
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 2010s Faculty Bibliography 

1-1-2011 

Harnessing the power of BitTorrent for distributed denial-of-Harnessing the power of BitTorrent for distributed denial-of-

service attacks service attacks 

Lei Wu 
University of Central Florida 

Jerome Harrington 
University of Central Florida 

Corey Kuwanoe 
University of Central Florida 

Cliff C. Zou 
University of Central Florida 

Find similar works at: https://stars.library.ucf.edu/facultybib2010 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for 

inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please 

contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Wu, Lei; Harrington, Jerome; Kuwanoe, Corey; and Zou, Cliff C., "Harnessing the power of BitTorrent for 
distributed denial-of-service attacks" (2011). Faculty Bibliography 2010s. 2110. 
https://stars.library.ucf.edu/facultybib2010/2110 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236304912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2010
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2010
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2010/2110?utm_source=stars.library.ucf.edu%2Ffacultybib2010%2F2110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2011; 4:860–870
Published online 26 July 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.215

RESEARCH ARTICLE

Harnessing the power of BitTorrent for distributed
denial-of-service attacks
Lei Wu, Jerome Harrington, Corey Kuwanoe and Cliff C. Zou*

School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, U.S.A.

ABSTRACT

BitTorrent is a popular peer-to-peer (P2P) file-sharing protocol that utilizes a central server, known as a ‘tracker’, to
coordinate connections between peers in a ‘swarm’, a term used to describe a BitTorrent ad-hoc file sharing network. The
tracker of a swarm is specified by the original file distributor and trusted unconditionally by peers in the swarm. This central
point of control provides an opportunity for a file distributor to deploy a modified tracker to provide peers in a swarm with
malicious coordination data, directing peer connection traffic toward an arbitrary target machine on an arbitrary service port.
Although such an attack does not generate huge amount of attack traffic, it would set up many connections with the victim
server successfully, which could cause serious denial-of-service by exhausting the victim server’s connection resource. In
this paper, we present and demonstrate such an attack that is entirely tracker-based, requiring no modifications to BitTorrent
client software and could be deployed by an attacker right now. The results from both emulation and real-world experiments
show the applicability of this attack. Due to the skyrocketing popularity of BitTorrent and numerous large-scale swarms
existed in the Internet, BitTorrent swarms provide an intriguing platform for launching distributed denial-of-service (DDoS)
attacks based on connection exhaustion. Copyright © 2010 John Wiley & Sons, Ltd.

KEYWORDS

BitTorrent; distributed denial-of-service attack; peer-to-peer networks

*Correspondence

Cliff C. Zou, School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, U.S.A.
E-mail: czou@cs.ucf.edu

1. INTRODUCTION

Over the past several years, peer-to-peer (P2P) networks
have enjoyed a tremendous rise in popularity, primarily
as a means of transferring large files over the Internet. In
1999, ‘Napster’ became the first P2P file-sharing network
to attract mainstream attention and was widely used to share
music via the Internet. The Napster network makes use of a
centralized server to maintain a list of currently connected
clients and the files that each client makes available at a
given point in time [1].

The next P2P file-sharing protocol to garner a great deal
of attention was ‘Gnutella’ [2]. Unlike Napster, Gnutella
provides a true P2P network that does not need centralized
servers for client tracking. Instead, a Gnutella client requires
only the address of a single remote peer to bootstrap its
connection to the Gnutella network, obtaining the identities
of further peers by querying the peer or peers used during
the bootstrap phrase [2].

Following Gnutella, the next wave of P2P file sharing
came in the form of the ‘FastTrack’ protocol, which imple-
mented a supernode-based architecture [3]. A supernode

is a high-powered, well connected client in the P2P net-
work that can assume the functionality of a directory server
for a number of lower-powered or lesser-connected clients,
relieving overheard from those machines and allowing for
greater scalability. The most popular of the FastTrack-based
networks, Kazaa, achieved a great deal of popularity around
2003 [3].

‘BitTorrent’ is a different P2P protocol for sharing large
files over the Internet created by Bram Cohen [4]. Because
of its file-centered design and its fairness mechanism that
rewards users for up sharing [5], BitTorrent is very efficient
in transferring large files among peers, and hence, has
gained its popularity in the last several years [38].

However, BitTorrent has a serious vulnerability that has
not been discovered before. BitTorrent utilizes a central
server, known as a ‘tracker’, to coordinate connections
between peers in a ‘swarm’, a term used to describe a Bit-
Torrent ad-hoc file sharing network for a file (or a set of
files) provided by a file distributor. The tracker of a swarm is
specified by the swarm’s original file distributor. All peers
in the swarm trust the tracker without implementing any
authentication or verification procedures. This central point

860 Copyright © 2010 John Wiley & Sons, Ltd.



L. Wu et al. Harnessing BitTorrent for DDoS attacks

of control provides an opportunity for a file distributor to
deploy a modified tracker to provide peers in a swarm with
malicious coordination data, directing peer connection traf-
fic toward an arbitrary target machine on an arbitrary service
port.

In this paper, we present a potential attack that exploits
the above BitTorrent vulnerability. By deploying such an
attack, a malicious attacker could use a popular file (such
as a pirated movie) as a bait to launch an application-
level, connection exhausting distributed denial-of-service
(DDoS) attack using the members of a BitTorrent swarm.
This BitTorrent-driven attack does not require any modifi-
cations to the client-side BitTorrent software, and hence, it
could be immediately implemented in the current BitTorrent
world by an attacker. Instead of sending out attack traf-
fic from an attacker’s compromised computers, the actual
DDoS attack traffic is initiated by the large number of inno-
cent peers within a swarm, which makes the attack efficient,
easy to implement, and hard to defend. Furthermore, the Bit-
Torrent attack causes real, complete TCP connections to be
made to an arbitrary service port specified by an attacker,
allowing the attack to be adapted to a range of target services
such as HTTP and SMTP.

The rest of this paper is organized as follows. The related
work is introduced in Section 2. We introduce BitTorrent
and describe its architecture in Section 3. In Section 4, we
present details of the vulnerability inherent in the BitTor-
rent architecture, and provide the theory behind our DDoS
attack. Then, in Section 5, we evaluate our BitTorrent-
driven attack, both by emulations and a small-scale real
world experiment. We look at some possible defense tactics
against the presented attack in Section 6. Finally we summa-
rize this paper in Section 7 and discuss some opportunities
for future work.

2. RELATED WORK

Many people have studied how to secure a P2P network so
that the network can run normally when it is under attack,
either from outside machines or from malicious members in
the P2P network. Wallach [6] presented a survey of P2P net-
work security including routing protocol, fairness and trust
issues. Castro et al. [7] presented attacks to prevent cor-
rect message delivery in structured P2P overlays and also
defenses to these attacks. Douceur et al. [8] studied Byzan-
tine fault isolation in a P2P distributed file system. Maniatis
[9] and Giuli [10] presented a set of defenses against various
denial-of-service attacks in P2P systems. Sun et al. [11] pre-
sented how malicious nodes in a P2P system could DDoS
external nodes. However, they only focused on KAD (a
DHT-based file-sharing system) and ESM (a gossip-based
video broadcasting system). Our research is about how
attackers could use a P2P network to conduct large-scale
DDoS attacks to other targets, not the P2P network itself.

Attackers could also take advantage of the P2P network
infrastructure to facilitate their attacks to members of a P2P
network, such as using a P2P network to propagate an Inter-

net worm. Yu et al. [12] presented a P2P-based worm attack
and provided its propagation model. Zhou et al. [13] pre-
sented a self-defense infrastructure inside a P2P network
to contain P2P-based worms. A P2P-based worm tries to
infect members of a P2P network, which is different from
the BitTorrent-driven DDoS attack presented in this paper.

Naoumov and Ross [14] presented how attackers could
publish fake index to conduct index poisoning attack on
a P2P system. Index poisoning attack is different from our
proposed attack in both the attack principle and target mem-
bership: index poisoning attack only affects nodes inside a
P2P network, while the BitTorrent-based attack introduced
in our paper could attack any computer in the Internet.

BitTorrent is a special P2P network protocol [5]. Current
research on BitTorrent is mainly on modeling and analyzing
its robustness, fairness, and performance [15--18]. Liogkas
et al. [19] presented three selfish-peer exploits and studied
BitTorrent’s robustness under these exploits. No research
has been done on exploiting BitTorrent to attack an arbitrary
target.

The BitTorrent-driven DDoS attack we present in this
paper utilizes the communication center (i.e., the tracker)
of a BitTorrent swarm to direct connections from mem-
bers of the network to a target. Conceptually speaking, this
attacking idea is similar to the idea deployed by the botnet
monitoring system presented in Reference [20]: by hijack-
ing the domain name of the communication center of a
botnet (the command & control server), the botnet mon-
itor is able to redirect connections from members of the
botnet to itself [20].

‘DNS reflection attack’ [21] is an amplification flood-
ing attack: an attacker sends spoofed DNS queries to many
DNS servers, letting those DNS servers generating a larger
volume of DNS response traffic to a spoofed victim. Com-
pared to this DNS reflection attack, the proposed BitTorrent
attack exhausts connection resource of a victim instead of
bandwidth of a victim.

The paper is extended from our previous conference
paper [22]. Through further study, we have identified an
error in the previous conference version, and discovered a
new challenge faced with the proposed BitTorrent attack.
In this paper, we have revised the attack strategy and thus
overcome the new challenge. Defrawy et al. [23] presented
‘BotTorrent’, which has the similar idea to exploit Bit-
Torrent to launch DDoS attacks. Our work was conducted
independently with Defrawy et al. [23] at the same time.

3. BACKGROUND ON BITTORRENT

The BitTorrent protocol was first developed by Bram Cohen
and originally released in 2001 [24]. BitTorrent differs from
earlier P2P protocols because there is not a single BitTor-
rent network. Instead, smaller ad-hoc networks, known as
swarms, are formed for each file (or set of files) that is being
transferred. The members of each of these swarms regularly
announce their presence to a centralized server, or ‘tracker’,
which maintains a list of all currently connected peers, and

Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd. 861
DOI: 10.1002/sec



Harnessing BitTorrent for DDoS attacks L. Wu et al.

Figure 1. Architecture of a normal BitTorrent swarm.

distributes that list among the peers as they announce to the
tracker.

To transfer a file among a group of users via BitTorrent,
the original distributor of the file must first have a server
available that is running BitTorrent tracker software. Then,
he or she must generate a ‘torrent’ file, which contains the
URL of the tracker to which peers in the swarm will con-
nect. At this point, the torrent file can now be offered to
potential downloaders via any normal distribution method.
Most often this is done by publishing the torrent file on a
popular website.

Figure 1 illustrates the architecture and communication
paths of a typical BitTorrent swarm. As seen here, there
exists a control path between each peer in the swarm and
the centralized tracker server whenever the peer announces
itself to the tracker. Any given peer may additionally
have data connections with any other peers. The Bit-
Torrent vulnerability is caused by fact that the control
channel of a BitTorrent swarm is in the hand of the tracker
machine, which can be operated by any user without any
verification.

BitTorrent is currently being used for many legitimate
and legal purposes, such as distribution of Linux ISO images
and software updates for Blizzard’s multi-player online
role-playing game World of Warcraft. Warner Brothers has
made a deal with BitTorrent to distribute and sell over 200
Warner Brothers movies and TV programs through BitTor-
rent [25]. BitTorrent has arguably received more attention
from legitimate interest groups than any previous P2P file
sharing protocols or networks. Meanwhile, BitTorrent has
become massively popular among the piracy community,
being used to transfer music, movies, and television shows
en masse. Such popular torrent directory websites, such as
The Pirate Bay [26] and mininova [27], allow anyone to
upload a torrent file, usually anonymously, pointing to an
arbitrary tracker specified in the torrent file. Thus, it is pos-
sible for a malicious file distributor to create a torrent using
a tracker over which he or she has full control, and offer it
to a huge pool of potential downloaders in an effective and
straightforward manner.

4. VULNERABILITY IN BITTORRENT
ARCHITECTURE

4.1. Modifying the tracker

As we have previously seen, peers in a BitTorrent swarm
rely on the response provided by the tracker at announce
time to determine the identities of the other clients within the
swarm and, consequently, what peers they should connect
to. Therefore, if an attacker has control of a tracker, he or
she can alter the response that the tracker provides to the
peers in the swarm.

In our experiments, we made use of an open-source PHP
tracker called ‘BlogTorrent’ [28]. Our modifications were
limited to a single function called BTAnnounce() in the
tracker program. This function is called each time a client
announces to the tracker. The function’s pseudo-code is
listed below. It demonstrates the primary logic involved in
accepting a peer announcement and returning normal output
to a BitTorrent client.

1. remote addr = IP address of announcing peer
2. port = BitTorrent port of the announcing peer
3. // split the IP of the announcing peer
4. // into an array of its octets
5. peer ip array = split remote addr on ’.’
6. // pack the contents of peer ip array into
7. // a binary string of unsigned char
8. peer ip = pack(‘C*’,peer ip array[0],peer ip array

[1],peer ip array[2],peer ip array[3])
9. // pack the peer’s port number into

10. // a binary string of unsigned short
11. peer port = pack(‘n*’, port)
12. // generate 0--127 based on the current minute
13. time = round to int((time() % 7680)/60)
14. // if the peer is a seeder, set the high bit of time
15. if peer is a seeder
16. time = time + 128
17. endif
18. // pack time into a binary string of unsigned char
19. time out = pack(‘C’, time)
20. // concatenate time, peer ip, and peer port to
21. // produce the peer entry in the expected format
22. peer data = time + peer ip + peer port
23. // update or add the peer to the local database
24. if peer is in database
25. update entry to peer data
26. else
27. add peer to database with peer data
28. endif
29. // initialize the string to be returned to the client
30. output = ”
31. // concatenate the database entries for all peers
32. // to generate the output to be returned
33. foreach peer
34. output = output + peer
35. endforeach
36. // this is the string in the expected

862 Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



L. Wu et al. Harnessing BitTorrent for DDoS attacks

37. // format that will be returned to the client
38. return ’d8:intervali1800e5:peers’ + length(output)

+ ’:’ + output + ’e’

This function BTAnnounce() serves two main purposes.
First, it serves to maintain a local database of currently con-
nected peers within the swarm. Second, it is responsible for
creating a peer list to be returned to the calling client, con-
taining the addresses of the currently connected peers stored
in the database.

We have modified this function to return our own list
of configurable addresses along with the legitimate data
returned normally. Given the pseudo-code above, our addi-
tions would take place between lines 30 and 31.

Here, we repeat the same process as shown in lines 3--22
to construct a data entry for each of our configured target
address and port combinations. Our illegitimate entries are
then concatenated and assigned to the output variable before
line 31. Having pre-populated the output with connection
information for our target or targets, we then proceed to add
the legitimate peers to the output string, yielding a binary
string to be returned to the BitTorrent client that contains
the addresses of the legitimate peers within the swarm as
well as the addresses (and service ports) of the arbitrary
machine or machines that we have configured to attack.

With the ability to inject arbitrary IP addresses into the
peer list, peers in the swarm will now attempt to connect
to those targets in an attempt to download chunks of the
advertised file. In the next section, we will see how this
vulnerability in the BitTorrent architecture may be exploited
to stage a DDoS attack.

Figure 2 shows the network architecture of a modified
BitTorrent swarm. The modified swarm is able to func-
tion normally as a file-transferring swarm since all peers
can transfer files to each other normally. In addition, peers
within the swarm will make additional connections to our
supplied target.

A modified BitTorrent swarm can be configured to
attack multiple targets as well. Note that the addresses of
these multiple targets may belong to the same server or
different machines. If a target has multiple IP addresses

Figure 2. Architecture of our modified swarm (BitTorrent file
exchange function is still working, but each peer would gener-
ate an additional connection to a victim target on a specified

service port).

assigned to it (e.g., a web farm), this technique can be
used to increase the number of connections being made to
a target. Alternatively, this could be used to target several
distinct machines at the same time.

4.2. A BitTorrent-driven DDoS attack

Given the current usage of BitTorrent and the capability of
providing clients with arbitrary addresses in the peer list,
it is not difficult to envision a realistic attack scenario. An
attacker would first set up a modified tracker, most likely on
a server that he or she has previously compromised. Next,
the attacker would need to obtain a file or a set of files
that are likely to generate high demand---a pirated copy of
a blockbuster movie still in theatrical release or a popular
new computer game, for example. With these pre-requisites
in place, the attacker is now free to generate a torrent file for
his or her payload and register the torrent with the modified
tracker.

While the attacker could use any means to distribute the
newly created torrent, the most straightforward approach
would be uploading the torrent to a popular torrent direc-
tory, such as Pirate Bay [26]. In this way, the torrent is
made available for any user to download freely and join
the swarm. At that point, the peers in the swarm that are
downloading the file will begin connecting to the supplied
target or targets, while still retrieving the torrent payload
data normally.

When the number of peers in the swarm with a connection
open to an attacked target exceeds the maximum number of
connections the target application is configured to accept,
the victim service will no longer accept new TCP connec-
tions, rendering it unreachable and causing a successful
denial-of-service attack.

From the descriptions above, we can see that this
BitTorrent-driven DDoS attack has the following
properties:

• It requires no modification to BitTorrent client soft-
ware.

• The attack is hidden from clients since the attack traffic
volume from each client is very small and all clients
can still upload and download files normally.

• The attack can target multiple victims on arbitrary ser-
vice ports specified by the attacker.

• The attack does not expose an attacker’s real compro-
mised machine (i.e., the tracker) to a victim.

• An attacker can arbitrarily decide the start and end time
of a DDoS attack by controlling the tracker’s behavior.

5. EVALUATION OF BITTORRENT-
DRIVEN DDOS ATTACKS

5.1. Attack emulation

For the emulation, we make use of two different machines.
The first machine running Linux Ubuntu 8.04 and Apache

Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd. 863
DOI: 10.1002/sec



Harnessing BitTorrent for DDoS attacks L. Wu et al.

2.2.8 web server acts as our DDoS attack target machine.
The second one runs Ubuntu 9.04 with Apache 2.2.11 (to
make monitoring easier, we disable the ‘deflate’ feature
in Apache 2.2.11). We modify BlogTorrent tracker and
deploy on the second machine, which also supplies the ini-
tial seed client and runs a multitude of BitTorrent client 4.0.1
instances (using the command-line client btdownloadhead-
less.py [29]), simulating the peers within the swarm.

To monitor the number of connections made to the
target at any given point in time, a script is written to
constantly parse the target machine’s Apache server-status
page, reporting the number of concurrent requests being
served at each parsing time.

A normal execution procedure of a BitTorrent client is as
follows:

(1) At the initialization stage, the client contacts the
tracker to announce its ‘started’.

(2) Download files, and will decide to contact the tracker
if certain conditions are met (we will explain the
conditions later).

(3) When finishing downloading, it contacts the tracker
immediately to announce ‘completed’. Now it
becomes a seeder, and will contact the tracker peri-
odically to obtain peer list (for the client we tested,
the period is 6 min).

(4) If the client process terminates normally, it contacts
the tracker to announce ‘stopped’ just before the ter-
mination.

The tracker returns an updated peer list to a client after
every announcement (except the ‘stopped’ announcement)
sent by the client. Upon receiving a peer-list from the
tracker, a client will contact peers in the peer list. In our
tested client program, the maximum number of peers to con-
tact has the default value of 40, and the client will always
contact peers in the peer list sequentially. For such client
programs, to guarantee that a peer always connects to the
DDoS attack target, an attacker just needs to modify the
tracker code to put the target IP into the first place of the
returned peer list. Some other client programs may have
different strategies to select peers in the returned peer list;
however, an attacker can always modify the tracker to make
sure that clients in his swarm will always contact the target,
e.g., by configuring the size of the returned peer list (con-
taining the target IP) to be smaller than the default value
of the maximum number of peers to contact used in most
BitTorrent client programs.

Through further testing, we find out that the emulation
experiment shown in our previous conference paper [22]
(Figure 3 in that paper) is not accurate. In the tested BitTor-
rent client program there is an important parameter named:
‘one connection per ip’ with a default value of 1, which
means ‘set up only one connection to each IP address’.
This default value works fine for real-world BitTorrent file
sharing, but in our emulation the seeder and all clients are
running in one machine, and hence, each peer can only con-
nect to one other peer to download files. To make sure all

Figure 3. A small-scale emulation with 50 peers (max upload
rate: 20 KB/s).

peers can download in the same way as in the real-world
BitTorrent network, we set the value of this parameter to
0 to disable this constraint. However, this configuration
issue does not affect the real-world experiment shown in
the conference paper (Figure 5).

We write a client-spawning script to control the gener-
ation of client processes in the BitTorrent swarm. Since
every client joins in a BitTorrent swarm independently, it is
reasonable to model the peers joining process as a Poisson
arrival process. In fact, many previous researches [16--18]
also modeled BitTorrent system by assuming that the arrival
process of downloaders is Poisson process. Thus this script
is written to spawn clients following Poisson process.

5.1.1. Small-scale emulation.

First, we conduct small-scale emulation in order to study
the attack performance. In the small-scale emulation, we
spawn 50 peers following Poisson arrival process with the
rate λ = 1/min (i.e., on average one client is spawned in
each minute). Additionally, we let another parameter named
‘max upload rate’ to have the default value (20 KB/s),
which controls the maximum upload rate for each peer.
Figure 3 shows the emulation results. The ‘finished peers’
shows how many peers have finished download and become
seeders at each time.

Figure 3 shows that the number of attack connections
does not increase much as more peers are spawned during
the first 25 min; it even decreases a little bit. This contradicts
with our intuition. We inspect the code of BitTorrent client
btdownloadheadless.py, and find out that at the second step
of BitTorrent client (shown at the beginning of subsection
5.1), a client contacts the tracker according to the download
situation as follows:

1. If (# of connections < min peers/3) contact tracker
every 5 min;

864 Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



L. Wu et al. Harnessing BitTorrent for DDoS attacks

2. If ((# of connections < min peers) && no download-
ing happens) contact the tracker every 5 min;

3. If (30 min passed without contacting the tracker) con-
tact the tracker;

4. If (the peer finishes downloading) contact tracker
every 5 min.

Where min peers is a system parameter (default value
is 20). Whenever a client contacts the tracker and gets an
updated peer list, it will connect to every peer in the peer list,
and hence, would set up a connection to the targeted victim
until timeout. In Figure 3 the number of attack connec-
tions decreases after 15 min because at that moment most
spawned peers have content in downloading and their num-
ber of active connections bigger than min peers/3 = 6.7,
which means they will not contact the tracker and connect
to the target any more for another 30 min.

To check whether the above peer behavior is a common
behavior, or a specific one for the particular client code we
tested, we analyze the new version of BitTorrent client 5.2.2,
and find that the processing procedure is exactly the same
using a different default value of min peers = 40. We also
look through some other popular BitTorrent clients, e.g.,
BitTornado [30], ABC, [31] and Burst [32], and they all
have the similar processing procedure.

Figure 3 shows that after 25 min, the number of attack
connections goes up quickly. This is because most peers
finish downloading and become seeders. Thus they will con-
tact the tracker periodically every 5 min and hence set up
connections with the target once in every 5 min.

After 60 min the attack connection curve in Figure 3
exhibits a regular periodical oscillation with the period of
6 min. This is because every peer periodically connects to
the target after it becomes a seeder while each peer becomes
seeder at different time. The period is 6 min instead of 5 min
because the client code checks its status once in a minute.

In Figure 3 most peers quickly finish file downloading
and become seeders. In real BitTorrent networks this may
not happen often. To simulate the realistic scenario where
only a small fraction of peers in a BitTorrent network are
seeders and every one has a different network bandwidth,
we conduct another emulation by letting the parameter
‘max upload rate’ follow a uniform distribution from 1 to
10 for all clients. Figure 4 shows the experiment results.

Figure 4 shows that before peers finish downloading and
become seeder around 60 min, the number of attack con-
nections stays low and even becomes 0. This happens when
all peers contact the tracker every 30 min and hence no one
is connecting with the target at some time. Of course, that
is not what an attacker wants. Therefore, attackers need to
revise the tracker’s behavior to make sure that most peers
contact the tracker every 5 min instead of 30 min.

5.1.2. Attack strategy revision---subgroup-based

swarm.

Based on the logic of how a client contacts the tracker (the
4 steps introduce above), attackers can solve the problem

Figure 4. A small-scale emulation with 50 peers (max upload
rate: uniform distr. 1∼10 KB/s).

illustrated in Figure 4. The problem is caused when most
peers satisfy the condition (# of connections > min peers/3).
Since an attacker cannot change client codes, i.e., the value
of min peers cannot be changed, he can change the tracker
to make sure that the size of the peer list returned to a peer
is smaller than min peers/3.

To achieve this goal, we modify the tracker code to divide
different clients into subgroups, and the returning peer list
for each client just contains peers belonging to its sub-
group plus the target IP and the original seeder’s IP. The
group size depends on the value of min peers in client code
(we use 7 because of the default threshold value 20/3 we
mentioned before). With this modification of the tracker,
Figure 5 shows the results of the experiment. Peers finish
downloading with a longer delay because each of them sees
a smaller size of swarm. However, every one can normally
finish their downloading tasks and the number of attack
connections is continuously kept in a high level.

Figure 5. A small-scale emulation with 50 peers (max
upload rate of the original seeder is 10 KB/s, other peers follow
uniform distribution from 1 to 10 KB/s, using the revised

subgroup-based tracker code).

Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd. 865
DOI: 10.1002/sec



Harnessing BitTorrent for DDoS attacks L. Wu et al.

Figure 6. The complete cycle of a small-scale emulation with 50
peers (max upload rate of the original seeder is 10 KB/s, other
peers follow uniform distribution from 1 to 10 KB/s; use revised
subgroup-based tracker code; peers join in following Poisson
arrival process and leave following exponential distribution with

rate � = 1/min after finish downloading).

Now we emulate a complete cycle of attack process by
considering that once a peer finishes downloading, it will
leave after a while. It is reasonable to assume that once a
client finishes downloading, it leaves after an exponential
distributed time (with the rate of λ = 1/min). The result is
shown in Figure 6, from which we can see that the curve is
well along with our expectation.

With this subgroup-based BitTorrent attack, the attack
strength is scalable to large size BitTorrent networks. Each
subgroup of a BitTorrent swarm will contribute several
attack connections, and subgroups in a swarm attack inde-
pendently. Therefore, the attack strength is proportional to
the size of BitTorrent networks.

5.1.3. Medium-scale emulation.

Now we want to test the attack performance in a medium-
scale BitTorrent network with several hundreds of clients.
In this experiment, the maximum number of client’s pro-
cesses to be spawned is set to 500. The results are shown in
Figure 7.

It would be better if we could conduct a large-scale
emulation with a large swarm that has thousands of peers.
Unfortunately, our current emulation testbed requires run-

Figure 7. The complete cycle of a medium-scale emulation with
500 peers (all other parameters are unchanged from the experi-

ment shown in Figure 6).

ning all client processes on one single machine. Emulation
with more than 500 peers would either cause out-of-memory
error or crash our testbed machine. A large-scale emulation
requires us to generate a brand-new emulation environment
and run it on a cluster of machines. We plan to conduct this
research as one of our future work.

5.2. Peer behavior

Several interesting observations can be made with regard
to the behavior of the attacking clients within a swarm.
First, an attacking client will hold its connection to a target
server open until the server times the connection out. For
the standard Apache installation in our experiments, the
time-out period is 5 min.

Second, Figures 3--7 show that the average number of
attack connections is roughly 80% of the number of peers
in the BitTorrent network. This is because each connection
to the target web server will last for 5 min before timeout,
while a peer contacts the tracker to obtain updated peer list
and then connect to the target once in 6 min (1 min used in
periodical status checking while 5 min used before contact-
ing the tracker). That means each peer holds one connection
to the target in every 5 out of 6 min, i.e., the ratio of the num-
ber of active attack connections to the number of peers in
the BitTorrent network is 5/6 = 83%.

Third, during our emulation, we have also observed that
BitTorrent clients re-attempt the connection every time they
announce to the tracker. The clients have never blacklisted
the target machine, despite the fact that it has never returned
a valid response. This is due to the fact that the BitTor-
rent client software has not considered what to do when
receiving an invalid response.

Another issue to be considered is what the actual data
exchange looks like between a BitTorrent client and an
attacked target. Upon connection to the target server, a Bit-
Torrent client sends a request to the server containing the
string ‘BitTorrent protocol’. This does provide a possible
means of fingerprinting the attack connections.

Figure 8 is a screen capture of a popular BitTorrent client,
Azureus [33]. In the screenshot, the client is currently being
used as an attacker in our modified swarm. The ‘Azureus
Peer Details’ screen shows this client attacking two sep-
arate target addresses, 10.37.129.4 and 192.168.33.16.
Simultaneously, the client is connected to a seeding peer,
10.37.129.3 and is transferring the torrent payload success-
fully. Note that Azureus displays a generic ‘Waiting for
handshake’ error. This error could be caused by a number
of things, such as network latency or packet loss. Therefore,
even if an end user checks this Azureus Peer Details screen,
the user still has no clear clue that any malicious activity is
taking place.

5.3. Real world experiment

In addition to our attack emulation and experiments around
the behavior of peers in a swarm, we conducted a small-

866 Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



L. Wu et al. Harnessing BitTorrent for DDoS attacks

Figure 8. A screen shot of a peer client downloading a file normally while sending attacks to multiple targets at the same time.

scale ‘real world’ test of our method. For this, we set up a
modified tracker, generated a torrent file, and registered it
with our tracker. The torrent was then given out to a small
group of friends, who were informed as to the nature of the
experiment they were to be taking part in.

In this real-world experiment, our tracker was configured
to provide the peers with the IP address of a web server under
our control as the attack target machine. Furthermore, our
tracker was configured with a value of 1 for the minimum
number of peers required to begin the attack. We were thus
able to see attack traffic being spawned immediately upon
the swarm becoming active.

Figure 9 illustrates the number of attack connections gen-
erated by our BitTorrent swarm during a 24 h window of our

Figure 9. Attack magnitude during a ‘real world’ experiment.

swarm’s lifetime. Each data point is the average number of
attack connections served by the target web server within
1 h. This average was calculated by tracking the number of
open connections at an interval of 1 s. This running count
was then totaled and divided by 3600 during later analy-
sis to compute the average number of connections over the
course of each 1 h period.

6. DEFENSE

There are several possible methods that could be used
to defend against the proposed BitTorrent-driven DDoS
attack. We introduce them in this section.

6.1. Defense initiated by target

The first possible method of defense initiated by target
is for a target machine to detect and block attack traffic.
As explained in subsection 5.2, an attack TCP connec-
tion coming from a BitTorrent peer does not follow the
target service specifications and contains the string ‘Bit-
Torrent protocol’. This makes it easy for a target machine
to detect BitTorrent-driven attack connections and block
further attack connections by using a blacklist.

This traffic filtering defense, however, has its limita-
tions. Given the dynamic nature of BitTorrent swarms, the
blacklist-based filtering defense requires the blacklist to be
updated frequently in order to block attacks from new Bit-
Torrent peers. In addition, the blacklist could be very large
if a large BitTorrent swarm is used in the attack.

Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd. 867
DOI: 10.1002/sec



Harnessing BitTorrent for DDoS attacks L. Wu et al.

Considering the challenges faced by blacklist-based fil-
tering, a more convenient yet still effective defense is to
simply drop those detected BitTorrent attack connections
without using any blacklist. As we discussed in experi-
ment subsection 5.1, an attack client does not reconnect
to a target machine if the previous connection is closed by
the target---the client only reconnects after another query to
the malicious tracker. Therefore, if the target breaks down
malicious connections immediately instead of waiting for
the long timeout (most web servers have a default timeout of
5 min), the effectiveness of the connection-based BitTorrent
DDoS attack will be greatly reduced.

6.2. Torrent validation

Another alternative for defending against the outlined attack
is for BitTorrent directory websites to validate submitted
torrent files before making them available to the public.
Presumably, this validation would be done by: (1) joining
the swarm specified in a torrent file; (2) analyzing the peer
lists returned by the tracker over a period of time; and (3)
verifying that the hosts returned in the peer lists are in fact
legitimate peers.

However, this is not a trivial process, and it is prone to
error. In addition, an attacker could set a minimum swarm
size that must be satisfied before the tracker begins to behave
maliciously. Thus, early in the torrent’s lifespan, when veri-
fication is most likely taking place, the tracker would behave
normally and not raise any alarms during the verification
process.

6.3. Authorized trackers

The fundamental cause of the BitTorrent-driven attack vul-
nerability is that the control channel of BitTorrent (trackers)
is not managed by authority; any user can designate any
machine to be a tracker machine to control a BitTorrent
network. Therefore, an effective defense is to make sure
that trackers are managed by trusted entities.

To achieve this goal, BitTorrent community could imple-
ment a public-key infrastructure similar to the Internet Web
community: any tracker used by a BitTorrent network needs
to be certified by one certificate authority (CA), where the
information and public keys of CAs are hard-coded to all
popular BitTorrent clients. In this way, attackers cannot
manipulate the control channel of BitTorrent to initiate the
DDoS attacks.

6.4. Strict client protocol checking

Another defense would be for the authors of BitTorrent
clients to add an increased level of intelligence to their client
software. This would still require that each peer connects to
the target once. If a peer receives an invalid response (i.e.,
not following BitTorrent protocol) from a connected tar-

get, the client software on the peer can blacklist that target
IP address and not attempt any further connections to the
target.

However, such a defense could be effective only if a large
portion of BitTorrent client software have been upgraded.
This could be hard to realize, because currently there are
more than 50 BitTorrent client software existing and used by
users [34]. In addition, many users never bother to upgrade
their BitTorrent client software as long as their client soft-
ware works fine in file downloading.

6.5. Disabling malicious trackers

The victim of an attack could attempt to locate the malicious
tracker and have it disabled or removed from the network
through the collaboration with the network or ISP hosting
the tracker machine. The tracker is the single point of failure
for the survivability of the DDoS attack introduced in this
paper.

As with all DDoS attacks, this is easier said than done.
First, the victim needs to identify the tracker based on the
limited data transmitted by a BitTorrent swarm (the tracker
does not attack a victim directly). Second, shutting down a
remote tracker would need collaboration from another ISP,
which is a time and resource consuming task.

6.6. Behavioral anomaly detection

We have introduced several deterministic techniques above
for detecting and filtering the BitTorrent attack. Another
defense method is to use behavioral or probabilistic-
based anomaly detection. Researchers have proposed many
anomaly detection based DDoS defense systems, such as
[35,36]. Ranjan et al. [35] presented a ‘DDoS-resilient
scheduler’ to prioritize incoming connections based on a
suspicion score assigned to each connection. Kim et al.
[36] presented a dynamic DDoS defense system ‘based on a
per-packet score which estimates the legitimacy of a packet
given the attribute values it carries.’

Anomaly detection based DDoS defense would also be
suitable for detection and defense of the proposed BitTor-
rent based DDoS attack. It is a rich research area to explore,
but we will not discuss further since it is out of the focus of
this paper.

7. CONCLUSION AND FUTURE
WORK

In this paper, we presented a vulnerability inherent in the
BitTorrent architecture which can be leveraged to cause
innocent peers within a swarm to make connections to one or
more configured target machines on arbitrary service ports.
Further, we showed how a malicious attacker might utilize
this vulnerability to launch a DDoS attack. Although such
an attack does not generate huge amount of attack traffic, it

868 Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



L. Wu et al. Harnessing BitTorrent for DDoS attacks

could cause serious denial-of-service by exhausting a victim
server’s connection resource.

An attack launched using our method has a number of
positive properties from the perspective of attackers. First,
the attack does not require any modification to the BitTor-
rent client software used by peers within a swarm---it only
requires a modified tracker to be run. Second, the attack
provides a high level of configurability, with the ability to
configure an arbitrary number of hosts and arbitrary service
ports to be attacked. Third, because the attack does not affect
the normal transfer of file-sharing data within a swarm, the
attack is stealthy to existing BitTorrent clients, reducing the
likelihood that a peer would notice that it was being used to
generate attack traffic. Fourth, the attack also hides the iden-
tity of the real malicious host, the tracker, from the target
machine or machines. Attack victims will only receive con-
nections from the peers within a swarm. Finally, an attacker
can arbitrarily start or stop the attack and the peers will
respond accordingly upon their next announcement to the
tracker.

There are several areas in which additional research is
useful. The first area in which our work could be built on
is to study the behavior of larger swarms carrying out our
attack. Due to limited resources, both the emulation and our
real-world experiment were executed with relatively small
swarms. It would be useful to stage emulations involving
hundreds or thousands of peers, as this would more realisti-
cally model the environment in which a live attack would be
executed. We are currently working on joining the Planet-
Lab project [37] and use this large-scale distributed network
to conduct a realistic denial-of-service attack experiment.

It may also be possible to extend the techniques presented
here to other P2P networks. This technique is potentially
applicable to any P2P network that has a centralized control
server. It may be possible, for example, to create a modified
Gnutella supernode capable of reporting to clients that a
given host has a specific file when, in fact, it is the target of
an attack.

REFERENCES

1. Carlsson B, Gustavsson R. The rise and fall of Napster-
--an evolutionary approach, Proceedings of the 6th

International Computer Science Conference on Active

Media Technology, 2001.
2. Ripeanu M. Peer-to-peer architecture case study:

Gnutella network, Proceedings First International Con-

ference on Peer-to-Peer Computing, August 2001.
3. Barkai D. Peer-to-Peer Computing: Technologies for

Sharing and Collaborating on the Net. Intel Press, 2002.
4. Cohen B. Brian’s BitTorrent FAQ and guide.

www.dessent.net/btfaq
5. Cohen B. Incentives build robustness in BitTorrent.

Workshop on Economics of Peer-to-Peer Systems, 2003.

6. Wallach D. A survey of peer-to-peer security issues,
International Symposium on Software Security, 2002.

7. Castro M, Druschel P, Ganesh A, Rowstron A, Wal-
lach DS. Security for structured peer-to-peer overlay
networks, OSDI, 2002.

8. Douceur JR, Howell J. Byzantine fault isolation in the
Farsite distributed file system, 5th International Work-

shop on Peer-to-Peer Systems (IPTPS), 2006.
9. Maniatis P, Giuli TJ, Roussopoulos M, Rosenthal DS,

Baker M. Impeding attrition attacks in P2P systems,
Proceedings of the 11th Workshop on ACM SIGOPS

European Workshop: Beyond the PC, 2004.
10. Giuli TJ, Maniatis P, Baker M, Rosenthal DSH, Rous-

sopoulos M. Attrition defenses for a peer-to-peer digital
preservation system, Proceedings of the USENIX Tech-

nical Conference, 2005.
11. Sun X, Torres R, Rao SG. On the feasibility of exploit-

ing P2P systems to launch DDoS attacks, peer-to-peer
networking and applications, Springer, New York, 2009.

12. Yu W, Boyer C, Chellappan S, Xuan D. Peer-to-peer
system-based active worm attacks: modeling and anal-
ysis, Proceedings of IEEE International Conference on

Communications (ICC), 2005.
13. Zhou L, Zhang L, McSherry F, Immorlica N, Costa M,

Chien S. A first look at peer-to-peer worms: threats and
defenses, 4th International Workshop on Peer-To-Peer

Systems (IPTPS), 2005.
14. Naoumov N, Ross K. Exploiting P2P systems for DDoS

attacks, Proceedings of the 1st International Conference

on Scalable Information Systems, Hong Kong, 2006.
15. Bharambe A, Herley C, Padmanabhan VN. Analyzing

and improving BitTorrent performance, Proceedings of

INFOCOM, 2006.
16. Qiu D, Srikant S. Modeling and performance analysis

of BitTorrent-like peer-to-peer networks, Proceedings of

SIGCOMM, 2004.
17. Guo L, Chen S, Xiao Z, Tan E, Ding X, Zhang X.

Measurements, analysis, and modeling of bittorrent-like
systems, Proceedings of ACM/SIGCOMM Internet Mea-

surement Conference (IMC), 2005.
18. Pouwelse J, Garbacki P, Epema D, Sips H. The Bit-

Torrent P2P file-sharing system: measurements and
analysis. 4th International Workshop on Peer-to-Peer

Systems (IPTPS), February 2005.
19. Liogkas N, Nelson R, Kohler E, Zhang L. Exploiting

BitTorrent for fun (but not profit), 5th International

Workshop on Peer-to-Peer Systems (IPTPS), 2006.
20. Dagon D, Zou CC, Lee W. Modeling botnet propagation

using time zones, Proceedings of 13th Annual Network

and Distributed System Security Symposium (NDSS),
2006.

21. Evron G, Vaughn R. DNS amplification attacks, www.
securiteam.com/securityreviews/5GP0L00I0W.html

Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd. 869
DOI: 10.1002/sec



Harnessing BitTorrent for DDoS attacks L. Wu et al.

22. Harrington J, Kuwanoe C, Zou. CC. A BitTorrent-driven
distributed denial-of-service attack, 3rd International

Conference on Security and Privacy in Communication

Networks (SecureComm), Nice, France, 17--20 Septem-
ber 2007.

23. Defrawy KE, Gjoka M, Markopoulou A. BotTorrent:
misusing BitTorrent to launch DDoS attacks, Proceed-

ings of the 3rd USENIX Workshop on Steps to Reducing

Unwanted Traffic on the Internet, Santa Clara, CA,
2007.

24. Thompson C. The BitTorrent Effect. www.wired.com/
wired/archive/13.01/bittorrent.html

25. Helm B. BitTorrent goes hollywood, BusinessWeek,
May 2006. www.businessweek.com/technology/ con-
tent/may2006/tc20060508 693082.htm

26. thepiratebay.org
27. www.mininova.org
28. www.blogtorrent.com
29. The MST3K BitTorrent Guide. mst3k.booyaka.com/ bit-

torrent guide.shtml
30. BitTornado. www.bittornado.com

31. ABC (Yet Another Bittorrent Client). pingpong-
abc.sourceforge.net

32. Burst! Alternative Win32 Bittorrent Client. krypt. dyn-
dns.org:81/torrent

33. Azureus: Java BitTorrent Client. azureus.sourceforge.
net

34. Comparison of BitTorrent software. en.wikipedia.org/
wiki/Comparison of BitTorrent software

35. Ranjan S, Swaminathan R, Uysal M, Knightly E. DDoS-
resilient scheduling to counter application layer attacks
under imperfect detection, Proceedings of INFOCOM,
Barcelona, Spain, 2006.

36. Kim Y, Lau WC, Chuah MC, Chao HJ. Packetscore:
statistics-based overload control against distributed
denial-of-service attacks, Proceedings of INFOCOM,
HongKong, 2004.

37. PlanetLab: an open platform for developing, deploy-
ing, and accessing planetary-scale services. https://www.
planet-lab.org

38. Naraine R. BitTorrent, Gi-Fi, and other trends in 2004.
www.internetnews.com/ent-news/article.php/3294271

870 Security Comm. Networks 2011; 4:860–870 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec


	Harnessing the power of BitTorrent for distributed denial-of-service attacks
	Recommended Citation

	Harnessing the power of BitTorrent for distributed denialofservice attacks

