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Submicron optical waveguides and microring 
resonators fabricated by selective oxidation of 

tantalum 
Payam Rabiei,1,* Jichi Ma,1 Saeed Khan,1,2 Jeff Chiles,1 and Sasan Fathpour1,2 

1CREOL, The College of Optics and Photonics, University of Central Florida, USA 
2Department of Electrical and Computer Engineering, University of Central Florida, Bldg. 53, 4000 Central Florida 

Blvd., Orlando, FL 32816, USA 
*pr@partow-tech.com 

Abstract: Submicron tantalum pentoxide ridge and channel optical 
waveguides and microring resonators are demonstrated on silicon substrates 
by selective oxidation of the refractory metal, tantalum. The novel method 
eliminates the surface roughness problem normally introduced during dry 
etching of waveguide sidewalls and also simplifies fabrication of directional 
couplers. It is shown that the measured propagation loss is independent of 
the waveguide structure and thereby limited by the material loss of tantalum 
pentoxide in waveguides core regions. The achieved microring resonators 
have cross-sectional dimensions of ~600 nm × ~500 nm, diameters as small 
as 80 µm with a quality, Q, factor of 4.5 × 104, and a finesse of 120. 

©2013 Optical Society of America 

OCIS codes: (130.0130) Integrated optics; (230.4000) Microstructure fabrication; (230.5750) 
Resonators; (230.7370) Waveguides. 
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1. Introduction 

Integrated optical devices, based on microfabrication techniques, have been pursued for over 
four decades [1–3]. High-index-contrast waveguides, on a range of material systems [4–7], 
have been employed for achieving ultracompact and novel integrated photonic devices such 
as microring resonators and efficient nonlinear optical devices. Wide transparency range, low 
insertion loss and high nonlinear optical coefficients are important factors for an integrated 
optical platform. 

Generally, integrated optical device technologies have been suffering from two major 
problems. First, etching processes that are typically used to define the waveguide ridges 
introduce sidewall roughness, from which guided light is scattered out of waveguides and the 
propagation loss can be significantly increased [8]. Second, achieving directional couplers, 
which are needed as part of many devices, require submicron gaps between waveguides. 
Achieving this is either very difficult or very expensive in practice. These problems have not 
been fully addressed and hence integrated optical devices with costs comparable to 
inexpensive electronic devices have been elusive to date. 

Recently, some techniques have been introduced in order to eliminate surface roughness. 
For example, microresonators fabricated by selective reflow of patterned silica have shown 
ultrahigh quality factors, Q [9]. These resonators, however, are made in silica with air 
cladding which is not suitable for most practical applications. It has also been demonstrated 
that thermal oxidation of the dry-etched silicon ridge or channel waveguides smoothens the 
sidewalls and reduces the roughness loss [10]. Meanwhile, for many applications, e.g., 
biosensing, nonlinear optics and quantum optics, it is needed to achieve devices that can 
operate in the visible spectrum. Silicon, however, has a limited transparency range that 
hinders its application for the visible spectrum. Furthermore, it suffers from two-photon 
absorption and associated free-carrier scattering which degrade the performance of nonlinear 
optical processes in silicon photonics [11]. Compact integrated photonic platforms that 
operate from visible to infrared wavelengths and can be yet fabricated on silicon substrates 
are highly desired. 

Among other materials [12,13], oxides of refractory metals, such as tantalum (Ta), are 
perfect candidates for this purpose. They are transparent in visible and infrared wavelengths 
and have high refractive indices of ~2.2, which allows fabrication of high-index contrast 
waveguides on low-index cladding layers, such as silicon dioxide (SiO2), on silicon 
substrates. Tantalum pentoxide (Ta2O5) possesses large third order nonlinear optical 
coefficients and high optical damage threshold [14,15]. Ta2O5 waveguides have been 
demonstrated in the past by using standard lithography and reactive ion etching methods [16–
18]. Cheng et al. [16] demonstrated such waveguides in 1970s. Arrayed waveguide grating 
devices were demonstrated using tantalum Ta2O5 in 1990s [17]. More recently, rare earth 
doped Ta2O5 waveguides have been demonstrated by sputtering from doped Ta2O5 targets and 
reactive ion etching methods [18]. 

A very unique property of tantalum is the ability to be oxidized at relatively low 
temperatures [19]. In this paper, we exploit this unique property in order to achieve low-loss 
submicron waveguides. For the first time, a novel method for fabrication of high-contrast 
submicron waveguides based on selective oxidation of a refractory metal (SORM) is 
introduced. The method eliminates the sidewall surface roughness scattering and at the same 
time achieves submicron gaps between waveguides without the need of expensive 
lithographic and etching methods and allows demonstration of high-contrast and low-loss 
waveguides on silicon substrates. Tantalum pentoxide microring resonators are demonstrated 
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here for the first time in the telecommunication wavelengths. We believe that the 
demonstrated fabrication method allows low-cost and reliable integrated optical devices to be 
realized for the mentioned host of applications. 

2. Fabrication technique 

The SORM method proposed here is based on selective oxidation of Ta to form a waveguide 
on a silicon substrate. Figure 1 shows the fabrication procedure. Tantalum is first deposited 
using a sputtering tool on a silicon substrate with a SiO2 buffer layer grown by thermal 
oxidation. Next, a SiO2 mask layer is deposited on the tantalum surface using a plasma-
enhanced chemical vapor deposition (PECVD) chamber and then patterned by electron-beam 
lithography to open a narrow slot in the SiO2 mask layer. It is noted that e-beam lithography 
is used due to its availability. However, the proposed fabrication method does not necessarily 
need very small feature sizes made by e-beam lithography. The sample is then placed in a 
furnace with oxygen flow at 520°C to selectively convert Ta into Ta2O5 in the exposed 
regions of the SiO2 mask layer. In the subsequent steps, the SiO2 layer is removed and the 
remaining Ta layer is etched away and a channel waveguide is hence achieved. A top 
cladding layer of SiO2 layer is finally deposited on the channel waveguides. 

 

Fig. 1. The processing steps of the proposed SORM waveguide fabrication technique. 

During the oxidation process the oxygen diffuses into the tantalum layer underneath the 
SiO2 mask layer as shown in Fig. 2(b). It is well-known that the diffusion process eliminates 
the sidewall roughness that exists on the mask layer and allows ultra-smooth surfaces to be 
achieved [10]. The oxidation process also causes inflation of the tantalum layer. The 
thickness of the resulting Ta2O5 layer is approximately twice the original tantalum layer. 
Also, it is noted that since Ta can be etched highly selectively compared to Ta2O5, the final 
tantalum etching step does not introduce any roughness in the remaining Ta2O5 waveguide 
layer. 

Ridge waveguides can also be fabricated by a slight modification in the above process. 
That is, a Ta layer deposited on the SiO2 buffer layer is fully oxidized first to form a Ta2O5 
slab layer. Then, a second layer of Ta is deposited on the Ta2O5 slab and selectively oxidized, 
similar to the steps of Fig. 1, to form a ridge waveguide. 

Figure 2 shows scanning electron microscope (SEM) images of cleaved facets of the 
fabricated ridge and channel waveguides. In the ridge waveguide case (Fig. 2(a)), the 
waveguide is formed into a trapezoidal shape with a base of about 1 µm. In the channel 
waveguide case (Fig. 2(b)), however, the resulting waveguide is dome-shaped. It appears that 
the underlying layer (Ta2O5 and SiO2 in Figs. 2(a) and 2(b), respectively) can profoundly 
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Fig. 2. The SEM cross-section images of the fabricated devices: (a) ridge and (b) channel 
waveguides. 

influence the oxidation process and the shape of the resulting waveguide. The difference can 
be attributed to the much higher diffusion constant of oxygen in Ta2O5 than SiO2. 

Propagation losses of <10 dB/cm from such straight ridge waveguide, with different base 
widths ranging from 600 to 1200 nm, were measured using the Fabry-Perot (FP) technique 
for the ridge waveguides. Negligible sensitivity of FP fringes and transmitted power for 
waveguides with various widths suggests that the modest loss is not related to sidewall 
scattering. As follows, channel waveguides as well as ridge and channel microring resonators 
were fabricated to further investigate this. 

In addition to eliminating the surface roughness problem, the explained novel fabrication 
method eliminates the need for expensive lithographic and etching tools needed for achieving 
submicron gaps in integrated optics. Generally, very precise gaps on the order of 100 nm are 
needed in order to achieve high coupling between high-index contrast waveguides and 
resonators. One advantage of the SORM fabrication technique is that such extremely narrow 
and precise waveguide gaps can be readily achieved with low-cost lithography and etching 
methods. In SORM, the gap width can be controlled accurately by the oxidation time, and its 
accuracy is less related to the lithographic and etching steps. In the following results, such 
small gaps on the order of 100 nm with a few nm of accuracy are reported. 

In order to demonstrate all the claims for our new fabrication method, we have made 
micro-ring resonators fabricated using this technology. Figure 3 shows a microscope image of 
our fabricated microresonator device. As can be seen, a microresonator is coupled to two 
input and output waveguides. There is also two bends from input to output to study the effect 
of bending loss in the device in addition to scattering and material losses that will be obtained 
by measuring the resonators’ Q, as discussed below. 

 

Fig. 3. Microscope image of fabricated microring resonator with input and output coupled 
waveguides. 
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3. Characterization and discussion 

The first device that was fabricated was a microresonator using ridge waveguides. Figure 2(a) 
shows the device cross-section. Devices with diameters ranging from 200 µm and larger were 
fabricated based on the calculation results that showed negligible bending loss. Figure 4(a) 
shows the measured transmission spectrum of a 300-µm diameter device for two different 
coupling strengths between the waveguides and the resonator (corresponding to 2.6 and 2.8 
µm gaps on the mask) for the transverse electric (TE) mode at a center wavelength of 1550 
nm. It is evident that single-mode resonances are experimentally observed. By increasing the 
coupling, the resonance peak width increases, as expected, and the device performs closer to 
the critical coupling point. Based on these measurements, the propagation loss of the 
waveguide and the coupling strength were extracted by curve fitting according to standard 
ring-resonator theories [6]. The extracted propagation loss is 9.5 dB/cm in a 300-µm diameter 
device, the estimated unloaded Q is ~4 × 104 and the unloaded finesse is 30. The coupling 
coefficient was calculated and an exponential decay as a function of linear gap was obtained, 
in agreement with the theory (see Fig. 4(b)). 

 

Fig. 4. (a) TE transmission spectrum of a device with 300-µm diameter and for two coupling 
strengths (colored lines) and the fitted spectra (black lines) around 1550 nm; (b) Measured and 
fitted coupling coefficient times length (κ × l) as a function of the coupling gap for two 
different microring radii. 

The input polarization was also changed to transverse magnetic (TM). The guided light, 
however, converted to the TE mode in the device. This can be explained by noting that the 
effective index of the TE and TM modes are very close to each other for this ridge structure. 
Hence, the TM mode can easily couple to the TE mode by small perturbations in the device. 
The TE-mode effective index is slightly larger, however, and the guided light will remain in 
this mode after conversion. 

Next, the slab waveguide region was eliminated in the fabrication process (see Fig. 1), and 
channel waveguides and microresonators were demonstrated. Figure 2(b) shows a typical 
waveguide cross-section SEM image confirming a Ta2O5 core region with approximate 
dimensions of 500 nm × 600 nm, and with a shape qualitatively in agreement with the 
schematic of Fig. 1(d). Since the index contrast in these channel waveguides is larger than the 
discussed ridge waveguides, more compact ring-resonators can be attained. Microresonators 
with diameters ranging from 20 to 80 µm were fabricated based on calculation results that 
demonstrate negligible bending loss. Figure 5(a) shows the transmission spectrum of a device 
with 80 µm diameter both for TE and TM modes. The extracted unloaded Q for this device is 
equal to 4.5 × 104. The propagation loss, based on the measured Q, is 8.5 dB/cm for both TE 
and TM modes. Remarkably, the measured loss for this microresonator with a smaller 
channel cross-section is slightly lower than the ridge waveguides discussed before. 

In order to experimentally confirm that the measured loss is not due to bending loss, we 
measured the transmission for smaller diameter devices. Figure 5(b) shows the TM-mode 
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transmission spectrum for a 40-µm diameter device. Since there are two bends between the 
input and output (see Fig. (3)) and since the bending loss is highly wavelength-dependent and 
not negligible in this case, there is a drop in the transmitted power as a function of wavelength 
and the resonance width is slightly increased too. However, no wavelength-dependent 
insertion loss is observed in the presented 80-µm diameter device and hence the bending loss 
is negligible in that device. Similar behavior is observed in the ridge waveguides (Fig. 4(a)). 

 

Fig. 5. (a) Transmission spectrum of a channel-waveguide-based microresonator with 80 µm 
diameter for TE and TM modes around 1550 nm; (b) Transmission spectrum of a channel-
waveguide-based microresonator with 40 µm diameter for TM modes around 1550 nm. The 
bending loss is considerable in this case. 

Based on the presented results, it is evident that the propagation loss in all the fabricated 
devices is limited to about 8.5 to 9 dB/cm regardless of the waveguide structure (ridge versus 
channel) and ridge waveguide base width (600 nm to 1200 nm). Also, similar values of loss 
have also been previously reported for much wider tantalum pentoxide waveguides made by 
conventional fabrication methods [14]. The scattering loss is highly dependent on the 
dimensions of the device since the scattered light is proportional to the quadratic power of the 
electric field which is much larger for smaller devices. Since no change in the measured 
propagation loss for waveguides ranging from several microns to submicron dimensions is 
observed, it is clear that the loss can only be attributed to material absorption in the Ta2O5 
core region and not to sidewall scattering or bending loss. The slight decrease in the loss for 
smaller devices can then be explained by slightly less confinement of the mode in the 
waveguide core. 

The rather high material loss of Ta2O5, meanwhile, could be due impurities in the 
sputtered Ta metal deposition. It is known that gases like argon and nitrogen can be 
incorporated in sputtered metallic films [20]. Higher material quality may be possible if other 
deposition techniques are employed to form the Ta layer(s). 

4. Conclusions 

In conclusion, ring resonator devices were demonstrated for the first time in tantalum 
pentoxide waveguides on silicon substrate by using a novel fabrication method, named 
SORM. Propagation losses as low as 8.5 dB/cm were obtained in Ta2O5 submicron 
waveguides and it is evidenced that the loss is not related to scattering from the surface 
roughness or bending loss but rather attributed to material absorption in the core region. 
Submicron gaps needed for compact couplers were achieved based on the proposed 
fabrication method, which led to the demonstration of submicron Ta2O5 microring resonator, 
for the first time, with diameters as low as 80 µm with finesses as high as 120 and quality 
factors as high as 4.5 × 104. Further, research is needed in order to identify the cause of the 
material loss. It is expected that if the material loss is eliminated, ultrahigh-Q and ultralow 
loss devices can be made using the novel technique described in this paper. 
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