
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 2010s Faculty Bibliography 

1-1-2010 

Influence of substrate configuration on the angular response Influence of substrate configuration on the angular response 

pattern of infrared antennas pattern of infrared antennas 

Jeffrey A. Bean 
University of Central Florida 

Brian A. Slovick 
University of Central Florida 

Glenn D. Boreman 
University of Central Florida 

Find similar works at: https://stars.library.ucf.edu/facultybib2010 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for 

inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please 

contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Bean, Jeffrey A.; Slovick, Brian A.; and Boreman, Glenn D., "Influence of substrate configuration on the 
angular response pattern of infrared antennas" (2010). Faculty Bibliography 2010s. 6984. 
https://stars.library.ucf.edu/facultybib2010/6984 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236304859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2010
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2010
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2010/6984?utm_source=stars.library.ucf.edu%2Ffacultybib2010%2F6984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


  

Influence of substrate configuration on the 

angular response pattern of infrared antennas 

Jeffrey A. Bean*, Brian A. Slovick, Glenn D. Boreman 

College of Optics and Photonics (CREOL), University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 

32816-2700, USA 

* jbean@mail.ucf.edu 

Abstract: The far-field angular response pattern for dipole antenna-coupled 

infrared detectors is investigated. These devices utilize an asymmetric 

metal-oxide-metal diode that is capable of rectifying infrared-frequency 

antenna currents without applied bias. Devices are fabricated on both planar 

and hemispherical lens substrates. Measurements indicate that the angular 

response can be tailored by the thickness of the electrical isolation standoff 

layer on which the detector is fabricated and/or the inclusion of a ground 

plane. Electromagnetic simulations and analytical expressions show 

excellent agreement with the measured results. 

©2010 Optical Society of America 

OCIS codes: (040.3060) Infrared; (250.0040) Detectors; (310.6845) Thin film devices and 

applications 
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1. Introduction 

The radiation pattern of a transmitting antenna and by reciprocity, the angular response 

pattern of a receiving antenna, is dependent upon the type of antenna and its surroundings [1]. 

If an antenna is placed at the interface of two dielectrics, the pattern will differ from that of an 

antenna in free space due to the boundary conditions imposed on the electromagnetic fields 

[2]. By manipulating the substrate configuration of a receiving antenna, the angular response 

pattern can be modified in a controlled manner. 

This paper studies the direct detection of a continuous wave incident beam through the use 

of a rectifying diode coupled to a dipole antenna. To study the effects of the substrate on the 

angular response pattern of infrared antennas, three different device configurations are 

considered: a planar substrate with an insulator layer above a ground plane, germanium 

hemispherical lens substrate with insulator layer, and the latter with an additional insulation 

layer and ground plane. 

2. Background 

The angular response patterns of infrared antennas have been investigated previously, but 

have mainly employed the use of microbolometers for detecting incident radiation [3, 4]. 

When subjected to infrared radiation, the temperature of the bolometer changes and 

consequently, so does its resistance [5]. Detection of incident infrared radiation is then 

measured using a constant voltage supply while monitoring the current flow through the 

bolometer. However, this yields a distributed response that receives contributions from both 

the antenna and lead structure, since the entire structure heats up due to the incident radiation. 

The bolometer is unable to distinguish the origin of the temperature change unless the 

temperature coefficient of resistance of the bolometer is much greater than the antenna and 

lead structures. This response due to non-antenna elements can be determined and the 

response calibrated [6], but can be mitigated altogether by replacing the microbolometer with 

a rectifying element, such as an MOM diode. 

2.1 Dipole Antenna Angular Response 

A half-wavelength dipole can be represented by two isotropic radiators, separated by one-half 

wavelength, which radiate equally in all directions [7]. The radiated fields possess a phase 

difference dependent on the spacing of these radiators and on the direction of radiation, which 

can result in constructive or destructive interference. Along the antenna axis, the phases of the 

radiated fields are separated by 180° due to the half wavelength spacing. These fields 

therefore cancel, giving rise to the fact that dipole antennas do not radiate along the antenna 

axis. However, in all directions perpendicular to and at the center of the antenna axis, there is 

no phase difference between the radiated fields because there is no spatial difference, and 

therefore their amplitudes add to the maximum. For all other directions, the radiated field 

amplitudes are between zero and the maximum. These field amplitudes, however, are altered 

if the antenna is placed at the interface of two materials. There, the antenna will radiate more 

strongly into the material with higher permittivity [8, 9]. Based on reciprocity, this means that 

a detector receives radiation preferentially from the material with the higher permittivity. This 

paper investigates the influence of the substrate configuration on the far-field angular 

response pattern for infrared antennas. 

2.2 Antenna-coupled MOM Diode Infrared Detectors 

Antenna-coupled MOM diodes have been shown to function as rectifying detectors from the 

long wave infrared (LWIR) [10] up to optical frequencies [11]. For a half-wavelength dipole 

at the resonant frequency, a maximum in the current distribution occurs at the center. When a 

MOM diode is located at the center of the dipole, incident radiation gives rise to Fermi level 
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modulation and rectification of resonant currents along the antenna [12]. If an asymmetric 

MOM diode is used, full functionality is achieved without biasing, providing for simplified 

circuitry and lower noise operation [13, 14]. 

3. Fabrication 

Devices were fabricated on both planar substrates and the flat side of a hemispherical lens. 

For the planar substrates, a silicon wafer was coated with 100 nm of aluminum to form a 

ground plane and 1.6 µm of benzocyclobutene (BCB), which serves as an electrical insulation 

layer as well as a quarter-wave layer for 10.6 µm radiation. A thin standoff layer (47-475 nm) 

of SiO2, which serves as an electrical insulation layer, was deposited on the flat side of the 

germanium hemispherical lens using electron beam evaporation. The curved surface was 

uniformly coated with a zinc sulfide quarter-wave anti-reflection coating using electron beam 

evaporation with a rotating stage [15]. 

Dipole antenna-coupled metal-oxide-metal (MOM) diode devices were patterned with 

electron beam lithography (EBL) and fabricated with a shadow evaporation procedure, which 

has been detailed in Refs. 13 and 14. EBL is chosen for the patterning of devices because of 

the small dimensions that are necessary for infrared detectors; the width of the dipole 

antennas must be less than 300 nm to promote longitudinal resonance [16] and the diode 

overlap area must be on the order of 100 x 100 nm to provide for rectification of 28.3 THz 

currents [17]. 

Aluminum was used for the base metal layer, which forms a native oxide in the presence 

of oxygen, and platinum is used to complete the MOM diode. The device consists of a dipole 

antenna with a MOM diode at the center, connected to direct current (DC) electrical leads, 

and is shown in Fig. 1. The dipole width is 100 nm and the Al/AlOx/Pt MOM diode overlap, 

which is approximately 75 x 75 nm, is shown in the inset image. 

MOM diode
dipole antenna

DC electrical leads

CREOL IR Systems Lab1 μm

 

Fig. 1. Scanning electron micrograph of a dipole antenna-coupled MOM diode infrared 

detector. The dipole is 100 nm wide and 60 nm thick. Inset: detail of the MOM diode overlap 

area, which is approximately 75 x 75 nm. 

4. Simulation and measurement 

The material properties of the substrate and comprising materials of the device were 

characterized using an infrared ellipsometer to obtain layer thicknesses, refractive indices, 

and dielectric loss tangent. The device characteristics at 28.3 THz (10.6 µm) were used in the 

simulations to accurately model the device response to illumination from a CO2 laser 

operating at 10.6 µm. Electromagnetic simulations for the fabricated devices were performed 

with Ansoft HFSS, using measured material properties. Analytical expressions based on the 

Fresnel coefficients were also used to compare the measured data and simulation results. 
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The devices were wire bonded into a chip carrier and placed on a goniometer stage with 8 

degrees of freedom. The angular response pattern can be measured by placing the device at 

the axis of rotation of the goniometer and co-aligning to the laser beam. The output beam of 

the CO2 laser is attenuated to a low power using neutral density filters, chopped with a 

mechanical chopper, and focused with F/8 optics to a near diffraction-limited spot size of 

approximately 230 µm. The devices were aligned using the method detailed by Krenz et al 

[18]. The devices were connected to low-noise current preamplifier, whose output is fed to a 

lock-in amplifier referenced to the frequency of the mechanical chopper. All measurements 

presented in this paper were measured without applying a bias on the device. It should be 

noted that the angular-response patterns measured in this manner are plotted on a scale linear 

in power. 

4.1 Substrate-side Illumination through Hemispherical Lens and Insulating Film 

The first set of devices were fabricated on a thin electrically insulating film of SiO2 on top of 

the flat surface of a 10 mm diameter hemispherical immersion lens. A generic form of the 

cross-section of the device under test (DUT) and substrate is shown in Fig. 2. The arrow 

represents the propagation vector of a plane wave incident from the hemispherical substrate. 

In this case, the substrate is germanium and the film is SiO2. The hemispherical lens is 

intended to replicate a dielectric half space. The center line of the incident beam remains 

normal to the curved surface throughout the angular pattern sweep. The laser beam is focused 

on the the device and the polarization of the electric field of the incident radiation is parallel 

to the antenna since a dipole responds to the parallel component of the electric field. The 

antenna is rotated about its axis to produce the H-plane angular pattern. 

nt
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ni

DUT

+ z θ

Ge SiO2 air

incident 

beam

d

 

Fig. 2. Cross sectional illustration of a device fabricated on a thin insulating film on a 

germanium hemispherical lens. The hemispherical lens is very large compared to the 

wavelength of incident radiation, while the thickness of the SiO2 film is very small compared 

to the incident wavelength. The incident beam is normal to the curved surface and 

consequently aligned with the device at the center of the lens. 

Previous research has shown that the electric field at the dipole on the interface is equal to 

the incident field times the transmission coefficient [8]. The fraction of the incident power 

that reaches the antenna will be proportional to the squared norm of the transmission 

coefficient for the interface on which the antenna is fabricated. The film can be regarded as a 

Fabry Perot cavity with a transmission coefficient [19] 
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where rtf is the reflection coefficient at the bottom interface in Fig. 2, rif is the reflection 

coefficient at the top interface, and δ is the phase shift due to propagation in the film layer, 

calculated as 

 
2 2 2

0

2
sin .f id n n

π
δ θ

λ
= −  (2) 

where λ0 is the wavelength of incident radiation in free space, d is the thickness of the film, n 

is the refractive index of the respective material, and θ is the angle of arrival. The thickness d 

is taken to be negative since the angle of arrival is measured relative to the film-air interface, 

not the substrate-film interface. The reflection coefficients r12 in Eq. (1) are given by 

 

2 2 2

1 2 1
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2 2 2

1 2 1

cos sin
.

cos sin

n n n
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n n n

θ θ

θ θ

− −
=

+ −
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The angular response pattern in the H-plane is shown in Fig. 3 for a 3.1 µm half-

wavelength dipole on a 47 nm layer of SiO2 illuminated through the germanium 

hemispherical lens. The rectified current of the MOM diode is proportional to the optical 

power at the MOM diode and as such, the squared norm |t|
2
 represents the angular response 

pattern of the device. The red data points indicate the measured data, the solid blue line 

indicates the HFSS simulation, and the dotted black line plots the squared norm |t|
2
 of the 

transmission coefficient shown in Eq. (1). 

 

Fig. 3. H-plane angular response pattern of dipole ACMOMD on 47 nm film of SiO2. The 

critical angle between Ge and air is approximately 15°, where the peak angular response is 

measured. 

The measured data closely follows the expected trend from both the HFSS simulation and 

the norm squared of the transmission coefficient, with the peaks in the H-plane response 

occuring at angles slightly larger than critical angle. The full-width half-maximum (FWHM) 

beam width is approximately 90°. For such a thin film of SiO2, the pattern approaches that of 

a dipole directly on the hemispherical lens. 

Figure 4 shows the angular response pattern in the H-plane for a dipole antenna identical 

to the one in Fig. 3, on a 169 nm layer of SiO2 . Again, the device is illuminated through the 

substrate. 
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Fig. 4. H-plane angular response pattern of dipole ACMOMD on 169 nm film of SiO2. The 

peak angular response is at approximately 15°, which is the critical angle between Ge and air. 

Excellent agreement is observed between the measured data and the simulation from 

HFSS, as well as the norm squared of the transmission coefficient. The peaks in the H-plane 

response correspond to the cricitcal angle between the SiO2-air interface. The pattern is 

narrower than the case with the 47 nm layer SiO2 layer, with a FWHM of approximately 75°. 

It is believed that imperfections in the antireflection coating on the curved surface of the 

hemispherical lens cause the deviations seen in the data near broadside. 

Figure 5 shows the same device geometry fabricated on a 475 nm layer of SiO2. 

 

Fig. 5. H-plane angular response pattern of dipole ACMOMD on 475 nm film of SiO2. Again, 

the peak angular response is measured at the Ge/air critical angle. 

Again, the measured data matches up with the simulation result from HFSS and the norm 

squared of the transmission coefficient. The pattern is further narrowed from the 169 nm SiO2 

layer case, to approximately 50° FWHM. Again, the difference between the measured pattern 

and theoretical is due to imperfections in the antireflection coating. It was found that 

increasing the SiO2 thickness beyond 475 nm did not further narrow the pattern, but instead 

lowered the broadside response. Figure 3, Fig. 4, and Fig. 5 show that the radiation pattern is 

essentially unchanged for angles below the critical angle. 

The narrowing of the pattern can be explained by the interference between the radiation 

incident on the device and that reflected from the Ge/SiO2 interface. Only the first reflected 

wave is shown in Fig. 2. The optical path length difference between the waves depends on the 

film thickness and the angle of incidence. For very thin films (47 nm), the phase difference is 

negligible and the angular response pattern resembles that of a dipole antenna on germanium. 
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As the film thickness increases, the degree of destructive interference increases, leading to a 

narrowed pattern. Although the effective index changes for the different SiO2 standoff layer 

thicknesses, a 3.1 µm half-wavelength dipole antenna was used in each case. The antenna 

length impacts the magnitude of the device response, but the shape of the angular response 

pattern is not dependent of the dipole length. 

4.2 Air-side Illumination on Insulator Above Ground Plane 

The next set of devices was fabricated on a planar substrate with a 1.6 µm layer of BCB 

above a 100 nm aluminum ground plane on a silicon wafer as a mechanical support. A cross-

section of the DUT and substrate is shown in Fig. 6. The device responds to incident radiation 

from the air side as well as the refelected wave in the BCB from the ground plane. 

θ

Si BCB air

DUT
+ z

ground 

plane

DUT image

h nt

ni

 

Fig. 6. Cross-sectional view of devices fabricated on a planar substrate with a 1.6 µm layer of 

BCB above a ground plane, illuminated from the air side. The device responds to radiation 

from both the air side and the DUT image reflected from the ground plane. As such, a quarter-

wave layer of BCB was chosen. 

The angular response pattern of a dipole above a ground plane is proportional to the 

product of the antenna pattern for the dielectric interface and an inteference factor to account 

for the image of the dipole that is generated by the ground plane [6]. In this case, the effective 

transmission coefficient tGP is given by 

 [ ]1 exp( ) .
GP

t t iφ= +  (5) 

where φ is the phase shift due to propagation in the layer below the device 

 
2 2 2

0

4
sin .t i

h
n n

π
φ θ π

λ
= − ±  (6) 

and h is the thickness of the insulator, which in this case is BCB, and the π phase accounts for 

the reflection from the ground plane. In this case, there is no film present above the device as 

in Fig. 2. To simplify the expression, the ground plane factor only accounts for the first 

reflected wave. 

The measured angular response of a 3.4 µm half-wavelength dipole in the H-plane is 

shown in Fig. 7. The data points indicate the measured data, the solid blue line indicated the 

HFSS simulation, and the dotted black line indicates the norm squared of the transmission 

coefficient in Eq. (1), where ns = 1 for air-side illumination, d = 0 µm, and na = 1.55 for BCB, 

and includes the ground plane image factor, where h = 1.6 µm and n = 1.55 for BCB. The 

device responds to incident radiation from the air side as well as the wave refelected from the 

ground plane. 
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Fig. 7. H-plane angular response pattern for dipole device on 1.6 µm BCB microcavity above a 

ground plane. 

The measured data shows agreement to the HFSS simulation and the norm squared of the 

transmission coefficient with the ground plane image factor. A dipole antenna on the ground 

plane yields the broadest angular response pattern in the H-plane, with a FWHM of 

approximately 140°. 

4.3 Substrate-side Illumination on Insulating Film with Ground Plane 

The two cases shown in sections 4.1 and 4.2 can also be combined. In this case, a half-

wavelength dipole 3.1 µm in length was fabricated on a 475 nm SiO2 layer on a germanium 

hemispherical substrate. The device was then covered in a 900 nm layer of SiO2 and then 100 

nm of aluminum. An illustration of the cross-section of this substrate and DUT is shown in 

Fig. 8. 
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Fig. 8. Cross-sectional view of devices fabricated on a germanium hemispherical substrate 

with a 475 nm layer of SiO2 and then covered with a layer of SiO2 and an aluminum ground 

plane. This device is illuminated through the germanium half-space. The device responds to 

radiation incident from the germanium hemisphere and that reflected from the ground plane. 

The angular response pattern in the H-plane is shown in Fig. 9. 
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Fig. 9. H-plane angular response pattern of dipole antenna on 475 nm film of SiO2 below 0.9 

µm SiO2 layer with ground plane. 

The analytical expression in this case is the sqaured norm of the transmission coefficient 

tGP shown in Eq. (5), which matches the measured data quite well. The FWHM is 

approximately 40-50°. There is good agreement between the HFSS simulation and the 

analytical expression. It is believed that film adhesion issues for the bottom SiO2 layer are 

responsible for the the small deviations from the expected response. 

5. Discussion 

The simulations and measurements demonstrate the influence of the substrate configuration 

on the H-plane angular response pattern of a dipole antenna. For substrate-side illumination 

through a hemispherical immersion lens with a thin SiO2 standoff layer (50 nm), the angular 

response pattern is similar to that of an antenna directly on germanium. As the thickness of 

the insulation layer increases, the pattern narrows. 

For an insulating layer above a ground plane, the angular response pattern of a dipole is 

broadened compared to the case where no ground plane is present. This is due to reflections 

from the ground plane, which add constructively with the incident radiation at large angles 

when the microcavity approaches one quarter wave thick, which is approximately 2.0 µm. 

The last configuration has the device fabricated on a SiO2 standoff layer on top of a 

germanium hemispherical lens and capped by a quarter-wave matching layer and ground 

plane. This FWHM was very similar to the case without the ground plane. 

6. Conclusions 

The paper has demonstrated control of beam width and angular response pattern by 

manipulating the surroundings of the antenna. The H-plane angular response of a dipole 

antenna can be broadened by the use of a ground plane and narrowed through the use of an 

electrically isolating standoff layer. The thickest SiO2 layer (475 nm) showed the narrowest 

angular response pattern for a dipole device. Agreement between the measured angular 

response patterns and the electromagnetic predictions indicate that the measured response is 

solely due to the antenna structures and the currents rectified by the MOM diode, and not to 

the electrical leads or surrounding circuitry. 
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