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Extremely nondegenerate two-photon absorption 

in direct-gap semiconductors [Invited] 

Claudiu M. Cirloganu, Lazaro A. Padilha, Dmitry A. Fishman, Scott Webster, 

David J. Hagan, and Eric W. Van Stryland
*
 

CREOL: The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd, Orlando, 

FL, 32816, USA 
*ewvs@creol.ucf.edu 

Abstract: Two-photon absorption (2PA) spectra with pairs of extremely 

nondegenerate photons are measured in several direct-gap semiconductors 

(GaAs, CdTe, ZnO, ZnS and ZnSe) using picosecond or femtosecond 

pulses. In ZnSe, using photons with a ratio of energies of ~12, we obtain a 

270-fold enhancement of 2PA when comparing to the corresponding 

degenerate 2PA coefficient at the average photon energy (ηω1 + ηω2)/2. 

This corresponds to a pump photon energy of 8% of the bandgap. 2PA 

coefficients as large as 1 cm/MW are measured. Thus, by using two widely 

different wavelengths we are able to access the large 2PA observed 

previously only in narrow gap semiconductors. We also calculate the 

corresponding enhancement of nonlinear refraction, consisting of two-

photon, AC-Stark and Raman contributions. The net effect is a smaller 

enhancement, but exhibits very large dispersion within the 2PA regime. 

©2011 Optical Society of America 

OCIS codes: (190.0190) Nonlinear optics; (300.6410) Spectroscopy, multiphoton; (190.7110) 

Ultrafast nonlinear optics. 
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1. Introduction 

The two-photon absorption (2PA) processes in semiconductors have been extensively studied 

both experimentally and theoretically, resulting in what are now well-established scaling rules 

that can accurately predict the degenerate two-photon absorption (D-2PA) of direct-gap 

semiconductors [1-3]. These scaling rules show that D-2PA is inversely proportional to the 

cube of the energy gap, Eg. This means that the D-2PA coefficients in narrow-gap 

semiconductors are two to three orders of magnitude greater than the absorption than in large-

gap semiconductors. For example, ZnO (Eg = 3.2eV) has a D-2PA two-photon absorption 

coefficient, α2 ≈5 cm/GW at 532 nm [4], while for InSb (Eg = 0.23eV), α2 ≈2 cm/MW in the 

range 8 to 12 µm [5]. 2PA coefficients in the cm/MW range may prove useful for practical 

applications, but these scaling rules imply that such large values are not accessible in the near 

infrared (NIR)/visible (VIS) range. For non-degenerate two-photon absorption (ND-2PA), the 

energies of individual photons may approach intermediate-state resonances that allow the 2PA 

to become much larger than in the degenerate case. As is well known, in the case of 2PA for a 

two-band model, the dominant transitions are either inter-band (“direct/allowed”) or intra-

band “self/forbidden” [6]. This suggests that such intermediate state resonances can become 

significant only when using photons with energies either very small or approaching the 

bandgap energy, such that the two photons employed in the process would have extremely 

different energies. We recently presented results of extremely ND-2PA (END-2PA) in ZnSe 

and GaAs and its application to gated infrared detection using a GaN-based detector [7]. In 

this current work, we report on more extensive studies including several other semiconductors 

along with theoretical calculations showing that END-2PA can exceed their degenerate 

counterparts by two to three orders of magnitude. We consider END-2PA as a non-degenerate 

process where the possible ”intermediate” states lie energetically very close to both the initial 

state (in the valence band) or the final state (in the conduction band). This generally implies 

that the lower energy photon is much less than half the bandgap, placing it in the mid-infrared 

(MIR) when the semiconductors have visible or NIR bandgaps. As the lower energy photon 
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moves further into the IR significant enhancements will be realized, but, may be influenced by 

thermal broadening of the Urbach tail due to electron/exciton phonon interaction [8,9]. This 

allows the extremely large 2PA coefficients, previously only seen in narrow-gap 

semiconductors, to be observed in larger-gap semiconductors such as CdTe, GaAs, ZnSe, 

ZnO, and ZnS. The large enhancement of 2PA can be useful for optical switching, infrared 

(IR) detection [10] and could have important consequences for lasers and amplifiers based on 

two-photon gain [11]. Making use of our previous work using Kramers-Kronig relations to 

obtain the dispersion of the nonlinear refraction [3,12], we also predict an enhancement of the 

non-degenerate nonlinear refractive index n2; however, positive and negative contributions 

from the two-photon, Raman and AC-Stark terms lead to a smaller enhancement but an 

extremely rapid dispersion in the 2PA region. 

2. Theoretical background 

While data for ND-2PA exist from the earliest experimental papers [13], besides our recent 

results [6], no other data exist to our knowledge with a ratio of photon energies larger than 3.3 

[14]. As seen from Eq. (1) this is an interesting realm to investigate since as the intermediate 

state for the transition approaches an eigenstate of the system, the 2PA is expected to diverge 

(of course adding in decay insures overall convergence). In the case of END-2PA there are 

two resonances that can be exploited. As predicted by Wherrett [6] and verified in Ref [4], the 

allowed-forbidden transitions dominate 2PA in direct-gap semiconductors so that the small 

energy photon can become near resonant to the “forbidden” or self-transition while the large 

energy photon can be nearly bandgap resonant. This is illustrated in Fig. 1, and may be easily 

seen qualitatively from the expression for the ND-2PA rate, 2

NDW , which can be written in the 

perturbative framework [15] as 
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with indices 1 and 2 designating the two photons, H the electron-field interaction Hamiltonian 

and v, c and i the valence, conduction and intermediate states, respectively. 

 
Fig. 1. (a) Schematic representation of transitions involved in a 2PA process for photons having 

various energy ratios, with ND-2PA and END-2PA characterized by a small detuning energy as 

compared to the bandgap. (b) The equivalent representation within the perturbative framework 

showing the possible transitions for two-band structure consisting of direct (“allowed”) and self 

(“forbidden”) transitions. 
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If one considers the simple model of a two-band direct-gap semiconductor, the virtual 

state can be taken as either the initial (in the valence band) or the final state (in the conduction 

band) for the electron transition, in which case one resonance occurs for both the low and 

high-energy photons (see Fig. 1b). For this case, since Eiv is either equal to 0 or to Ecv = ħω1 + 

ħω2, one can write explicitly the contributions from different paths of evolution for the system 

and obtain 

 

2
2 1 1 2 2 1 1 2

2

1 2 2 1

~ ,ND vc vv vc vv cc vc cc vcM M M M M M M M
W

ω ω ω ω
+ + +

− −ℏ ℏ ℏ ℏ
  (2) 

where iHjM ij 2,1

2,1 =  are the corresponding matrix elements. The matrix elements are 

linear in the amplitude of the magnetic vector potential associated with the respective fields, 

which in turn are expressed in terms of ratios of square root of irradiances divided by photon 

energies. Overall, taking also into account the expression of non-degenerate 2PA

)/();( 2121212 IIW
NDωωωα ℏ= , we obtain a complex and stronger dependence on the photon 

energies of the interacting fields as exemplified below with the functional form of 2PA as 

derived in Ref [3]. Smaller photon energies will decrease the denominator values thus 

increasing the 2PA. It is important to observe here that each of the two different possible 

transition sequences yields a term enhanced significantly by the presence of a small energy 

photon. This effect is similar to the intermediate state resonance enhancement (ISRE) 

predicted and seen in molecular systems [14,16]. In direct-gap semiconductors the one-photon 

absorption (1PA) edges are generally sharper than those of organics and therefore larger 

enhancements may be obtained when probing very close to the linear absorption range. 

Theoretical calculations of third-order nonlinearities in semiconductors are very well 

documented, and there are a couple of approaches commonly used in the past. One of the 

methods involves the use of second-order perturbation theory, as in Eq. (1), to directly 

calculate the transition rates using a quantum mechanical description (eigenvalues and 

eigenstates) of the considered systems. Reasonable predictions can be made either using a 

simple two-parabolic band model [6,17] or one can employ complex 4- or 7-band calculations 

for better accuracy, which can go as far as predicting the anisotropy of the nonlinear 

coefficients for particular systems like the ones exhibiting zinc-blende symmetry [15,18]. The 

2PA spectra obtained with these models are similar as more complex numerical calculations 

only lead to shifts in the magnitudes of the coefficients producing minor changes to the 

spectral shapes [15]. This is quite different from the case of three-photon absorption (3PA) 

where different pathways result in quantum interference leading to very different results 

depending on the band model used [19]. Another theoretical method that was successfully 

used in the past and in the calculations shown in this paper, is based on Keldysh’s tunneling 

theory [20]. It uses a scattering matrix formalism with Volkov-type “dressed” wavefunctions 

for the electronic states in order to account for the effect of the electric field on the system 

[3,17,21]. This provides similar 2PA spectra to the perturbation methods and yields identical 

results for the simple case of two-parabolic bands and D-2PA. As shown in Ref [3], the ND-

2PA coefficient 
2 1 2
( ; )α ω ω  is calculated in this scattering matrix formalism with two 

parabolic bands to be: 
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for the optical frequencies ω1,2, Ep is the Kane energy parameter, Eg is the bandgap energy, 

n1,2 are the refractive indices, and K is a material independent parameter. We should mention 

here that a similar expression is obtained using the perturbation approach as shown in [15] 

(see Eqs. (15) and 16). 

3. Experimental results 

The experimental ND-2PA spectra presented in this paper are taken in a standard pump-probe 

non-collinear geometry with a small angle (~7 degrees) between the pump and the probe 

beams, using either picosecond or femtosecond pulses. The temporal scans are obtained by 

delaying either the pump (femtosecond data) or the probe (picosecond data) using a 

retroreflector mounted on a computer-controlled motorized translation stage. The picosecond 

pump-probe experiments are performed using a 10Hz EKSPLA laser system (PL-2143C). It 

consists of a ~30 ps FWHM modelocked Nd:YAG 1064 nm laser, converted to the third 

harmonic at 355 nm and pumping two LBO-based optical parametric generation/amplification 

(OPG/OPA) devices. The IR pump beam for our experiments is obtained through a difference 

frequency generation (DFG) process in a GaSe crystal using 1064 nm from the laser and the 

idler beam from a second similar OPG/OPA system. The IR pumping wavelength is chosen to 

be 8840 nm corresponding to approximately 10% of the bandgap of GaAs, which together 

with CdTe are the two semiconductors studied in this configuration. Our choice of pump 

wavelength is also based on the available tuning range of the IR (8-14 µm) and taking into 

account the energy and beam quality at the output wavelengths. The probe beam is selected by 

tuning the idler output to individual wavelengths in the near-IR. Our probe beam has a 

maximum energy of a few nJs and a smaller spot size than that of the pump, as measured by 

knife-edge scans, with a ratio of 1:2. This assures an irradiance in the probe beam smaller by 

at least a factor of 100 than the pump beam irradiance. In our configuration, this causes 

minimal losses through D-2PA of the probe (< 0.5%, which is at our noise level). 

A similar setup is used for our femtosecond experiments. The system consists of a 1 kHz 

Clark MXR Ti:Sapphire laser pumping two BBO- based TOPAS OPG/OPA systems from 

Light Conversion Inc. with an infrared beam obtained through DFG in a AgGaS2 crystal, like 

in the case of the picoseconds system. The pump used for these experiments is in the 

wavelength range of 1200 nm to 5600 nm, corresponding to approximately 30% to 8% of the 

bandgap energy for the semiconductors studied (ZnSe, ZnS, ZnO). Depending on wavelength, 

it can be either the idler output of the TOPAS or obtained through DFG. Autocorrelation 

measurements of the pulsewidths yield values of ~140 fs FWHM. The probe is obtained from 

a white-light continuum (WLC) generated using the 1300 nm signal beam from the TOPAS 

into a 2 mm thick piece of CaF2. Individual wavelengths are selected from the WLC using a 

set of interference filters with a spectral bandwidth of ~10 nm. The temporal width of the 

spectrally filtered pulses is between 140 fs and 160 fs as verified by autocorrelation 

experiments [22]. The pump to probe spot size ratio is ~7 to 1 giving a minimum ratio for the 

pump to probe irradiance of 20. Similar to the picoseconds experiments, the probe energy is 

small enough that any self-induced probe beam 2PA can be neglected. 

In all our nondegenerate experiments, the pump or excitation beam (Ie), is always at the 

longer wavelength, with photon energies less than a third of the bandgap. This is to avoid any 

2PA or 3PA caused by the pump itself which would complicate the experiment and the 

analysis of the experimental data, and would lead to the creation of free-carrier pairs which 

would cause extra losses especially for longer pulses. Hence, absorption is solely caused by 

ND-2PA with one photon being absorbed from each beam. Although this absorption also 

produces free carriers, the density of carriers produced is proportional to the photon density 

from the weak probe beam which is deliberately kept very small. For our experiments, effects 

of free-carrier absorption and refraction can be ignored altogether. Thus, the irradiance 

dependent pump-probe results are modeled by, 

#153971 - $15.00 USD Received 6 Sep 2011; revised 24 Oct 2011; accepted 25 Oct 2011; published 28 Oct 2011
(C) 2011 OSA 7 November 2011 / Vol. 19,  No. 23 / OPTICS EXPRESS  22955



 2

( )
2 ( ; ) ( ) ( ).

p p

p e e e p p

dI
I I

dz

ω
α ω ω ω ω= −   (4) 

The second reason the low photon energy beam is used as the pump is related to the 

magnitude of the 2PA coefficient, which scales with the photon energy at which the 

absorption is monitored. The frequency dependence of the 2PA coefficient (3) through the F2 

function leads to the relation 2 2( ; ) / ( ; ) /
p e e p p e

α ω ω α ω ω ω ω= . This is because the rate of 

photon loss must be the same for both beams, hence the energy loss rate is larger for the beam 

with higher energy photons. Because the photon loss rates are identical, the carrier generation 

rate is symmetric in the two wavelengths. Thus, as noted in [7], the END enhancement in two-

photon detection is the same regardless of which wavelength is the signal or the gate. 

The use of a low frequency pump allows for the variation of the probe frequency only over 

a limited range set by the lowest energetically possible transition and the linear absorption 

edge, i.e. the probe photon energy can be varied between Eg - ħωe and Eg. Typical 

experimental data are shown in Fig. 2 for CdTe with picosecond pulses (a) and ZnO with 

femtosecond pulses (b). In the picosecond experiments, ħωe is approximately 9.3% of the 

CdTe bandgap. For the case of femtosecond experiments there are more choices for the pump 

wavelength. In ZnO, for instance, we are able to choose ħωe equal to ~32%, 23%, 19.5%, 

17% and 15.5% of Eg. The lowest pump energy corresponds to 2.5 µm which is at the end of 

our femtosecond OPG/OPA tuning range. Using DFG we also used a pump wavelength of 5.6 

µm in ZnSe, which corresponds to about 8% of the bandgap energy. 

 

Fig. 2. Typical experimental pump-probe data in CdTe (a) using picoseconds pulses and ZnO 

(b) using femtosecond pulses along with theoretical fits (solid lines). 

For femtosecond pulses, group velocity dispersion (GVD) plays a very important role. 

This is apparent in the shape of our temporal pump-probe curves as seen in Fig. 2b. Because 

the group velocity varies strongly with wavelength, for a large range of initial delays, the 

pump (fast) and probe (slow) walk through each other as they propagate through the sample. 

The measured effect is a consequence of “effective” temporal overlaps, and as this “effective” 

overlap distance is smaller than the sample thickness we obtain the same change in 

transmittance for a range of initial delays. The data were analyzed taking these effects into 

consideration according to the treatment given in [23]. It should be mentioned that the new 

femtosecond data shown here is collected without the use of modulation techniques unlike in 

our previous publication [7]. 

In Fig. 3 (a) we show the measured END-2PA spectra of GaAs and CdTe along with the 

calculated curves and plotted versus the average photon energy, thus comparing the 

coefficients for two transition processes between the same energy levels. This allows 

convenient representation of the data on the same graph along with the degenerate 2PA 
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spectrum taken with the femtosecond system using the Z-Scan technique [24]. In all our plots 

the photon energies are shown scaled to the respective bandgap energies since this allows 

comparing different semiconductors on the same scale and makes the comparison to the 

respective degenerate values easier. The theoretical values are represented with solid lines 

together with measured degenerate data. The measured nondegenerate values are as large as 1 

cm/MW, ~180 × larger than the corresponding degenerate values and about 40 × larger than 

the peak value for the degenerate 2PA. There is a remarkable agreement between the 

measured and the predicted values using the simple two parabolic-band model over a large 

range of photon energies. This agreement is not entirely surprising since in experiments with 

very nondegenerate photons the states involved in transitions are close to the center of the 

Brillouin zone where the parabolic approximation works best. However, we are able to 

measure some small signals when the sum of the energies of the two photons falls below the 

band edge. The analysis shows that the signals are linear in pump energy confirming a ND-

2PA process as we are accessing states within the Urbach tail. Due to the large enhancement 

we are able to measure such small contributions which would otherwise be impossible to do 

using degenerate photons. Thus END-2PA may be useful for studying the impurity and defect 

absorption in the Urbach tail. 

 

Fig. 3. Non-degenerate 2PA spectra of CdTe and GaAs measured with picosecond pulses (a) 

and of ZnS measured with femtosecond pulses (b). The theoretically calculated non-degenerate 

spectra are shown with straight lines, while the dashed lines denote the respective degenerate 

spectra, along with measured degenerate data. The non-degenerate data in GaAs was taken 

from [7]. 

A summary of results obtained using femtosecond pulses is presented in Fig. 3(b) for ZnS 

and in Fig. 4 for ZnSe (a) and ZnO (b). For these cases the choices of pump and probe photon 

energies are limited by the specifics of our experimental apparatus. Taking data with small 

photon energies in the pump beam proved difficult for the largest bandgap semiconductors, 

since for these cases the probe photons are close to the UV, and in our continuum the energies 

available for this part of the spectrum are low. The smallest pump photon energy corresponds 

to approximately 15.5%, 8% and 19% of the bandgap of ZnO, ZnSe and ZnS, respectively. 

Consequently, the measured maximum enhancement of the nondegenerate values with respect 

to the degenerate ones varies strongly with the pump photons’ energy, reaching ~40 in ZnO 

and ~270 in ZnSe. As shown, there is again good agreement between theory and femtosecond 

experimental data. Similarly, the plotted degenerate data was taken using the femtosecond 

system using the Z-scan technique [25]. 
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Fig. 4. Non-degenerate 2PA spectra of ZnSe (a) and ZnO (b) measured with femtosecond 

pulses. The theoretically calculated non-degenerate spectra are shown with straight lines, while 

the dashed lines denote the respective degenerate spectra, along with measured degenerate data. 

The 2PA data in (a) was taken from [7] and the degenerate data in (b) was taken from [24]. 

4. Discussion 

The data taken on ZnO best illustrates the strong dependence of the measured values on the 

pump wavelength. The longer the pump wavelength, the stronger is the enhancement seen in 

the 2PA. The largest overall magnitude we measure is about 1 cm/MW using the mid-IR 

pump. We point out here that these nonlinearities are measured at visible and near IR 

wavelengths and their magnitudes come close to the degenerate values measured in narrow-

gap semiconductors (e.g. InSb, InAs, etc.) at wavelengths in the mid-infrared. This can be 

understood by considering the perturbative expression (Eq. (2) of the 2PA rate when using a 

simple two-band model for a given pair of initial and final states. For the nondegenerate case, 

the energy term in the denominator gets as small as the pump energy with one of the two 

terms being highly enhanced for either of the transition paths possible (a first “self” transition 

followed by a direct transition or vice versa) as is written in Eq. (5) . 

 

2
(2) (2) (2) (2)

2

2 2

.D vc vv cc vcM M M M
W

ω ω
∝ +

−ℏ ℏ
  (5) 

If we now consider the case of D-2PA in a direct narrow-gap semiconductor at the pump 

wavelength (energy of
2

ωℏ ), we obtain two terms with the same denominator energy values. 

Since the momentum matrix elements depend mainly on the symmetry of the bands involved 

[13], for similar systems (zincblende structures for instance) we should expect values of the 

same order of magnitude. The difference here, however, is the necessity of having only one 

long wavelength photon. Also, to obtain the highest nonlinearities it is necessary to probe 

close to the linear absorption edge, effectively narrowing the available spectral range. To 

overcome this, a very high quality sample should be used, possibly at a low temperature in 

order to minimize any linear losses on the probe beam. However, there is an upper limit to the 

nonlinearities that can be obtained in a nondegenerate configuration. The main limitation is 

the linear absorption at the probe wavelength below the bandgap, i.e. Urbach tail absorption. 

Assuming the upper energy limit for the probe photons set to 0.97 of the bandgap energy, by 

using pump photons at about 5% of the bandgap energy one would theoretically obtain an 

increase of the 2PA coefficient of only about 2 × versus pumping with photons at 10% of the 

bandgap. It is important to mention that such enhancements can be obtained in any direct-gap 

system provided that appropriate photon pairs are used. In systems with strict selection rules 
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there are additional restrictions which may put an upper practical limit on the measured 

enhancement [14]. 

For the highly nondegenerate experiments, the behavior of the Kerr index in particular 

spectral ranges is also very interesting. The nondegenerate nonlinear index can be obtained 

using the general expression of the change in absorption caused by the presence of a pump 

beam and performing a Kramers-Kronig transformation [3,9]. The nonlinear refractive index 

contains contributions from the 2PA, Raman and Stark processes. 

 

Fig. 5. Calculated nondegenerate induced refraction index (solid lines) and nondegenerate 2PA 

(dotted lines) of GaAs for pump energies equal to (1) 20% (4.32 µm), (2) 15% (5.81 µm) and 

(3) 10% (8.84 µm) of the bandgap. 

As discussed explicitly in Ref [3], the 2PA terms gives the main contribution, positive for 

lower energy photons and negative for energies close to the bandgap. The Stark terms give an 

overall negative contribution to the nonlinear index, which increases asymptotically close to 

the band edge, while the Raman term adds positively. 

For the nondegenerate case, this makes the calculated overall enhancement relatively 

smaller than for 2PA when using small photon energy pumps. The nonlinear index takes 

positive values (focusing nonlinearity) for small probe frequencies and turns negative 

(defocusing nonlinearity) for frequencies close to the 1PA edge. The probe frequency for 

which the nonlinear index becomes zero depends strongly on the pump frequency. This zero 

crossing occurs near the peak of the 2PA for the degenerate case approaching frequencies 

very close to the linear absorption edge as the energy of the pump photons is decreased. The 

slope of the spectrum near the zero crossing point also changes strongly with the pump 

photons’ energy and becomes extremely steep for small energy pump photons. This leads to 

changes in the sign of the refractive nonlinearity over very narrow spectral ranges. These 

trends are shown in Fig. 5 for the particular case of GaAs. 

When pumping at ~10% of the bandgap (8.84 µm), by varying the probe wavelength by 

~13 nm, from 903 nm to 916 nm, we can vary the n2 from −2 × 10
−12

 cm
2
/W to 2 × 10

−12
 

cm
2
/W, numbers that in absolute value correspond to about 50% of the peak n2. To verify this, 

picosecond pulses would be more suitable because of their narrower spectral widths; however, 

it would also be interesting to study the effect of this spectral dependence on a femtosecond 

pulse with a large bandwidth centered near the zero crossing frequency. Unfortunately, from 

the standpoint of applications, the nonlinear refraction is largely enhanced in spectral regions 

where the 2PA is also enhanced, see Fig. 5. To minimize losses, future applications would 

require avoiding these enhanced 2PA ranges, making use of only moderate enhancements in 

nonlinear refraction and the judicious choice of direct-gap semiconductor. 
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5. Conclusions 

We measure nondegenerate 2PA spectra of several semiconductors (CdTe, GaAs, ZnS, ZnSe, 

and ZnO) using pairs of extremely nondegenerate photons. The magnitude of the 2PA 

coefficients increases dramatically when low energy pump photons, compared to the bandgap 

energy, are used. Very good agreement with calculations based on the “dressed” 

wavefunctions approach is shown. For our experiments in ZnSe, the measured non-degenerate 

2PA is as large as 270 × the corresponding degenerate 2PA value when pumping with low 

energy photons of 0.08 Eg. This corresponds to a 50 × increase over the peak degenerate 2PA 

coefficient. Using even lower photon energies is theoretically predicted to lead to larger 

enhancements. The large nonlinearities measured, minimization of free-carrier effects, and the 

possibility to tailor the Kerr index behavior by the appropriate choice of wavelengths, suggest 

that efficient all-optical switching may be implemented [26]. These large enhancements made 

possible the demonstration of gated detection in a room temperature GaN photodiode with 

very good sensitivity [6]. This large enhancement of the 2PA coefficient also translates 

directly to enhanced two-photon gain [27], which opens the possibility of highly 

nondegenerate two-photon tunable laser and amplifier device applications [8]. However, it 

remains to be seen if the strong enhancement in two-photon emission would be sufficient to 

overcome the large free-carrier losses of the infrared wave in such devices. 
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