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Strain response of thermal barrier coatings
captured under extreme engine environments
through synchrotron X-ray diffraction
Kevin Knipe1, Albert Manero II1, Sanna F. Siddiqui1, Carla Meid2, Janine Wischek2, John Okasinski3,

Jonathan Almer3, Anette M. Karlsson4, Marion Bartsch2 & Seetha Raghavan1

The mechanical behaviour of thermal barrier coatings in operation holds the key to under-

standing durability of jet engine turbine blades. Here we report the results from experiments

that monitor strains in the layers of a coating subjected to thermal gradients and mechanical

loads representing extreme engine environments. Hollow cylindrical specimens, with electron

beam physical vapour deposited coatings, were tested with internal cooling and external

heating under various controlled conditions. High-energy synchrotron X-ray measurements

captured the in situ strain response through the depth of each layer, revealing the link between

these conditions and the evolution of local strains. Results of this study demonstrate that

variations in these conditions create corresponding trends in depth-resolved strains with the

largest effects displayed at or near the interface with the bond coat. With larger temperature

drops across the coating, significant strain gradients are seen, which can contribute to failure

modes occurring within the layer adjacent to the interface.
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T
hermal barrier coatings (TBCs) have played a significant
role in advancing the efficiency of turbine engines over the
years. These high-temperature ceramic coatings provide a

high level of thermal protection for the underlying turbine
substrate while exhibiting durability under extreme environmen-
tal conditions1–3. While their effect on the jet engine efficiency
has solidified the use of TBCs in industry during the past decades,
research to extend the life and performance of TBCs is still
needed. Further understanding of the complex mechanics related
with these multi-layered coatings is required to link different
thermal and mechanical operating conditions with common
failure mechanisms such as delamination and spallation. Owing
to mismatch of the thermal expansion of different layers
along with extreme temperature changes between coating
manufacturing, operating temperatures and shutdown periods,
large residual stresses are present in each of the layers of the
coating. This is especially true for the thermally grown oxide
(TGO) layer, which develops at the bond coat/TBC interface
and is known to exhibit compressive residual stresses 41 GPa
(refs 4–7). Therefore, strains in this region are critical to
understanding the link between thermal and mechanical
operating conditions and various failure modes of the coatings.

Many studies have shown that damage initiation for
some failure modes occurs at this bond coat/TGO/TBC inter-
face2–4,7–23. The strain behaviour of the layers at high
temperature is largely related to the thermal gradient across the
coating due to internal cooling of the turbine blade and
mechanical loads from centrifugal forces in combination with
the temperature-dependent thermal and mechanical properties of
the coating. In the presence of sufficient thermal gradients, crack
initiation and propagation have been seen to develop in the TBC
parallel to the interface24,25. It has also been shown that with
reduced applied mechanical loads, failure modes in the bond coat
are suppressed, which shifts failure modes towards delamination
of the TBC26. Combinations of both thermal gradients and
mechanical loads have been applied through novel cylindrical
sample geometries to establish that thermal gradient mechanical
fatigue loading results in the development of cracks beneath the
top coat and further the spallation process27. While research in

the fatigue studies of TBC coatings is abundant, these efforts have
generally been ex situ investigations of failure propagation after
cycling. Significant strides in understanding the causes of
different failure modes can be made by the acquisition of high-
temperature in situ data through novel measurement techniques.

New experimental techniques are being developed in which
these strains can be measured in situ with variation of loading
conditions at high temperatures28,29. With the use of high-energy
synchrotron X-rays, through sample transmission can be used to
measure high spatial and strain resolution through the thickness
of internal layers of the coating30. Synchrotron X-ray diffraction
(XRD) has been used to show how depth-resolved phases and
residual stresses evolve after thermally ageing plasma-sprayed
TBCs31. With the speed at which measurements are taken, high-
energy XRD can provide the ability to accurately capture
transient material behaviour such as creep and plasticity. This
method has previously been used to quantify residual stresses in
the various layers under high-temperature conditions25,32. More
recently, synchrotron XRD strain measurements on TBCs under
uniform thermal loading have shown the dependence on applied
axial loads of the strain transition into the tensile region at high
temperature in the TGO of as-coated specimens29.

The work presented here uses high-energy synchrotron X-rays
to measure in situ internal strains as a thermal gradient and
mechanical load are applied to the coating. This is done so with a
tubular specimen and X-ray beam orientation shown in Fig. 1a.
The novel experiment developed, produced valuable information
on depth-resolved strains as both thermal gradient and mechan-
ical loading are varied at elevated temperatures. Displayed here
are previously unseen relationships between internal strains and
operating conditions directly determined from experimental
measurement.

This study used as-coated tubular IN100 specimens, with inner
and outer radii of 2 and 4 mm, which allowed for the heating of
the outer coated surface and cooling of the inner substrate surface
to create a thermal gradient across the coating layers. The
electron beam physical vapour deposition (EB-PVD) early-cycled
TBC system on the sample consisted of 7–8 wt% yttria-stabilized
zirconia (YSZ) ceramic top coat with a thickness of 211±4 mm,
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Figure 1 | Experimental set-up for loading and synchrotron measurements. (a) Thermal gradient loading of cylindrical samples maintaining access

for synchrotron XRD measurement transmitting through the sample tangential to the layers yielding 2D diffraction with radial (e11) and axial (e22)

strains, (b) 2D strain measured from radial deviation around the azimuth of (110) diffraction ring, (c) determination of (100) strain-free azimuth reference

angle (Z*) and strain-free radius (Ro) using variable mechanical load, (d) phase identification displaying intensity averaged around circumference of

diffraction ring versus d-spacing, (e) raw data highlighting lattice planes of phases.
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a TGO thickness of B0.3 mm, and a NiCoCrAlY bond coat with a
thickness of 118±4mm. It should be noted that the same sample
was used throughout the experiments where roughly three
80-min cycles were completed before the presented cycles.

To investigate the strain behaviour under loading conditions
relevant for gas turbine blades in aircraft engines, three types of
experiments were conducted: (i) single flight cycles, (ii) mechan-
ical tests at various temperatures up to 1,000 �C and (iii) thermal
gradient tests at high temperature. For single flight cycle tests (i),
the outer surface temperature was ramped up through duration of
20 min to 1,000 �C and held for 40 min before ramping down to
room temperature while maintaining a constant mass flow of
cooling air and a mechanical load resulting in 64 MPa nominal
stress. The strain response to mechanical loading (ii) was tested
through repeated stepwise mechanical load increases at five
different homogeneous temperatures (no superposed thermal
gradient) from room temperature up to 1,000 �C. To isolate the
strain effects from thermal gradient (iii), the sample was
uniformly heated to a high temperature of 1,000 �C. The inner
surface of the substrate was then cooled slowly while the surface
temperature was held constant. These novel measurements have
revealed previously unseen in situ strain response of the TBC that
can contribute towards enhancing coating lifespans.

Results
Diffraction peaks. The results for these experiments were
analysed for multiple phases as shown in Fig. 1d. The phases are
identified in the X-ray spectrum with the beam penetrating
directly through the bond coat, giving phases for both bond coat
and YSZ due to the curvature of the sample. In the YSZ, the
t0-YSZ is the most prominent phase measured. Two prominent
phases are detected in the bond coat. These are the b-NiAl phase
and a solid solution g-Ni phase. Strain results will be shown for
the bond coat b-NiAl phase and the t0-YSZ phase. Displayed in
Fig. 1e is a raw data image highlighting the lattice planes of these
phases. Due to the EB-PVD application process, the YSZ top coat
consists of a columnar structure normal to the bond coat surface.
This results in texturing with a preferred orientation displayed in
Fig. 2. This displays the measured intensity versus ring azimuth
angle from 0 to 360� for YSZ (111), YSZ (200) and NiAl (110).
The texturing displayed here for the YSZ is measured with an
X-ray beam tangential to the cylindrical surface, providing a two-
dimensional (2D) measurement plane that is parallel to the YSZ
columns. In comparison, the NiCoCrAlY bond coat exhibits
randomly oriented grains. The texturing of similarly manu-
factured samples can also be seen in other work33. The TGO
layer, which is expected to be a-Al2O3, was not detectable in the
diffraction data that is attributed to its minimal thickness in these

early-cycled specimens. Future work will include studies of pre-
cycled specimens from which the TGO signal, including strain
state, is expected to be measurable.

Single flight cycle strain evolution. For the single flight cycle
measurement, the outer surface is exposed to a temperature
profile with ramp-up and then held at high temperature while the
internal cooling and applied mechanical load are held constant.
The cycle shown in Fig. 3 was conducted at 75 standard litres per
minute (75%) and 64 MPa nominal tensile stress. The strain of a
single location is shown for both the bond coat and YSZ
throughout a single flight cycle. These locations are near the bond
coat/top coat interface as shown. The strain results for NiAl for a
single location throughout the cycle are shown in Fig. 3d and
include lattice planes of both (100) and (110). Throughout tem-
perature increase from room temperature to 1,000 �C, the strain
ratio of the (100) to (110) planes varies between 1.6 and 2.2. This
highlights the anisotropy of the NiAl phase. It also validates the
strain values as the elastic modulus ratio of the two planes is very
close to the inverse of the strain ratio. Room temperature elastic
moduli for the (100) and (110) were calculated to be 97 and
188 GPa, respectively, from experimentally determined elastic
compliance constants34. Owing to the fine-grained nature of the
bond coat, anisotropy is only seen in the scale of micro-strain.

At room temperature, the bond coat shows a very large tensile
residual strain in the in-plane (e22) direction. As it is ramped up
to high temperature, it then relaxes to zero strain. The bond coat
NiAl has displayed a changing e22 strain per temperature rate for
above and below 600 �C. The (100) plane strain rate was
� 3.95E� 6 (mm per mm) per �C between 25 and 600 �C while
increasing in magnitude to � 4.95E� 6 (mm per mm) per �C,
between 600 and 1,000 �C. A ductile to brittle transition,
associated with the activation of grain boundary creep, has been
reported in literature at similar temperatures around 600 �C
(ref. 35) for the bond coat and is likely to have an influence here.
As can be seen by the strain slope above 600 �C, the strain linearly
relaxes to zero strain at 800 �C. At this point, no further changes
in strain can be seen with increased temperature. The shift to
near zero strain at high temperature is expected due to
the TBC’s manufacturing temperature of 1,000 �C. During
temperature shifts from application and operating temperatures
to room temperature, the TBC system develops large residual
stresses as the layers contract at different rates.

Figure 3b displays the YSZ (111) strain near the interface
throughout a cycle. The YSZ exhibits compressive in-plane (e22)
strains at room temperature displaying that the YSZ exhibits a
smaller thermal expansion coefficient relative to the bond coat
and substrate. It also displays a similar shift to near zero at high
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(200), and (b) NiAl (110).
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temperature with some remaining compressive e22 residual strain.
The through-thickness plot shows that the largest shift during
temperature ramp-up along with the largest high-temperature
residual strains occur at the interface. This observation can be
attributed to the specific microstructure of EB-PVD YSZ coatings
that display a gradient in porosity, corresponding to a gradient
in elastic modulus, from low porosity near the interface to
increasing porosity towards the surface. These in-cycle results

highlight the importance of strains near the interface during
cyclic conditions. Strain gradients across the layers provide
valuable information on the loading state as well as the material’s
behaviour.

Strain response to mechanical loading at temperature. The
effects of mechanical loading at various temperatures are shown
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in Fig. 4. Locations in both the bond coat and YSZ, near the
interface, were monitored as the applied load ramped up with
nominal stresses of 16, 32, 48 and 64 MPa at each temperature.
Displayed in Fig. 4c,d are the changes in e22 strain versus changes
in applied nominal stresses for bond coat and YSZ, respectively.
This displays that the NiAl in the bond coat gradually bears less
of the applied load as temperature increases. This is demonstrated
by the decreasing slope of the strain to applied stress with
increasing temperatures. At 800 and 1,000 �C, the slope of strain
of the bond coat to nominally applied load, is near zero and also
exhibits zero strain shift between temperatures. As the micro-
strains averaged over the grains only displays elastic strain, this
highlights the existence of inelastic behaviour (plasticity and
creep) in the bond coat at and above 800 �C. The same trend
occurs in the YSZ layer. As the temperature moves towards
operating temperatures, it converges to zero load bearing. The
lack of micro-strain present internally within the NiAl grains at
elevated temperature with increased loads suggests the possibility
of sliding of the grain boundaries between the NiAl and Ni phases
that could affect the structural integrity of the bond coat over
cycling.

Strain effects from thermal gradients. Variation of thermal
gradient at high temperature was studied for its strain effects in
the bond coat and YSZ. Figure 5 displays the e22 strain results as
the thermal gradient was increased from 0 to 100% of maximum
thermal gradient, corresponding to an approximate maximum
temperature drop across the YSZ layer of 150 �C per 211mm. This
rough estimate of thermal gradient was approximated using the
change in d-spacing across the layer along with the measured
relationship between applied temperature and d-spacing. At high
temperature, the bond coat displayed no variation in strain due to
thermal gradient. However, the gradient has an effect on the YSZ
strains, which is substantial near the interface with the bond coat.
Figure 5c shows that with increasing thermal gradient, the YSZ

demonstrates minimal change in strain from the outer surface
into the middle of the layer, whereas the inner region of the YSZ
displays a significantly increasing compressive strain and thus
higher strain gradient.

The observed strain response on the variation of thermal
gradient by means of variation of cooling air mass flow can be
attributed to a combination of several effects, related to the
microstructure and the specimen geometry. The EB-PVD coating
has a higher density at and near the interface than towards the
surface with a high gradient in porosity near the interface up to
about 100 mm distance to the interface. With increasing distance
from the interface the porosity does not change much.
Consequently, the thermal conductivity and the elastic modulus
of the coating decrease with distance from the interface, resulting
in opposite effects on the strain. The effect of an increase in
thermal conductivity is a decrease of a thermal gradient in the
case of a constant heat flux. A decrease in thermal gradient would
result in a decrease of strain gradient if the elastic properties were
homogeneous. Since in the case of columnar EB-PVD YSZ
coatings the macroscale elastic modulus displays a gradient that
increases towards the interface, strain and strain gradients in the
YSZ phase would increase towards the interface if the thermal
gradient would be constant. The tubular specimen geometry
results in an increase of heat flux from the outer surface to the
cooled inner surface that would result in an increasing thermal
gradient towards the interface if the thermal conductivity would
be homogeneous. In addition to the microstructural effects, the
reduction in temperature near the interface can also reduce the
level of unmeasured inelastic strain present. A combination of
the listed effects could create or contribute to the trends in
changing strain gradient across the thickness as is displayed here.

Discussion
Combining the results from the different experiments, the
findings from this study will contribute to making significant
steps towards extending the life span of TBCs by providing
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previously unknown material behaviour under extreme environ-
ments. This will be used to validate models and close the design
loop in creating more durable coatings by adjusting the
processing parameters as well as through more innovation in
enhancing coating materials. Having knowledge of how internal
strains react to different operating conditions, including the
applied thermal gradient, increases our ability to define the focus
of TBC research to reduce damage propagation in regions of the
turbine blade that lead to early failure. These results have
displayed a relation between increases in thermal gradient and
increase in stress gradient in the YSZ inner region, strengthening
the assumption that a link can be made between thermal gradient
and failure modes in the YSZ24. Results also emphasize the
importance of mechanical load in regions of the turbine blade and
its link to damage propagation in the bond coat due to the
presence of plastic strain. Future experiments will show how these
dependencies on operating conditions vary throughout the life
span of a turbine blade. Continuing studies using these new
measurement techniques can lead to significant advances in
performance and durability of these coatings.

Methods
In situ thermal gradient mechanical set-up. To heat the sample, a heater
containing four 2,000 W lamps with elliptical mirrors encircling the specimen was
used to focus the energy as shown in Fig. 1. YSZ surface temperatures were
controlled up to 1,000 �C while the thermal drop across the coating was controlled
by the mass flow of pressurized air having ambient temperature through the centre
of the sample. Mass flow could be controlled between 0 and 100 standard litres per
minute. Tensile nominal mechanical stresses of 16–128 MPa were applied to
simulate the centrifugal loads on turbine blades. To maintain access for beam
diffraction, circular inlet and exit windows were created through the centre of the
front and back of the heater wall. Further information on the experimental set-up
can be found in the previous work28.

Measurement methods. Throughout all experiments, the beam scanned through
the coating layers with a window and step size of 50 mm. This gives depth-resolved
strain measurements during transient loading conditions. With high-energy
synchrotron X-rays and a 2D detector, diffraction measurements in 360� are
projected onto the detector plane perpendicular to the through transmission beam
as shown in Fig. 1. Measurements were taken with a beam energy of 65 keV,
resulting in full-diffraction rings to a d-spacing as low as 1.29 Å. High-resolution
strain measurements were taken with a 200-mm pixel size 2D detector at a distance
of 1,500 mm that provides the radial deviation of the diffraction ring around
the entire azimuth angle. Due to the geometry of grazing the coating layers
tangentially, as shown in Fig. 1, the beam chord length never exceeds 2 mm,
reducing the time required to achieve quality images down to five frames of 1-s
exposure time each for a window size of 50� 300 mm (width by height).

Synchrotron diffraction strain analysis. Diffraction rings are recorded for each
lattice plane in the multiple coating layers using an 85-s scan with 10 discretized
steps through the coating thickness. As the lattice structure is strained in the
directions shown, the patterns are measured as elliptical rings. These micro-strains
measured within the grains provide the elastic strain response of each phase. This
elliptical deviation from a circle with a strain-free radius provides the deviatoric
micro-strain tensor for that lattice plane36. To measure the directional strain within
the measurement plane, radial measurements of an individual ring are conducted
around the azimuth angle, and compared with this strain-free radius, Ro, as
described by Diaz et al.29 and shown in Fig. 1b. Strain-free radius values are
determined from a method of measuring a strain-free azimuth angle, which is
shown as Z* in Fig. 1c. This method is further described in the work by Almer
et al.37 The reference angle, Z*, is determined by measuring the distortion of the
diffraction ring while applied tensile loading is increased. This provides the
reference angle of which zero deviatoric strain occurs. This gives a value of Ro at
each measurement independent of temperature. The strain tensor calculations are
then conducted using the fundamental strain equation38. The use of high-energy
X-rays (65 keV) results in small Bragg angles, with 2y values for the peaks analysed
between 2� and 6�. This means that the measured diffraction vectors are nearly
aligned with the e22–e11 plane, such that the coefficients in the fundamental strain
equation for e11 and e22 are near unity while the e33 coefficient is nearly negligible,
with a value between 0.001 and 0.003. These radial (e11) and axial (e22) strains are
averaged over distances from the interface due to the curvature of the coating. With
the radial position being much greater than the coating thickness, the contribution
of the circumferential strain component on the measured e11 strain is expected to
be minimal. Methods are being developed to convert strain to stress using X-ray
elastic constants and various assumed stress states in the layers, as well as

exploiting the anisotropic nature of the lattice strains within the grains to improve
the approximation of the unknown stress direction parallel to the beam.
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