

Studies in Sociology of Science Vol. 4, No. 4, 2013, pp. 36-39 **DOI:**10.3968/i.sss.1923018420130404.2984 ISSN 1923-0176 [Print] ISSN 1923-0184 [Online] www.cscanada.net www.cscanada.org

Medical Health Resources Allocation in Liaoning Province Based on System Dynamics

WANG Ling^{[a],*}; ZHONG Junsheng^[a]

[a] Department of Economics and Business, Liaoning Shihua University, Fushun, China.

Supported by Chinese Liaoning Academy of Social Science Fund Project (No.L11DSH030) (No.L11BGL004) (No.L12DSH027) and the Project of Economic and Social Development in Liaoning (No.2013lslktziglx-26).

Received 25 August 2013; accepted 1 November 2013

Abstract

On the perspective of social security and the complex system theory, we discuss the choice of the path to the sustainable development of medical health resources in Liaoning province, and then provide theory support for perfecting medical and health resources in Liaoning province by building a system dynamics model on simulation software AnyLogic6.4.1 platform.

Key words: System dynamics; Medical health resources; Liaoning

WANG Ling, ZHONG Junsheng (2013). Title. *Studies in Sociology of Science*, 4(4), 36-39. Available from: URL: http://www.cscanada.net/index.php/sss/article/view/j.sss.1923018420130404.2984 DOI: http://dx.doi.org/10.3968/j.sss.1923018420130404.2984

INTRODUCTION

Achieving health equity plays an important role in constructing and achieving a civilized, prosperous and happy Liaoning. It is necessary for the improvement of people's health and well-being and meeting the growing demand for health services, to solve the rational allocation of healthy resources, and do utmost to make medical health resources utilization in a efficiency and fairness way. Developed countries' successful story about the allocation of medical health resources is worthy of our

learning. But in view of different countries, different regions, doctrinairism, applying mechanically developed countries' success to ourselves, will not work. As a major economic province, an opening window to the world in Bohai Sea, especially being as an important coastal economic belt in national strategy by the State Council, Liaoning's economy is developing rapidly in the fast lane. So firstly to seize this historic and favorable opportunity to plan initiatives to protect and improve people's livelihood referencing to Liaoning's actual situation on the "new round of" national medical reformation and the "Twelfth Five-Year Plan" is important. And then to enhance and improve the health services accessibility to Liaoning residents through correctly classifying the region by representative scientific feature, and allocating health resources according to different types also has an important practical significance on achieving Liaoning province's innovative, scientific, harmonious and leapfrog development.

1. SOURCES OF INFORMATION

The study is on the basis of data Liaoning Health Statistics Yearbook, and Liaoning Statistics Yearbook of and China Health Statistics Yearbook from 2003 to 2010.

2. DESIGN OF STUDY

2.1 Underlying Assumption

A model is an abstraction of a real system. So it is essential to make reasonable assumptions to analyze and describes the actual system and try to simplify the overly complex details of the system at the same time. This model is primarily based on the following underlying assumptions:

a. There is no consideration about the time value of money. Money has time value. Also, there is a close

^{*}Corresponding author.

relation between the time value of money and inflation rate. Without prejudice to the premise of the model accuracy, this study looks the inflation rate as exogenous variables, so, medical institutions' income will not consider time value of money.

b. Government investment in the health system will be materialized for a variety of medical health resources. The model assumes that the increment of health resources and the government's input is fully positively correlative.

2.2 Study Variables

The simulation study was based on the current level of medical health resources. It observes the changes of fixed assets, doctors and nurses 'number by selecting medical institutions of the city (city hospital, community health institutions) and rural medical institutions (county hospital and township) as study object, by making public finance grant, the higher authority grant, medical income, drug income, other income, the average worker operations and health care income as underlying variables, and by regarding financial investment ratio, the proportion of investment ratio in fixed assets, medical technician input ratio, and teleconsultation as adjustment of parameters.

2.3 System Dynamics Model and Main Equation

Fixed assets of hospital = total investment of fixed assets – accumulated depreciation of fixed assets.

Number of hospital doctors = medical health technical personnel*health care.

Hospital incremental income of fixed assets = hospital income *the rate of fixed assets investment.

The depreciation of fixed assets = hospital fixed assets* depreciation rates of fixed asset.

Hospital income= financial grant of hospital + financial grant of higher authority of hospital+ medical income of hospital+ drug income of hospital+ other income of hospital.

3. RESULTS OF STUDY

3.1 Testing of Initial Model

We firstly build the system of dynamics model according to the allocation of medical and health's relationship, next, defined variables and their relationships, then input the original data into AnyLogic6.4.1 software, and finally have a simulation on health resources system of Liaoning province. In order to guarantee the effectiveness of simulation data, it firstly needs to test the simulation model. In general this test calculates the two indicators, relative error percentage and mean square errors by comparing simulated and real data.

Table1 Observation Index Inspection

Year	Observation index	Real data	Simulation data	Relative error	RMS	
	City hospital fixed assets	17126806921	18590001417	0.085		
	City hospital doctors	51288	47492.50449	-0.074	0.118	
	City hospital nurses	49277	53415.74277	0.084		
	County hospital fixed assets	2842468004	3089762720	0.087	0.121	
	County hospital doctors	25774	27346.40223	0.061		
2009	County hospital nurses	15137	14486.31505	-0.043		
2009	Community healthy agency fixed assets	349702140	381874736.9	0.092		
	Community healthy agency doctors	3322	3584.492813	0.079	0.131	
	Community healthy agency nurses	3192	3364.13011	0.054		
	Township hospital fixed assets	1112925771	1189717649	0.069 0.098	0.104	
	Township hospital doctors	17495	19209.24964			
	Township hospital nurses	10275	11168.60108	0.087		

Sources of information: Liaoning Provincial Health Statistics Yearbook.

As we can see from the table, the relative errors between simulation and real data are less than 10%. Despite the RMS data is not ideal because of the difficulties in obtaining the model part of the actual data, it still belong to the acceptable range. The author assumes the formation of the simulation data according to the macroeconomic statistics and theoretical distribution method. So, there must be some inevitable errors with the actual situation

3.2 Results of the Simulation Experiment

Urban and rural medical health resources still have a huge gap under the current policy, seeing from the results of simulation experiments.

And, by 2020, this gap has no tendency to be small. Fixed assets gap will become greater and be large. The gap between doctors' and nurses' numbers have slight tendency to increase. From the perspective of experimental results, growth of fixed assets significantly is apparently faster than the growth of health human resources over in the next 8 years.

The growth rate of fixed assets is individually 179% in city hospital, 124% in county hospital, 274% in community health agency, and 406% in Township hospital. Its growth is evident. The slowest growth of county hospital is also over doubled. The growth of community hospital and township hospital are more than twice. However,

human resources for health care is individually 52% in city hospital, about 57% in county hospital, 74% in community health agency, and only 2.8% in the slowest township health hospital. It is obvious lower than the growth in fixed assets.

The data is shown in Table 2.

Table 2
Data Predictability of Medical Resources in Liaoning

	City hospital			County hospital		Community health agency			Township hospital			
Year	Predictabil- ity of fixed assets (ten million)	Num- bers of doctors	Num- bers of nurses	Predictabil- ity of fixed assets (ten million)	Numbers of doctors	Numbers of nurses	Predict- ability of fixed assets (ten million)	Numbers of doctors	Num- bers of nurses	Predictability of fixed assets (ten mil- lion))	Numbers of doctors	Numbers of doctors
2013	5105.319	50216	48247	473.936	20729	13819	71.064	4131	3664	270.763	27946	16413
2014	5951.851	53710	51604	523.835	21515	14343	85.374	4391	3894	342.893	27924	16400
2015	6915.928	55716	53531	582.253	22333	14889	102.727	4672	4143	433.002	27934	16406
2016	8015.45	58363	56075	650.549	23867	15911	123.805	4982	4418	545.748	27984	16435
2017	9272.152	61689	59270	730.38	25488	16992	149.45	5320	4718	687.079	28078	16490
2018	10712.729	65755	63176	823.777	27447	18298	180.716	5692	5048	864.72	28230	16580
2019	12368.546	70648	67878	933.147	29787	19858	218.872	6103	5412	1088.236	28447	16707
2020	14281.568	76479	73480	1061.631	32538	21692	265.658	7174	6362	1371.284	28734	16876

4. THINKING AND POLICY RECOMMENDATIONS

Health resources allocation has always been the core of the medical security system. If we want to change the unfair and unreasonable health resources allocation situation and development tendency in Liaoning, the government must establish a compliance configuration framework to Liaoning's economic development, admit the medical health resources gap between urban and rural, increase government spending, change the allocation structure of primary care health human resource, and then meet urban and rural residents' needs of the medical health resources.

a. The urban and rural gap is not only in terms of medical and health resources allocation, but also in the level of economic development, residents' consumption and the education. The medical health institutions of the city can have a lot of high quality resources because of historical reasons. Even now, we put all the money in the medical health institutions of rural areas, it is still impossible to reach the total level of urban medical health resources in a short time. Moreover, there is no necessary link between the investment in medical health resources and fairness' improvement. Medical health resources allocation between urban and rural does not necessarily mean fair, because absolute fairness is not fair. The result, allocating health resources configuration under the ignorance of urban and rural residents' differences in health services' demand, consumption level, health consciousness, is not fair. But the acknowledgement of urban-rural gap does not mean making the gap large. Instead, we should allocate health care resources under the principle of narrowing the gap.

b. The Government should continually increase the investment in health care. The economy in Liaoning has been achieving a leapfrog development since the "Eleventh Five-Year". Total economy in Liaoning has become seventh in the country's total economy. GRDP has achieved an annual growth, 14%. The disposable income of per urban resident and the net income of per rural resident have respectively grown 11.4 % and 9.3%. All the data shows that Liaoning's overall economic strength has become the fastest in all the provinces. The rapid development of the economy dwarf the government's investment in the protection of people's health care. The total amount of government's investment in health care has increased significantly since "Eleventh Five-Year". But the ratio of investment is slightly lower than economic growth of the same period and the national average. If the medicare related to people's livelihood and wellbeing and high growth in economy could not be improved and enhanced at the same time and people do not see or obtain the welfare benefits in their expectation from the economic growth, that will lead to the conflicts of interest and the intensification of social contradictions and be a potential threat on sustainable economic development and social harmony. So, the government should change the existing model and proportion of the investment of medical health, continually increase the investment with the growth of GDP, and take the investment of social security as the core indicators to measure public nature of government finance.

c. We should make the improvement of primary health care as a strategy of prior development. Medical health human resources are the focus of medical health resources allocation and the critical resources related to the development. The quality of primary human health care resources not only directly influences the growing numbers of advanced medical equipment's functional role, but also have a more direct impact on the quality of health service and capacity of sustainable development. Therefore, the allocation of human health resources the determines the success or failure of the overall allocation. Attention on the particularity of human health care resources, strengthen on the building of health personnel, and improvement on the quality and quantity of human health care resources should be placed in the prior position in development.

REFERENCES

- Brandshaw, G., & Bradshaw, P. L. (1995). The equity debate within the british national health service. *Journal of Nursing Management*, *3*, 161-168.
- Castro-Leal, F., Dayton, L., Demery, L., & Mehra, K. (2000). Public spending on health care in Africa: Do the poor benefit? *Bulletin of the World Health Organization*, 78(1).
- Chang, R. K. R., & Halfon, N. (1997). Geographic distribution of pediatricians in the United States: An analysis of the fifty states and Washington, DC. Pediatrics, *100*, 172-179.

- Culyer, A. J., Van Doorslaer, E., & Wagstaff, A. (1992a). Comment: Utilization as a measure of equity. *Journal of Health Economics*, 11(1), 93-98.
- Cwatkin, D. R. (2000). Health inequalities and health of the poor: What do we know? What can we do? *Bulletin of the World Health Organization*, 78(1).
- Le Grand, J. (1978). Equity, health and health care. *Social Justice Research*, 1(3).
- Mooney, G. (1992). *Economics, medicine and health care* (2nd ed.). Europe: Prentice Hall.
- Mooney, G., Jan, S., & Wisenman, V. (2002). Staking a claim for claims: A case study of resource allocation in Australian aboriginal health care. *Social Science & Medicine*, *54*, 1657-1667
- Oliver, A., & Mossialos, E. (2004). Equity of access to health care: Outlining the foundations for action. *Journal of Epidemiology and Community Health*, 58, 688-658.
- Polikowski, M., & Santos-Eggimann, B. (2002). How comprehensive are the basic packages of health services? An international comparison of six health insurances systems. *Journal of Health Services Research and Policy*, 7(3), 133-142.
- Rosenberg, E., Lev, B., Bin-Nun, G., McKee, M., & Rosen, L. (2008). Healthy Israel 2020: A visionary national health targeting initiative. *Public Health*, *14*(2), 13-14.
- Theodorakis, P. N., Mantzavinis, G. D., Rrumbullaku, L., Lionis, C., & Trell, E. (2006). Measuring health inequalities in Albania: A focus on the distribution of general practitioners. *Human Resources for Health*, 4(5).
- WHO. (2000). The world health report 2000—Health systems: Improving performance.