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Laser-induced breakdown spectroscopy of 
copper with a 2 µm thulium fiber laser 

Matthieu Baudelet,* Christina C. C. Willis, Lawrence Shah, and Martin Richardson 

Townes Laser Institute, CREOL — The College of Optics and Photonics, University of Central Florida, Orlando, FL 
32816, USA 

* baudelet@creol.ucf.edu 

Abstract: We report the first implementation of a 2 µm thulium fiber laser 
in a Laser-Induced Breakdown Spectroscopy system. Emission from plasma 
on copper samples was analyzed from 200 to 900 nm. The low ablation 

fluence (<100 J.cm
−2

) and 200 ns pulse duration lead to a plasma with 
neither continuum emission, nor air emission in the near-infrared region. 

©2010 Optical Society of America 

OCIS codes: (060.3510) Lasers, fiber; (300.6365) Spectroscopy, laser induced breakdown; 
(350.5400) Plasmas. 
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1. Introduction 

Laser-Induced Breakdown Spectroscopy (LIBS) has continued to develop since its first 
analytical application in 1963 [1]. The evolution of the laser has allowed LIBS techniques to 
expand into new regimes of ablation, which have improved results and expanded the range of 
targets that can be characterized. For instance, femtosecond lasers have revolutionized the 
quantitation of the ablated mass thanks to a cleaner ablation [2] and allow a better detection of 
trace elements thanks a low continuum emission from the induced plasmas [3]; polymer 
ablation and analysis has been improved by the introduction of the ultraviolet lasers [4] and 
mid-infrared pulses generated from optical parametric amplification [5] making the ablation 
resonant with absorption bands. Lasers currently used in LIBS are predominantly solid-state 
lasers (Nd:YAG, Ti:Sapphire), gas lasers (CO2), and excimer lasers (KrF) [6–8]; however 
excitation and ablation has expanded to the 2 µm regime with the introduction of holmium 
and thulium based lasers. Their use in medical laser ablation [9] has become of great interest 
due to the fact that their emission around 2 µm overlaps several water absorption peaks [10]. 
Q-switching these lasers can generate nanosecond pulses, providing focused irradiances 

within the necessary range for plasma generation (GW.cm
−2

) [11]. Fiber lasers have rarely 
been used as sources for LIBS [6,12,13], but they have several distinct advantages over other 
sources including compactness, simplified thermal management, overall high efficiency and 
near-diffraction limited beam quality even at high average power. 

In this study we report the use of a thulium fiber laser for LIBS of a copper sample. 
Although the technology has not yet matured, Tm:fiber lasers with wavelengths around 2 µm 
offer great potential for high peak power scaling due to significantly lower nonlinearities than 
for standard fiber laser operating at 1 and 1.5 µm. We believe the output pulse energy of 
nanosecond thulium fiber laser systems can be increased well beyond the milliJoule level, 
making such systems appropriate for a wide variety of ablation applications. As an 
exploratory effort, we characterize the emission spectrum generated by irradiation with ~200 
ns pulse at 2 µm wavelength in order to evaluate the analytical advantages and consider the 
potential of Tm:fiber lasers for LIBS applications. 

2. Experimental setup 

Our experimental setup (Fig. 1) consisted of a Q-switched Tm:fiber laser, a motorized 
translation stage for sample positioning, and a time-resolved detection setup composed of an 
Echelle spectrometer with an iCCD camera. 

2.1 Laser source 

The laser source (dotted box in Fig. 1) was an actively Q-switched Tm
3+

-doped, polarization 
maintaining, silica, large mode area fiber laser. A detailed description of the laser 
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Fig. 1. Experimental setup. AOM: Acousto-optic modulator, QSC:Q-Switch controller, MO: 
Microscope objective, TS: translation stage, TSC: motion controller, BL: ball lens, iCCD: 
intensified CCD, CC: camera controller, PC: computer. 

may be found in Willis et al. [14]. The laser delivered pulse energies of 100 µJ to the target 
with 200 ns pulse duration at 1992 nm with a repetition rate of 20 kHz. 

Although the laser system does not outperform its 1 and 1.55 µm counterparts in terms of 
power, it does possess several advantages unique to its 2 µm wavelength operation. These 
advantages should make it possible to increase the pulse energy to be competitive with 
conventional solid-state lasers. For example, the V parameter, which defines the single-mode 
propagation cut-off, is proportional to the fiber core diameter divided by the laser wavelength 
[15]. Therefore, the longer operational wavelength of Tm:fiber makes it possible to utilize 
mode field areas 4 (MA 2.6) times larger than for 1 (MA 1.5) µm wavelengths without 
sacrificing mode quality. In addition to enabling the use of fibers with larger mode area, the 
critical powers for stimulated Raman scattering, stimulated Brillouin scattering, and self-
focusing increase with laser wavelength [16]. As such, Tm:fiber lasers have the potential to 
allow peak power scaling beyond the MW-level limit that is associated with nanosecond 
pulses in ytterbium fiber laser systems [17]. 

2.2 Sample holder 

The focal waist diameter of the beam was ~10 µm at an angle of 45° to the normal of the 
sample. It was focused using an 11 mm focal length, 0.3 NA (full aperture) asphere 
microscope objective providing ~95% transmission at 2 µm. The irradiance on the target was 

600 MW.cm
−2

. The sample was positioned using three motorized translation stages (VP-25XA 
with an ESP300 motion controller, Newport) in an X-Y-Z configuration allowing a 
displacement of the sample at a speed of 25 mm/s. 

2.3 Detection 

The plasma emission was collected by an f/2 UV-transmissive collimating ball-lens (74-UV, 
Ocean Optics) which coupled light into a 1-meter UV transmissive 200-µm-core fiber (HRE-
FBR-1M, Princeton Instruments). This fiber was coupled to a 250 mm Echelle spectrometer 
(Acton HRE, Princeton Instruments) combined with a 1024x1024 pixels GenII iCCD camera 
with a MgF2 input window and a P46 phosphor (PI-MAX2, Princeton Instruments). This 
configuration gave a resolution of 0.04 nm from 200 to 900 nm. 

The system was spectrally calibrated with a mercury lamp (PenRay, UVP) and the spectral 
response of the system was calibrated with two calibrated radiometric sources: a deuterium 
lamp (Model 63979, Newport) for the 200-400 nm spectral range and a quartz-tungsten lamp 
(QTH, Newport) for the 400-900 m spectral range. 

Each time-integrated spectrum consisted of 5000 single-shot spectra, as the result of 5 
accumulations of 1000 gated detections per CCD exposure time (50 ms). Each single-shot 
detection began 100 ns before the laser pulse and had a 400 ns duration. Because of the short 
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lifetime of the plasma, it was not possible to obtain time-resolved spectra with a reasonable 
signal-to-noise ratio. In order to provide statistics on the temperature measurements, 30 
spectra were taken successively. 

2.4 Samples 

The samples studied were cut from a 0.25 mm-thick foil of 99.98% copper (349178, Sigma-
Aldrich). Each sample was cleaned with acetone before every ablation run in order to remove 
any oxidation layers. 

3. Results and discussion 

The spectra taken from the copper spanned from 200 nm to 900 nm. Emission transitions were 
all from neutral and singly-ionized copper and are shown in Fig. 2. The sawtooth-like 
background in the spectrum is due to the correction of the spectral sensitivity of the 
acquisition system showing the different orders of the Echelle spectrometer. The declining 
background in the ultraviolet region is the consequence of this spectral response correction 
and the low efficiency of the system in this spectral region. 

 

Fig. 2. Spectrum from Copper. The arrows indicate the spectral lines used for the temperature 
calculation. 

The temporal detection window contained the laser pulse itself, but the laser’s wavelength 
did not fall within the spectral detection range of the setup. The absence of continuum 
emission from Bremsstrahlung and radiative recombination processes, as reported previously 
[18], can be explained by the low irradiance used to create the plasma. As a result, a 
significant advantage of this configuration is that the use of a gated camera would not be 
necessary to trigger the detection window in order to avoid the continuum emission or the 
scattered laser light. However, the short lifetime of the plasma (300 ns), resulting from the 
low intensity of the laser and the small volume ablated from the sample, leads to a low duty 
cycle (300 ns/50 µs = 0.6%) in the case of non-triggered detection. 

In order to determine the plasma excitation temperatures for Cu I and Cu II we analyzed 
several specific spectral transitions indicated by the arrows in Fig. 2 and listed in Table 1. No 
self-absorption was observed from the lineshape of the emission lines, allowing the use of 
resonant transitions in the temperature calculation. The excitation temperature was evaluated 
by the Boltzmann plot method using a Labview 8.5 program written specifically for our 
application. Each line listed in Table 1 is a single transition that was corrected for linear 
background and fitted with a Lorentzian profile: 
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where A is the integral of the peak, γ the half width at half maximum, λ0 the central 
wavelength of the transition and Ibg the background intensity. 

Table 1. List of lines in the calculation of the plasma temperature (λ: transition 
wavelength, gA: transition probability, Eup: upper level energy, Elow: lower level energy) 

Cu I Cu II 

λ (nm) gA (108 s−−−−1)a Elow-Eup (eV)b λ (nm) gA (108 

s−−−−1)c 

Elow-Eup (eV)b 

261.84 1.23 1.389-6.123 202.55 4.2 2.975-8.864 

282.44 0.47 1.389-5.777 204.38 13.44 2.719-8.917 

324.75 5.56 0-3.817 205.5 8.6 2.833-9.095 

327.4 2.74 0-3.786 211.21 12.27 3.256-9.125 

458.7 1.92 5.102-7.805 214.9 4.48 2.719-8.486 

465.11 3.04 5.072-7.737 217.94 11.85 2.975-8.663 

510.55 0.08 1.389-3.817 227.63 1.62 2.975-8.421 

 

248.58 1.59 8.663-13.649 

250.63 1.73 8.486-13.482 

254.48 1.93 8.522-13.392 

a From [19], b From [20], c From [21] 

By inversion of the intensity Iij of a spectral line, defined as: 
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(where C is a constant taking into account the efficiency of the detection system, λij and Aij the 

wavelength and probability of the transition j→i, gj and Ej the degeneracy and energy of the 
upper level j, NI,II the density, TI,II the excitation temperature and ZI,II the partition function of 

respectively Cu I and Cu II), the ratio ( )ln /ij ij j ijλ I g A−  was plotted as a function of Ej for 

each transition and fitted with a linear relation (y = mx + p) to obtain the corresponding 
excitation temperature from the inverse of the slope as shown in Eq. (3): 
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The obtained Boltzmann plots for Cu I and Cu II are shown in Fig. 3.  
This method gave a temperature for the neutral copper TCu I = 2.61 ± 0.55 eV(30300 ± 6400 
K) and for the singly ionized copper TCu II = 2.68 ± 0.31 eV (31100 ± 3600 K). The degree of 
ionization αCu was evaluated by combination of the intercepts pI and pII of the respective 
Boltzmann plots for Cu I and Cu II (cf Eq. (3) as follows: 
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Fig. 3. Boltzmann plots for the calculation of the excitation temperature of Cu I and Cu II. 
Scatter symbols: experimental data, red curve: linear fit, green curve: prediction bands at 95%. 

The degree of ionization was estimated at 61% leading to an electron density Ne of 

approximately 7·10
20

 cm
−3

 evaluated from the Saha equation. This method of evaluation and 
the value it yields is subject to the propagation of measurement errors. Because the value 
obtained for Ne is 2 orders of magnitude less than the density of solid copper (8·10

22
 cm-3) 

and the plasma having a dimension on the order of hundreds of µm, this result is comparable 
to that published by Rieger et al. [18]. The minimum electron density for Local 
Thermodynamic Equilibrium (LTE), expressed as the McWhirter criterion, is thus 1.5·10

16
 

cm
−3

, that is exceeded in the present plasma. Furthermore, the transient and inhomogeneous 
character of the plasma was taken into account, as mentioned by Cristoforetti et al. [22], in 
order to establish the validity of the LTE in the plasma. 

The absence of emission lines from atmospheric nitrogen and oxygen atomic transitions is 
also an interesting result. Typical LIBS experiments show spectral lines around 744 nm and 
777 nm respectively for the N I and the O I transitions for plasmas created at similar fluences 
under normal atmosphere [23]. In our case, perhaps the short lifetime of the plasma and the 
short detection gate didn't allow these transitions to appear in the spectrum. 

4. Conclusion 

We have performed the first LIBS experiments that employ a thulium fiber laser as the 
ablation source of copper. The low irradiance provided by the laser on the target surface 
appears to generate a plasma in Local Thermodynamic Equilibrium, with a temperature of 

approximately 2.6 eV and electron density around 10
21

 cm
−3

. The low irradiance focused on a 
micrometric spot (less than 100 µm diameter) shows advantages as (i) the lack of continuum 
emission and (ii) no emission from atmospheric excitation. With continuing improvement, the 
performance of pulsed fiber lasers is approaching the pulse energy and pulse duration of 
conventional solid-state lasers used for Laser-Induced Breakdown Spectroscopy. Tm:fiber has 
the potential to greatly accelerate this improvement and enable the development of a new 
generation of LIBS systems utilizing rugged, compact and efficient fiber laser systems 
producing 1-10 ns pulses with multi-milliJoule energy at high repetition rates (>10 kHz). The 
development of such laser systems would greatly increase deployment flexibility. 
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