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Correlations of polarization in random electro-
magnetic fields 

J. Broky and A. Dogariu
*
 

CREOL,The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA 
*adogariu@creol.ucf.edu 

Abstract: Random electromagnetic fields have a number of distinctive 
statistical properties that may depend on their origin. We show here that 
when two mutually coherent fields are overlapped, the individual 
characteristics are not completely lost. In particular, we demonstrate that if 
assumptions can be made regarding the coherence properties of one of the 
fields, both the relative average strength and the field correlation length of 
the second one can be retrieved using higher-order polarization properties of 
the combined field. 

© 2011 Optical Society of America 

OCIS codes: (260.5430) Polarization; (290.5855) Scattering, polarization. 
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1. Introduction 

Random electromagnetic fields (REF) occur in a number of situations, usually manifesting 
themselves as the familiar intensity fluctuations known as speckles [1–5]. Their properties can 
be described as the coherent superposition of a large number of random phasors with 
uniformly distributed phases [1,6]. As long as their amplitudes are Rayleigh distributed, the 
resulting distribution of intensity follows a negative exponential and the optical contrast is 
unity. This is the so-called fully developed speckle. The spatial correlation length of the 
intensity variations in such a REF, i.e the average size of a speckle, depends on the size of the 
source and wavelength. 

In practice, one sometimes encounters situations where two or more independent REFs 
overlap. When their superposition is incoherent, the REFs add in intensity and the outcome is 
the suppression of intensity fluctuations and an overall reduction in optical contrast [1]. 
Independent REFs can be generated as a result of illumination at different angles, with 
different wavelengths, or even with orthogonal polarization components [7–9]. The addition 
of multiple independent REFs is a common method to reduce or eliminate unwanted speckles 
in a number of imaging applications [10]. 

A more interesting situation is that of coherent superposition of REFs which have different 
characteristics [11–13]. In general, when two REFs add in amplitude, there is no reduction of 
intensity contrast, the speckles remain fully developed and the probability density of intensity 
distribution continues to follow a negative exponential. In this situation, when the overlapping 
fields are completely unknown, the information about an individual REF cannot be recovered. 
However, we will show here that if prior knowledge about one of the fields is available, some 
information about the other one can still be retrieved. In particular, we will demonstrate that if 
assumptions can be made regarding the field correlation length of one of the overlapping 
REFs, the relative average strength and the field correlation length of the second REF can be 
retrieved using the polarization properties of the combined field. 

REFs can have different physical origins. For instance, depending on the type of 
interaction, there are different kinds of REFs that result from the coherent light scattering by 
randomly inhomogeneous media. Such fields are fully polarized locally but their global 
properties can vary from being fully polarized (same polarization state across the entire field) 
to being completely unpolarized (a uniform distribution of all possible polarization states). 
For instance, a strong multiply scattering medium will generate scattering fields that are 
globally unpolarized fields while uniformly polarized random fields can be the result of single 
scattering, surface scattering, ballistic propagation through the medium or combinations of 
those. Of course, in addition to different polarization properties, these fields can also differ in 
their spatial coherence properties, and this diversity may be used to trace their actual physical 
origin. The present paper provides means to determine the correlation length of such single 
scattering components in the presence of multiple scattering. 

2. Coherent superpostion of random electromagnetic fields 

In the following we will describe the superposition of two locally polarized fields: one field 

being globally unpolarized   ˆr  ( ) ( )UE r e rU and the other one characterized by a uniform 

polarization state,   0
ˆr ( )PE r eP . If the fields are quasi-monochromatic and also mutually 

coherent, their addition leads to a new REF that is
0

ˆ ˆ( ) ( ) ( ) ( )R U PE r E r e r E r e  . As 

mentioned before, a globally unpolarized field can be regarded as the superposition of two 
uncorrelated components that are orthogonally polarized, one along x and the other one along 
y, for instance. This is an example of adding two independent fields in intensity, which 
reduces the optical contrast. The addition of more independent fields further reduces this 

contrast. However, when a fully polarized and coherent REF is added to the field U, the 

optical contrast of ( )RE r  actually increases because the uniformly polarized component 

increases the magnitude of the field amplitude along a certain direction, thus biasing the 
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overall polarization of ( )RE r . Not only does the addition of this coherent field increase the 

contrast, but it also increases the overall degree of polarization creating a partially polarized 
REF. This is similar to combining a completely unpolarized beam with a fully polarized one 

to create any partially polarized beam [14, 15]. 
The globally unpolarized field (U) can be modeled as a REF where the complex amplitude 

components 
xE  and 

yE  are both circular Gaussian random functions. Each of these 

components can be represented as a sum of plane waves 

 
,( ) exp( ( ), , ,U

j j j

j

E a i k x y     r r  (1) 

where 
ja  is an amplitude, 

jk  are transverse wavenumbers, r  is a position vector, and 
, j  

are uniformly random phases. When the field in Eq. (1) is added to a field uniformly polarized 
along x, 

 ,( ) exp( ( ),P

x j j x j

j

E b i k   r r  (2) 

where jb  is a different set of amplitudes, there are several ways to characterize the properties 

of the resultant REF. One simple global measure is to compare the average intensity of the 

field P with the average intensity in the total field ( )RE r . In our practical example, this ratio 

2 2

( ) / ( )P RE r E r   would indicate the strength of the scattering regime. For instance, 

for 0.5  , the REF would favor the linearly polarized component. We note that this ratio of 

intensities relates to the global degree of polarization, P , of the final REF, which is an 
ensemble quantity defined as [16] 

 
2 2 2

1 2 3( ) ( ) ( ) ( ) / ( ) ,P r S r S r S r I r    (3) 

where 

 

 

* *

1

* *

2

* *

3

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) .

R R R R

x x y y

R R R R

x y y x

R R R R

x y y x

S r E r E r E r E r

S r E r E r E r E r

S r i E r E r E r E r

 

 

 

 (4) 

As can be seen, the strength of the linearly polarized component determines the partial 

polarization of the resulting field. As   continues to increase, P  increases as well until unity 

saturation is reached. 
Another characteristic of the resultant field is the extent of its field-field correlations. In 

addition to having different overall magnitudes and polarization characteristics, random fields 
may also have different field correlation lengths. In other words, the speckle sizes of the fields 

U and P can be different. The short-range correlation length for U can be defined as 

 ( ) ( ) ( ),U U U

r
E r E r f    (5) 

and it has the same value for both x and y field components. The unpolarized field can be 
caused by any number of strongly scattering media but, for the purpose of this paper, it is 
assumed that the unpolarized field is examined near its source and, therefore, the field 
correlation length is of the order of a wavelength [17,18]. The field correlation for the linearly 
polarized component, 

#149420 - $15.00 USD Received 17 Jun 2011; accepted 7 Jul 2011; published 1 Aug 2011
(C) 2011 OSA 15 August 2011 / Vol. 19,  No. 17 / OPTICS EXPRESS  15713



  

 ( ) ( ) ( ),P P P

x x r
E r E r f    (6) 

is of course only along x. This can result from the scattering from a rough surface, ballistic 
scattering, and other types of scattering that conserve the state of polarization [1,19]. Along 
with the value of  , these two correlation lengths directly influence the length scales of the 

resulting REF. 

As mentioned before,  , P , and the f factors in Eqs. (5) and (6) are all global properties, 

evaluated as ensemble averages. While P  is indicative of the overlap between the fields U 

and P, its value does not take into account the field correlation in the resulting REF. The 
correlation length on the other hand is a structural characteristic evaluated using a two-point 
property. As the resulting REF has different levels of partial polarization depending on the 

strength of P, the polarization structure of the final REF is important to consider. 
In the past, we demonstrated that a two-point polarization similarity measure such as the 

complex degree of mutual polarization (CDMP) can conveniently describe the spatial 
structure of polarization in a REF without requiring an ensemble average [20]. In general, the 
CDMP factor measures the similarity between two polarization states [21] and it ranges from 
zero when the two states are orthogonal to unity when the polarization states are identical. For 
the purpose of the present analysis, the CDMP is defined such that it measures the 
correspondence between the state of polarization at position r and a chosen reference 
polarization state: 

 
 

  

2
* *

2

2 2 2 2

( ) ( )
( ) .

( ) ( )

R P R P

x x y y

R R P P

x y x y

E r E E r E
V r

E r E r E E




 
 (7) 

In Eq. (7), the reference is the polarization state of the field P. Using this definition, one 
can generate a two-dimensional CDMP map corresponding to this specific state of reference 
polarization as can be seen in Fig. 1. This two-dimensional graphical representation of 
polarization “speckle” is characterized by spatial features with different sizes and spatial 
frequencies. Similarly to conventional intensity speckles, it is expected that these features will 

depend on the properties of U and P. Of course, since the field P is in the same polarization 
state of the reference, its CDMP map would have a uniform value of one; the CDMP map of 

U on the other hand should be correlated over distances on the order of U . 

As a means to assess the spatial frequencies in these polarization maps, one can examine 
the power spectral density (PSD) defined as 

  2 2( ) ( ) ( ) ,P F V r V r    (8) 

where 2 2( ) ( )V r V r  represents the autocorrelation of a CDMP map. Because the analyzed 

REF is the superposition of two other fields that are mutually coherent, Eq. (8) can be further 
written as [12] 

 2 2

1 1 2 2 1 2 12( ) ( ) ( ) ( ),P I p I p I I p       (9) 

where 

  * *( ) , 1, 2j j j j jp F a a a a j     

     * * * * * *

12 1 1 2 2 1 2 2 1 1 2 2 1( ) 2 ,p F a a a a a a a a a a a a        (10) 

represent the power spectral densities of the individual components and the mixed 
(interference) term, respectively. In Eq. (10), a1 and a2 denote the individual, normalized x 
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field components 
0( ) / ( )PE r S r  and 

0( ) / ( )UE r S r , respectively. The properties of the spatial 

distribution of polarization states across a REF relate to the power spectrum of the CDMP 

map in Eq. (9), which, in our case, depends on the specific values of   and P . Of course, 

the information content of this power spectrum in Eq. (9) is richer than that provided by the 

value of P , which is only a global average of point-like properties. 
In general, any REF can be decomposed into a globally unpolarized and a uniformly 

polarized component. These two components have a relative strength   and are also 

characterized by their, possibly different, coherence lengths U  and P . These 

characteristics influence the global properties of REF in different ways. For instance, the 

global degree of polarization P  of the final REF depends only on the ratio   but is not 

influenced at all by U  or P . The spatial properties of polarization on the other hand are 

determined by all these factors as can be seen in the power spectrum of the CDMP map in 

Eqs. (9) and (10). Because (i) the global degree of polarization P  can be determined 

independently and (ii) the coherence length U  is known to be of the order of the wavelength, 

one can use the power spectrum of the CDMP map to determine the unknown correlation 

length P  of the polarized field component. In the following we will illustrate this procedure 

using systematic numerical simulations. 

3. Numerical simulations of overlapping REF 

To illustrate some of the field properties resulting from the superposition of coherent REFs, a 
simple numerical simulation was performed. Using the plane wave decomposition in Eq. (1), 
plane waves originating from a circular array of source points with random phases were 
mapped onto an observation plane of 250 by 250 pixels. This creates a Gaussian random field 

originating from a beam with radius r, with a coherence length 3.83/ ( )coh r   [1]. When 

1   and 0.3r  , the coherence length U  of the globally unpolarized field was set to be 

equal about 12 pixels in the observation plane. The uniformly polarized field was created in a 
similar manner using Eq. (2) in only one linear state of polarization. In addition, the spatial 

correlation length of this polarized field ( P ) was controlled by adjusting the parameter r to 

produce different values that are larger than U . These two random fields are then superposed 

coherently and the resulting intensity patterns are shown in Fig. 1 for the case where the 
coherence length of the polarized field is four times larger than the unpolarized component, 

i.e. 4P U  . In this example, the intensity patterns in Figs. 1(a) and (b) are characterized by 

a ratio 0.15  , which corresponds to a global degree of polarization 0.11P  . 
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e)

l 2l

d)

a) b)

f)

c)

 

Fig. 1. Intensity speckle images of the superposition between an unpolarized field of coherence 

length 
U  and a polarized field characterized by: a) 0.15  , 4P U   b) 0.15  , 

P U   c) 0.45  , 
P U   and the corresponding CDMP maps for: d) 0.15  , 

4P U   e) 0.15  , 
P U   and f) 0.45  , 

P U  . Areas of blue and red 

correspond to CDMP values of 0 and 1, respectively. The values of 0.15   and 

0.45   correspond to global degrees of polarization 0.11P   and 0.31P  , 

respectively. 

At such a low intensity ratio, adding an additional linearly polarized field has little impact 
and the resulting REF is almost globally unpolarized. As can be seen, even when the 

correlation length P  is four times larger than U , there is practically very little change in the 

size of the final intensity speckles. However, when observing the CDMP maps, one can easily 
notice changes in the statistical nature of their structure. Even though the two REFs in Fig. 
1(a) and 1(b) have the same global degree of polarization, there is a clear difference in the 
spatial frequency content of the corresponding CDMP maps as seen by the larger groupings of 
high CDMP values in Fig. 1(d). 

The third speckle pattern in Fig. 1(c) corresponds to the situation where P  is equal to 
U  but the field P now has a greater amplitude, i.e. the ratio 0.45   and, correspondingly, 

0.31P  . As can be seen, the spatial frequency content in the CDMP map of Fig. 1(f) is 

similar to the one in Fig. 1(e) but now with a higher prominence of locations where 
2( ) 1V r  . 

To get a quantitative description on how the correlation length of the field P affects the 
spatial distribution of polarization in the resulting REF, we have calculated the power spectral 
density of the CDMP maps resulting from the numerical procedure. An example is illustrated 

in Fig. 2 for three cases corresponding to fields P having different correlation lengths and the 

same 0.45  . 

It is clearly seen that the characteristic shape of the curves in Fig. 2 appears to be 
composed of three different contributions. This is also described by Eq. (9) where the power 
spectral density contains three main terms that can be approximated by zero-mean Gaussians 
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with different widths. The widths of these Gaussians are representative of the correlation 

lengths of the fields P and U while their magnitudes depend on the relative strengths of the 

fields (  ). We have also fitted the power spectral densities to the formulation in Eqs. (9) and 

(10) using the magnitudes I1 and I2 and the three Gaussian widths as fitting parameters. The 
results are included with continuous lines in Fig. 2. The first two terms correspond to the 

power spectral densities of the individual fields P and U. Since the CDMP maps for the 

individual fields do not change with   and P , the widths of the first two Gaussians also 

remain unchanged. 
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Fig. 2. The power spectral density of CDMP maps calculated for 0.45   and correlation 

lengths 
P  equal to A) 2 U , B) 4 / 3 U , and C) 

U . Also shown with solid lines are the 

best fits with power spectrum dependence given in Eq. (9). The inset shows a log-log plot of 
the high spatial frequencies region. 

In the specific case analyzed here, the first term, which is basically the PSD of the CDMP 
map with uniform unity value, has a small Gaussian width of 0.06 in our normalized units (the 
narrow central peak in Fig. 2). The second term represents the PSD corresponding to the 

unpolarized component and has a constant width of 0.9 due to the fixed correlation length U . 

The third term in Eq. (9) describes the interference between the fields P and U with most of 
its contributions occurring in the high spatial frequency range. In the example presented in 
Fig. 2, only the width of this interference term and the magnitudes of the Gaussians depend on 
the characteristics of the interfering fields. However, because   is constant, all the 

magnitudes remain unchanged and only the width of the third component changes as P  

varies. The contribution of this third term lies mostly in the high frequencies and can be fitted 
well by a Gaussian function with widths of 3.6, 4, and 5.3 for the PSD labeled A, B, and C, 

respectively. As can be seen, as the correlation length of P decreases, the PSD width increases 

indicating that smaller spatial polarization features appear due to the interference between P 

and U. 
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Fig. 3. The power spectral density of CDMP maps calculated for 4P U   and field ratios 

  equal to A) 0.04, B), 0.19,and C).0.45. Also shown with solid lines are the best fits with 

power spectrum dependence given in Eq. (9). The inset shows a log-log plot of the high spatial 
frequencies region. 

A different example is illustrated in Fig. 3. Here the correlation length of P is kept fixed 

and is four times larger than the field correlation length of U but the relative strength   is 

varied. This corresponds to a gradual progression of different polarization regimes. Again, the 
most interesting features lie in the high spatial frequencies. When fitting the results of the 
simulation, only the magnitudes of the Gaussians are altered since now the underlying field 
correlations of the different components are unchanged. As a result, the curves are almost 
parallel to each other in the high spatial frequency range, as can be clearly seen in the inset. 

One can also note that, at low  , the influence of the correlation length of field P is minimal. 

This is because, when the average strength of the uniformly polarized component increases, 
the overall content of high spatial frequencies decreases due to a decrease in the magnitude of 
the second term in Eq. (9). The values of this magnitude are 3.1, 3.0, and 2.6 for the PSDs 
labeled A, B, and C, respectively. The behavior seen in Fig. 3 demonstrates that, if the 
correlations of the underlying fields do not vary during the transition from polarized to 
globally unpolarized regimes, the shape of the PSD remains relatively unchanged. 

4. Conclusion 

There are practical situations when the emerging random electromagnetic fields can be 
thought as a combination of two interfering mutually coherent fields. When one of these two 
underlying fields is globally unpolarized and the other one is polarized uniformly, the spatial 
correlation of the polarization states contains information about both the relative strength and 
the extent of the field correlations in the two components. 

We have shown that the complex degree of polarization (CDMP), a two-point vectorial 
descriptor quantifying the polarization similarities in the resulting random field, can be used 
to recover this information. In particular, we have demonstrated that the power spectral 
density of the spatial variation in the CDMP maps depends on the specific two-point 
properties of the underlaying fields. We have also outlined a simple procedure to recover 
them when some prior information is available. 
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The physical situation discussed here is typical for random fields emerging from the 
interaction between coherent optical fields and randomly inhomogeneous media where a 
definite polarized component can be associated with ballistic, surface, or single scattering. 
Our results should be of interest for a variety of applications operating in these scattering 
regimes. 
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