
Studies in Mathematical Sciences
Vol. 2, No. 1, 2011, pp. 135-144
www.cscanada.org

ISSN 1923-8444 [Print]
ISSN 1923-8452 [Online]

www.cscanada.net

The Application of Bifurcation Method to
Klein-Gordon-Zakharov Equations
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Abstract: Bifurcation method of dynamical systems is employed to study the Klein-Gordon-
Zakharov equations. Under some parameter conditions, some explicit expressions of solutions
for the equation are obtained. These solutions contain solitary wave solutions, blow-up solutions,
periodic solutions, periodic blow-up solutions and kink-shaped solutions.
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1. INTRODUCTION

In recent years, solving nonlinear evolution equations has become a valuable task in many scientific areas
including applied mathematics as well as the physical sciences and engineering. For this purpose, some
accurate methods have been presented, such as Inverse scattering transform method[1], Bäcklund transfor-
mation method[2], Jacobi elliptic function method[3], F-expansion method[4], Hirota’s bilinear method[5],
the extended hyperbolic functions method[6, 7], Homotopy perturbation method[8], Bifurcation method[9–11]

and so on.

In this paper, we consider the following Klein-Gordon-Zakharov equations (KGZ-equations in short):

utt − uxx + u + αnu = 0, (1)

ntt − nxx = β(|u|2)xx, (2)

with u a complex function and n a real function, where α, β are two nonzero real parameters. Recently,
there have been many works on the qualitative research of the global solutions for the KGZ-equations (1)-
(2)[12–15]. Chen Lin considered orbital stability of solitary waves for the KGZ-equations in [16]. Based on
the extended hyperbolic functions method, Shang Yadong et al. obtain the multiple exact explicit solutions
of the KGZ-equations in[7].

In this paper, we employ the bifurcation method and qualitative theory of dynamical systems[9–11] to
investigate the KGZ-equations (1)-(2), and we obtain some explicit expressions of solutions for the KGZ-
equations (1)-(2). These solutions contain solitary wave solutions, blow-up solutions, periodic solutions,
periodic blow-up solutions and kink-shaped solutions.
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This paper is organized as follows: In Section 2, we present our main results. In Section 3, we give the
theoretical derivation for our main results. A short conclusion will be given in Section 4.

2. MAIN RESULTS

In this section, we will give the explicit exact solutions of the KGZ-equations (1)-(2). To begin with, let us
consider the following transformation

u(x, t) = φ(x, t)ei(kx+ωt), (3)

where φ(x, t) is a real-valued function, k and ω are two real constants. Substituting (3) into (1)-(2), we get

φtt − φxx + (k2 − ω2 + 1)φ + αnφ = 0, (4)

ωφt − kφx = 0, (5)

ntt − nxx = β(φ2)xx. (6)

In view of (5), we suppose
φ(x, t) = φ(ξ) = φ(ωx + kt). (7)

Substituting (7) into (4), we get

n(x, t) =
(ω2 − k2)φ′′(ξ)

αφ(ξ)
+
ω2 − k2 − 1

α
. (8)

Therefore, we can also suppose
n(x, t) = ψ(ξ) = ψ(ωx + kt). (9)

Substituting (9) into (6) and integrating twice with respect to ξ, we get

n(x, t) = ψ(ξ) =
βω2φ2(ξ)
k2 − ω2 +C, (10)

where C is an integration constant. Substituting (10) into (8), we get

φ′′(ξ) − lφ(ξ) − mφ3(ξ) = 0, (11)

where l = − k2−ω2+1+αC
k2−ω2 , m = − αβω2

(k2−ω2)2 .

Now we state our main results. To relate conveniently, let

φ∗ =

√
−l +

√
l2 − 4mh
m

, (12)

φ∗ =

√
l +
√

l2 − 4mh
m

, (13)

φ̄∗ =

√
−l −

√
l2 − 4mh
m

, (14)

φ̄∗ =

√
l −
√

l2 − 4mh
m

, (15)
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φr =

√
− l

m
, (16)

φ̄r =

√
−2l

m
, (17)

φ̄0 =

√
−2l

m
− φ2

0, (18)

where h and φ0 will be given later. Using the notations above, our main results are stated in Propositions 1
and 2.

For easy of exposition, we only give the solution φ(x, t). By (3) and (10), one can obtain the solutions
u(x, t) and n(x, t) of the KGZ-equations (1)-(2) easily.

Proposition 1. For given constants l, m and h, when lm > 0 the KGZ-equations (1)-(2) has the following
exact solutions:

(1) If l > 0, m > 0 and h = 0, we get two blow-up solutions

φ1± (x, t) = ±
√

2l
m

csch[
√

l(ωx + kt)]. (19)

(2) If l > 0, m > 0 and h < 0, we get two blow-up solutions

φ2±(x, t) = ±
√

(φ∗)2 + (φ∗)2

sn2[
√m

2

√
(φ∗)2 + (φ∗)2(ωx + kt)]

− (φ∗)2. (20)

(3) If l < 0, m < 0 and h > 0, we get one periodic solution

φ3(x, t) = φ̄∗cn
[√
−m

2

√
(φ̄∗)2 + (φ̄∗)2(ωx + kt)

]
. (21)

Proposition 2. For given constants l, m and h, when lm < 0 the KGZ-equations (1)-(2) has the following
exact solutions:

(1) If l > 0, m < 0 and h = 0, we get two solitary wave solutions

φ4±(x, t) = ±
√
−2l

m
sech[

√
l(ωx + kt)]. (22)

(2) If l > 0, m < 0 and h < 0, we get two periodic wave solutions

φ5±(x, t) = ± φ̄0φ0√
(φ̄0)2 − [(φ̄0)2 − (φ0)2]sn

[√
− 2l

m φ̄0|ωx + kt|
] . (23)

(3) If l > 0, m < 0 and h > 0, we get one periodic solution

φ6(x, t) = φ̄∗cn
[√
−m

2

√
(φ̄∗)2 + (φ̄∗)2(ωx + kt)

]
. (24)

(4) If l < 0, m > 0 and h = H(φr, 0), we get two kink-shaped solutions

φ7± (x, t) = ±φr tanh
[
φr

√
m
2

(ωx + kt)
]
, (25)
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and two blow-up solutions

φ8± (x, t) = ±φr coth
[
φr

√
m
2

(ωx + kt)
]
. (26)

(5) If l < 0, m > 0 and h < H(φr, 0), we get one periodic solution

φ9(x, t) = φ0sn
[
φ̄0

√
m
2

(ωx + kt)
]
, (27)

and two blow-up solutions

φ10±(x, t) = ± φ̄0

sn
[
φ̄0
√m

2 (ωx + kt)
] . (28)

3. THE THEORETIC DERIVATIONS OF MAIN RESULTS

In this section, we will give the theoretic derivations of our main results. Via (11), we establish the following
planar system: 

dφ
dξ
= y,

dy
dξ
= lφ + mφ3,

(29)

which admits the following first integral

H(φ, y) =
1
2

y2 − 1
2
φ2(l +

m
2
φ2) = h, (30)

where h is the constant of integration. Thus from (30), it follows

y = ±
√
φ2(l +

m
2
φ2) + 2h. (31)

Substituting (31) into dφ
dξ = y, we obtain

dφ√
φ2(l + m

2 φ
2) + 2h

= ±dξ. (32)

Under general conditions it is difficult to integrate the left of (32). But under some conditions the integral
can be finished. Thus the solutions of the KGZ-equations (1)-(2) can be obtained.

Now we discuss the bifurcation phase portraits of system (29), suppose

f (φ) = lφ + mφ3. (33)

According to system (29), we know that in φ − y plane all the singular points of system (29) are on φ-axis.
Thus to study the distribution of singular points of system (29), we only need to investigate the fixed points
of (33). About (33), we know

(1) When lm > 0, then f (φ) only one fixed point.

(2) When lm < 0, then f (φ) has two fixed points.

Thus, we can easily draw the graphics of function f (φ) in Figure 1 (when lm > 0) and Figure 2 (when
lm < 0).

138



Shaoyong LI; Ming SONG/Studies in Mathematical Sciences Vol.2 No.1, 2011

Figure 1: The graphics of function f (φ) when lm > 0

Figure 2: The graphics of function f (φ) when lm < 0

Suppose that (φ, 0) is a singular point of system (29), then at the singular point (φ, 0) the characteristic
values of the linearized system of system (29) is

λ1,2 = ±
√

f ′(φ). (34)

According to the qualitative theory of dynamical systems, we obtain the following conclusions

(1) If f ′(φ) < 0, (φ, 0) is a center point.

(2) If f ′(φ) > 0, (φ, 0) is a saddle point.

(3) If f ′(φ) = 0, (φ, 0) is a degenerate saddle point.

Therefore, we obtain the phase portraits of system (29) in Figure 3 (when lm > 0) and Figure 4 (when
lm < 0).

Now we will derive the Proposition 1.

(1) If l > 0, m > 0 and h = 0, from the phase portrait in Figure 3, the orbits connected at the saddle
point (0, 0) are given as

y = ±φ
√

l +
m
2
φ2. (35)

Substituting (35) into dφ
dξ = y and integrating them along the orbits, it follows that∫ +∞

φ

1

s
√

l + m
2 s2

ds = |ξ|, (φ ≥ 0), (36)
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Figure 3: The phase portraits of system (29) when lm > 0

Figure 4: The phase portraits of system (29) when lm < 0

and ∫ −∞
φ

1

s
√

l + m
2 s2

ds = |ξ|, (φ ≤ 0). (37)

From (36) and (37), we have

φ = ±
√

2l
m

csch
√

lξ. (38)

Noting that φ = φ(ξ) and ξ = ωx + kt, we get two blow-up solutions φ1±(x, t) as (19).

(2) If l > 0, m > 0 and h < 0, from the phase portrait in Figure 3, the orbits Γ±1 are given as

y = ±
√

m
2

(φ2 − (φ∗)2)(φ2 + (φ∗)2). (39)

Substituting (39) into dφ
dξ = y and integrating them along the orbits Γ±1 , it follows that∫ +∞

φ

1√
(s2 − (φ∗)2)(s2 + (φ∗)2)

ds =
√

m
2
|ξ|, (φ ≥ 0), (40)

and ∫ −∞
φ

1√
(s2 − (φ∗)2)(s2 + (φ∗)2)

ds =
√

m
2
|ξ|, (φ ≤ 0). (41)
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From (40) and (41), we have

φ = ±
√

(φ∗)2 + (φ∗)2

sn2[
√m

2

√
(φ∗)2 + (φ∗)2ξ]

− (φ∗)2. (42)

Noting that φ = φ(ξ) and ξ = ωx + kt, we get two blow-up solutions φ2±(x, t) as (20).

(3) If l < 0, m < 0 and h > 0, from the phase portrait in Figure 3, the periodic orbit is given as

y = ±
√

m
2

(φ2 − (φ̄∗)2)(φ2 + (φ̄∗)2). (43)

Substituting (43) into dφ
dξ = y and integrating them along the periodic orbit , it follows that∫ φ̄∗

φ

1√
((φ̄∗)2 − s2)(s2 + (φ̄∗)2)

ds =
√
−m

2
|ξ|. (44)

From (44), we have

φ = φ̄∗cn
[√
−m

2

√
(φ̄∗)2 + (φ̄∗)2ξ

]
. (45)

Noting that φ = φ(ξ) and ξ = ωx + kt, we get one periodic solution φ3(x, t) as (21).

Thus, the derivation of Proposition 1 has finished. Now we will derive the Proposition 2.

(1) If l > 0, m < 0 and h = 0, from the phase portrait in Figure 4, the two symmetric homoclinic orbits
connected at the saddle point are given as

y = ±φ
√

l +
m
2
φ2. (46)

Substituting (46) into dφ
dξ = y and integrating them along the homoclinic orbits , it follows that∫ φ̄r

φ

1

s
√

l + m
2 s2

ds = |ξ| (φ ≥ 0), (47)

and ∫ −φ̄r

φ

1

s
√

l + m
2 s2

ds = |ξ| (φ ≤ 0). (48)

From (47) and (48), we have

φ = ±
√
−2l

m
sech[

√
lξ]. (49)

Noting that φ = φ(ξ) and ξ = ωx + kt, we get two solitary wave solutions φ4± (x, t) as (22).

(2) If l > 0, m < 0 and h < 0, from the phase portrait in Figure 4, the two symmetric periodic orbits Γ±2
are given as

y = ±
√
−m

2
(φ2 − φ2

0)((φ̄0)2 − φ2). (50)

Substituting (50) into dφ
dξ = y and integrating them along the periodic orbits, it follows that∫ φ

φ0

1√
(s2 − φ2

0)((φ̄0)2 − s2)
ds =

√
−m

2
|ξ|, (51)
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and ∫ −φ0

φ

1√
(s2 − φ2

0)((φ̄0)2 − s2)
ds =

√
−m

2
|ξ|. (52)

From (51) and (52), we have

φ = ± φ̄0φ0√
(φ̄0)2 − [(φ̄0)2 − (φ0)2]sn

[√
− 2l

m φ̄0|ξ|
] . (53)

Noting that φ = φ(ξ) and ξ = ωx + kt, we get two periodic wave solutions φ5± (x, t) as (23).

(3) If l > 0, m < 0 and h > 0, from the phase portrait in Figure 4, the periodic orbit Γ3 is given as

y = ±
√

m
2

(φ2 − (φ̄∗)2)(φ2 + (φ̄∗)2). (54)

Substituting (54) into dφ
dξ = y and integrating them along the periodic orbit, it follows that

∫ φ̄∗

φ

1√
((φ̄∗)2 − s2)(s2 + (φ̄∗)2)

ds =
√
−m

2
|ξ|. (55)

From (55), we have

φ = φ̄∗cn
[√
−m

2

√
(φ̄∗)2 + (φ̄∗)2ξ

]
. (56)

Noting that φ = φ(ξ) and ξ = ωx + kt, we get one periodic solution φ6(x, t) as (24).

(4) If l < 0, m > 0 and h = H(φr, 0), from the phase portrait in Figure 4, the heterclinic orbits connected
at saddle points (−φr, 0) and (φr, 0) are given as

y = ±
√

m
2

(φr − φ)(φr + φ). (57)

Substituting (57) into dφ
dξ = y and integrating them along heterclinic orbits, it follows that

∫ φ

0

1
(φr − s)(φr + s)

ds =
√

m
2
|ξ|, (58)

and ∫ +∞
φ

1
(φr − s)(φr + s)

ds =
√

m
2
|ξ|. (59)

From (58) and (59), we have

φ = ±φr tanh
[
φr

√
m
2
ξ

]
, (60)

and

φ = ±φr coth
[
φr

√
m
2
ξ

]
. (61)

Noting that φ = φ(ξ) and ξ = ωx + kt, we get two kink-shaped solutions φ7±(x, t) as (25) and two blow-up
solutions φ8± (x, t) as (26).
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(5) If l < 0, m > 0 and h < H(φr, 0), from the phase portrait in Figure 4, the orbits Γ±4 and periodic orbit
points Γ5 are given as

y = ±
√

m
2

(φ2
0 − φ2)(φ̄0 − φ2). (62)

Substituting (62) into dφ
dξ = y and integrating them along the orbits Γ±4 and periodic orbit points Γ5, it follows

that ∫ φ

0

1√
(φ2

0 − s2)(φ̄0 − s2)
ds =

√
m
2
|ξ|, (63)

and ∫ +∞
φ

1√
(φ2

0 − s2)(φ̄0 − s2)
ds =

√
m
2
|ξ|. (64)

From (63) and (64), we have

φ = φ0sn
[
φ̄0

√
m
2
ξ

]
, (65)

and
φ(x, t) = ± φ̄0

sn
[
φ̄0
√m

2 ξ
] . (66)

Noting that φ = φ(ξ) and ξ = ωx+kt, we get one periodic solution φ9(x, t) as (27) and two blow-up solutions
φ10± (x, t) as (28). Thus, the derivation of Proposition 2 has finished.

4. CONCLUSIONS

In this paper, we have employed bifurcation method of dynamical systems to study the traveling solutions
of the KGZ-equations (1)-(2). We have obtained many solutions (19)-(28) for the KGZ-equations (1)-(2).
Compared with [7], we also find that the solutions (19), (22), (25) and (26) are the same as in [7]. But
the other solutions we obtained can not be found in other papers, so we believe that they are new solutions
for the KGZ-equations (1)-(2). It is valuable to point out that the method used in this paper can be widely
applied to other nonlinear equations.
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