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INTRODUCTION

The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in
his Ph.D.Thesis in 1988 in order to unify continuous and discrete analysis[1].A time scale T,is an arbitrary
nonempty closed subset of the reals, and the cases when this time scale is equal to the reals or to the integers
represent the classical theories of differential and of difference equations. Many other interesting time scales
exist, and they give rise to many applications[9].

On any time scale T , we define the forward and backward jump operators by

σ(t) := inf{s > t : s ∈ T}, ρ(t) := sup{s < t : s ∈ T}.

A point t ∈ T, t > inf T,is said to be left-dense if ρ(t) = t, right-dense if t < supT and σ(t) = t, left-
scattered if ρ(t) < t and right-scattered ifσ(t) > t. The graininess function µ for a time scale T is defined by
µ(t) := σ(t) − t.

A function f : T → R is called rd-continuous function provided it is continuous at right-dense points in T
and its left-sided limits exist (finite) at left-dense points in T. The set of rd-continuous functions f :T → R
is denoted by Crd = Crd(T) = Crd(T,R).

Let f be a differentiable function on[a, b]. Then f is increasing, decreasing, nondecreasing, and non-
increasing on[a, b], if f ∆(t) > 0, f ∆(t) < 0, f ∆(t) ≥ 0, and f ∆(t) ≤ 0 for all t ∈ [a, b), respectively.

For a function f : T → R(the range R of f may be actually replaced by any Banach space) the delta
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derivative is defined by

f ∆(t) =
f (σ(t)) − f (t)
σ(t) − t

, (0.1)

if f is continuous at t and t is right-scattered. We will make use of the following product and quotient rules
for the derivative of the product f g and the quotient f

g (where ggσ , 0) of two differentiable functions f
and g

( f g)∆ = f ∆g + f σg∆ = f g∆ + f ∆gσ (0.2)
(

f
g

)∆

=
f ∆g − f g∆

ggσ
(0.3)

For t0, b ∈ T, and a differentiable function f , the Cauchy integral of f ∆ is defined by
∫ b

t0
f ∆(t)∆t = f (b) − f (t0).

An integration by parts formula reads
∫ b

t0
f (t)g∆(t)∆t = [ f (t)g(t)]b

t0 −
∫ b

t0
f ∆(t)gσ(t)∆t. (0.4)

and infinite integral is defined as ∫ ∞

t0
f (t)∆t = lim

b→∞

∫ b

t0
f (t)∆t (0.5)

In recent years, there has been much research activity concerning the oscillation and nonoscillation of
solutions of various equations on time scales. We refer the reader to the papers[2−8]and the reference cited
therein.

In this paper, we consider a fourth order quasilinear dynamic equation

(| y∆2
(t) |α−1 y∆2

(t))∆2
+ q(t) | y(g(t)) |β−1 y(g(t)) = 0. (0.6)

on time scale interval [t0,∞) ⊂ T. (t0 ≥ 0) Where
(a) α, βare positive constants;
(b) q(t) : [t0,∞)→ (0,∞)is a rd-continuous function;
(c) g(t) : [t0,∞)→ (0,∞)is a rd-continuously differentiable function such that g(t) ≤ t, and lim

t→∞
g(t) = ∞.

Our purpose here is to make a detailed analysis of the structure of the set of all possible nonoscillatory
solutions of the equation (0.6),which can be expressed as

((y∆2
(t))α∗ )∆2

+ q(t)(y(g(t)))β∗ = 0, (0.7)

in terms of the asterisk notation

ξγ∗ =| ξ |γ sgnξ =| ξ |γ−1 ξ, ξ ∈ R, γ > 0.

It is easy to see if y(t) is a nonoscillatory positive solution of (0.7), then so is −y(t) .
A) Classification of nonoscillatory solution.
Suppose that y(t) be an eventually positive solution of (0.7). then y(t) satisfies either

I : y∆(t) > 0, y∆2
(t) > 0, ((y∆2

(t))α∗ )∆ > 0,

for all large t or
II : y∆(t) > 0, y∆2

(t) < 0, ((y∆2
(t))α∗ )∆ > 0.

17



LIU Guanghui; LIU Lanchu/Studies in Mathematical Sciences Vol.3 No.1, 2011

for all large t. It follows that y∆(t), y∆2
(t), ((y∆2

(t))α∗ )∆ are eventually monotone, so that they tend to finite
or infinite limits as t → ∞. Let

lim
t→∞

y∆i
(t) = ωi, i = 0, 1, 2, and lim

t→∞
((y∆2

(t))α∗ )∆ = ω3.

It is clear that ω3 is a finite nonnegative number. One can easily show that :
(i) If y(t) satisfies I,then the set of its asymptotic values ωi falls into one of the following three cases:
I1 : ω0 = ω1 = ω2 = ∞, ω3 ∈ (0,∞);
I2 : ω0 = ω1 = ω2 = ∞, ω3 = 0;
I3 : ω0 = ω1 = ∞, ω2 ∈ (0,∞), ω3 = 0.
(ii) If y(t) satisfies II,then the set of its asymptotic values ωi falls into one of the following three cases:
II1 : ω0 = ∞, ω1 ∈ (0,∞), ω2 = ω3 = 0
II2 : ω0 = ∞, ω1 = ω2 = ω3 = 0
II3 : ω0 ∈ (0,∞), ω1 = ω2 = ω3 = 0.
Equivalent expressions for these six classes of positive solutions of (0.7) are as follows:
I1 : lim

t→∞
y(t)

t2+ 1
α

= const > 0;

I2 : lim
t→∞

y(t)

t2+ 1
α

= 0, lim
t→∞

y(t)
t2 = ∞;

I3 : lim
t→∞

y(t)
t2 = const > 0;

II1 : lim
t→∞

y(t)
t = const > 0;

II2 : lim
t→∞

y(t)
t = 0, lim

t→∞
y(t) = ∞;

II3 : lim
t→∞

y(t) = const > 0.
B) Integral representations for nonoscillatory solutions.
We shall establish the existence of positive solutions for each of the above six cases. Let y(t) be a positive
solution of (0.7), such that y(t) > 0 , y(g(t)) > 0 for t ≥ t0 > 0. Integrating (0.7) from t to∞ gives

((y∆2
(t))α∗ )∆ = ω3 +

∫ ∞

t
q(s)(y(g(s)))β∆s, t ≥ t0. (0.8)

If y(t) is a solution of Ii(i = 1, 2, 3),then we integrate (0.8) three times over [t0, t] to obtain

y(t) = k0 + k1(t − t0) +

∫ t

t0
(t − σ(s))[k2

α +

∫ s

r
(ω3 +

∫ ∞

u
q(u)(y(g(u)))β∆u)∆r]

1
α

∆s, (0.9)

for t ≥ t0 ,where k0 = y(t0), k1 = y∆(t0), k2 = y∆2
(t0) are nonnegative constant,the equality (0.9) gives an

integral representation for a solution y(t) of type I1. A type I2 solution y(t) of (0.7) is expressed by (0.9),
with ω3 = 0. If y(t) is a solution of type I3, then first integrating (0.8) from t to ∞ and then integrating the
resulting equation twice from t0 to t,we have

y(t) = k0 + k1(t − t0) +

∫ t

t0
(t − σ(s))[ω2

α −
∫ ∞

s
(σ(r) − s)q(r)(y(g(r)))β)∆r]

1
α

∆s, t > t0 (0.10)

An integral representation for a solution y(t) of type II1 is derived by integrating (0.8) with ω3 = 0 twice
from t to∞. and then once from t0 to t,we have

y(t) = k0 +

∫ t

t0
(ω1 +

∫ ∞

s
[
∫ ∞

r
(σ(u) − r)q(u)(y(g(u)))β∆u]

1
α ∆r)∆s, t > t0 (0.11)

An expression for a of type II2 solution is given by (0.11) with ω1 = 0, If y(t) is a solution of type II3,then
integrations of (0.9) with ω3 = 0 three times yield

y(t) = ω0 −
∫ ∞

t
(σ(s) − t)[

∫ ∞

s
(σ(r) − s)q(r)(y(g(r)))β∆r]

1
α )∆s, t > t0 (0.12)
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1. NONOSCILLATION THEOREMS

The set of nonoscillatory solution of (0.7) is decomposed into six disjoint classes according to their as-
ymptotic behavior at ∞. It will be shown that necessary and sufficient conditions can be established for
the existence of positive solutions of the four type I1, I3, II1 and II3. and sufficient conditions can also be
established for the existence of positive solutions of types I2, II2.
Theorem 1.1. The equation (0.7) has a positive solution of type I1 if and only if

∫ ∞

0
q(s)(g(s))(2+ 1

α )β∆s < ∞. (1.1)

Proof. Necessary. Suppose that (0.7) has a positive solution of type I1.then, it satisfies (0.9) for t ≥ t0,which
implies that ∫ ∞

t0
q(s)(y(g(s)))β∆s < ∞

This together with the asymptotic relation lim
t→∞

y(t)

t2+ 1
α

= const > 0; shows that (1.1) is satisfied.

Sufficiency. Suppose that (1.1) holds. Let k > 0 be any given constant. choose t1 > t0 large enough so that

(
α2

(α + 1)(2α + 1)
)β

∫ ∞

t0
q(s)(g(s))(2+ 1

α )β∆s ≤ (2k)α − kα

(2k)β
(1.2)

Let t∗ = min{t0, inf
t>t0

g(t)}, and defined

G(t, t0) =

∫ t

t0
(t − σ(s))(s − t0)

1
α ∆s =

α2

(α + 1)(2α + 1)
(t − t0)2+ 1

α t ≥ t0

G(t, t0) = 0 t < t0

Let B(t) denote a Banach space of all real-value function, Y ⊂ Crd(t∗,R) with the norm ‖ Y ‖= sup
t>t0
| y(t) |<

∞ Defined a set Ω as follows:

Ω = {Y = {y(t)} ∈ B(t) kG(t, t0) ≤ y(t) ≤ 2kG(t, t0), t ≥ t∗}

Define the operator F : Ω→ B(t) :


Fy(t) =
∫ t

t0
(t − σ(s))[

∫ s
t0

(kα +
∫ ∞

r (q(u)(y(g(u)))β∆u)∆r]
1
α ∆s, t ≥ t0

Fy(t) = Fy(t0), t∗ ≤ t ≤ t0
(1.3)

I)F maps Ω into Ω.
Let y(t) ∈ Ω, for t ≥ t0, then

Fy(t) ≥ k
∫ t

t0
(t − σ(s))(s − t0)

1
α ∆s = kG(t, t0)

and

Fy(t) ≤
∫ t

t0
(t − σ(s))[

∫ s

t0
(kα +

∫ ∞

r
(q(u)(2kG(g(u), t0)β∆u)∆r]

1
α

∆s

≤
∫ t

t0
(t − σ(s))[

∫ s

t0
(kα + (

2kα2

(α + 1)(2α + 1)
)β

∫ ∞

r
q(u)(g(u))(2+ 1

α )β∆u)∆r]

1
α

∆s
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≤ 2k
∫ t

t0
(t − σ(s))(s − t0)

1
α ∆s = 2kG(t, t0)

II) F is rd-continuous . let y(k) ∈ Ω, lim
k→∞
‖ y(k) − y ‖= 0

| (Fy(k))(t) − (Fy)(t) | =

∫ t

t0
(t − σ(s))[

∫ s

t0
(kα +

∫ ∞

r
q(u)(y(k)(g(u)))β∆u)∆r]

1
α

∆s

−
∫ t

t0
(t − σ(s))[

∫ s

t0
(kα +

∫ ∞

r
q(u)(y(g(u)))β∆u)∆r]

1
α ∆s

By using Lebesgue,s dominated convergence theorem,we can prove that

lim
t→∞
‖ Fy(k) − Fy ‖= 0

III) F is equicauchy , for all t1, t2 > t∗

| Fy(t1) − Fy(t2) | =

∫ t2

t0
(t2 − σ(s))[

∫ s

t0
(kα +

∫ ∞

r
q(u)(y(g(u)))β∆u)∆r]

1
α ∆s

−
∫ t1

t0
(t1 − σ(s))[

∫ s

t0
(kα +

∫ ∞

r
q(u)(y(g(u)))β∆u)∆r]

1
α ∆s

=

∫ t2

t1
(t2 − t1)[

∫ s

t0
(kα +

∫ ∞

r
q(u)(y(g(u)))β∆u)∆r]

1
α ∆s < ε

Therefor, by the Schauder fixed point theorem,there exist a fixed point y,such that Fy = y,which satisfies
(0.7). This completes the proof.
Theorem 1.2. The equation (0.7) has a positive solution of type I3 if and only if

∫ ∞

0
σ(t)q(t)(g(t))2β∆t < ∞ (1.4)

Proof. Necessity. Suppose that (0.7) has a positive solution of type I3, then, it satisfies (0.10) for t ≥ t0,
which implies that ∫ ∞

t0
(σ(t) − t0)q(t)(y(g(t)))β∆t < ∞

This together with the asymptotic relation lim
t→∞

y(t)
t2 = const > 0, shows that (1.4) is satisfied.

Sufficiency. Suppose that (1.4) holds. Let k > 0 be any given constant. choose t0 > 0 large enough so that
∫ ∞

t0
σ(t)q(t)(g(t))2β∆t ≤ (2k)α − kα

(k)β
(1.5)

Let t∗ = min{t0, inf
t>t0

g(t)}, Let B(t) denote a Banach space of all real-value function, Y ⊂ Crd(t∗,R) with the

norm ‖ Y ‖= sup
t>t0
| y(t) |< ∞ Defined a set Ω as follows:

Ω = {Y = {y(t)} ∈ B(t)
k
2

(t − t0)2
+ ≤ y(t) ≤ k(t − t0)2

+, t ≥ t∗}

When t ≥ t0, (t − t0)+ = t − t0; t ≤ t0, (t − t0)+ = 0, Define the operator F : Ω→ B(t) as follows:


Fy(t) =

∫ t
t0

(t − σ(s))[(2k)α −
∫ ∞

s (σ(r) − s)q(r)(y(g(r)))β∆r]
1
α ∆s, t ≥ t0

Fy(t) = Fy(t0) t∗ ≤ t ≤ t0
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The remainer is similar to theorem 2.1. we omit here. there exists a fixed point y, such that Fy = y, which
satisfies equation (0.7) and with the propertis lim

t→∞
y∆2

(t) = 2k > 0; This completes the proof.
Theorem 1.3. The equation (0.7) has a positive solution of type II1 if and only if

∫ ∞

t0
[
∫ ∞

t
(σ(s) − t)q(s)(g(s))β∆s]

1
α

∆t < ∞ (1.6)

Proof. Necessity. Suppose that (0.7) has a positive solution of type II1. then, it satisfies (1.6) for t ≥ t0,
which implies that ∫ ∞

t0
(σ(t) − t0)q(t)(y(g(t)))β∆t < ∞

This together with the asymptotic relation lim
t→∞

y(t)
t = const > 0; shows that (1.6) is satisfied.

Sufficiency. Suppose that (1.6) holds. Let k > 0 be any given constant. choose t0 > 0 large enough so that

∫ ∞

t0
[
∫ ∞

t
(σ(s) − t)q(s)(y(g(s)))β∆s]

1
α

∆t < 2
−β
α k1− β

α

Let t∗ = min{t0, inf
t>t0

g(t)}, Let B(t) denote a Banach space of all real-value function, Y ⊂ Crd(t∗,R) with the

norm ‖ Y ‖= sup
t>t0
| y(t) |< ∞ Defined a set Ω as follows:

Ω = {Y = {y(t)} ∈ B(t) kt ≤ y(t) ≤ 2kt, t ≥ t∗}

Define the operator F : Ω→ B(t) :


Fy(t) = kt +

∫ t
t0

∫ ∞
s [

∫ ∞
r (σ(u) − r)q(u)(y(g(u)))β∆u)∆r]

1
α ∆s, t ≥ t0

Fy(t) = kt t∗ ≤ t ≤ t0
(1.7)

The remainer is similar to theorem 2.1. we omit here. there exist a fixed point y, such that Ty = y, which
satisfies equation (0.7) and with the propertis

lim
t→∞

y∆(t) = k > 0;

This completes the proof.
Theorem 1.4. The equation (0.7) has a positive solution of type II3 if and only if

∫ ∞

t0
σ(t)[

∫ ∞

t
(σ(s) − t)q(s)∆s]

1
α ∆t < ∞ (1.8)

Proof. Necessity. Suppose that (0.7) has a positive solution of type II3. then, it satisfies (1.8) for t ≥ t0,
which implies that ∫ ∞

t0
σ(t)[

∫ ∞

t
(σ(s) − t)q(s)(y(g(s)))β∆s)]

1
α

∆t < ∞ (1.9)

This together with the asymptotic relation lim
t→∞

y(t) = const > 0; shows that (1.8) is satisfied.

Sufficiency. Suppose that (1.8) holds. Let k > 0 be any given constant. choose t0 > 0 large enough so that

∫ ∞

t0
σ(t)[

∫ ∞

t
(σ(s) − t)q(s)(y(g(s)))β]

1
α

<
1
2

k1− β
α (1.10)
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Let t∗ = min{t0, inf
t>t0

g(t)}, let B(t) denote a Banach space of all real-value function, Y ⊂ Crd(t∗,R) with the

norm ‖ Y ‖= sup
t>t0
| y(t) |< ∞ Defined a set :

Ω = {Y = {y(t)} ∈ B(t)
k
2
≤ y(t) ≤ k, t ≥ t∗}

Define the operator F : Ω→ B(t) as follows:


Fy(t) = k −
∫

( t)∞(σ(s) − t)[
∫ ∞

s (σ(r) − s)q(r)(y(g(r)))β∆r)]
1
α ∆s, t ≥ t0

Fy(t) = Fy(t0) t∗ ≤ t ≤ t0
(1.11)

The remainer is similar to theorem 2.1. there exists a fixed point y, such that Fy = y, which satisfies equation
(0.7) and with the propertis

lim
t→∞

y(t) = k > 0;

Theorem 1.5. Suppose that ∫ ∞

t0
q(t)(g(t))(2+ 1

α )β∆t ≤ ∞ (1.12)

and ∫ ∞

t0
σ(t)q(t)(g(t))2β∆t = ∞ (1.13)

then equation (0.7) has a positive solution of type I2.
Proof. Suppose that (1.12) holds. Let k > 0 be any given constant. choose t0 > 0 large enough so that.

∫ ∞

t0
q(t)(g(t))(2+ 1

α )β∆t ≤ 1
2α+1 (

(α + 1)(2α + 1)
α2 )α (1.14)

Let t∗ = min{t0, inf
t>t0

g(t)}, let B(t) denote a Banach space of all real-value function, Y ⊂ Crd(t∗,R) with the

norm ‖ Y ‖= sup
t>t0
| y(t) |< ∞ Defined a set :

Ω = {Y = {y(t)} ∈ B(t)
1

21+ 1
α

(t − t0)2
+ ≤ y(t) ≤ t2+ 1

α t ≥ t∗}

Define the operator F : Ω→ B(t) :


Fy(t) =
∫ t

t0
(t − σ(s))[ 1

2 +
∫ s

t0

∫ ∞
r q(u)(y(g(u)))β∆u∆r]

1
α , t ≥ t0

Fy(t) = 0 t∗ ≤ t ≤ t0
(1.15)

The remainer is similar to theorem 2.1. there exists a fixed point y,such that Ty = y, which satisfies equation
(0.7) and with the properties

lim
t→∞

y∆2
(t) = ∞;

Theorem 1.6. Suppose that
∫ ∞

t0
[
∫ ∞

t0
(σ(s) − t)q(s)(g(s))β∆s]

1
α ∆t < ∞ (1.16)

and ∫ ∞

t0
σ(t)[

∫ ∞

t
(σ(s) − t)q(s)∆s]

1
α ∆t = ∞ (1.17)

22



LIU Guanghui; LIU Lanchu/Studies in Mathematical Sciences Vol.3 No.1, 2011

then equation (0.7) has a positive solution of type II2.
Proof. Let k > 0 be any given constant.choose t0 > 0 large enough so that.

∫ ∞

t0
[
∫ ∞

t0
(σ(s) − t)q(s)(g(s))β∆s]

1
α ∆t ≤ 2

−β
α k1− β

α (1.18)

Let t∗ = min{t0, inf
t>t0

g(t)}, B(t) is defined as Theorem 1.1. Defined a set :

Ω = {Y = {y(t)} ∈ B(t) k ≤ y(t) ≤ 2kt, t ≥ t∗}

Define the mapping F : Ω→ B(t) as follows:


Fy(t) = k +
∫ t

t0

∫ ∞
s [

∫ ∞
r (σ(u) − r)q(u)(y(g(u)))β∆u)∆r]

1
α ∆s, t ≥ t0

Fy(t) = k t∗ ≤ t ≤ t0
(1.19)

The remainer is similar to theorem 2.1. there exists a fixed point y,such that y(t) is a positive solution of
type II2.
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