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The random mass Dirac model and long-range
correlations on an integrated optical platform
Robert Keil1, Julia M. Zeuner1, Felix Dreisow1, Matthias Heinrich1,2, Andreas Tünnermann1,

Stefan Nolte1 & Alexander Szameit1

Long-range correlation—the non-local interdependence of distant events—is a crucial feature

in many natural and artificial environments. In the context of solid state physics, impurity

spins in doped spin chains and ladders with antiferromagnetic interaction are a prominent

manifestation of this phenomenon, which is the physical origin of the unusual magnetic and

thermodynamic properties of these materials. It turns out that such systems are described by

a one-dimensional Dirac equation for a relativistic fermion with random mass. Here we

present an optical configuration, which implements this one-dimensional random mass Dirac

equation on a chip. On this platform, we provide a miniaturized optical test-bed for the

physics of Dirac fermions with variable mass, as well as of antiferromagnetic spin systems.

Moreover, our data suggest the occurence of long-range correlations in an integrated optical

device, despite the exclusively short-ranged interactions between the constituting channels.
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L
ong-range correlations are observed in a variety of different
settings, such as in the arrival statistics of seismic waves1,
DNA sequences2 and even in stock market patterns3.

A generic property of such correlations is the contribution of
slowly decaying tails of the underlying probability distribution to
the averaged quantities. This leads to random walks, with a non-
vanishing occurrence of long jumps3–5, as well as long-range
ordering effects in organic and inorganic materials2,6–9. Spin-1/2
chains with antiferromagnetic interaction, so called the spin-
Peierls systems10,11, as well as cross-coupled spin-1/2 chains, so
called the spin-ladder systems12,13, are both prime examples of
solids with long-range ordered phases. Doping in these materials
causes impurity spins, which support low-energy, exponentially
localized defect states within the band gap of the host material,
but exhibit long-range averaged correlations decaying with a
power law over distance. Both systems map to a disordered one-
dimensional (1D) Dirac equation for relativistic, massive
fermions via a Jordan–Wigner transformation14. In this
description, the magnitude of the mass corresponds to the
dimerization strength of the spin-Peierls material or the cross-
coupling in the ladder, respectively, and the impurity defects are
modelled by randomly distributed sign-flips of the mass (kinks) at
which the gap states are localized15. This randomness in the mass
sign leads to the notion of the random mass Dirac model.

Disorder effects have been widely investigated in the context of
non-relativistic physics, modelled by a Schrödinger equation with
a disordered potential and leading to the famous Anderson
localization16–20. The major difference between non-relativistic
and relativistic disordered systems lies in the number of occurring
length scales and the nature of the resulting correlations. The
Anderson localization length is directly related to the mean free
path l (ref. 18); therefore, only one length scale is relevant and the
averaged transverse correlation functions decay exponentially.
For random mass Dirac fermions, on the other hand, there exists
also the length scale of correlation length L, which diverges for
the low-energy eigenstates situated in the band gap. Hence, for
spatial coordinates in the regime ltxtL power-law decaying
correlations with a universal exponent of � 3/2 occur14. In the
context of doped antiferromagnetic spin systems, this means that
the impurity spins are, on average, mutually correlated up to a
distance L. These long-range correlations have profound impacts
on the macroscopic properties of the materials. For instance, it
has been shown that the contributions to the susceptibility from
doping-induced impurity spins in spin-Peierls systems at low
temperatures deviate heavily from the Curie-law behaviour one
would expect for purely exponentially decaying correlation
functions15,21. Other examples are the transition to an ordered
antiferromagnetic phase, the Néel phase, occuring at
unexpectedly high temperatures21–24, and the temperature
dependence of the specific heat in these materials21.

For specific compounds and doping conditions, certain
predictions of the model, such as phase transitions or long-range
ordering, have been experimentally tested, either by the
measurement of macroscopic quantities22,24,25 or by scattering
techniques23,26–28. However, some configurations are difficult to
investigate experimentally, such as the impact of boundaries29 or
spatial variations in the coupling or dimerization strength.
Besides the antiferromagnetic spin-Peierls and spin-ladder
materials, the 1D random mass Dirac model maps also to the
quantum Ising model for ferromagnets with random bonds along
one dimension15,30,31. Therefore, a universal simulator of the
random mass Dirac model would help to explore its predictions
for all those systems, at the same time and in isolation from the
various distortions that may arise in the respective physical
material (for example, variation of the dimerization due to atoms
outside the chain, thermal fluctuations, uneven coupling to other

layers in the Ising system, and so on). However, such a simulator
has not been implemented to date. Only recently, a promising
scheme in a coherently driven atomic ensemble has been
suggested, mapping the random mass to a spatially varying
detuning of the controlling light fields32.

In this article, we propose and realize a radically different
approach to the random mass Dirac model; we imprint it on a
photonic chip, containing a chain of optical waveguides,
transversally coupled by their exponentially decaying
evanescent fields. Such photonic lattices have demonstrated their
potential as a platform for the implementation of quantum
random walks33,34, as well as for the quantum simulation of
indistinguishable, non-relativistic particles and their exchange
statistics35,36. By arranging the waveguides in a binary
superlattice of alternating high and low refractive index, it is
even possible to study the dynamics of relativistic fermions with
classical light, such that the light evolution in space is governed by
a 1D Dirac equation37. This enables the classical emulation of
genuinely relativistic effects, such as Zitterbewegung37,38, Klein
tunnelling39,40 and pair production41,42, with the advantage of a
directly observable evolution. In these schemes, the constant mass
of the fermions is determined by the refractive index difference
between the constituting sublattices. As recently demonstrated,
one can further emulate massless fermions in superlattices with
an alternating coupling43. Here we introduce disorder to the mass
by reversing the ordering of the sublattices of a refractive index
superlattice and distributing the associated kinks in a random
manner. By exciting the localized gap states with laser light and
averaging over their intensity correlations for many realizations
of disorder, we experimentally emulate power-law correlations
with an exponent of � 3/2, as they are expected from the model.
This further suggests the occurence of long-range correlations in
an integrated optical device, even though the interaction between
the individual waveguides is only short-ranged. Note that for
quantum walks in regular33,34 or disordered waveguide lattices44,
jumps between adjacent channels are predominant. Therefore,
their correlation functions are always short-ranged, that is, they
exhibit exponential slopes. To observe power-law, decaying long-
range correlations in a random walk, significant probabilities
for long jumps are required, as has been demonstrated in a
specifically engineered bulk material5. In our system, on the other
hand, the long-range correlations arise from the properties of the
emulated random mass Dirac model. Via a numerical analysis, we
further investigate the scaling of our model system to larger
dimensions. We predict the occurrence of power-law correlations
over an order of magnitude for system parameters, which are
experimentally accessible. Our data suggests universality of the
exponent of � 3/2, independently of several model parameters.
We finally demonstrate the robustness of the approach with
respect to coupling to next-nearest neighbours, that is, a second-
order coupling, by numerical calculations.

Results
Optical emulator of a doped spin system. A pure spin-Peierls
system exhibits a structural phase transition between a para-
magnetic (T4TC) and a dimerized phase (ToTC). Below its
transition temperature TC, a band gap opens between a singlet
ground state and triplet excited states, with the gap size being
proportional to the dimerization strength d (refs 10,21). Doping-
related impurities lead to the formation of domain walls, as
illustrated in Fig. 1a. These and other related systems can be
modelled by a Dirac equation for a relativistic fermion with the
two-component spinor W¼ (C(1),C(2))T in 1þ 1 dimensions:

i@tWþ icŝ1@xW�
m xð Þc2

�h
ŝ3W¼ 0; ð1Þ
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with ŝ1 and ŝ3 denoting the Pauli matrices, c the speed of light
and �h the reduced Planck constant. A domain wall corresponds to
a sign-flip of the mass at x¼ 0 between the values m(x)¼±m0

(Fig. 1b), its magnitude being proportional to the dimerization
strength m0pd (refs 14,21).

To emulate the Dirac equation (1) in optics, we discretize it in
the transverse coordinate x: W-Wn, m(x)-mn, @xCð1Þ !
ðCð1Þnþ 1�Cð1Þn Þ and @xCð2Þ ! ðCð2Þn �Cð2Þn� 1Þ, assuming slow
variations of the spinors along the x coordinate. In optics, this
requirement translates to a broad beam illumination of the
device. By further substituting sn � mnc2/�h, k�c and
Cð1Þn � ið� 1Þnan; Cð2Þn � ð� 1Þnbn, and replacing time t by
the longitudinal spatial coordinate z, one obtains the coupled
mode equations for a binary superlattice of single-mode optical
waveguides37, in a frame moving with the average propagation
constant:

i@z
an

bn

� �
þk

bnþ bn� 1

anþ 1þ an

� �
þ sn

� an

bn

� �
¼ 0: ð2Þ

Here, an and bn denote the field amplitudes of the guided modes
in the two sublattices. In this representation, their relative on-site
propagation constants sn¼±s are proportional to the mass m0

and the nearest-neighbour coupling k corresponds to the speed of
light, setting the time scale of the emulator by determining the
time interval associated to a certain propagation distance.

Figure 1c illustrates this analogy and shows how a sign-flip of
the mass is implemented by a reversal of the sublattice ordering.
To realize such photonic superlattices, we employ direct
waveguide writing in fused silica glass45 (Methods). Because of
the transformation Cð1ð2ÞÞn ! aðbÞn made above, a phase shift of
p occurs between adjacent superlattice cells. This phase shift is

required at the input of the device if one wishes to excite the gap
state residing at a kink with a flat-phased Gaussian beam. To this
end, the waveguides of every second superlattice cell are
segmented at the input (see inset of Fig. 1c). Thereby, the
effective refractive index is reduced in the segmented guides,
imposing the desired phase shift on the propagating light46

(Methods).
A single sign-flip of the mass supports an exponentially

localized zero-energy eigenstate between the two bands of the
energy spectrum of a massive Dirac fermion15. The
eigenspectrum of a corresponding waveguide superlattice with
N¼ 23 unit cells, s¼ 0.9 k and one kink at cell k¼ 9 is presented
in Fig. 2a, clearly showing the two energy bands, separated by a
gap of width 2s and a gap state, which has a finite energy due to
the discretization. For further analysis, we select the first
component of the gap state u¼fungN

n¼ 1, un denoting its
amplitude in cell n, derived from the light intensity on the first
sublattice and corresponding to the spinor C(1). For our optical
system, this results in an exponential profile (green symbols in
Fig. 2b), in agreement to the analytic solution15 of the Dirac
equation (1) (red line). We excite the gap state experimentally
by launching a spatially extended laser beam at the kink
(Methods). The light evolution is observed by fluorescence
microscopy47 and the end face of the sample is imaged onto a
charge-coupled device to obtain the output intensity distribution.
As shown in Fig. 2c, most of the light (96% of the power) gets
trapped at the kink, in good agreement to the numerical solution
of equation (2) (Fig. 2d), which predicts also an excitation
efficiency of 96% for the gap state. The remaining light is radiated
into the lattice, where it undergoes the optical analogue of
Zitterbewegung38, that is, it emulates the rapid trembling motion
experienced by massive relativistic fermions. From the measured

J+� J–� J+� J+� J+�J–� J–�

–m0

x

m(x)

m0

0

z

−�

+�

−�

+� +�

−�

+�

−�

0 0

Relative propagation constants �n

Λ

s

κ

an bn an+1 bn+1 an+2 bn+2an–1 bn–1an–2 bn–2

Figure 1 | The random mass Dirac model and its manifestations in solid states and optics. (a) A doped spin-Peierls system in the dimerized phase, with

nearest-neighbour coupling J and dimerization strength d, where the antiferromagnetic ordering flips at a domain wall (vertical dashed line). (b) In the Dirac

model, this corresponds to a kink (sign-flip) of the mass at x¼0. (c) In a photonic superlattice, the mass kink is implemented by reversing the order of the

sublattices, which have a relative propagation constant of ±s. A single cell with zero mass is included to better accomodate the requirement of slowly

varying lightfields. The inset shows a segmented waveguide section at the input face with segmentation length s and period L imposing a phase shift of p
on the incident light.
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output intensities, we extract the gap state intensities |un|2 (blue
symbols in Fig. 2b), which closely match the calculated results,
down to a background from the trembling light at 10� 2 relative
intensity level. The noise floor of the experimental setup lies at
about 10� 4 relative intensity.

Mass disorder and long-range correlations. In a disordered
solid, a measurement of macroscopic quantities is usually asso-
ciated to spatial averaging over an extended region. If that region
is large enough and the disorder conditions are homogeneous
across it, such a spatial average will be entirely equivalent to an
ensemble average over many realizations of the same disorder on
a smaller region48. This equivalence is commonly exploited in the
optical observation of Anderson localization18,49,50 and has
recently been empirically verified51.

In this vein, we consider the uniform, independent distribution
of two kinks of equal height but opposite sign within a given
domain of size O as a model for mass disorder, and perform
ensemble averaging. In a spin-Peierls system, this corresponds to
an ensemble with two randomly positioned doping-induced
impurities in each realization. As both kinks have the same
height, the individual gap states are identical, up to a phase.
Therefore, their combined intensity correlation is in theory the
same as if it were obtained by taking a single gap state and
mirroring (that is, doubling) it at an imaginary line positioned in
the centre between them. We employ this approach in our optical
setup utilizing the boundary of the lattice. By mirroring the gap
state associated to a kink located at cell k at the first waveguide,
the situation where two kinks are separated by 2(k� 1) cells is
effectively simulated. Note that the only experimental
uncertainties occuring in a waveguide lattice with two physical
defects, which are not caught by this method, are associated to
unequal defects and their unequal excitation. These effects have
no meaning in the random mass Dirac model and are eliminated
by the mirroring.

We fabricated 65 waveguide lattices with s¼ 0.9 k, each
comprising N¼ 23 cells and a kink, randomly positioned on
the interval kA[2,18] according to the triangular probability
distribution P(k)p(18� k). The upper limit is chosen such that
the right-hand boundary at n¼N¼ 23 does not have any
significant influence on the gap state. For each realization, the defect
state residing at the kink is excited and its components |un|2 are
obtained from the measured output intensity distributions
(Fig. 2). Then u is mirrored at the left-hand boundary n¼ 1,
yielding the doubled gap state uðmÞ ¼ fuðmÞp gN � 1

p¼ �N þ 1, with
uðmÞp ¼ upþ 1 for pZ0 and uðmÞp ¼ u� pþ 1 for pr0. As far as
intensities are concerned, this procedure is equivalent to two
kinks, which are independently, uniformly distributed on a
domain with a size of O¼ 34 cells. To model a realistic scenario,
where two dopants cannot occupy the same site, identical
positions are excluded (defining the lower boundary in the
triangular distribution).

Figure 3a displays the intensity of the mirrored gap state u(m)

for two exemplary realizations. Their individual intensity
correlations

GðdÞ¼
X�1� d

p¼ � þ1

u mð Þ
p

�� ��� u mð Þ
pþ d

��� ��� ð3Þ

are presented in Fig. 3b, clearly showing an exponential decay, as
one would expect from the exponential profile of the eigenstates.
Hence, these typical correlations are only short-ranged. In
concordance with Fig. 2b, the plateaus at 10� 4 and 10� 7 can
be attributed to the background illumination and the noise floor
of the experiment, respectively. The picture changes dramatically,
however, if one calculates the disorder-averaged correlation
/G(d)S: now, in the range 15tdt30 a power-law decay
/G(d)Spd� 3/2 can be clearly identified (Fig. 3c), corresponding
to long-range correlations in the Dirac model on this length scale.
Note that the measured correlation does not deviate by more
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Figure 2 | The midgap eigenstate and its excitation. (a) Spectrum of a waveguide superlattice with one kink. The gap state with energy eg is encircled

in red, the lowest continuum state of the upper band with energy ec in green. (b) Calculated intensity profile of the first component of the gap state in

the discrete optical emulator (green crosses) compared with the gap state in the continuous Dirac model un / expð�m0c j n� k� 0:25 j /�hÞ, with

m0 ¼ 0:9�h/c (red line). The shift of 0.25 occurs as the maximum of the photonic eigenstate lies in between two waveguides. The blue diamonds show the

extracted output intensities from (c) measured light intensity evolution and output intensity profile for a Gaussian beam excitation of the kink.

(d) Corresponding simulation with s¼0.9k. Each image has been rescaled to its maximum. Note that the waveguides near the right-hand edge are

not shown, but were nevertheless included in the analyis leading to the data presented in b and all further figures. The horizontal bands in c are illumination

artifacts and not related to the light propagation in the lattice.
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than one s.d. from the simulated data in the region of interest.
As before, the background light dominates as /G(d)S
approaches 10� 4.

Length scales and second-order coupling. The relevant length
scales of the problem are the localization length ll, the mean
free path l and the correlation length L. The former is indepen-
dent of the disorder and can be obtained directly from the
exponential slopes of the localized eigenstates at the kinks:
un / exp � n� k� 0:25j j/llð Þ, which yields ll¼ k/sE1.1
(Fig. 2b)21. The mean free path is the average separation of the
two kinks in our case, which is obtained from the probability
distribution of the single kink as lE12.7. Finally, the correlation
length depends logarithmically on the normalized energy of the
gap state e: L � l � ln2 eð Þ, diverging14 for e-0. In our setting, the
gap state energy can be obtained from the eigenvalue spectrum
(see Fig. 2a, red circle), yielding eg¼ 0.19 k and normalized with
respect to the energy of the lowest continuum state in the upper
band ec¼s¼ 0.9 k. This results in a normalized energy e¼
eg/ecE0.21, yielding a correlation length LE31, which is on the
same scale as the transverse dimension of the domain on which
the kinks are distributed (O¼ 34 cells). Note that the single cell of
zero mass at the kink (Fig. 1c) is important to reduce e, and
thereby reach a sufficiently long correlation length, providing a
window ltdtL for power-law correlations. A sharp kink with
an immediate transition between the sublattice orderings violates
the slowly varying lightfield approximation required by the
discretization of equation (1), resulting in eE0.45 and LE8ol,
rendering the emulation of long-range correlation impossible.

To extend the length scale on which a power-law decay can be
expected, one has to either decrease the mean free path or
increase the correlation length and the domain size. With a single
mirrored kink, however, the domain size is at best OE3l. This
inherently limits the range of long-range correlation to
ltdtmin (L,O)E3l.

To verify the universal nature of the exponent of � 3/2 on
larger length scales, we numerically investigate the correlations
arising in a lattice of N¼ 200 cells with K mass sign-flips
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uniformly distributed on the inner O¼ 170 cells (such that the
boundaries have no significant influence). To get control
over e, we consider smooth transitions of the form
sn¼ 2s/p � arctan a n� kð Þ½ �, instead of simple kinks. Here, a
determines the steepness of the transition and k its random lateral
position. As before, no two kinks are allowed on the same
position. The blue curve in Fig. 4a shows an exemplary realization
of a superlattice with s¼k, K¼ 20 and a¼ 0.1. The energy
spectrum is shown in Fig. 4b, exhibiting the continuum of the two
bands of the superlattice and a partially filled band gap in
between. The gap state with lowest positive energy eg resides on
the sign-flips (red curve in Fig. 4a) and is chosen for the further
analysis. Normalization with the lowest-energy state of the upper
band yields eE0.036 for this configuration. This should support a
correlation length of LE11l. Essentially, one finds that the larger
K (more sign-flips) and the smaller a (smoother profiles), the
smaller e and the larger the ratio L/l � lnðeÞ2, determining the
range where long-range correlation is supported. The dependence
of the average correlation on e is shown in Fig. 4c for K¼ 40 by a
variation of a. Indeed, /G(d)S decays with an exponent of � 3/2
on a length scale growing with decreasing a. In particular, for the
red curve (a¼ 0.1), one observes a power-law decay over one
order of magnitude between 8tdt80. Interestingly, the
correlations are essentially independent of the density of sign-
flips (Fig. 4d), corresponding to the defect density, as long as e is
kept constant. Please note that the mean free path l does no
longer exclusively depend on the mean separation of the sign-
flips, as in the configuration with kinks, but also non-trivially on
the profile of the mass transition.

In a waveguide lattice, some coupling between next-nearest
neighbours ~k is usually unavoidable52. Adding a corresponding
second-order coupling term to equation (2) would correspond to
a second spatial derivative in equation (1), thus abandoning the
frame of the Dirac model. However, as we numerically
demonstrate in this final consideration, the power-law
correlations are unaffected by this. Figure 5 presents the
simulated, disorder-averaged correlations for the same
configuration as in the experiment (Fig. 3), but with ~k¼ 0:5 k.
It is evident, that the correlation still exhibits the same power-law
decay and does not change substantially. The inset shows that the
band gap contracts compared with the ideal case ~k¼ 0 (cf.
Fig. 2a). However, as long as the gap state persists (which it does

for kBt0.75 k in this configuration), the long-range correlations
prevail.

Discussion
We have experimentally demonstrated how a binary lattice of
coupled optical waveguides can be employed to implement the
random mass Dirac model in a compact, robust and controllable
way. This model predicts the occurence of long-range averaged
correlations on the length scale ltxtL for gap states in general,
as well as for impurity spins in antiferromagnetic chains and
ladders in particular. Our optical platform supports correspond-
ing gap states residing at kinks where the ordering within the unit
cells is reversed. We have excited these gap states in laser-written
waveguides by a built-in control of the input phase. An ensemble
of randomly located kinks is mirrored to obtain the distribution
of defect pairs with random separation. The measured averaged
intensity correlations show a characteristic power-law scaling
with an exponent of � 3/2, in excellent agreement to the
predictions of the random mass Dirac model. Furthermore, these
results suggest that long-range correlations can be observed in an
integrated optical system with two or more physical defects.
Despite the short-ranged nature of the coupling between the
waveguides, as well as the individual correlations, the long-range
behaviour arises from the strong influence of rare configurations
of distant defects on the disorder average. The lower limit of the
range where this behaviour can be expected is determined by the
mean free path, lE13 in our system, whereas the upper bound
(E30) coincides with the correlation length L, as well as the
transverse size of the domain on which the kinks are distributed.

We have numerically investigated how an extension to larger
length scales is possible. For that purpose, larger lattices with
many defects are required and these defects have to be
implemented by smooth sign-flips, to reduce the gap states’
energies and, thereby, increase the correlation length. With 40
sufficiently smooth sign-flips randomly distributed on a domain
of 170 lattice cells, long-range correlation over an order of
magnitude can be expected. Our results show that the exponent of
� 3/2 is independent of the important model parameters energy
and defect density, hence suggesting its universality. A future
challenge will be the experimental excitation of the gap states in
such large systems, which feature intricate intensity distributions
(see Fig. 4a) necessitating a precise control over the input beam’s
intensity profile, as it is, for instance, offered by spatial light
modulators. Note that the required phase relations between
adjacent channels are always guaranteed by the segmentation of
the waveguides.

Several promising routes for future exploration with the optical
emulator lie ahead: one is the inclusion of three-dimensional
effects occuring in a real solid. For example, in the spin-Peierls
material CuGeO3, the angle of the Cu�O�Cu bond has a
crucial impact on the coupling between the spin carrying
Cu-atoms J, as well as on the dimerization strength d (ref. 26).
By tuning the corresponding parameters k and s along the
transverse axis of the waveguide lattice, one could investigate the
impact of a deformation of the chain due to external effects, such
as strain. Another route is the extension to a two-dimensional
(2D) disordered fermion model, directly mapping to a 2D
disordered quantum Ising model, which requires sophisticated
algorithms for a numerical analysis53. Two-dimensional
superlattices have successfully been implemented in direct-
written waveguide systems54 and a disorder could be
introduced to them at ease by randomly exchanging the lattice
ordering in both dimensions. Also, the interplay of non-linearities
and disorder, which has proven to host a variety of interesting
phenomena in non-relativistic systems19,50,55, is yet to be
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Figure 5 | Correlation with next-nearest-neighbour coupling. Shown is

the simulation of the disorder-averaged correlation subjected to a next-

nearest-neighbour coupling strength of 0.5k. As before, 1,000 runs of 65

realizations have been simulated to allow a direct comparison with Fig. 3.

The same length scales as in the experiment apply. The inset shows the

eigenvalue spectrum, the gap state being highlighted by a red circle.
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investigated in the relativistic context. A commonly considered
non-linear Dirac equation contains an additional interaction term
of third order in the spinor56, which can be implemented by a
Kerr non-linearity in waveguide lattices57.

Besides these prospects, our findings might hint at novel
methods for coherent information transfer between distant
locations or remote-sensing applications. As the ensemble
average is fully equivalent to spatial averaging over an extended
domain48,51, a long-range correlation can also be expected in a
single optical device. As long as the disorder is of static nature,
full coherence will be maintained.

It has moreover been demonstrated numerically that the long-
range correlations persist in the presence of residual second-order
coupling effects, leaving the presented optical realization of the
random mass Dirac model essentially unaffected, a feature which
will be particularly useful for 2D configurations.

Methods
Waveguide fabrication and defect state excitation. The exposure of transparent
materials to intense femtosecond laser radiation leads to multiphoton absorption,
avalanche ionization and a subsequent densification in the focal region, increasing
the refractive index permanently45. Employing this effect, we inscribed waveguides
with an average writing velocity of v0¼ 1.5 mm s� 1 by focusing (numerical
aperture 0.35) a pulsed laser (wavelength 800 nm, pulse duration 170 fs, pulse
energy 220 nJ, repetition rate 100 kHz) into a 10-cm long fused silica sample. The
waveguides’ transverse separation was 19 mm, setting the coupling strength to
kE0.68 cm� 1 for an observation wavelength of 633 nm in the experiment.
The modulation of the refractive index within the superlattice was achieved by
tuning the velocity to v0 � 0:13 mm s� 1 in an alternating manner, resulting in
relative propagation constants ±s¼±0.9 k.

The optimal segmentation parameters for obtaining a phase shift of p at the
input were found to be s¼ 2.75 mm and L¼ s/100 (see inset of Fig. 1c), by testing
the self-imaging effect in another sample46. The required exponential intensity
distribution of the defect states is approximated by a Gaussian beam. We weakly
focus (numerical aperture 0.035) a linearly polarized, continuous-wave laser beam
with a wavelength of 633 nm onto the front face of the lattice at the location of the
kink. In the focus, the beam has a flat-phased, Gaussian profile with a 1/e-intensity-
radius of 1.8 waveguides (34 mm).
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Erratum: The random mass Dirac model and long-
range correlations on an integrated optical platform
Robert Keil, Julia M. Zeuner, Felix Dreisow, Matthias Heinrich, Andreas Tünnermann, Stefan Nolte &

Alexander Szameit

Nature Communications 4:1368 doi:10.1038/ncomms2384 (2013); Published 22 Jan 2013; Updated 26 Feb 2013

This Article contains a typographical error in equation (3), in which the symbols used were inadvertently changed during the
production process. The correct version of equation (3) appears below.

GðdÞ¼
XN � 1� d

p¼ �N þ 1

uðmÞp

��� ���2� uðmÞpþ d

��� ���2 ð3Þ
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