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Mobility transition from ballistic to diffusive
transport in non-Hermitian lattices
T. Eichelkraut1, R. Heilmann1, S. Weimann1, S. Stützer1, F. Dreisow1, D.N. Christodoulides2,

S. Nolte1 & A. Szameit1

Within all physical disciplines, it is accepted that wave transport is predetermined by the

existence of disorder. In this vein, it is known that ballistic transport is possible only when a

structure is ordered, and that disorder is crucial for diffusion or (Anderson-)localization to

occur. As this commonly accepted picture is based on the very foundations of quantum

mechanics where Hermiticity of the Hamiltonian is naturally assumed, the question arises

whether these concepts of transport hold true within the more general context of non-

Hermitian systems. Here we demonstrate theoretically and experimentally that in ordered

time-independent PT -symmetric systems, which are symmetric under space-time reflection,

wave transport can undergo a sudden change from ballistic to diffusive after a specific point in

time. This transition as well as the diffusive transport in general is impossible in Hermitian

systems in the absence of disorder. In contrast, we find that this transition depends only on

the degree of dissipation.
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T
he deceleration of wave transport in a lattice due to
disorder was introduced in physics about 100 years ago
with the famous Drude model. Paul Drude explained the

conductance of metals by free electrons that are scattered by the
atomic lattice, which in turn results in a diffusive transport1.
The diffusion process is ubiquitous. It governs the effects of
electric and thermal conductivity in solids1,2, particle mixing in
fluids3 and spin diffusion effects4, just to name a few. In this
context, it is generally agreed that all systems that exhibit sub-
ballistic transport are inherently disordered. Today, disorder is
explored in many disciplines, such as optics5, solid-state physics6,
acoustics7 and matter waves8,9. In particular, optical systems
attracted much interest, and so far numerous sub-ballistic
transport phenomena based on disorder have been observed;
these include the Anderson localization5,10,11, quantum
decoherence12, Levy flights13 and anomalous diffusion14.

The understanding of diffusive (and in general sub-ballistic)
transport naturally assumes Hermiticity of the Hamiltonian, as
this ensures the reality of the eigenvalue spectrum and, therefore,
energy conservation. However, dissipative (that is, lossy) systems
that interact with their environment are by far the most common.
With the damped pendulum as the simplest example, dissipation
is the basis for phenomena like the Carnot process or negative
temperature coefficient thermistors. In the nonlinear regime,
dissipative structures are encountered even in the everyday world,
for instance, in the form of heat convection of a candle light,
cyclons, the famous Belousov–Zhabotinsky reaction15 and, above
all, in living organisms. The recently introduced new class of non-
Hermitian systems, the so-called PT -symmetric systems16, have
received considerable attention. In particular, optical structures
provide an exceptional platform for the implementation of PT -
symmetric physics, where the (symmetric) refractive index
distribution represents the real part of the complex potential,
whereas the (antisymmetric) gain-loss profile has the role of its
imaginary part17. In optical PT -symmetrical systems, the short-
term evolution of (optical) wave packets exhibits peculiar features
and is highly non-intuitive18–23. In this context, perhaps, it is
natural to ask how periodic but dissipative structures affect the
long-term wave transport—a question of fundamental impor-
tance in numerous physical systems.

In this work, we theoretically predict and experimentally
observe that in static PT -symmetric lattice systems with no
disorder, wave transport may suddenly slow down from ballistic
to diffusive after a particular transition time. We find that this
transition as well as the resulting diffusive transport—which, in
the absence of disorder, is impossible in Hermitian systems—
depends only on a dissipation parameter associated with the
system. We verify our predictions by experiments in an optical
waveguide array. In this paraxial optical setting, light propagating
inside the waveguide array exhibits evolution analogous to that of
a particle in a quantum mechanical lattice. Importantly, this
system allows the direct observation of wave packets, which is a
key to unravel the mechanism of the underlying transport.

Results
Theory. Let us first describe the theoretical basics of the transition
from ballistic to diffusive transport in dissipative lattices. For
illustration purposes, we employ a tight-binding model to
describe the evolution of a wave packet in a biatomic lattice24.

� i d
dz anðzÞ ¼ daþ iga½ �anðzÞþk bn� 1þ bnð Þ

� i d
dz bnðzÞ ¼ dbþ igb½ �bnðzÞþk anþ 1þ anð Þ ; ð1Þ

where z is the evolution coordinate. The quantities an(z), bn(z) are
the propagating amplitudes in both lattice sites in unit cell n, the
quantities da and db represent the real part of the potential, and ga

and gb represent the imaginary part of the potential (or gain/loss
parameter), respectively. The transverse dynamics in the lattice is
described by the hopping parameter (or coupling constant) k. In
the particular case of da¼ db¼ d and ga¼ � gb¼ g, the system is
PT -symmetric, as in this case the real part of the potential is
symmetric and the imaginary part is antisymmetric16,17. A sketch
of such a lattice is shown in Fig. 1a. In our analysis, however, we
will not restrict ourselves to the PT -symmetric case, but will
consider a general non-Hermitian lattice with arbitrary da,b and
ga,b instead. In this case, the evolution dynamics is dictated by the
spectrum of propagation constants b:

b ¼ �b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~d� i~g
� �2

þ 4k2cos2
q
2

� �r
; ð2Þ

where q is the transverse Bloch momentum, �b¼ (daþ db)/2þ
i(gaþ gb)/2, ~d¼ (da� db)/2, and ~g¼ (gb� ga)/2. It is noteworthy
that such a class of dissipative non-Hermitian systems is said to
possess broken PT -symmetry, as the eigenvalue spectrum is
complex. Unbroken PT -symmetry, that is, a purely real eigen-
value spectrum, can be achieved only in lattices with da¼ db and
an inhomogeneous inter-site coupling25,26.

In Fig. 1b, an example of the spectrum (equation (2)) is shown.
For this arrangement, the (normalized) lattice parameters are
chosen to be da¼ ga¼ 0 cm� 1, db¼ gb¼ 1 cm� 1 and k¼
1.5 cm� 1. In this figure, the solid lines indicate the upper band
(the ‘þ ’ sign in equation (2)) and the dashed lines indicate the
lower band (the ‘� ’ sign). Moreover, the blue lines represent the
real part of the spectrum and the red lines the imaginary part.
Clearly, the imaginary part of the eigenmode’s propagation
constant is a function of the transverse momentum q. Hence,
eigenmodes in different regions of the spectrum will experience
different losses, depending on the value of the imaginary part of
their propagation constant. As a consequence, in both bands
modes in the centre of the spectrum (where the lattice
momentum qE0) experience an intermediate loss, which is close
to the average loss in the system. At the edge of the spectrum
(around q¼±p) the situation is very different. There, the modes
in the upper band suffer from a loss that is much higher than the
systems’s average loss, whereas in the lower band the modes
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Figure 1 | PTPT-symmetric lattice. (a) Sketch of the transverse profile of a

biatomic PT -symmetric lattice, where d is the real part and g is the

imaginary part of the potential. The lattice sites are coupled with the

strength k. (b) The eigenvalue spectrum as a function of the lattice

momentum q. Here the parameters da¼ ga¼0 cm� 1, db¼ gb¼ 1 cm� 1 and

k¼ 1.5 cm� 1 were assumed.
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experience much less loss. Hence, because of decay, the modes in
the upper band at the edge of the spectrum will disappear after a
relatively short propagation distance z, whereas the modes in the
centre of the spectrum will disappear somewhat later. Only the
modes in the lower band around q¼±p will prevail at long
propagation distances. Therefore, the spectrum will considerably
be getting narrower during propagation of the wave packet along
z, and only a part of the spectrum will contribute to transport.

To explore the impact of this phenomenon, we perform a
numerical analysis. To this end, we solve the tight-binding
equation (1) for an array of N¼ 200 waveguides using a standard
Runge–Kutta scheme and calculate the variance s2(z) at every
computation step. A simulation of the wave evolution in a PT -
symmetric dissipative lattice is shown in Fig. 2a, where da¼
db¼ ga¼ 0 cm� 1, gb¼ 2.0 cm� 1 and k¼ 0.5 cm� 1. Initially, the
wave exhibits ballistic spreading as all eigenmodes still contribute
to the transverse transport. However, after a certain propagation
distance z the spreading clearly slows down, and the strongly
modulated pattern, which is typical of ballistic transport in a
periodic lattice, washes out completely. In Fig. 2b, a double-
logarithmic plot shows the variance s2(z) as a function of the
gain/loss parameter gb. It is noteworthy that in the ballistic case,
one finds s2(z)Bz2; plotting this with double-logarithmic axes
results in a straight line with slope 2. In contrast, diffusive
transport is characterized by s2(z)Bz2, which yields a straight
line with slope 1 in a such a plot. Whereas one finds for ga¼
gb¼ 0 cm� 1 the expected ballistic spreading, for gb40 cm� 1 one
clearly sees a sudden transition in the transport properties from
initially ballistic (slope 2) to diffusive (slope 1). The distance,
where this transition happens decreases as the loss parameter gb

increases (note that ga¼ 0 cm� 1 for all graphs). We attribute this
phenomenon to the narrowing of the spectrum: after some

specific propagation distance zcrit, essentially only a part of the
spectrum contributes to transport. In fact, the continuous spectral
contraction leads to the characteristic diffusive spread of the wave
packet observed in our simulations.

To understand this process beyond the intuitive spectrum-
based explanation of this effect, we developed a full analytical
theory of this effect, which is provided in the Methods section.
Within this theory, the critical distance around which transport
slows down from ballistic to diffusive is given by

zcrit �
2
~g
: ð3Þ

Around zcrit, the spectral narrowing reaches a strength that
impedes ballistic transport because of an insufficient number of
propagating modes. Therefore, in essence for zoozcrit the
transport is ballistic, whereas for zczcrit it enters the diffusive
regime. Importantly, the critical distance zcrit depends strongly on
the difference in the loss parameters ~g, and the dependence on the
coupling coefficients k is negligible. Interestingly, our simulations
also indicate that zcrit slightly shifts to larger values for
j~d j40 cm� 1.

Experiment. For the experimental demonstration of our theore-
tical results, we fabricated various optical waveguide samples
employing the direct-laser writing technology27. A sketch of such
a waveguide array is shown in Fig. 3a, and a microscopic image
from the end facet of one specific realization is shown in Fig. 3b.
For further details of the fabrication process, we refer the reader
to the Methods section. Each sample was 10 cm long and contains
60 waveguides with an inter-site spacing of d¼ 17mm. These
parameters were chosen such that the light does not reach the
boundaries of the lattice during propagation.

To introduce additional, well-defined losses in every second
guide, these sites are sinusoidally modulated transverse to the
lattice plane with an amplitude of A¼ 3 mm. The induced
curvature then facilitates radiation and, therefore, enhanced
losses. These losses can be tuned precisely by changing the
curvature of the waveguide modulation, which we achieve by
adjusting the period of the modulation at constant amplitude. In
our study, depending on the specific sample, the number of
periods per sample length was ranging between 23 and 103. Note
that for such small modulation amplitudes of only A¼ 3 mm, the
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Figure 2 | Wave evolution in dissipative PTPT-symmetric lattices.

(a) Simulation of the wave evolution in a quasi PT -symmetric system

with da¼ db¼ ga¼0 cm� 1, gb¼ 2.0 cm� 1 and k¼0.5 cm� 1. In the

beginning, the transport shows clear signatures of ballistic spreading,

whereas for larger propagation distances the evolution is diffusive. (b) The

calculated variance of the evolving wave packet as a function of the

distance z and the gain/loss parameter gb. All other parameters are kept

constant so that the red curve corresponds to a.
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Figure 3 | Experimental realization of dissipative PTPT-symmetric lattices.

(a) Sketch of the fabricated waveguide arrays, where every second

waveguide is sinusoidally modulated to obtain strong and controllable

radiation losses. (b) Microscope image from the front facet of a sample.
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average spacing between the waveguides is always dE17mm,
resulting in a homogeneous coupling constant k. However, the
modulation causes a slight rise of the propagation constant in the
modulated guides because of the increased optical path. This can
be compensated by artificially increasing the refractive index of
the unmodulated waveguides. However, the mobility transition in
non-Hermitian lattices takes place also for j~d40 j ; hence, in our
samples we did not compensate for the additional detuning of the
modulated guides.

Our experimental results are summarized in Fig. 4. To excite
the entire spectrum, we launch light into the central waveguide of
the lattice. An image of the propagating light beam is shown in
Fig. 4a, obtained using a fluorescence microscopy technique28

(see Methods section). For small propagation distances, the
typical ballistic diffraction pattern is observed, whereas for larger
propagation distances the modulation of the pattern washes out
and the spreading slows down. In Fig. 4b, we show a simulation
of the experimental pattern with parameters da¼ db¼ ga¼
0 cm� 1, gb¼ 2 cm� 1 and k¼ 1.1 cm� 1. From the experimental
fluorescence microscopy pattern in Fig. 4a, we extract the
variance, which we plot using a double-logarithmic plot in
Fig. 4c. The transition from ballistic to diffusive transport is
clearly visible at zcritE2 cm: the initial ballistic spread (slope 2)
suddenly slows down to diffusive (slope 1). We would like to
emphasize the remarkable agreement between both the experi-
mental and theoretical curve, as for the simulation no fitting

parameters were used. The coupling parameter k¼ 1.1 cm� 1

used in the simulation is an experimental value obtained from
measurements in a single directional coupler with a waveguides
separation of 17mm. The loss parameter gb¼ 2 cm� 1 was
extracted from loss measurements in isolated sinusoidally bent
waveguides.

We repeat our experiments for different modulation periods in
the waveguides, which results in different loss parameters gb. The
position of the transition point zcrit is extracted from the
fluorescence images and is plotted in Fig. 4d. As predicted by
our theory, the value of zcrit is in very good agreement with
equation (3). The fluorescence images and variance plots of all
data points in Fig. 4a are shown in Fig. 5.

Discussion
For the first time, we have observed the coexistence of ballistic
and diffusive transport in a static, ordered system, based on non-
Hermiticity. The inhomogeneous losses associated with the
eigenmodes result in a contraction of the spectrum, which
hinders ballistic transport because of an insufficient number of
propagating modes. The transition from the initially ballistic
motion to a diffusive transport is generally impossible in static
Hermitian systems, where sub-ballistic transport is only possible
through the introduction of disorder. Moreover, it was shown
that the critical distance—where the transition of the transport
regimes takes place—depends only on the degree of dissipation
and not on the coupling between the waveguides.

Our theoretical and experimental work suggests various
intriguing questions. In terms of applications, can a non-
Hermitian waveguide lattice be used as a sophisticated mode
filtering device, for any desired Bloch waves and not only those at
the edge of the Brillouin zone (around q¼ p)? Can one design a
device with real-time loss control to actively tune the width of the
beam at the sample’s output facet? These issues might be of
particular interest in the fields of telecommunication or quantum
computing, as especially in the field of quantum optics there is a
great desire to prepare single as well as entangled photons in well-
defined states. Moreover, also from the more fundamental side,
many interesting questions arise: what is the impact of losses in
two-dimensional systems, in particular photonic graphene29?
How the light behaves at defects and interfaces in lossy systems?
Does disorder or nonlinearitiy facilitate or hinder transport30?
Moreover, can the band structure be modified via higher-order
coupling effects31 to achieve different transport regimes such as
sub-diffusive, super-diffusive or even super-ballistic transport32?
Our work will enable these questions, as well as many others, to
be addressed.

Methods
Theoretical foundation. To derive the corresponding results, we start from the
following system of equations:

� i@zan ¼ da þ iga½ �anþ kbn� 1 þ cbn

� i@zbn ¼ db þ igb½ �bnþ kbnþ 1 þ can
: ð4Þ

The first step in analysing this system is extracting its eigenvalue spectrum. This
is done by starting with the usual ansatz

an

bn

� �
ðqÞ ¼ eibðqÞzeinq a0

b0

� �
q

: ð5Þ

Substituting this into equation (4), one arrives at an expression that determines
the eigenvalues b(q) as well as the eigenvectors a0 b0ð ÞTq :

b
an

bn

� �
¼ da þ iga ke� iq þ c

keiq þ c db þ igb

� �
an

bn

� �
: ð6Þ

Therefore, the eigenvalue spectrum is given by

b� ¼ �b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~d� i~g
� �2

þk2 þ c2 þ 2kc cos q;

r
ð7Þ
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Figure 4 | Experimental results. (a) Fluorescence microscopy image of the

light beam as propagating through the lattice. (b) Simulation resulting in a

similar propagation pattern as in a. The simulation parameters were the

same as in the experiment, namely, da¼ db¼ ga¼0 cm� 1, gb¼ 2 cm� 1 and

k¼ 1.1 cm� 1. (c) The variance of the experimental (a) and simulated

(b) beam in a double-log plot as a function of the propagation distance z

(red line, experimental data; black line, simulation). The transition from

ballistic transport (slope 2) to diffusive transport (slope 1) is clearly visible.

The green dashed line acts as a guide for the eye, to illustrate a continued

ballistic transport. (d) The transition point zcrit as a function of the loss

parameter gb extracted from various samples (black crosses). The error bars

represent a 95% confidence interval. The data show a clear correspondence

to the theoretically predicted reciprocal dependency (blue line).
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where

�b ¼ da þ db þ i ga þ gbð Þ
2

�d ¼ da � db
2

�g ¼ gb � ga
2

:

The corresponding eigenvectors are

a0

b0

� �
q;�
¼

b� � �bþ ~d� i~g
keiq þ c

1

 !
: ð8Þ

As described in the paper, we are interested in the evolution of a single
waveguide excitation. For this specific case, the initial conditions (at z¼ 0) are
an¼ dn0 and bn¼ 0. From these initial conditions, it is straight forward to write
down the evolution of the wave packet in the form of an integral:

an

bn

� �
ðzÞ ¼ 1

2p

Z2p
0

keiq þ c
bþ � b�

bþ � �bþ ~d� i~g
keiq þ c

1

 !
eibþ z �

b� � �bþ ~d� i~g
keiq þ c

1

� �
eib� z

" #
einqdq: ð9Þ

Equation (9) is the full formal solution of equation (4) with the given initial
conditions. However, given this form of solution it is difficult to predict a transition
from ballistic to diffusive transport. On this account, the goal of this section is to
derive the existence of such a transition.

As discussed in the main text, the transport regime is solely determined
by the variance of the wave packet. Consequently, we calculate the variance of the
wave packet given by equation (9) for large propagation distances z. For simplicity,
in the following we will only consider the variance on the an sublattice.
However, the derivation for the bn sublattice follows analogously to the way
presented.

For simplicity, let us assume that the bn waveguides exhibit more loss than the
an waveguides, that is, gb4ga. From this it follows that ~g is a positive quantity.
Keeping this in mind, let us take yet another look at the eigenvalue spectrum

(equation (7)). It was already stated in the main text that the specific case of k¼ c
always leads to a complex spectrum. From here on, let us proceed with this
specific case. For such a complex spectrum, the modes that exhibit the least amount
of loss are those in the lower band (b� q) around qEp. Hence, for large
propagation distances z, one can approximate the evolution of the an by

anðzÞ ¼
1

2p
ei �bþ ~d� i~gð Þzeinp

Z1
�1

e�wq02zeinq0dq0: ð10Þ

To arrive at this point, first we have neglected the contribution of the modes of
the upper band. Second, we have used the Taylor expansion of b± around q¼p,
which reads

b� ¼ �b � ~d� i~g
� �

�
k2 ~dþ i~g
� �

2 ~d2 þ~g2
� � ðq� pÞ2: ð11Þ

Because of the dominance of the Gaussian term e�wq02z , for large z one can
approximate

b� � �bþ ~d� i~g
bþ � b�

z!1�! � 1: ð12Þ

In equation (10), also q0 ¼ qþ p and

w ¼
k2 ~g� i~d
� �

2 ~d2 þ~g2
� � ð13Þ

have been used. The extension of the integration limits in equation (10) can be
justified because of the fact that for large z, the width of the Gaussian is much
smaller than the initial integration range. At this point, it needs to be emphasized
that the approximation performed in equation (7) is only valid for a non-vanishing
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(g and h) gb¼ � 1.1 cm� 1; (i and j) gb¼ � 1.5 cm� 1; (k and l) gb¼ � 2 cm� 1.
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real part of w. Moreover, this condition is equivalent to the demand of a non-
vanishing loss detuning.

Finally, the evaluation of the integral in equation (10) yields

anðzÞ ¼
1

2
ffiffiffiffiffiffiffiffi
pwz
p ei �bþ ~d� i~gð Þð Þzeinpe�

n2

4wz : ð14Þ

Now, the last step in the analysis will be to calculate the variance of
the wave packet. The variance for such a discrete and dissipative system is
defined by

s2 ¼
P1

n¼0 n2 aj j2P1
n¼0 aj j2

: ð15Þ

Using the explicit form of an, one obtains

s2 ¼
P1

n¼0 n2e
�R½w�n2

2 wj j2 z

P1
n¼0 e

�R½w�n2

2 wj j2z

: ð16Þ

For large z, the sums can be approximated by integrals using x¼ n/
ffiffiffi
z
p

and
Dx z!1�! 0. Hence, one finds

s2 ¼ z

R1
0 x2e

�R½w�x2

2 wj j2 dxR1
0 e

�R½w�x2

2 wj j2 dx

: ð17Þ

Evaluating the Gaussian integral yet again, one finds the variance to be

s2 ¼ wj j2

R½w� z ¼
k2

2~g
z: ð18Þ

This shows mathematically that the variance rises with the first power of z.
Hence, the propagation of the wave packet is diffusive.

Subsequently, we want to derive the approximate region of the transition, which
corresponds to the critical distance zcrit given by equation (3). For simplicity, we
only regard the case of ~d ¼ 0. For the approximation (equation (10)) to hold, all
modes outside an e-region around q¼ p need to be damped sufficiently, and hence
need to be smaller than some value d. For our analysis, it is sufficient to fix d at
d¼ e� 2. This damping condition reads

e�R½w�e2zod; ð19Þ

or equivalently

z4
4~g
e2k2

: ð20Þ

It is important to note that e cannot be chosen arbitrarily, but one has the
additional condition

~g4
k2

2~g
e2; ð21Þ

which follows from the evaluation of the denominator in equation (12) and the
Taylor expansion of the eigenvalues. Connecting both conditions, one obtains
equation (3).

Waveguide fabrication. Our samples are fabricated in bulk-fused silica wafers
using the femtosecond laser direct-write aproach27 employing a Ti:Sapphire Mira/
RegA laser system (Coherent Inc.) operating at a wavelength of 800 nm, a
repetition rate of 100 kHz and a pulse length of 170 fs. The light is focused inside
the sample by a � 20 microscope objective (NA¼ 0.35), and by continuously
moving the sample using a high-precision positioning system (Aerotech Inc.) the
waveguides are created by the induced refractive index increase. For the fabrication
of our samples, the pulse energy was adjusted to 320 nJ and the writing velocity was
set to 1.5 mm s� 1.

To introduce enhanced and controllable losses to specific waveguides, an
additional sinusoidal modulation was applied to the waveguides to achieve
additional radiation losses. The modulation is introduced into the vertical
direction, as this prevents the radiated light from travelling through the lattice and
being recollected by other waveguides.

Fluorescence microscopy. For the direct monitoring of the light propagation in
our samples (see Fig. 4a), we used a fluorescence microscopy technique28. A
massive formation of non-bridging oxygen hole colour centres occurs during the
writing process, when fused silica with a high content of hydroxide is used,
resulting in a homogeneous distribution of these colour centers along the
waveguides. When light from a Helium-Neon laser at l¼ 633 nm is launched into
the waveguides, the non-bridging oxygen hole colour centres are excited and the
resulting fluorescence (l¼ 650 nm) can be directly observed using a charge-
coupled device camera with an appropriate narrow linewidth filter. As the colour
centres are formed exclusively inside the waveguides, this technique yields a high
signal-to-noise ratio.
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