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Abstract: Firstly the membership relation in fuzzy operators located
outside Zadeh operators be discussed and given. Secondly the membership
relation in fuzzy operators located within Zadeh operators be discussed and
given.
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1. INTRODUCTION

We since Zadeh established fuzzy set theorem in 1965, he introduced a pair of fuzzy
operators. They are named Zadeh operators [1]. There is a lot of discussion about
the fuzzy operators [2–10], but there is little discussion membership relation in there
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operators. This paper discusses membership relation in Zadeh operators and other
generalized operators in common use.

2. THE MEMBERSHIP RELATION IN FUZZY OPERA-
TORS LOCATED OUTSIDE ZADEH OPERATORS

In order to discuss the membership relation in fuzzy operators, it is necessary to
introduce the concept of generalized operators [4]. Generalized operators are widely-
used operators in fuzzy sets. The definition of Zadeh operators and the definitions
of generalized operators in common use as well as their membership relation are as
follows.

Definition 2.1 Zadeh operators (∧,∨)
To any fuzzy set A,B,C ∈ P (U), fuzzy set C = A ∩B be called intersection of

fuzzy set A and fuzzy set B if ∀u ∈ U , there is

C(u) = (A ∩B)(u) = A(u) ∧B(u);

Fuzzy set C = A ∩ B be called union of fuzzy set A and fuzzy set B if ∀u ∈ U ,
there is

C(u) = (A ∪B)(u) = A(u) ∨B(u).

Definition 2.2 Probability operators (•̂, +̂)
To any fuzzy set A,B,C ∈ P (U), fuzzy set C = A•̂B be called probability

product of fuzzy set A and fuzzy set B if ∀u ∈ U , there is

C(u) = (A•̂B)(u) = A(u)B(u);

Fuzzy set C = A+̂B be called probability sum of fuzzy set A and fuzzy set B if
∀u ∈ U , there is

C(u) = (A+̂B)(u) = A(u) +B(u)−A(u)B(u).

Definition 2.3 Boundary operators (⊗,⊕)
To any fuzzy set A,B,C ∈ P (U), fuzzy set C = A ⊗ B be called boundary

product of fuzzy set A and fuzzy set B if ∀u ∈ U , there is

C(u) = (A⊗B)(u) = max[0, A(u) +B(u)− 1];

Fuzzy set C = A⊕B be called boundary sum of fuzzy set A and fuzzy set B if
∀u ∈ U , there is

C(u) = (A⊕B)(u) = min[1, A(u) +B(u)].

Definition 2.4 Infinite operators (∞̂, ^∞)
To any fuzzy set A,B,C ∈ P (U), fuzzy set C = A∞̂B be called infinite product

of fuzzy set A and fuzzy set B if ∀u ∈ U , there is

C̃(u) = (Ã∞̂B̃)(u) =


Ã(u), B̃(u) = 1

B̃(u), Ã(u) = 1

0, other
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Fuzzy set C = A
^∞B be called infinite sum of fuzzy set A and fuzzy set B if

∀u ∈ U , there is

C̃(u) = (Ã
^∞B̃)(u) =


Ã(u), B̃(u) = 0

B̃(u), Ã(u) = 0

1, other

The paper [7] has proved that Zadeh operations, probability operators and
boundary operators as well as infinite operators have membership relation as follows:

(Ã∞̂B̃)(u) ≤ (Ã⊗ B̃)(u) ≤ (Ã•̂B̃)(u) ≤ (Ã ∩ B̃)(u)

≤ (Ã ∪ B̃)(u) ≤ (Ã+̂B̃)(u) ≤ (Ã⊕ B̃)(u) ≤ (Ã
^∞B̃)(u)

Definition 2.5 Schweizer-Sklard operators (
•
ss,

+
ss)[11]

To any fuzzy set A,B,C ∈ P (U), p → (−∞,+∞), fuzzy set C = A
•
ssB be

called Schweizer-Sklard product of fuzzy set A and fuzzy set B if ∀u ∈ U , there is

Ã(u)
•
ss B̃(u) =



0, if p > 0, Ã(u) = 0 or B̃(u) = 0

[Ã(u)
−p

+ B̃(u)
−p − 1]

−1/p
, if p > 0, Ã(u) • B̃(u) 6= 0

Ã(u) • B̃(u), if p = 0

[Ã(u)
−p

+ B̃(u)
−p − 1]

−1/p
, if p < 0, Ã(u)

−p
+ B̃(u)

−p
> 1

0, if p < 0, Ã(u)
−p

+ B̃(u)
−p ≤ 1

Fuzzy set C = A
+
ssB be called Schweizer-Sklard sum of fuzzy set A and fuzzy

set B if ∀u ∈ U , there is

Ã(u)
+
ss B̃(u) =



1, if p > 0, Ã(u) = 1 or B̃(u) = 1

1− {[1− Ã(u)]
−p

+ [1− B̃(u)]
−p − 1}

−1/p
,

if p > 0, Ã(u) • B̃(u) 6= 1

Ã(u) + B̃(u)− Ã(u) • B̃(u), if p = 0

1− {[1− Ã(u)]
−p

+ [1− B̃(u)]
−p − 1}

−1/p
,

if p < 0, [1− Ã(u)]
−p

+ [1− B̃(u)]
−p

> 1

0, if p < 0, [1− Ã(u)]
−p

+ [1− B̃(u)]
−p ≤ 1

The paper [11] has proved that Schweizer-Sklard operators are monotone
functions for variables A(u) or B(u), the paper [11] has proved that Schweizer-Sklard
operators are monotone functions for the parameter p.
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The paper [11] has proved that Schweizer-Sklard operations, and Zadeh opera-
tions as well as probability operators have membership relation as follows:

Ã(u)•̂B̃(u) ⊆ Ã(u)
•
ss B̃(u) ⊆ Ã(u) ∧ B̃(u)

⊆ Ã(u) ∨ B̃(u) ⊆ Ã(u)
+
ss B̃(u) ⊆ Ã(u)+̂B̃(u)

Definition 2.6 Dobois-Prade operators (
•
d,

+

d) [13]

To any fuzzy set A,B,C ∈ P (U), λ ∈ [0, 1], fuzzy set C = A
•
dB be called

Dobois-Prade product of fuzzy set A and fuzzy set B if ∀u ∈ U , there is

(Ã
•
d B̃)(u) =


0, if λ = 0 and Ã(u) = B̃(u) = 0

Ã(u)B̃(u)

max{λ, Ã(u), B̃(u)}
, others

Fuzzy set C = A
+

d B be called Dobois-Prade sum of fuzzy set A and fuzzy set
B if ∀u ∈ U , there is

(Ã
+

d B̃)(u) =


1, if λ = 0 and Ã(u) = B̃(u) = 1

Ã(u) + B̃(u)− Ã(u)B̃(u)−min{1− λ, Ã(u), B̃(u)}
max{λ, 1− Ã(u), 1− B̃(u)}

, others

The paper [13] has proved that Dobois-Prade operators are monotone functions
for the parameter λ and that Dobois-Prade operations, and Zadeh operations as
well as probability operators have membership relation as follows:

(Ã
∧• B̃)(u) ≤ (Ã

•
d B̃)(u) ≤ (Ã ∩ B̃)(u) ≤ (Ã ∪ B̃)(u) ≤ (Ã

+

d B̃)(u)

Definition 2.7 Hamacher operators (
•
r,

+
r) [9]

To any fuzzy set A,B,C ∈ P (U), r ∈ [0,+∞), fuzzy set C = A
•
r B be called

Hamacher product of fuzzy set A and fuzzy set B if ∀u ∈ U , there is

(Ã
•
r B̃)(u) =


0, if r = 0 and Ã(u) = B̃(u) = 0

Ã(u)B̃(u)

r + [1− r][Ã(u) + B̃(u)− Ã(u)B̃(u)]
, others

Fuzzy set C = A
+
r B be called Hamacher sum of fuzzy set A and fuzzy set B if

∀u ∈ U , there is

(Ã
+
r B̃)(u) =


1, if r = 0, and Ã(u) = B̃(u) = 1

Ã(u) + B̃(u) + [r − 2]Ã(u)B̃(u)

1− Ã(u)B̃(u) + rÃ(u)B̃(u)
, others
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The paper [9] has proved that Hamacher operations are monotone functions for
the parameter r and that Hamacher operations, and Zadeh operations as well as
boundary operators have membership relation as follows:

(Ã⊗ B̃)(u) ≤ (Ã
•
r B̃)(u) ≤ (Ã ∩ B̃)(u) ≤ (Ã ∪ B̃)(u) ≤ (Ã

+
r B̃)(u) ≤ (Ã⊕ B̃)(u)

Definition 2.8 Yager operators (
•
Υ,

+

Υ) [10]

To any fuzzy set A,B,C ∈ P (U), r ∈ (0,+∞), fuzzy set C = A
•
ΥB be called

Yager product of fuzzy set A and fuzzy set B if ∀u ∈ U , there is

C̃(u) = (Ã
•
Υ B̃)(u) = 1− 1 ∧ [(1− Ã(u))

1
r + (1− B̃(u))

1
r ]r

Fuzzy set C = A
+

ΥB be called Yager sum of fuzzy set A and fuzzy set B if
∀u ∈ U , there is

C̃(u) = (Ã
+

Υ B̃)(u) = 1 ∧ [Ã(u)
1
r + B̃(u)

1
r ]r

The paper [10] has proved that Yager operations are monotone functions for the
parameter r and that Yager operations, and Zadeh operations as well as boundary
operators have membership relation as follows:

(Ã⊗ B̃)(u) ≤ (Ã
•
Υ B̃)(u) ≤ (Ã ∩ B̃)(u) ≤ (Ã ∪ B̃)(u) ≤ (Ã

+

Υ B̃)(u) ≤ (Ã⊕ B̃)(u)

3. THE MEMBERSHIP RELATION IN FUZZY OPERA-
TORS LOCATED WITHIN ZADEH OPERATORS

The paper [12] introduce new class of fuzzy operators in inner of Zadeh operator.
The definitions of the new class of continuous fuzzy operators located within Zadeh
operators and their membership membership relation are as follows:

Definition 3.1 Zero operators (0̂,
^

0)
To any fuzzy set A,B,C ∈ P (U), fuzzy set C = A0̂B be called Zero product of

fuzzy set A and fuzzy set B if ∀u ∈ U , there is

C̃(u) = (Ã0̂B̃)(u) =
Ã(u) + B̃(u)

2

Fuzzy set C = A
^

0B be called Zero sum of fuzzy set A and fuzzy set B if ∀u ∈ U ,
there is

C̃(u) = (Ã
^

0B̃)(u) =
Ã(u) + B̃(u)

2

The paper [12] has proved that Zero operations and Zadeh operations have
membership relation as follows:

(Ã ∩ B̃)(u) < (Ã0̂B̃)(u) = (Ã
^

0B̃)(u) < (Ã ∪ B̃)(u)

Definition 3.2 Q operators (Q̂,
^

Q)
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To any fuzzy set A,B,C ∈ P (U), fuzzy set C = AQ̂B be called Q product of
fuzzy set A and fuzzy set B if ∀u ∈ U , there is

C̃(u) = (ÃQ̂B̃)(u) =
2q + 1

4q + 1
[Ã(u) ∧ B̃(u)] +

2q

4q + 1
[Ã(u) ∨ B̃(u)]

Fuzzy set C = A
^

QB be called Q sum of fuzzy set A and fuzzy set B if ∀u ∈ U ,
there is

C̃(u) = (Ã
^

QB̃)(u) =
2q

4q + 1
[Ã(u) ∧ B̃(u)] +

2q + 1

4q + 1
[Ã(u) ∨ B̃(u)]

The Q operators are monotone functions for the parameter q [12]. The paper [12]
has proved that Q operations, Zadeh operations as well as Zero operators have
membership relation as follows:

(Ã ∩ B̃)(u) ≤ (ÃQ̂B̃)(u) ≤ (ÃÔB̃)(u) = (Ã
^

OB̃)(u) ≤ (Ã
^

QB̃)(u) ≤ (Ã ∪ B̃)(u)

4. CONCLUSIONS

First we have discussed and given the membership relation in fuzzy operators
located outside Zadeh operators. Second we have discussed and given the
membership relation in fuzzy operators located within Zadeh operators.
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