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A novel capability was designed, implemented, and tested for in situ neutron diffraction
measurements during loading at cryogenic temperatures on the spectrometer for materials research
at temperature and stress at Los Alamos National Laboratory. This capability allowed for the
application of dynamic compressive forces of up to 250 kN on standard samples controlled at
temperatures between 300 and 90 K. The approach comprised of cooling thermally isolated
compression platens that in turn conductively cooled the sample in an aluminum vacuum chamber
which was nominally transparent to the incident and diffracted neutrons. The cooling/heat rate and
final temperature were controlled by regulating the flow of liquid nitrogen in channels inside the
platens that were connected through bellows to the mechanical actuator of the load frame and by
heaters placed on the platens. Various performance parameters of this system are reported here. The
system was used to investigate deformation in Ni–Ti–Fe shape memory alloys at cryogenic
temperatures and preliminary results are presented. © 2010 American Institute of Physics.
�doi:10.1063/1.3436637�

I. INTRODUCTION

Diffraction based techniques for microstructural and mi-
cromechanical characterization typically use electrons and x
rays from laboratory sources and are hence limited to prob-
ing depths of several microns �at most� below the sample
surface. Neutrons, on the other hand, can penetrate several
millimeters �and even centimeters in some cases� enabling
measurements from polycrystalline samples that are repre-
sentative of bulk behavior. The neutron diffraction technique
can thus be used to obtain information such as crystal struc-
tures, residual and internal strains, phase fractions, and tex-
ture, among others, from bulk polycrystalline samples.1,2 The
case of shape memory alloys is one such example wherein
the sample surface is not necessarily representative of bulk
properties due to surface preparation or stress relaxation ef-
fects that can result in a martensitic transformation or local-
ized detwinning.3

The neutron diffraction technique is additionally insight-
ful when performed in an in situ mode, i.e., when diffraction
measurements are carried out as the sample is stressed,
heated, or cooled. While the capability to mechanical load,
heat, and diffract has existed at various neutron sources,4

there have been limited dedicated capabilities that have fa-
cilitated neutron diffraction during cooling and mechanical
loading. The objective of this paper is to report on the suc-
cessful design, implementation, and testing of such a capa-
bility on an engineering neutron diffractometer at a spallation
neutron source. To the best of the authors’ knowledge, this is

the first time such a capability has been implemented and
reported. The immediate motivation for developing this ca-
pability was to initiate two investigations that required use of
such a capability. The first was to investigate deformation
mechanisms in Ni–Ti–Fe shape memory alloys. There has
been renewed interest in the development of low-temperature
Ni–Ti–Fe shape memory alloys for various cryogenic actua-
tor applications, such as thermal conduction switches,
valves, and seals.5–7 These alloys exhibit a fully reversible
thermoelastic phase transformation between a high-
temperature cubic �B2� so-called austenite phase, an interme-
diate trigonal so-called R phase, and a low-temperature
monoclinic �B19�� so-called martensite phase. These phase
transformations allow these materials to recover their origi-
nal shape �shape memory effect� during heating against large
stresses up to 500 MPa after being deformed up to 1% in the
R phase and 8% in the monoclinic phase�.8 Neutron diffrac-
tion experiments were to be performed on a Ni–Ti–Fe alloy
during loading and cooling to 90 K to follow texture, strain,
and phase fraction changes responsible for shape memory
behavior. The second reason was to perform residual stress
measurements in an INCONEL 718 flow liner used in
NASA’s space shuttle. Cracks were noted propagating from
apertures that were punched in these flow liners that feed
liquid hydrogen to the space shuttle engines.9 Welding was
adopted as a repair route and neutron diffraction needed to be
used to study the residual strain fields at cryogenic tempera-
tures in the flow liner and in model coupons prior to and
postwelding.

While the aforementioned two studies provided an im-
mediate need for implementing this in situ cryogenic loadinga�Electronic mail: raj@mail.ucf.edu.
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capability, additional motivation was provided by the desire
to make this capability available for future investigations of
other engineering materials. These include an understanding
of deformation processes in rare earth intermetallics, low
symmetry metals, transformation-induced plasticity, and
martensitic steels where alternate modes such as strain- and
temperature-induced phase transformations and twinning be-
come increasingly dominant at lower temperatures and can
hence be conveniently probed in situ. Other candidate sys-
tems include composite or multiphase materials where ther-
mal mismatch stresses �arising from the coefficient of ther-
mal expansion mismatch between the constituent phases or
anisotropy associated with crystalline symmetry� can in-
crease with decreasing temperatures and make for interesting
scientific and engineering studies.10

II. NEUTRON SPECTROMETER FOR MATERIALS
RESEARCH AT TEMPERATURE AND STRESS

Neutron diffraction is commonly used for microstruc-
tural and micromechanical characterization of engineering
materials and several reviews are available in the literature
�e.g., Refs. 1 and 2�. Mechanical characterization using neu-
tron diffraction relies on using atomic planes in samples as
internal strain gauges. In addition to strain information, the
integrated intensity of diffraction peaks in spectra can be
used to determine the volume fraction of the scattering
phase. Furthermore, the relative intensity of diffraction peaks
in a particular phase can be used to determine the amount of
texture or preferred orientation in that phase. Such diffrac-
tion measurements when performed in situ, i.e., by simulta-
neously recording diffraction spectra from samples that are
subjected to external stresses or temperature changes, or a
combination thereof, thus provide quantitative, phase spe-
cific information on the evolution of strains, texture, and
phase volume fractions.

The neutron spectrometer for materials research at tem-
perature and stress or SMARTS is a third generation neutron
diffractometer optimized for the study of engineering mate-
rials at Los Alamos National Laboratory.11 SMARTS has an
extensive array of in situ capabilities for sample environ-
ments with measurements on small �1 mm3� or large �1 m3�
samples. The high temperature vacuum furnace and load
frame allow for research on materials under high loads �250
kN� and high temperatures �1773 K�. This cryogenic loading
capability, implemented in this paper, has expanded the ca-
pabilities of the SMARTS diffractometer to perform in situ
neutron diffraction measurements at temperatures as low as
90 K during loading. SMARTS has two banks of neutron
detectors �each comprising an array of He3 tubes�—bank 1
oriented for measurements from lattice planes whose nor-
mals are perpendicular to the loading axis and bank 2 ori-
ented for measurements from lattice planes whose normals
are parallel to the loading axis.

III. DESIGN AND IMPLEMENTATION OF THE
CRYOGENIC CAPABILITY

A. Requirements

While the technical objective of this work was straight-
forward, i.e., to develop a capability to facilitate neutron dif-
fraction measurements on polycrystalline samples while si-
multaneously subjecting them to loads as high as 250 kN
�maximum load rating on the frame� and temperatures as low
as 90 K �lowest temperature achievable�, there were several
implicit accompanying requirements and challenges that
needed to be met. These are highlighted in the following.

�i� An unobstructed line of sight for the incident and dif-
fracted neutrons needed to be made available with
respect to the mechanically loaded and cooled sample,
so that the acquired neutron spectra was not altered in
any way �e.g., by changes in peak profiles, peak in-
tensities, background profiles, or introduction of addi-
tional peaks, etc.�.

�ii� The sample had to be contained in a vacuum in order
to prevent freezing and crystallization of moisture
around the cold sample that could introduce artifacts
in the diffraction spectra.

�iii� The materials used in the load train needed to be re-
sistant to brittle fracture given the high stresses ap-
plied at low temperature.

�iv� The design needed to thermally isolate the cooling
system from the heat generated by the servohydraulic
actuator on the existing SMARTS load frame.

�v� The sample had to be maintained and controlled at the
user-specified temperature without any significant
temperature fluctuations or spatial temperature gradi-
ents.

�vi� The response to a user-specified temperature had to be
reasonably rapid in order to optimize the usage of
neutron beam time.

B. Design progression and modeling

The first effort on SMARTS for neutron diffraction at
cryogenic temperatures started with the aforementioned
project for quantitatively assessing residual strains and
stresses associated with the weld repair process used to fix
cracks on NASA’s space shuttle flow liners. The neutron dif-
fraction measurements were conducted to determine residual
strains at selected spatial locations in a welded coupon at 293
and 135 K. The coupons used in this investigation were
made of the same INCONEL 718 alloy used for the flow
liners and subjected to identical welding and certification
procedures that were carried out on the space shuttle.9 A
custom aluminum vacuum chamber �Fig. 1� was fabricated
with the objective of conductively cooling the coupons using
liquid nitrogen and subsequently integrated on to the
SMARTS load frame. The coupon was held in a rectangular
frame that was in thermal contact with a copper “cold mass,”
which served as a heat sink, at the bottom of the vacuum
chamber. The temperature of the coupon was controlled by
controlling the flow of liquid nitrogen through the copper
cold mass.

063903-2 Woodruff et al. Rev. Sci. Instrum. 81, 063903 �2010�



The aluminum vacuum chamber for residual strain mea-
surements in the coupons was fabricated with the foresight
that it could be used for in situ loading at cryogenic tempera-
tures, performed in conjunction with neutron diffraction. The
incident, diffracted, and transmitted beams entered and ex-
ited via four rectangular windows, at 90° to each other and
positioned at 45° with respect to the flanged cylindrical
ports. Finite element analysis was used to optimize the thick-
ness of the neutron beam windows �Fig. 2� so as to minimize

any neutron absorption or diffraction by aluminum while
avoiding significant deflections due to the vacuum inside the
chamber.

Several design iterations were investigated while devel-
oping the cooling system for the cryogenic loading capability
on the SMARTS diffractometer. One such design consisted
of wrapping the compression platens with thin copper tubing
through which liquid nitrogen was circulated. The compres-
sion platens subsequently cooled the sample by conduction.
The load train of this design with a 24 mm long, 10 mm
diameter cylindrical NiTi compression sample was modeled
using SOLIDWORKS software. Published thermal and me-
chanical properties for Vascomax C-350 �a cobalt strength-
ened maraging steel with 18% Ni� were used and the
SMARTS compression platens and push rods were modeled
using their pre-existing geometry. The properties used are
outlined in Table I. The Vascomax C-350 material was cho-
sen due to its high compressive yield strength of 2675 MPa
which allows the compression platens to safely apply com-
pressive stresses as high as 2000 MPa without permanently
deforming the platens. The model was then simplified using
the assumption of axial symmetry and meshed using COSMO-

SWORKS finite element software. A convective boundary con-
dition was applied to the internal surfaces of the copper tub-
ing using a fluid temperature of 77 K and a convective
coefficient of 500 W /m2K. Similarly, a convective bound-
ary condition was applied to the surfaces of the push rods
that lie outside of the vacuum chamber using a fluid tempera-
ture of 295 K and a convective heat transfer coefficient of
3 W /m2K. Inside the vacuum chamber, a convective bound-
ary condition was applied to all external surfaces of the load
train using a fluid temperature of 295 K and a convective
heat transfer coefficient of 0.1 W /m2K. Radiation heat leak
was modeled inside of the chamber by using an emissivity
factor of 0.3 and a radiation shape factor of 0.4. The end of
the push rod that was in contact with the load frame’s servo-
hydraulic actuator was given a constant temperature bound-
ary condition of 340 K. Similarly, the end of the push rod
that was in contact with the load frame’s load cell was given
a constant temperature boundary condition of 295 K. The
model �Fig. 3� predicted that the system would reach a
steady state temperature of 89 K in approximately 1 h. How-
ever, after implementing this design, the actual system took
about 2.5 h to reach a steady state temperature of only 215
K. This disparity was attributed to the contact resistance that
existed between the copper coils and the compression plat-

INCONEL 718
COUPON

COPPER
"COLD MASS"

FIG. 1. �Color online� Custom aluminum vacuum chamber with a copper
cold mass for conductively cooling INCONEL 718 coupons �SMARTS load
frame not shown�.
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FIG. 2. �Color online� Stress contour plot from finite element model of
window in aluminum chamber for passage of the incident, diffracted, and
transmitted neutrons while minimizing neutron absorption and diffraction.
The plot shows von Mises stresses �in Pa� resulting from a differential
pressure of 1 atm due to ideal vacuum in the chamber, computed using solid
tetrahedral finite elements with nonlinear in-plane stiffening.

TABLE I. Properties of Vascomax C-350 used in the finite element model.

Property Value

Young’s modulus 200 GPa
Poisson’s ratio 0.33
Shear modulus 75.2 GPa
Mass density 8080 kg /m3

Ultimate tensile strength 2359 MPa
Yield strength 2320 MPa
Thermal conductivity 25.3 W /m K
Specific heat capacity 452.3 J /kg K
Coefficient of thermal expansion 11.3�10−6 /K
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ens. The finite element model assumed perfect contact across
the entire length of the copper tubing. However, in reality,
the contact was at a few discrete points.

Subsequently, in order to eliminate this contact problem,
the cooling system was modified by designing custom com-
pression platens with internal cooling passages through
which liquid nitrogen circulated. Additionally, a thermally
insulating coupling system was designed to connect the com-
pression platens to the push rods for isolating them from the
warm push rods of the SMARTS load frame. As with the
previous design concept, the sample was cooled conduc-
tively while in contact with the cold compression platens.

C. Implementation

The cryogenic capability implemented on SMARTS con-
sists of three main systems: �a� a vacuum system, �b� a cool-
ing system, and �c� a temperature control system. These three
systems worked together to maintain the test sample at a
specified low temperature between 300 and 90 K. An overall
system schematic is shown in Fig. 4. The actual implemen-

tation on SMARTS is shown in Fig. 5 and discussed in the
following.

1. Vacuum system

The vacuum system served dual purposes in the cryo-
genic loading capability. The first purpose was to minimize
convective heat losses that would increase the thermal load
on the system. The second purpose was to prevent freezing
and crystallization of moisture and other gases in the atmo-
sphere at low temperatures. The vacuum system consisted of
an aluminum vacuum chamber that enclosed the test sample,
two bellows that sealed the load frame’s push rods on either
side, electrical feedthroughs, liquid nitrogen connections,
and a mechanical vacuum pump �Fig. 6�. The vacuum cham-
ber was custom made of aluminum, with four rectangular
windows oriented at 90° to each other provided access to the
incident, transmitted, and diffracted neutrons. Aluminum was
chosen because thin sections of aluminum allow for neutrons

Temp (Kelvin)
95.0

94.5

94.0

93.5

93.0

92.5

92.0

91.5

91.0

90.5

90.0

FIG. 3. �Color online� Temperature contour plot from finite element heat
transfer model of the preliminary cooling system with liquid nitrogen car-
rying copper tubes wrapped around the platens. The temperatures are in K.
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FIG. 4. �Color online� Overall sche-
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bility implemented.

370 mm

FIG. 5. �Color online� Implementation of the cryogenic loading capability
on the SMARTS load frame.

063903-4 Woodruff et al. Rev. Sci. Instrum. 81, 063903 �2010�



to pass through with limited absorption and not introducing
additional detectable peaks in the neutron diffraction pattern.
Additionally, the choice of aluminum helped reduce the
weight of the setup on the x-y-z-r motorized stage. Two iden-
tical flanged cylindrical ports that were exactly opposite to
each other, positioned at 45° with respect to the rectangular
windows, accommodated the insertion of the two compres-
sion platens for loading. The vacuum chamber also incorpo-
rated a glass view port that allowed the use of theodolites for
aligning the test sample with respect to the incident neutron
beam. The two flanged bellows that connected to the two
flanged cylindrical ports of the vacuum chamber allowed for
smooth movement of the push rods of the SMARTS load
frame without introducing frictional forces that compromised
the accuracy of the load measurements. These push rods
were in turn connected to the platens inside the chamber. The
bellows provided an effective seal that isolated the vacuum
from the external environment. The vacuum chamber also
consisted of vacuum feedthroughs that allowed for the pas-
sage of electrical conductors and liquid nitrogen connections
through the wall of the vacuum chamber. These feedthroughs
were necessary to support the cooling and temperature con-
trol systems. A two-stage mechanical pump was used to pull
a vacuum in the vacuum chamber of the order of 10−4 Torr.

For safety, a pressure relief valve was included in the
vacuum chamber to release any excess pressure, in the event
of the circulating liquid nitrogen leaking.

2. Cooling system

The cooling system consisted of conductively cooling
the test sample via the load applying platens that in turn were
cooled by circulating liquid nitrogen through internal cooling
passages �Fig. 7�. A thermally insulating coupling system
isolated the cold custom compression platens from the warm
push rods of the SMARTS load frame. The platens were
connected to a standard 160 l liquid nitrogen Dewar through
fluid transfer lines, flow valves, and vacuum feedthroughs.
The cooling passages inside of the custom compression plat-
ens first directed the liquid nitrogen into the tip of the com-
pression platen near the test sample. Following flow past the
tip of the platen, the liquid nitrogen was returned to the outer
periphery of the platen where it flowed through a helical
passage that was machined in the compression platen. After
flowing through the helical passages in the compression plat-
ens, it exited through the exhaust plumbing out of the
vacuum chamber. Finite element analysis was used to model
the compression platens �Fig. 8� so that the internal cooling
passage at the tip of the compression platen could be placed
close to the test sample, without causing failure of the cryo-
genically cooled platen material.

PLATENS

NITROGEN (LIQUID) INLET

NITROGEN (GAS) EXIT

SAMPLE

LOAD CELL SIDE

ACTUATOR SIDE

(a)

(b)

FIG. 6. �Color online� �a� Design and �b� implementation of the vacuum and
cooling system.

THREADED
CERAMIC
COUPLING
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PLATEN CORE

SAMPLE

PLATEN SLEEVE WELDED
OVER PLATEN CORE

CERAMIC
INSULATOR

STAINLESS STEEL
PUSH ROD

FIG. 7. Model of the compression platens installed on the push rods of the
SMARTS load frame.
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FIG. 8. �Color online� Stress profile at and around the tip of the compression
platen from finite element analysis. The stresses are in Pa.
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To increase the efficiency of the cooling system, a cou-
pling system was implemented to thermally isolate the com-
pression platens from the SMARTS load frame. The com-
pression platens were connected onto the push rods using a
threaded coupling made of Dupont’s Macor ceramic. Fur-
thermore, a ceramic disk separated the abutting faces of the
push rods and the compression platens. This formed an insu-
lating layer between the cold compression platens and the
warm push rods on the SMARTS load frame. These ther-
mally insulating materials in the vacuum system minimized
both conductive and convective heat inputs into the compres-
sion platens.

3. Temperature control system

The temperature control system helped maintain a con-
stant temperature under dynamic loading and also varied the

temperature at constant load. It consisted of a custom
proportional-integral-derivative control program developed
using LABVIEW software, a set of surface heaters mounted on
the conical surface of each platen and thermocouples
mounted at various locations on the test sample, platens, in-
let, and vent locations of the liquid nitrogen lines. The con-
troller collected temperature data from the thermocouples
and maintained the temperature though surface heaters. The
temperature control system allowed the temperature of the
test sample to stabilize at any temperature specified by the
operator, above or equal to 90 K. This further required
manual regulating of liquid flow valves, in certain cases. The
surface heaters had two purposes: one, of eliminating the
temperature gradient between the platens due to the thermal
load mismatch, and two, of warming up the test sample rela-
tively quickly if necessary. The thermal control system had
independent power and feedback channels for each of the
compression platens, which allowed the operator to set the
temperature at each end of the test sample independently.

IV. SYSTEM PERFORMANCE

The performance of the cryogenic capability was evalu-
ated by using a Ni46.8Ti50Fe3.2 shape memory alloy test
sample. After circulating liquid nitrogen through the platens,
a steady state of 90 K �sample temperature� was reached in
18 min. Furthermore, the consumption of liquid nitrogen was
reduced from 27 l/h �when circulated with copper tubes
around the platens as described previously� to 13.3 l/h with
the current setup. Figure 9�a� shows the cooling performance
of the system which shows uniform temperatures in the
sample for the duration of a typical neutron experiment.
Thermocouples 1–8 represent thermocouples positioned on
the load cell side of the sample, actuator side of the sample,
platen at the load cell side, platen at the actuator side, inlet of
liquid nitrogen connection inside the vacuum chamber, am-
bient, inlet of liquid nitrogen connection outside the vacuum
chamber, and outlet of liquid nitrogen connection outside the
vacuum chamber, respectively �as shown in Fig. 9�b��. It is
expected that the temperature across the sample be moni-
tored in a similar manner to ensure the absence of substantial
gradients in the sample. This is particularly necessary in the
case of samples with low thermal conductivity and the finite
element model previously presented �Fig. 3� can assist in
evaluating the need for additional cooling. A representative
spectrum obtained at 92 K and under 425 MPa is shown in
Fig. 10. There was no detectable evidence of heating during
mechanical loading. As described previously, the alloy un-
dergoes a stress-induced R phase to martensite phase trans-
formation. This martensite phase was captured by recourse to
Rietveld refinement8 and the absence of any detectable peaks
from the aluminum chamber was confirmed. For direct com-
parison, a spectrum is also shown from the same sample in
the austenite or B2 phase at room temperature in the un-
loaded condition.

V. CONCLUDING REMARKS

A cryogenic loading capability wherein the temperature
was varied between 300 and 90 K while collecting neutron
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FIG. 9. �Color online� �a� Cooling performance as observed from thermo-
couple readings. �b� Schematic showing location of thermocouples. Thermo-
couples 1–8 represent thermocouples positioned on the load cell side of the
sample, actuator side of the sample, platen at the load cell side, platen at the
actuator side, inlet of liquid nitrogen connection inside the vacuum chamber,
ambient, inlet of liquid nitrogen connection outside the vacuum chamber,
and outlet of liquid nitrogen connection outside the vacuum chamber, re-
spectively.
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diffraction spectra in situ during loading standard samples to
250 kN was successfully installed and tested on the
SMARTS diffractometer at Los Alamos National Laboratory.
The experimental setup thus expanded the capabilities of the
SMARTS diffractometer to include performing in situ neu-
tron diffraction measurements during loading at cryogenic
temperatures. Such a capability opens doors for a range of
investigations on engineering materials. The capability met
implicit requirements of the in situ neutron diffraction
technique—by not hindering the path for incident and dif-
fracted neutrons, not causing moisture or atmospheric gases
to freeze and crystallize on the test sample, uniformly cool-
ing down the test sample quickly so as to optimize use of
neutron beam time, among others. The capability for the
most part employed automated control with some manual

input through the control of primary flow valves. Future im-
provements include using pneumatically controlled valves
with optimal control parameters so as to lower heating and
cooling times and more stable temperature control.
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FIG. 10. �Color online� Neutron spectra obtained from a Ni46.8Ti50Fe3.2

sample maintained at 92 K and under an applied compressive stress of 425
MPa. At this temperature and stress, the alloy exhibits a stress-induced
phase transformation to the martensite or B19� phase. For direct compari-
son, a spectrum is also shown from the sample in the austenite or B2 phase
at room temperature in the unloaded condition. The spectra shown here are
from diffracting planes whose normals are parallel to the loading direction.
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