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Noise transfer functions of mode-locked 
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Abstract: The noise behavior of mode-locked semiconductor ring laser, 
including timing jitter, and pulse energy fluctuation are investigated using 
the notion of a noise transfer function. Numerical simulation predicts that 
semiconductor mode-locked lasers have very complex structure in the 
transfer function which is confirmed experimentally by corresponding noise 
measurements. 
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1. Introduction 

Theories of mode-locked laser noise have been developed by many researchers in the past. 
These theories can be modeled in both time and frequency domains. The time domain 
approach is employed by Haus et al. where a linearized noise equation is driven from a master 
equation of mode-locking [1–3]. Haus’s work is based on soliton perturbation theory and, 
therefore, presumes temporally hyperbolic secant shaped pulses as output. On the other hand, 
one example of the frequency domain approach can be found from Hjelme et al. where a 
master equation of mode-locking is used for each longitudinal mode and then perturbation is 
applied to obtain an equation of noise [4,5]. In this case, an output Gaussian pulse shape was 
assumed. Both of these approaches have analytic solutions for the noise spectral density, often 

having a Lorentzian shape ( )2 2
1/ γΩ +  or a product of Lorentzian shape 
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( )( )2 2 2 2

1 21/ γ γΩ + Ω +  noise spectra, and are excellent in understanding the general behavior 

of mode-locked laser noise. 
Noise behavior of many practical mode-locked lasers can be understood using these 

approaches. For example, Haus’s model works especially well for Ti:sapphire mode-locked 
lasers and mode-locked fiber lasers relying on the Kerr effect. However, there are many other 
types of mode-locked lasers which do not fall into those categories, e.g., semiconductor 
mode-locked lasers. Owing to large nonlinearities and gain, mode-locked semiconductor 
lasers generate pulses with quite complex shapes typically accompanied with a chirp. These 
pulse shapes are neither Gaussian nor hyperbolic secant. Therefore the justification of 
applying the above theories on mode-locked semiconductor lasers is rather weak, although 
these theories provide excellent insights about qualitative noise behavior. 

Another approach to study the noise behavior of mode-locked lasers independent of the 
type of mode-locking mechanism was proposed and demonstrated by monitoring the 
linearized response of the mode-locked pulse parameters to perturbations, such as pump 
power fluctuation [6,7]. For five parameters of mode-locked lasers; the laser gain ∆g, the 
pulse energy ∆w, the central frequency ∆ω, the pulse timing ∆t, and the phase ∆θ, the relation 
between the response and the perturbation was assumed as, 

 
d

dt
= − ⋅ +

v
A v S  (1) 

where ( ), , , ,g w tω θ= ∆ ∆ ∆ ∆ ∆v , S is a vector of noise sources, and A is a matrix defining the 

linear response. The approach is to determine A, then for a given S, the full laser noise 
behavior can be understood from the above relation. This approach is useful to study many 
general cases of mode-locked lasers, however as Eq. (1) suggests, it assumes that responses 
decay exponentially in time, which will result in Lorentzian like power spectra of noise. This 
condition may not be able to explain more complicate response behavior, often observed in 
semiconductor mode-locked lasers. In order to handle these cases, no assumption is made 
about the response dynamics except that it is linear, causal, and stable [8]. In this case, the 
response of a laser parameter to a noise source can be generally written as, 

 ( ) ( ) ( ),

t

i i j j
t t t t dt

−∞
′ ′ ′= − ⋅∫v h s  (2) 

Or in the frequency domain, 

 ( ) ( ) ( ),i i j j
Ω = Ω ⋅ ΩV H S  (3) 

where hi,j(t) and Hi,j(Ω) are impulse response and transfer function of ith laser parameter to jth 
noise source component, respectively. This expression is especially useful, because for 
semiconductor laser cases, Sj(Ω) can be easily generated by driving electronics while Vi(Ω) 
can be monitored by a fast photo-detector and an electrical spectrum analyzer. Hi,j(Ω) can be 
obtained from the measured Sj(Ω) and Vj(Ω), and once Hi,j(Ω) is obtained then all the laser 
noise behavior can be understood in the same way proposed in [6]. In this paper, we have 
measured the pulse timing and the pulse energy response to the laser cavity length fluctuation 
and pump current fluctuation for a semiconductor mode-locked ring laser. The measurement 
results shows rather complicated structure in their power spectra, which has never been 
reported by any of previous researchers. A numerical simulation of the small signal response 
of mode-locked laser shows qualitative match with the experimental results and suggests that 
the complex structures in the response spectra are owing to anharmonic ringing of the laser 
response relaxation. 

It should be noted there has been excellent progress in the development of ultralow noise 
mode-locked semiconductor laser, yielding relative timing jitter under 500 attoseconds (1 Hz 
~1 MHz) owing to careful cavity engineering [9]. In addition, there has been the development 
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of novel theory [10] and subsequent verification that careful understanding of intracavity 
nonlinearities can be exploited to generate ultralow noise pulse trains with lower noise than 
what would be considered the optimal laser cavity design [11]. As a result, the determination 
of the noise transfer function becomes paramount in the design of optimized laser cavity for 
ultralow noise pulse train generation. 

2. Numerical simulation of small signal response dynamics 

The schematic diagram of the mode-locked laser studied in this paper is shown in Fig. 1. The 
gain medium is a semiconductor optical amplifier (SOA) biased at 500 mA DC. The mode-
locking was achieved by active modulation of a Mach-Zehnder electro-optic modulator driven 
by a microwave synthesizer at 10 GHz. The laser cavity is primarily composed of fiber pig 
tails of various optical components, which contributes net negative group velocity dispersion 
(GVD). The schematic diagram of the numerical model of the mode-locked laser dynamics is 
shown in Fig. 2. Each optical component is treated as a lumped element and the pulse 
evolution is traced in the same order as the actual pulse travels in the experimental 
configuration. The cavity dispersion, the spectral filter, and the self phase modulation (SPM) 
were treated in the frequency domain while the intensity modulator, gain dynamics, and 
output coupler were treated in the time domain. This approach is similar to the split-step 
Fourier method in the sense that the simulation is done either in time or in frequency domain 
alternately. Numerical models for each component are shown below [12,13]. The 
mathematical expressions for each lumped elements are shown in Eq. (4) through Eq. (8). The 
time span for the simulation was 100 ps with 1024 sample points. Simulation parameters are 
summarized in Table 1. 

 

Fig. 1. Schematic diagram of the experimental setup.PD; photo detector, IM; intensity odulator, 
F; optical filter, Ω0; mode-locking freq., Ωm; external modulation freq. 

 

Fig. 2. Schematic diagram of the simulation. 
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where ( ) ( ) 2t

in
W t E t dt

−∞
′ ′= ∫ is the pulse energy, and σg, ag, s, k”, L, ∆ω, and Vπ are gain 

cross section, amplification coefficient, phenomenological coefficient of SPM, GVD of fiber, 
optical fiber length, spectral filter bandwidth, and π phase shift voltage of the modulator, 
respectively. The validity of the simulation can be claimed by considering the similarity in 
spectral shape between a simulation and a measurement. 

Table 1. Simulation Parameters 

Parameter Symbol Value 

Gain cross section σg 9.88 x10−3 /pJ 
Amplification coefficient ag 4.8 

Phenomenological coefficient of SPM s 1.186 x 10−1 /pJ 
GVD of fiber k” 12.4 ps/nm-km 
Fiber length L 15 m 
Spectral filter bandwidth ∆ω 1.1 x 1013 /s 
Vπ of the modulator Vπ 5.5 V 

 

Fig. 3. Optical spectra of mode-locked laser output: (a) the measured spectrum, (b) the 
simulated spectrum. 

Figure 3 shows the measured and simulated optical spectra of laser output. The measured 
spectrum shows triangular shaped spectrum with a sharp peak on the long wavelength side. 
The needle-like sharp structure in the spectrum is partially resolved longitudinal modes. The 
simulated spectrum shows the same trends in the spectral shape except that it has lower 
resolution owing to the limited number of samples. This unique spectral shape leads to a 
unique temporal pulse shape as well. The simulated temporal intensity profile and the 
instantaneous frequency offset are shown in Fig. 4. From the figure, it appears as if the pulse 
is composed of two parts. The leading portion possesses a well defined pulse with large down 
chirp, while the trailing portion contains a broad peak with small chirp. When compared to the 
optical spectrum, the leading portion is attributed to the spectrum spanning the short and mid 
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wavelength range, while the trailing portion of the pulse is attributed to the sharp peak on the 
long wavelength side. The overall sign of the chirp is negative; however, these two portions 
have two different slopes. This aspect has been confirmed by intensity autocorrelation 
measurements. The laser output pulses were sent to a dual grating pulse compressor before 
they are detected by an autocorrelator. The autocorrelation measurement shows that there are 
two different components of the pulse; each part compresses at different amount of dispersion 
compensation. This feature of complex pulse shape is not caused by a single effect but by the 
combined effect of SPM, cavity dispersion, gain saturation, etc. For example, the inclusion of 
dispersion compensation fiber into the cavity can cause a dramatic change in spectral shape. It 
is this nature of complex pulse shape that prevents one to utilized Haus’s or Hjelme’s theory 
of noise to semiconductor lasers. 

 

Fig. 4. Temporal intensity profile of the pulse and instantaneous frequency offset. 

The simulation procedure of the small signal response to an impulse from a noise source is 
described below. First, by iteration of many round trip of the pulse in the cavity, a steady state 
pulse shape is achieved. Then, an impulse to one of the laser’s noise source is applied: cavity 
length change, pump current change, cavity loss change, etc. In the third step, the iteration of 
the pulse round trip in the cavity is resumed and laser parameters, such as pulse timing, pulse 
energy, and center frequency are monitored (Fig. 2). These results provide the impulse 
response functions hi,j(t), the Fourier transform then gives the transfer functions Hi,j(Ω). The 
simulated response functions and transfer functions are shown in Fig. 5, and Fig. 6 for an 
SOA gain change impulse, and an impulsive cavity length change, respectively. 

 

Fig. 5. Responses for 10% of gain change: solid line for pulse timing, and dotted line for pulse 
energy. 
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Fig. 6. Responses for 1% cavity length change: solid line for pulse timing, and dotted line for 
pulse energy. 

The impulse responses show a relaxation oscillation behavior. Unlike a typical relaxation 
oscillation which is composed of a harmonic oscillation with an exponential decay of 
amplitude, these relaxations show complex decaying dynamics which includes overshooting 
and a reduction of the oscillation frequency in time. As a result, the transfer functions also 

show several peaks in addition to a typical ( )2 2
1/ γΩ +  shape. It is this behavior that is the 

unique contribution of this work in comparison to previously reported works. 

3. Experimental measurements of transfer functions 

In order to confirm the simulation results, transfer functions of each impulse response are 
measured. The schematic of the set up is shown in Fig. 1. For the gain change response, a 
small amount of AC component is added to a DC bias current to SOA. This AC component is 
provided by a tunable RF source. The responses of the laser against this AC component shows 
up as a spur in both amplitude noise, and phase noise measurement of photo current utilizing a 
power detector, and a phase detector, respectively. The strength of the spur is monitored as 
the frequency Ωm of the AC component is varying, which gives the transfer function. The 
results are shown in Fig. 7 along with the simulation results. A common trend in both the 
measurement result and the simulated result is a plateau at the low frequency end followed by 
a roll-off around 100 kHz. In addition, several peaks occur between 100 kHz and 1 MHz for 
both measurement ((a), (b)) and simulation ((a’), (b’)); the position of the peaks have a one to 
one correspondence to each other. The locations of these peaks are related to the oscillating 
frequency of the response signal in the time domain. The fact that the simulation and 
experiment both show similar value for the locations of these peaks implies that the time scale 
of the dynamics in the simulation is accurate. However, the slope of the roll-off at high offset 
frequency shows large difference. The exact origin of these discrepancies needs further 
investigation to understand. One potential explanation for the slower decay of the simulated 
results at high frequency could be the discretization error of the numerical simulation, which 
produces white noise and dominates the high frequency range in the transfer function. 
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Fig. 7. The measured (solid line) and simulated (dotted line) transfer functions for 10% of gain 
change: (a) the pulse energy response, (b) the pulse timing response. 

The response of the laser to the cavity length change can be investigated in a similar 
manner as the gain change case except it is the cavity length that is modulated. However the 
cavity length modulation requires mechanical moving parts and is not trivial to achieve. On 
the other hand, the mode-locking frequency Ω0 from a RF source can be easily modulated by 
one of built-in function from a commercial product. For a small amount of frequency detuning 
∆Ω from Ω0, the effective cavity length change ∆L can be obtained from a simple 

relationship; 
0 0

/ /L L∆Ω Ω = −∆ , where the L0 is the cavity length. Therefore the mode-

locking frequency Ω0 was modulated by a small amount instead of the cavity length 
modulation in the current experiment. Again, a noise spur is generated at a frequency of a rate 
of the frequency modulation, not at the amount of frequency deviation ∆Ω. The strength of 
the spur is monitored as the rate of the frequency modulation is varying, which gives the 
transfer function. Figure 8 shows the measurement results along with the simulation results. 
The trend is the same as the responses to the gain change case. 

 

Fig. 8. The measured (solid line) and simulated (dotted line) transfer functions for 1% of cavity 
length change: (a) the pulse energy response, (b) the pulse timing response. 

4. Conclusions 

Dynamic responses of the mode-locked semiconductor laser in terms of the pulse energy, and 
the pulse timing against the gain fluctuation, and the cavity length fluctuation are investigated 
both by numerical simulations and experimental measurements. The simulation predicts 
unconventional relaxation behavior in the impulse response including non-monotonic decay 
of the amplitude and a slowing down of the fluctuation frequency, which is in contrast to 
common relaxation oscillations where the amplitude envelope decays exponentially while it 
oscillates at a fixed frequency. The fluctuation leads to a spectral modulation in the transfer 
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function. Noise spur measurements of the gain or the cavity length modulated laser provide 
the experimental means to measure the transfer functions. These measurement results 
confirmed the general trend predicted by the numerical simulation, especially by the 
agreement of the location of the peaks in the transfer functions. Once the transfer functions of 
all laser parameters are known, the complete noise behavior of a mode-locked laser can be 
reconstructed and this numerical model can be a useful tool to understand other interesting 
aspects of mode-locked laser noise, such as mode-partition noise, super-mode noise, 
minimization of noise, etc. It is anticipated that the determination of these noise transfer 
functions will allow the design of an optimized mode-locked cavity for ultralow noise pulse 
train generation from a semiconductor diode gain based system with sub 100 attosecond jitter. 
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