HONLS
equation areδdamped

cutoff ≈ 0.16,0.17, respectively, which are
less than the cutoff value for the undamped HONLS equation
where,δundamped

cutoff ≈ 0.2. Significantly, this implies that when
damping is present the JONSWAP initial data must be closer
to homoclinic data and instabilities to obtain rogue waves.

Figure 20 showsδdamped
cutoff as a function of the damping

parametersΓ (circles) andǫβ (boxes). For each of the ten
values ofΓ and of ǫβ, 0 < Γ,ǫβ < 0.04, 250 simulations

0 0.2 0.4
1.5

2

2.5

3

3.5

4

SPLITTING DISTANCE (ε = 0)

M
AX

IM
U

M
 S

TR
EN

G
TH

(a)

0 0.2 0.4
1.5

2

2.5

3

3.5

4

SPLITTING DISTANCE (ε = 0.025)

M
AX

IM
U

M
 S

TR
EN

G
TH

(b)

0 0.2 0.4
1.5

2

2.5

3

3.5

4

SPLITTING DISTANCE (ε = 0.05)

M
AX

IM
U

M
 S

TR
EN

G
TH

(c)

Fig. 18: Maximum strength versus the splitting distance
δ(λ+,λ−) for a) the NLS equation and the HONLS equation
with b) ǫ = 0.025, and c)ǫ = 0.05 .

of the NLS with one UM. Each circle represents the maxi-
mum strength, maxt∈[0,20]S(t), attained in time during one
simulation, as a function of the splitting distanceδ(λ+,λ−).
A horizontal line atUmax/HS = 2.2 indicates the reference
strength for rogue wave formation. We identify two criti-
cal valuesδ1(ǫ) andδ2(ǫ) that clearly show that (i) ifδ < δ1

(near homoclinic data) the likelihood of a rogue wave is ex-
tremely high; (ii) if δ1 < δ < δ2, the likelihood of obtaining
rogue waves decreases asδ increases and, (iii) ifδ > δ2 the
likelihood of a rogue wave occurring is extremely small.

As α andγ are varied the behavior is robust. The maxi-
mum wave strength and the occurrence of rogue waves are
well predicted by the proximity to homoclinic solutions. The
individual plots of the strength vs. the splitting distanceδ
for particular pairs(γ,α) are qualitatively the same regard-
less of the pair chosen. Comparing Figs. 18a-b we find that
enhanced focusing and increased wave strength occur in the
chaotic HONLS evolution as compared with the NLS evo-
lution. Figure 18 shows that as the perturbation strengthǫ
increases, the maximum wave strength and the likelihood of
rogue waves occuring in a given simulation increases.

5.3 JONSWAP experiments with the damped HONLS
equations

In this section we show that, in the presence of damping, the
nonlinear spectrum and the proximity to homoclinic data is
likewise an important indicator of the maximum strength in
time and likelihood of rogue waves.

Figure 19 shows the maximum wave strength vs. the
splitting distanceδ(λ+,λ−) for 250 random simulations of
the damped HONLS equation (ǫ = 0.05), with either (a)
linear damping,β = 0,Γ = 0.025, or with (b) nonlinear
dampingβ = 0.5,Γ = 0. As before, JONSWAP initial data
was used for different(γ,α) pairs with γ = 1,2,4,6,8 and
α = 0.008,0.012,0.016,0.02and randomly generated phases.
Each circle represents the maximum strength attained during
one simulation,0 < t < 20.

In Fig. 19 it is evident that the strength and likelihood
of rogue waves occuring in a given simulation is typically
smaller when damping is present (compare to results of the
HONLS equation (Fig. 18c). A cutoff vaue ofδ exists such
that rogue waves typically do not occur ifδ > δcutoff . We
determineδcutoff by requiring that95% of the rogue waves
occur forδ < δcutoff . For example, the cutoff values for the
linear (Γ =0.02) and nonlinear (ǫβ = 0.02) damped HONLS
equation areδdamped

cutoff ≈ 0.16,0.17, respectively, which are
less than the cutoff value for the undamped HONLS equation
where,δundamped

cutoff ≈ 0.2. Significantly, this implies that when
damping is present the JONSWAP initial data must be closer
to homoclinic data and instabilities to obtain rogue waves.

Figure 20 showsδdamped
cutoff as a function of the damping

parametersΓ (circles) andǫβ (boxes). For each of the ten
values ofΓ and of ǫβ, 0 < Γ,ǫβ < 0.04, 250 simulations

Fig. 18. Maximum strength versus the splitting distanceδ(λ+,λ−)

for (a) the NLS equation and the HONLS equation with(b)
ε=0.025, and(c) ε = 0.05.

the the significant wave height, 2.2Hs, is given by the
dashed curve. Figure16b shows that when the nonlinear
spectrum is near homoclinic data,Umax exceeds 2.2Hs (a
rogue wave develops att ≈ 40). Figure17b shows that
when the nonlinear spectrum is far from homoclinic data,
Umax is significantly below 2.2Hs and a rogue wave does
not develop. As a result we can correlate the occurrence of
rogue waves characterized by JONSWAP spectrum with the
proximity to homoclinic solutions of the NLS equation.

5.2 JONSWAP experiments with the NLS and HONLS
equations

The results of hundreds of simulations of the NLS and
HONLS equations consistently show that proximity to
homoclinic data is a crucial indicator of rogue wave events.
Figure 18 provides a synthesis of 250 random simulations
of (a) the NLS equation and of (b–c) the HONLS equation
(β = 0 = 0) for ε = 0.025 andε = 0.05, respectively, using
JONSWAP initial data for different (γ , α) pairs with γ =

1,2,4,6,8 and α = 0.008,0.012,0.016,0.02 and randomly
generated phases. Our considerations are restricted to
semi-stable N-phase solutions near to unstable solutions
of the NLS with one UM. Each circle represents the
maximum strength, maxt∈[0,20]S(t), attained in time during
one simulation, as a function of the splitting distance
δ(λ+,λ−). A horizontal line atUmax/Hs = 2.2 indicates the
reference strength for rogue wave formation. We identify
two critical valuesδ1(ε) andδ2(ε) that clearly show that (i)
if δ < δ1 (near homoclinic data) the likelihood of a rogue
wave is extremely high; (ii) ifδ1 < δ < δ2, the likelihood of
obtaining rogue waves decreases asδ increases and, (iii) if
δ > δ2 the likelihood of a rogue wave occurring is extremely
small.

As α and γ are varied the behavior is robust. The
maximum wave strength and the occurrence of rogue waves
are well predicted by the proximity to homoclinic solutions.
The individual plots of the strength vs. the splitting distance
δ for particular pairs (γ , α) are qualitatively the same
regardless of the pair chosen. Comparing Fig.18a–b we
find that enhanced focusing and increased wave strength
occur in the chaotic HONLS evolution as compared with the
NLS evolution. Figure18 shows that as the perturbation
strengthε increases, the maximum wave strength and the
likelihood of rogue waves occuring in a given simulation
increases.

5.3 JONSWAP experiments with the damped HONLS
equations

In this section we show that, in the presence of damping, the
nonlinear spectrum and the proximity to homoclinic data is
likewise an important indicator of the maximum strength in
time and likelihood of rogue waves.

Figure 19 shows the maximum wave strength vs. the
splitting distanceδ(λ+,λ−) for 250 random simulations
of the damped HONLS equation (ε = 0.05), with either
(a) linear damping,β = 0, 0 = 0.025, or with (b) nonlinear
dampingβ = 0.5,0 = 0. As before, JONSWAP initial data
was used for different (γ , α) pairs with γ = 1,2,4,6,8
and α = 0.008,0.012,0.016,0.02 and randomly generated
phases. Each circle represents the maximum strength
attained during one simulation, 0< t < 20.
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Fig. 19: Maximum strength vs. splitting distanceδ(λ+,λ−)
for the HONLS equation (ǫ = 0.05) with either (a) linear
damping,β = 0, Γ = 0.025, or (b) nonlinear dampingβ =
0.5, Γ = 0.
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Fig. 20: The damped HONLS equation (ǫ = 0.05): δdamped
cutoff

as a function ofΓ (circles) andǫβ (boxes)

of the damped HONLS equation were carried out. We find
that δdamped

cutoff is generally decreasing as the strength of the
damping increases. The cutoff value inδ for the nonlin-
early damped case is not monotonically decreasing as atyp-
ical cases exist where a small increase in damping may be
offset by a coalescence of the modes due to changes in the
focusing times. The overall decay inδdamped

cutoff indicates that
for rogue waves to occur the JONSWAP initial data must lie
in a shrinking neighborhood of the homoclinic data. Thus
the proximity to instabilities and homoclinic data is more es-
sential for the development of rogue waves when damping is
present.

The observations from the nonlinear spectral diagnostic
complement the earlier results characterizing the nonlinear
damped evolution. In section 4, the numerical simulations
start very close to homolinic data (for initial data (19) the
splitting distance is on the order of10−6, an effective rogue
wave regime). The first pair of rogue waves were not sig-
nificantly altered by the damping. However after permanent
downshifting occured any further rogue waves were inhib-
ited. Here we are generalizing to JONSWAP initial data
which are not necessarily close to homoclinic data. We are
monitoring the maximum strength in time as a function of
δ which is a separate issue from the total number of rogue
waves in a given simulation.

Finally we remark that we recently examined rogue waves
and downshifting in the damped Dysthe equation (Islas &
Schober, 2010). While the Dysthe equation does not con-
serve momentum, we have obtained qualitatively similar re-
sults. For the nonlinearly damped Dysthe equation, irre-
versible downshifting also occurs for all values ofβ, although
on a slightly longer timescale. Rogue waves do not occur in
the time series after the downshifting is permanent. Similarly,
δdamped
cutoff generally decreases as the strength of the damping

increases suggesting the heightened importance of proxim-
ity to homoclinic data when obtaining rogue waves in the
damped Dysthe regime.
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Fig. 19: Maximum strength vs. splitting distanceδ(λ+,λ−)
for the HONLS equation (ǫ = 0.05) with either (a) linear
damping,β = 0, Γ = 0.025, or (b) nonlinear dampingβ =
0.5, Γ = 0.
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Fig. 20: The damped HONLS equation (ǫ = 0.05): δdamped
cutoff

as a function ofΓ (circles) andǫβ (boxes)

of the damped HONLS equation were carried out. We find
that δdamped

cutoff is generally decreasing as the strength of the
damping increases. The cutoff value inδ for the nonlin-
early damped case is not monotonically decreasing as atyp-
ical cases exist where a small increase in damping may be
offset by a coalescence of the modes due to changes in the
focusing times. The overall decay inδdamped

cutoff indicates that
for rogue waves to occur the JONSWAP initial data must lie
in a shrinking neighborhood of the homoclinic data. Thus
the proximity to instabilities and homoclinic data is more es-
sential for the development of rogue waves when damping is
present.

The observations from the nonlinear spectral diagnostic
complement the earlier results characterizing the nonlinear
damped evolution. In section 4, the numerical simulations
start very close to homolinic data (for initial data (19) the
splitting distance is on the order of10−6, an effective rogue
wave regime). The first pair of rogue waves were not sig-
nificantly altered by the damping. However after permanent
downshifting occured any further rogue waves were inhib-
ited. Here we are generalizing to JONSWAP initial data
which are not necessarily close to homoclinic data. We are
monitoring the maximum strength in time as a function of
δ which is a separate issue from the total number of rogue
waves in a given simulation.

Finally we remark that we recently examined rogue waves
and downshifting in the damped Dysthe equation (Islas &
Schober, 2010). While the Dysthe equation does not con-
serve momentum, we have obtained qualitatively similar re-
sults. For the nonlinearly damped Dysthe equation, irre-
versible downshifting also occurs for all values ofβ, although
on a slightly longer timescale. Rogue waves do not occur in
the time series after the downshifting is permanent. Similarly,
δdamped
cutoff generally decreases as the strength of the damping

increases suggesting the heightened importance of proxim-
ity to homoclinic data when obtaining rogue waves in the
damped Dysthe regime.

References

Ablowitz, M.J., Hammack, J., Henderson, D., Schober, C.M.
(2000). Modulated Periodic Stokes Waves in Deep Water. Phys.
Rev. Lett. 84:887–890.

Ablowitz, M.J., Hammack, J., Henderson, D., Schober, C.M.
(2001). Long time dynamics of the modulational instability of
deep water waves. Physica D 152-153:416–433.

Ablowitz, M.J., Segur, H. (1981). Solitons and the Inverse Scatter-
ing Transform. SIAM.

Calini, A., Ercolani, N.M., McLaughlin, D.W., Schober, C.M.
(1996). Mel’nikov analysis of numerically induced chaos in the
nonlinear Schrödinger equation. Physica D 89:227–260.

Calini, A., Schober, C.M. (2002). Homoclinic chaos increases the
likelihood of rogue waves. Phys. Lett. A 298:335–349.

Cox, S.M., Matthews, P.C. (2002). Exponential time differencing
for stiff systems. Journal of Computational Physics 176:430–455.

Fig. 19. Maximum strength vs. splitting distanceδ(λ+,λ−) for the
HONLS equation (ε = 0.05) with either(a) linear damping,β = 0,
0 = 0.025, or(b) nonlinear dampingβ = 0.5, 0 = 0.

In Fig. 19 it is evident that the strength and likelihood
of rogue waves occuring in a given simulation is typically
smaller when damping is present (compare to results of the
HONLS equation, Fig.18c). A cutoff vaue ofδ exists such
that rogue waves typically do not occur ifδ > δcutoff. We
determineδcutoff by requiring that 95% of the rogue waves
occur forδ < δcutoff. For example, the cutoff values for the
linear (0 = 0.02) and nonlinear (εβ = 0.02) damped HONLS
equation areδdamped

cutoff ≈ 0.16,0.17, respectively, which are
less than the cutoff value for the undamped HONLS equation
where,δundamped

cutoff ≈ 0.2. Significantly, this implies that when
damping is present the JONSWAP initial data must be
closer to homoclinic data and instabilities to obtain rogue
waves.

Figure 20 showsδ
damped
cutoff as a function of the damping

parameters0 (circles) andεβ (boxes). For each of the ten
values of0 and of εβ, 0< 0, εβ < 0.04, 250 simulations
of the damped HONLS equation were carried out. We find
that δ

damped
cutoff is generally decreasing as the strength of the

damping increases. The cutoff value inδ for the nonlinearly
damped case is not monotonically decreasing as atypical
cases exist where a small increase in damping may be
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Fig. 19: Maximum strength vs. splitting distanceδ(λ+,λ−)
for the HONLS equation (ǫ = 0.05) with either (a) linear
damping,β = 0, Γ = 0.025, or (b) nonlinear dampingβ =
0.5, Γ = 0.
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cutoff

as a function ofΓ (circles) andǫβ (boxes)

of the damped HONLS equation were carried out. We find
that δdamped

cutoff is generally decreasing as the strength of the
damping increases. The cutoff value inδ for the nonlin-
early damped case is not monotonically decreasing as atyp-
ical cases exist where a small increase in damping may be
offset by a coalescence of the modes due to changes in the
focusing times. The overall decay inδdamped

cutoff indicates that
for rogue waves to occur the JONSWAP initial data must lie
in a shrinking neighborhood of the homoclinic data. Thus
the proximity to instabilities and homoclinic data is more es-
sential for the development of rogue waves when damping is
present.

The observations from the nonlinear spectral diagnostic
complement the earlier results characterizing the nonlinear
damped evolution. In section 4, the numerical simulations
start very close to homolinic data (for initial data (19) the
splitting distance is on the order of10−6, an effective rogue
wave regime). The first pair of rogue waves were not sig-
nificantly altered by the damping. However after permanent
downshifting occured any further rogue waves were inhib-
ited. Here we are generalizing to JONSWAP initial data
which are not necessarily close to homoclinic data. We are
monitoring the maximum strength in time as a function of
δ which is a separate issue from the total number of rogue
waves in a given simulation.

Finally we remark that we recently examined rogue waves
and downshifting in the damped Dysthe equation (Islas &
Schober, 2010). While the Dysthe equation does not con-
serve momentum, we have obtained qualitatively similar re-
sults. For the nonlinearly damped Dysthe equation, irre-
versible downshifting also occurs for all values ofβ, although
on a slightly longer timescale. Rogue waves do not occur in
the time series after the downshifting is permanent. Similarly,
δdamped
cutoff generally decreases as the strength of the damping

increases suggesting the heightened importance of proxim-
ity to homoclinic data when obtaining rogue waves in the
damped Dysthe regime.
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Fig. 20. The damped HONLS equation (ε = 0.05): δ
damped
cutoff as a

function of0 (circles) andεβ (boxes).

offset by a coalescence of the modes due to changes in the
focusing times. The overall decay inδdamped

cutoff indicates that
for rogue waves to occur the JONSWAP initial data must lie
in a shrinking neighborhood of the homoclinic data. Thus
the proximity to instabilities and homoclinic data is more
essential for the development of rogue waves when damping
is present.

The observations from the nonlinear spectral diagnostic
complement the earlier results characterizing the nonlinear
damped evolution. In Sect. 4, the numerical simulations
start very close to homolinic data (for initial data (19)
the splitting distance is on the order of 10−6, an effective
rogue wave regime). The first pair of rogue waves were
not significantly altered by the damping. However after
permanent downshifting occured any further rogue waves
were inhibited. Here we are generalizing to JONSWAP
initial data which are not necessarily close to homoclinic
data. We are monitoring the maximum strength in time as a
function ofδ which is a separate issue from the total number
of rogue waves in a given simulation.

Finally we remark that we recently examined rogue waves
and downshifting in the damped Dysthe equation (Islas
and Schober, 2010). While the Dysthe equation does
not conserve momentum, we have obtained qualitatively
similar results. For the nonlinearly damped Dysthe equation,
irreversible downshifting also occurs for all values ofβ,
although on a slightly longer timescale. Rogue waves do not
occur in the time series after the downshifting is permanent.
Similarly, δ

damped
cutoff generally decreases as the strength of the

damping increases suggesting the heightened importance of
proximity to homoclinic data when obtaining rogue waves in
the damped Dysthe regime.
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