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Abstract: We demonstrate the first few-mode-fiber based passive optical 
network, effectively utilizing mode multiplexing to eliminate combining 
loss for upstream traffic. Error-free performance has been achieved for 20-
km low-crosstalk 3-mode transmission in a commercial GPON system 
carrying live Ethernet traffic. The alternative approach of low modal group 
delay is also analyzed with simulation results over 10 modes. 

©2015 Optical Society of America 

OCIS codes: (060.0060) Fiber optics and optical communications; (060.4230) Multiplexing. 
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1. Introduction 

Time-division multiplexed (TDM) passive optical networks (PON) (e.g. GPON and EPON) 
are currently being widely deployed worldwide to satisfy the traffic demand in access 
networks. There is an increasing interest in PONs towards longer reach and larger splitting 
ratios to increase coverage and reduce overall cost. To do so, the power budget needs to be 
improved using innovative solutions. In most practical systems, a large power loss is incurred 
at collector locations by optical splitters that combine/split signals from/to the optical network 
units (ONUs). The downstream power splitting enables the essential one-to-many function 
from the optical line terminal (OLT) to ONUs and thus the splitting losses are unavoidable, 
but the excess upstream combining loss incurred in one-to-one communication from an ONU 
to the OLT is neither necessary nor fundamental and can be reduced in a variety of ways. 
There has been much effort aiming to eliminate the upstream combining loss, such as the use 
of a multi-mode combiner (MC) [1, 2]. The MC solution, however, requires multiple feeder 
fibers as shown in Fig. 1(a), which defeats one of the main purposes of fan-out improvement 
using splitters, that is, the reduction of the total amount of fibers needed in the network. 

Recently, we proposed the use of space-division multiplexing (SDM) in a single few-
mode fiber (FMF), acting as the feeder fiber in the optical distribution network (ODN), to 
effectively eliminate the upstream combining loss [3]. Moreover, this concept has been 
realized by using a commercial GPON system carrying live Ethernet traffic, achieving the 
first reported few-mode GPON [4]. In this paper, we discuss different approaches to achieve 
TDM few-mode PON, including the previously demonstrated low-crosstalk method and the 
low modal group delay (MGD) method. The experimental setup and results of the few-mode 
GPON system are presented in more depth and details. Future work in this area such as mode-
division multiplexing for PON is also discussed. 

It should be noted that the application of FMF to access is not simply the transplantation 
of a long distance optical transport technique to access. Instead, it focuses on the unique 
requirements of optical access. While in optical transport the usual goal is to maximize 
spectral efficiency and total information throughput, in access it is most important to 
maximize the loss budget and split ratio, and reduce cost per subscriber. While throughput is 
important, it must be balanced against other factors. This brings us to different design 
strategies which leverage better fiber designs to enable simple direct detection schemes. 
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Fig. 1. PON architectures with low upstream loss using (a) multiple feeder fibers and a 
multimode combiner (MC); and (b) a single FMF with a mode transforming coupler (MTC). 
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2. Principle of few-mode PON 

Figure 1(b) shows the proposed few-mode PON architecture which consists of a FMF and a 
mode-transforming coupler (MTC) in place of a traditional single-mode combiner/splitter in 
standard PON systems. The MTC couples multiple single-mode fibers (SMFs) into the FMF. 
The MTC can combine signals from feeder fibers with negligible losses [5–8] and thus is able 
to increase the fan-out number by a factor equal to the number of the spatial modes, including 
the degenerate modes. The critical challenge is from inter-mode crosstalk generated in the 
MTC as well as along the FMF, and the modal group delay (MGD). In long-haul SDM 
transmission, inter-mode crosstalk and MGD are equalized by using sophisticated joint 
coherent detection of all the modes, followed by multiple-input-multiple-output (MIMO) 
signal processing [9, 10]. For PON applications, coherent detection and MIMO are 
undesirable due to their high complexity and cost. Fortunately, one can utilize the unique 
feature of TDM-PON that only one ONU is active upstream at any given time and preserve 
direct detection in the PON architecture. Given ( )sI t  is the only signal transmitted at a time, 

the detected signal hence can be written as below 

 det ,( ) ( ) ( ) ( ) ,s i s i j s j i j MGD
i j

I t a I t b I t c I tτ τ τ τ= ⋅ + ⋅ − + ⋅ − + ≤       (1) 

where the first term is the signal carried by the desired mode while the other terms represents 
crosstalk from the other modes generated at different locations. Equation (1) reveals two 
different approaches for successful TDM-PON operation. One is to reduce MGD to be much 
less than a symbol period and thus the crosstalk becomes part of the signal. The other 
approach is to suppress the modal crosstalk to be low enough that MGD would no longer be 
an issue. For the first approach, one needs to design FMF with very low MGD or apply the 
MGD-compensation method using FMFs of positive and negative MGDs [11, 12]. For the 
second approach of crosstalk suppression, note that direct detection of all the FMF modes 
actually relaxes the requirement for crosstalk as mode crosstalk becomes incoherent in 
intensity detection due to mode orthogonality. Here we first demonstrate the low-crosstalk 
approach combined with the low-MGD approach for the real experiment on a 20km 3-mode 
fiber. Because among the three modes, the MGD between the two degenerate LP11 modes is 
close to zero while between the LP01 and LP11 modes modal crosstalk of the FMF can be 
low but the MGD is usually large. Therefore the problem is reduced to suppress the crosstalk 
between the LP01 and LP11 modes for both the MTC and along the FMF. In Section 5 we 
present simulation results to introduce the possibility of using the low-MGD approach for 10 
Gb/s 10-mode transmission without the need of suppressing mode crosstalk. 
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3. Low-crosstalk few-mode ODN 

(b)(a)

 

Fig. 2. (a) The cross-section of the mode-selective lantern output; (b) measured LP01, LP11a & 
LP11b intensity patterns at the lantern near-field, far-field and the end of lantern-to-20km 
FMF. 

In order to demonstrate the low-crosstalk few-mode PON, we first establish the low-loss and 
low-crosstalk few-mode segment of the optical distribution network (ODN) consisting of the 
transmission FMF and the MTC. The implementation of the low-loss and low-crosstalk MTC 
can be done in several ways. Generally speaking, all low-loss mode-division multiplexers that 
are mode-group selective is suitable for this application, including directional couplers [13], 
free-space phase-selective devices [14] and mode-group selective photonic lanterns [5–8]. 
Here the MTC is a mode-selective photonic lantern which converts three single-mode inputs 
from SSMFs into the LP01, LP11a and LP11b modes of the FMF. The photonic lantern was 
fabricated by inserting three input fibers into a fluorine-doped capillary with an index 
difference of 4 × 10−3 and then tapering the entire structure adiabatically. Of the three input 
fibers, two of them are SMF-28 fibers with propagation constant matched to LP11 modes of 
the photonic lantern while the other has a slightly larger core of ~15µm and an index 
difference of 5 × 10−3 so that its propagation constant is matched to that of LP01 mode of the 
photonic lantern to achieve mode selectivity. The cross-section of the lantern output has a 
near-triangular core of a diameter of ~27µm as shown in Fig. 2(a). The FMF has a depressed 
cladding index profile that supports 3 modes, the fundamental LP01 mode and two degenerate 
LP11 modes, at 1310nm, the upstream wavelength of GPON. Additionally, the LP11 modes 
are near cut-off at 1550nm and thus become very lossy. The attenuations of the LP01 and 
LP11 modes at 1310nm are 0.33dB/km and 0.35dB/km respectively while at 1550nm the 
attenuation of the LP11 mode is 0.192dB/km, all comparable to those of SSMF. The FMF 
modes are about half sizes of the lantern modes. In order to reduce the coupling loss due to 
the mode-size mismatch, a lens combination was used for free-space lantern-to-FMF 
coupling. The near-field and far-field output mode intensity patterns of the photonic lantern 
and those at the end of the 20km FMF are shown in Fig. 2(b), demonstrating excellent mode 
selectivity. The insertion loss of the photonic lantern including the splice loss to the single-
mode input fibers was 1.3dB, 0.8dB and 1.4dB for the LP01, LP11a and LP11b mode, 
respectively, representing an average 3.5 dB improvement in the combining loss compared to 
conventional single-mode splitters. The coupling loss from the lantern output to the FMF, 
mainly due to mode mismatch between the lantern and the FMF as well as the scattering, was 
estimated to be 2.4dB for LP01 and 6.7dB, 6.2dB for LP11a&b. Those coupling losses can be 
substantially decreased by using a photonic lantern better matched to the FMF [3]. The 
crosstalk of the 
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Fig. 3. (a) Picture of the few-mode segment of the ODN; (b) measured LP01, LP11a and 
LP11b impulse responses of the few-mode ODN segment. 

entire few-mode segment shown in Fig. 3(a) was measured by the impulse-response method. 
In order to do so, a narrow pulse was sent into each input port of the photonic lantern, 
transmitted through 20km FMF and received by a high-speed free-space-coupled photo-
detector. The crosstalk levels were optimized to be less than 9dB for all the three inputs, as 
shown in Fig. 3(b). The MGD between the LP01 and LP11 modes was characterized at the 
same time to be ~0.6ns over 20km FMF. 

4. Demonstration of few-mode GPON system 

We then demonstrate the world’s first few-mode GPON system by seamlessly integrating the 
few-mode ODN in a commercial GPON system with one Huawei OLT and four Echolife 
ONUs, as shown in Fig. 4. To enable the integration between the few-mode ODN and the 
otherwise SSMF-based PON optical components, a novel reach extender was added before 
the OLT to separately detect the upstream data from the FMF in burst mode and to regenerate 
the data onto a single-mode fiber because the current OLT SFP optical module only accepts 
single-mode input. Two stages of splitters were created to imitate a real PON network. The 
WDM filters separate 1310nm and 1490 nm light for the upstream and downstream flow. 
Since our focus is combining loss for upstream traffic, downstream signals were transmitted 
over SMF ODN. Modification of the OLT transmitter is required if downstream signals needs 
to be transported in the few-mode ODN. For upstream, data streams from different ONUs 
were coupled into the FMF by the 3-mode photonic lantern and transmitted over 20km FMF 
link. The variable attenuators before the photonic lantern were used to equalize and monitor 
the power levels. The reach extender regenerates and interleaves upstream and downstream 
signals, and finally connects to the OLT. Gigabit/s real traffic was monitored by an Ethernet 
tester. 
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Fig. 4. Schematic of a few-mode GPON system using a 20km FMF and a mode-selective 
lantern for upstream transmission. OLT: commercial optical line terminal; ONUs: commercial 
optical network units. 

The upstream transport performance through the few-mode ODN was characterized via 
bit-error-rate (BER) measurements at 1.25 Gb/s using a 1.3µm DFB laser and an APD ROSA 
without limiting amplification and clock data recovery. The transmitter output was switched 
to the three photonic lantern input ports one at a time to test each mode. The BER results are 
plotted in Fig. 5(a). The back-to-back (B2B) receiver sensitivity at a BER of 10−3 is −30 dBm. 
The B2B eye diagram and those after 20km transmission for each mode are shown as Fig. 
5(b). The eye diagrams of LP01 and B2B cases are almost identical. The LP11s have slightly 
degraded performance. Nevertheless, all the modes can achieve a BER of <10−9, which is 
good enough for successful commercial GPON operation. Compared to B2B, the LP11a and 
LP11b modes exhibit power penalties of 1.5 dB and 2.7 dB, respectively. We attribute these 
moderate implementation penalties to imperfect matching between the LP11 modes and the 
free-space-coupled photo-detector area, which was matched to SSMF inputs. This penalty is 
expected to be eliminated using a properly designed photo-detector. The error-free 
performance of the few-mode ODN allowed us to carry live Ethernet traffic in the few-mode 
GPON system using a commercial Ethernet tester. Long-term measurement was done with no 
packet loss observed over tens of millions of Ethernet packets received. 
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Fig. 5. (a) BER measurements of the few-mode ODN segment; (b) eye diagrams of the cases of 
B2B (with SSMF), 20km LP01, LP11a and LP11b transmission. 
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5. Low-MGD approach and design 

Even though the low-crosstalk approach has been demonstrated successfully for three-mode 
transmission, crosstalk suppression for both the MTC and the FMF is still difficult in general, 
especially when it scales to larger number of modes. On the other hand, the alternative 
approach only requires the FMF to have low-MGD between all the modes. As a result the 
requirement for MTC relaxes to be simply low insertion loss, which can be easily achieved 
[15]. In this section we consider the alternative low-MGD approach when the number of 
modes scale to 10 (i.e., LP01, LP02 and degenerate LP11s/ LP21s/ LP12s/ LP31s modes). 
Based on previous works for fewer modes [16, 17], trench-assisted graded-index profile has 
been found to be useful for MGD optimization and hence will be applied here as well. The 
inset of Fig. 6 shows the graded-index profile, with a cladding trench for low MGD, given by 
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where nα  is the power coefficient of the GI profile. With fiber parameters chosen as 

1 2 2 1 215.32 , 17.2 , 22.12 , 0.4375% and 0.33%a m a m a mμ μ μ= = = Δ = Δ =        , the differential 

modal group delay of a 10-mode GI FMF (referenced to the average modal group delay) at 
1310 nm as a function of the power coefficient is shown in Fig. 6. The maximum MGD 
(between the fastest and slowest mode) is less than 7 ps/km, achieved near 2.0nα = . This 

fiber design should be able to support few-mode transmission of reach up to 20 km for 
standard PON (data rate of 2Gb/s) in presence of mode crosstalk. The high sensitivity of 
MGD to the power coefficient and other fiber parameters should be studied and improved, 
possibly using different fiber structures. 
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Fig. 6. Simulation results of modal group delay for 10-mode fiber design of trench-assisted 
graded-index profile. Inset: the FMF index profile with parameters indicated. 
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6. Discussion and conclusions 

We demonstrate, for the first time, a few-mode PON that utilizes mode multiplexing to 
eliminate the combining losses for upstream traffic. Seamless integration between a few-mode 
ODN and a commercial GPON system carrying live Ethernet traffic is achieved without any 
packet loss. Simulation results also indicated the possibility of using the alternative low-MGD 
approach. The current demonstration represents the most immediate benefits of introducing 
FMF into PON network. If mode-division demultiplexing is implemented at the OLT, the 
upstream capacity can be increased, in addition to increases of the fan-out number, by using 
mode-division multiplexing (MDM). In principle, if the crosstalk of FM ODN is low enough, 
MDM can be implemented with direct detection by adding a low-crosstalk mode-group 
multiplexer at the OLT. The crosstalk requirement for MDM FM PON is expected to be 
higher than for TDM FM PON. The beneficial combination of SDM and PON may open 
exciting opportunities for future research, development, and commercialization. 
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