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Abstract: In Seemingly Unrelated Regressions (SUR) model, disturbances
are assumed to be correlated across equations and it will be erroneous to as-
sume that disturbances behave independently, hence, the need for an efficient
estimator. Literature has revealed gain in efficiency of the SUR estimator over
the Ordinary Least Squares (OLS) estimator when the errors are correlat-
ed across equations. This work, however, considers methods of estimating
a set of regression equations when disturbances are both contemporaneously
and serially correlated. The Feasible Generalized Least Squares (FGLS), OL-
S and Iterative Ordinary Least Squares (IOLS) estimation techniques were
considered and the form of autocorrelation examined. Prais-Winstein trans-
formation was conducted on simulated data for the different sample sizes used
to remove autocorrelations. Results from simulation studies showed that the
FGLS was efficient both in small samples and large samples. Comparative
performances of the estimators were investigated on the basis of the stan-
dard errors of the parameter estimates when estimating the model with and
without AR(1) and the results showed that the estimators performed better
with AR(1) as the sample size increased especially from 20. On the criterion
of the Root Mean Square, the FGLS was found to have performed better
with AR(1) and it was revealed that bias reduces as sample size increases. In
all cases considered, the SUR estimator performed best. It was consistently
most efficient than the OLS and IOLS estimators.
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1. INTRODUCTION

Seemingly Unrelated Regressions (SUR) is a generalization of a linear regression
model that consists of several regression equations, each having its own dependen-
t variable and potentially different sets of exogenous explanatory variables. Each
equation is a valid linear regression on its own and can be estimated separately,
which is why the system is called seemingly unrelated, although some authors sug-
gest that the term seemingly related would be more appropriate, since the error
terms are assumed to be correlated across the equations. Each equation satisfies
the assumptions of the Classical Linear Regression Model (CLRM).

The SUR, which considers a joint modelling, is a special case of the multivariate
regression model (Zellner, 1962 & 1971). It is used to capture the effect of different
covariates allowed in the regression equations. Seemingly unrelated regressions allow
for estimation of multiple models simultaneously while accounting for the correlated
errors. The contemporaneous correlation, which could account for some common
unnoticeable or unquantifiable effects, which the disturbances of several separate
regression equations are expected to reflect is the correlation between disturbances
in different equations.

The SUR estimation technique which enables an efficient joint estimation of all
the regression parameters was first reported by Zellner (1962) which involves the
application of Aitken’s Generalised Least Squares (AGLS), (Aitken 1934) to the
whole system of equations. He stressed the fact that the gain in efficiency can be
quite large if “independent” variables in different equations are not highly correlated
and if disturbance terms in different equations are highly correlated.

Many scholars have also developed several other estimators for different SUR
models to address different situations being considered. For instance, Guang H.
Wan and William E. Griffiths (1989) proposed production functions in the form of
Seemingly Unrelated Regressions (SUR) with errors that are heteroscedastic and
that contain cross-section and time components. They then applied the SUR in the
analysis of cross-section time-series data for rice, wheat and maize production in
China.

Aiyi Liu (1993) proposed an efficient method for estimating seemingly unrelated
multivariate regression models. He noted that the gain in efficiency can be par-
tially assessed by Hotelling’s Canonical correlations. He applied this method to
the estimation problem and the concomitants selection problem in growth curve
models.

Hirokazu Takada, Aman Ullah and Yu-Min Chen (1995) presented methods of
resolving the problem of violating the premise of non-singularity when using the
two-step Generalized Least Squares (GLS) estimator proposed by Zellner for SUR
models and proposed an efficient procedure. They further studied the empirical
analysis of the diffusion processes of videocassette recorders across different ge-
ographic regions in the US, which exhibits a Singular Covariance matrix. The
empirical results showed that the procedures efficiently dealt with the problem and
provided plausible estimation results. Jackson (2002) developed an estimator for
SUR system that could be used to model election returns in a multiparty elec-
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tion. Sparks (2004) developed a SUR procedure that is applicable to environmental
situations especially when missing and censored data are inevitable. In share equa-
tion systems with random coefficients, Mandy & Martins-Filho (1993) proposed a
consistent and asymptotically efficient estimator for SUR systems that have addi-
tive heteroscedastic contemporaneous correlation. They followed Amemiya (1977)
by using GLS to estimate the parameters of the covariance matrix. Furthermore,
Lang, Adebayo & Fahrmeir (2002), Adebayo (2003), and Lang et al. (2003) in their
works also extended the usual parametric SUR model to Semiparametric SUR (S-
SUR) and Geoadditive SUR models within a Bayesian context. Also O’Donnell et
al. (1999) and Wilde et al. (1999) developed SUR estimators that are applicable
in agricultural economics. More recently, Foschi (2004), Foschi et al. (2003) and
Foschi & Kontoghiorghes (2002, 2003) provided some new numerical procedures
that could successively and efficiently solve a large scale of SUR model. Several
other estimators proposed within the SUR frame- work could be found in Telser
(1964), Parks (1967), Kakwani (1967), Kmenta & Gilbert (1968), Revankar (1974
& 1976), Mehta & Swamy (1976), Dwivedi & Srivastava (1978), Maeshiro (1980),
Blattberg & George (1991), Kontoghiorghes & Clerke (1995), Kontoghiorghes &
Dinenis (1996, 1997), Smith & Kohn (2000) and Kontoghiorghes (2003).

In all the estimation procedures developed for different SUR situations as re-
ported above, Zellners basic recommendation for high contemporaneous correlation
between the error vectors with uncorrelated explanatory variables within each re-
sponse equations was also maintained. More recently, Alaba et al. (2010) reaffirmed
the gain in efficiency of the GLS estimator over the OLS estimator when the errors
are contemporaneously correlated. In this paper, we aim at estimating the param-
eters of a SUR model when the disturbance vector is generated by a stationary,
first-order autoregressive process using the standard OLS, FGLS and the Iterated
Ordinary Least Squares (IOLS) estimation procedures.

We shall equally attempt to examine the performances of the estimators at vary-
ing degree of estimated autocorrelation coefficients and sample sizes using estimated
variance covariance matrices for each sample size considered.

The rest of the paper is organized as follows. In the second section, materials
and methods are presented and the parametric SUR framework discussed while the
simulation studies carried out in the work is discussed in Section 3. Results and
detailed discussions are presented in Section 4 while Section 5 gives some concluding
remarks.

2. MATERIALS AND METHODS

2.1. Parametric SUR Framework

We may write a common multiple equation structure as

Y1 = X1β1 + ε1,

Y2 = X2β2 + ε2,

...

YM = XMβM + εM .

(2.1)
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There are M equations and T observations in the sample of data used to estimate
them. The Seemingly Unrelated Regressions (SUR) model above is:

Yi = Xiβi + εi, i = 1, 2, ...,M. (2.2)

where Yi is a T ×1 vector of observation on the dependent variable y; Xi is a T ×Ki

matrix of non-stochastic regressors; βi is a Ki × 1 vector of unknown regression
coefficients and εi is a T × 1 vector of unobservable disturbances.

We can then further compress the notion by stacking the M equations in the
compact form

y = Xβ + ε (2.3)

where y is an MT × 1 vector, X is an MT × k matrix, β is a k × 1 and ε is an
MT × 1 vector of disturbances. i.e,

y =


y1
y2
...
yM

 , X =


X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . XM

 , β =


β1
β2
...
βM

 , and ε =


ε1
ε2
...
εM

 .
and with E(ε/X1, X2, ..., XM ) = 0, E(εε′/X1, X2, ..., XM ) = Ω.

From the stacked model in (2.3), the Ordinary Least Squares (OLS) estimator
of the parameter β is given by

β̂OLS = (X ′X)−1X ′Y (2.4)

We assume that a total of T observations are used in estimating the parameters

of the M equations. Each equation involves Km regressors, for a total of K =
M∑
i=1

Ki.

We will require T > Ki. The data are assumed to be well behaved. We also assume
that disturbances are uncorrelated across observations. Therefore,

E[εitεjs|X1, X2, ..., XM ] = σij , if t = s and 0 otherwise.

The disturbance formulation is therefore,

E[εiε
′
j |X1, X2, ..., XM ] = σijIT

or

E[εε′|X1, X2, ..., XM ] = Ω =


σ11I σ12I . . . σ1MI
σ21I σ22I . . . σ2MI

...
...

. . .
...

σM1I σM2I . . . σMMI

 (2.5)

The specification of the covariance structure is simplified by arranging the data
by observation t, rather than by equation. The disturbance vector, εt = (ε1t, ε2t, ..., εMt)

′

is generated by a stationary, first-order autoregressive process.

ε =


ε1t
ε2t
...

εMt

 =


ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
. . .

...
0 0 . . . ρM




ε1t−1
ε2t−1

...
εMt−1

+


v1t
v2t
...

vMt

 (2.6)
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or in matrix notation, εt = Rε(t−1) + v(t), where the v(t) are Independent and
Identically Distributed random variables (IID) with E(v(t)) = 0 and covariance
matrix

E(v(t)v
′
(t)) = Σ =


σ11 σ12 . . . σ1M
σ21 σ22 . . . σ2M

...
...

. . .
...

σM1 σM2 . . . σMM

 (2.7)

The diagonal structure of the R matrix implies that each equation or cross-
section unit exhibits its own serial correlation coefficient, and the innovations v(t)
are contemporaneously correlated with covariance matrix Σ.

The most general model that is usually considered involves the diagonal R ma-
trix, with M parameters, specifying the serial correlation together with a full, sym-
metric Σ matrix, with M(M + 1)/2 parameters, specifying the contemporaneous
covariance. This implies that in (2.5), Ω = Σ⊗ I, and Ω−1 = Σ−1 ⊗ l.

If Ω is known and denoting the ijth element of Σ−1 by σij , the generalized least
squares estimator for the coefficients in this model is:

β̂ =
(
X ′Ω−1X

)−1
X ′Ω−1y (2.8)

i.e.,

β̂ =
[
X ′(Σ−1 ⊗ l)X

]−1
X ′(Σ−1 ⊗ l)y

Expanding the Kronecker products gives

β̂ =


σ11X ′1X1 σ12X ′1X2 . . . σ1MX ′1XM

σ21X ′2X1 σ22X ′2X2 . . . σ2MX ′2XM

...
...

. . .
...

σM1X ′MX1 σM2X ′MX2 . . . σMMX ′MXM


−1



M∑
1
jσ1jX ′1yj

M∑
1
jσ2jX ′2yj

...
M∑
1
jσMjX ′Myj


(2.9)

This is the asymptotic covariance matrix for the GLS estimator. Assume that
Xi = Xj = X, so that X ′iXj = X ′X ∀i, j, in (2.9), the inverse matrix becomes(
Σ−1 ⊗X ′X

)−1
=
[
Σ⊗ (X ′X)−1

]
and each term X ′yj = X ′Xbj . if we then move

the common term X ′X out of the summations, we obtain

β̂ =


σ11(X ′X)−1 σ12(X ′X)−1 . . . σ1M (X ′X)−1

σ21(X′X)−1 σ22(X ′X)−1 . . . σ2M (X ′X)−1

...
...

. . .
...

σM1(X ′X)−1 σM2(X ′X)−1 . . . σMM (X ′X)−1


−1



(X ′X)
M∑
1
jσ1lbl

(X ′X)
M∑
1
jσ2lbl

...

(X ′X)
M∑
1
jσMlbl


(2.10)

The inverse of Ω, which is MT ×MT , can be difficult to compute when M and
T are large. In addition, in this work, Ω is not known and has to be estimated. The
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data is transformed for each sample size using the Prais-Winstein transformation
technique to remove serial correlation then applying the FGLS estimator.

The IOLS is an extension of the OLS. In the IOLS, estimation is performed
on equation-by-equation basis, but every equation includes as additional regressors
the residuals from the previously estimated equations in order to account for the
cross-equation correlations, the estimation is run iteratively until convergence is
achieved.

3. SIMULATION STUDIES

Small sample properties of various econometric techniques are studied from simu-
lated data in Monte Carlo studies and not with direct application of the techniques
to actual observations. This approach is due to the fact that actual observation-
s on economic variables are usually infected by multicollinearity, autocorrelation,
errors of measurement and other econometric “defects” and in some cases simulta-
neously. Studies on small sample properties of estimators are usually based on the
assumption of the simultaneous occurrence of all these problems.

By Monte Carlo approach we can generate data sets and stochastic terms that
are free from these problems, thereby generating data resembling those obtained
from controlled experiments. We consider a system of SUR equations having three
distinct linear regression equations with each of them being contemporaneously and
serially correlated with the structural form

y1 = 1.3 + 0.6x11 + 0.5x12 + ε1

y2 = 1.6 + 0.8x11 + 0.2x12 + ε2

y3 = 1.9 + 0.2x11 + 0.7x12 + ε3

(3.1)

where the explanatory variables (x11, x12, x21, x22, x31, x32) are generated from uni-
form distribution for the various sample sizes of 10, 20, 30, 100 and 1000.

Then, ε = (ε1, ε2, ε3)′ are series of random normal deviates of required lengths
10, 20, 30, 100 and 1000 that are generated, standardized and appropriately trans-
formed to have specific variance-covariance matrices Σ estimated in the model.
They are transformed to be independently and identically distributed as ε ∼ (0,Σ)
where Σ are the conditional variance-covariance matrices estimated in the model
for each sample size and are decomposed appropriately by non-singular triangular
matrices P (Cholesky decompositions) such that:

P ′P = Σ̂.

Various programs were written and executed using the R statistical software
package. The performance of each of these estimators (OLS, IOLS and FGLS) was
assessed by the standard errors of the parameter estimates over 1000 replications.
This permits their assessments in terms of variations and unbiasedness.

4. RESULTS AND DISCUSSIONS

4.1. Results

The summary of the results when the model is estimated with and without AR(1)
are presented in the tables below.
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Table 1
Parameter Estimates of Estimators Across Different Sample Sizes with
Estimated Coefficients of AR(1)

T = 10 T = 20
Regressions OLS IOLS FGLSAR(1) OLS IOLS FGLSAR(1)

y1 0.01 0.1
β10 = 1.3 1.3002 1.3002 1.4173 2.0267 2.0267 2.0143
β11 = 0.6 0.8355 0.8355 0.8723 -1.0491 -1.0491 -1.0103
β12 = 0.5 0.5935 0.5935 0.3755 0.4475 0.4475 0.4308
y2 -0.2 0.2
β10 = 1.6 2.4154 2.4317 2.4380 1.7847 1.7840 1.7357
β11 = 0.8 -0.0576 -0.0531 0.0935 -1.1950 -1.2073 -1.1182
β12 = 0.2 -0.8142 -0.8487-1.0270 1.0497 1.0649 1.0962
y3 -0.2 0.2
β10 = 1.9 3.4240 3.5024 3.3285 2.2812 2.4090 2.3821
β11 = 0.2 -1.0761 -1.9190-1.6327 -1.5447 -1.7524 -1.7177
β12 = 0.7 0.8050 1.7482 1.6786 0.7975 0.6711 0.7092

T = 30 T = 100
Regressions OLS IOLS FGLS AR(1) OLS IOLS FGLS AR(1)

y1 0.4 0.3
β10 = 1.3 1.1684 1.1684 1.1365 0.8091 0.8091 0.8139
β11 = 0.6 -0.3081 -0.3081-0.2442 1.0311 1.0311 1.0437
β12 = 0.5 0.4408 0.4408 0.4947 0.6821 0.6821 0.6564
y2 0.3 0.3
β10 = 1.6 1.6036 1.5866 1.5800 1.1938 1.2074 1.2059
β11 = 0.8 0.2736 0.2806 0.2632 0.1212 0.1303 0.1370
β12 = 0.2 -0.5706 0.5302 -0.4915 0.2601 0.2117 0.2095
y3 0.3 0.3
β10 = 1.9 1.2608 1.2969 1.2911 1.0277 1.0227 1.0233
β11 = 0.2 0.8124 0.9054 0.8718 0.6811 0.7073 0.7068
β12 = 0.7 0.3315 0.1148 0.1704 0.9764 0.9634 0.9621

T = 1000
Regressions OLS IOLS FGLS AR(1)

y1 0.05
β10 = 1.3 1.1091 1.1091 1.1075
β11 = 0.6 0.6111 0.6111 0.6183
β12 = 0.5 0.7760 0.7760 0.7720
y2 0.07
β10 = 1.6 1.4027 1.4062 1.4027
β11 = 0.8 0.8904 0.8906 0.8970
β12 = 0.2 0.2848 0.2770 0.2782
y3 0.03
β10 = 1.9 1.6888 1.6849 1.6849
β11 = 0.2 0.3010 0.3049 0.3048
β12 = 0.7 0.7700 0.7744 0.7744
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Table 2
Standard Errors of the Parameter Estimates with Estimated
Coefficients of AR(1)

T = 10 T = 20
Regressions OLS IOLS FGLSAR(1)OLS IOLS FGLSAR(1)

y1 0.01 0.1
β10 = 1.3 0.3661 0.3661 0.2836 0.4961 0.4961 0.4870
β11 = 0.6 0.4778 0.4778 0.3498 0.6441 0.6441 0.6310
β12 = 0.5 0.5437 0.5437 0.3953 0.6351 0.6351 0.6216
y2 -0.2 0.2
β10 = 1.6 0.7213 0.9006 0.6788 0.4661 0.4798 0.4607
β11 = 0.8 0.7892 0.8617 0.7604 0.8395 0.8665 0.8262
β12 = 0.2 1.0450 1.4799 1.0034 0.8660 0.8950 0.8495
y3 -0.2 0.2
β10 = 1.9 1.1071 0.9007 0.8176 0.4641 0.5445 0.4504
β11 = 0.2 1.1870 1.0055 0.8627 0.7429 0.8335 0.7161
β12 = 0.7 1.5288 1.1706 1.0968 0.7051 0.8170 0.6801

T = 30 T = 100
Regressions OLS IOLS FGLS AR(1) OLS IOLS FGLS AR(1)

y1 0.4 0.3
β10 = 1.3 0.3540 0.3540 0.3514 0.1980 0.1980 0.1925
β11 = 0.6 0.7704 0.7704 0.7621 0.3151 0.3151 0.3030
β12 = 0.5 0.6554 0.6554 0.6487 0.3277 0.3277 0.3154
y2 0.3 0.3
β10 = 1.6 0.5490 0.5835 0.5486 0.1810 0.1762 0.1766
β11 = 0.8 0.7756 0.7932 0.7750 0.3485 0.3391 0.3374
β12 = 0.2 0.8553 0.9570 0.8545 0.2916 0.2844 0.2822
y3 0.3 0.3
β10 = 1.9 0.2478 0.2580 0.2461 0.2031 0.2041 0.2021
β11 = 0.2 0.5172 0.5744 0.5115 0.3106 0.3151 0.3084
β12 = 0.7 0.4927 0.5873 0.4872 0.3266 0.3280 0.3247

T = 1000
Regressions OLS IOLS FGLS AR(1)

y1 0.05
β10 = 1.3 0.0819 0.0819 0.0818
β11 = 0.6 0.1118 0.1118 0.1117
β12 = 0.5 0.1132 0.1132 0.1131
y2 0.07
β10 = 1.6 0.0789 0.0789 0.0787
β11 = 0.8 0.1106 0.1106 0.1104
β12 = 0.2 0.1099 0.1101 0.1097
y3 0.03
β10 = 1.9 0.0806 0.0807 0.0805
β11 = 0.2 0.1070 0.1071 0.1069
β12 = 0.7 0.1056 0.1057 0.1055
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Table 3
Parameter Estimates of Estimators Across Different Sample Sizes
Without AR(1)

T = 10 T = 20
Regressions OLS IOLS FGLS OLS IOLS FGLS

y1
β10 = 1.3 1.3205 1.3205 1.3939 2.3187 2.3187 2.3862
β11 = 0.6 0.8311 0.8311 0.7953 -1.0915 -1.0915 -1.2104
β12 = 0.5 0.5840 0.5840 0.4946 0.3182 0.3182 0.3151
y2
β10 = 1.6 2.2457 2.2898 2.0585 2.3751 2.3843 2.3400
β11 = 0.8 -0.0456 -0.0398 0.2714 -1.1079 -1.1465 -1.1062
β12 = 0.2 -1.2234 -1.3222 -1.1830 0.6219 0.6442 0.6946
y3
β10 = 1.9 3.0943 3.2071 3.1492 2.3412 2.5906 2.5216
β11 = 0.2 -1.4445 -2.3865 -2.1767 -1.0755 -1.3728 -1.2981
β12 = 0.7 0.9364 1.8880 1.7415 1.3623 1.1274 1.2019

T = 30 T = 100
Regressions OLS IOLS FGLS OLS IOLS FGLS

y1
β10 = 1.3 2.0268 2.0268 1.9344 1.1919 1.1919 1.1666
β11 = 0.6 -0.6025 -0.6025 -0.4366 0.9521 0.9521 1.0081
β12 = 0.5 0.4083 0.4083 0.4490 0.6797 0.6797 0.6755
y2
β10 = 1.6 1.8435 1.8205 1.7867 1.6132 1.6666 1.6655
β11 = 0.8 0.9122 0.8782 0.8678 0.3719 0.3561 0.3578
β12 = 0.2 -0.5117 -0.4273 -0.3479 0.1853 0.0923 0.0928
y3
β10 = 1.9 1.6613 1.6994 1.6960 1.6039 1.5996 1.6001
β11 = 0.2 0.8763 1.0252 0.9719 0.5895 0.6120 0.6116
β12 = 0.7 0.5041 0.2562 0.3225 0.8042 0.7895 0.7888

T = 1000
Regressions OLS IOLS FGLS

y1
β10 = 1.3 1.1681 1.1681 1.1662
β11 = 0.6 0.6158 0.6158 0.6229
β12 = 0.5 0.7698 0.7698 0.7664
y2
β10 = 1.6 1.5021 1.5061 1.5023
β11 = 0.8 0.8970 0.8970 0.9029
β12 = 0.2 0.2909 0.2827 0.2845
y3
β10 = 1.9 1.7396 1.7356 1.7356
β11 = 0.2 0.3037 0.3074 0.3074
β12 = 0.7 0.7701 0.7745 0.7745
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Table 4
Standard Errors of the Parameter Estimates Without AR(1)

T = 10 T = 20
Regressions OLS IOLS FGLS OLS IOLS FGLS

y1
β10 = 1.3 0.3680 0.3680 0.2696 0.5534 0.5534 0.5444
β11 = 0.6 0.4776 0.4776 0.3277 0.6377 0.6377 0.6253
β12 = 0.5 0.5444 0.5444 0.3689 0.6619 0.6619 0.6504
y2
β10 = 1.6 0.8045 0.9573 0.7200 0.5697 0.5801 0.5578
β11 = 0.8 0.9028 0.9756 0.8413 0.8628 0.8803 0.8399
β12 = 0.2 1.2548 1.6278 1.1571 0.8806 0.8970 0.8566
y3
β10 = 1.9 1.0631 0.7652 0.7448 0.5962 0.7125 0.5822
β11 = 0.2 1.4012 1.0399 0.9546 0.8159 0.9236 0.7934
β12 = 0.7 1.5605 1.0707 1.0551 0.7279 0.8528 0.7086

T = 30 T = 100
Regressions OLS IOLS FGLS OLS IOLS FGLS

y1
β10 = 1.3 0.5705 0.5705 0.5624 0.2834 0.2834 0.2740
β11 = 0.6 0.7938 0.7938 0.7807 0.3634 0.3634 0.3494
β12 = 0.5 0.8279 0.8279 0.8147 0.3559 0.3559 0.3422
y2
β10 = 1.6 0.8520 0.8692 0.8497 0.2570 0.2496 0.2490
β11 = 0.8 0.8753 0.8961 0.8729 0.3578 0.3465 0.3448
β12 = 0.2 0.9665 1.0158 0.9635 0.3253 0.3167 0.3134
y3
β10 = 1.9 0.3720 0.3811 0.3672 0.3020 0.3053 0.3014
β11 = 0.2 0.5960 0.6783 0.5862 0.3394 0.3468 0.3386
β12 = 0.7 0.5604 0.6726 0.5515 0.3629 0.3664 0.3622

T = 1000
Regressions OLS IOLS FGLS

y1
β10 = 1.3 0.0858 0.0858 0.0857
β11 = 0.6 0.1120 0.1120 0.1119
β12 = 0.5 0.1133 0.1133 0.1132
y2
β10 = 1.6 0.0845 0.0845 0.0843
β11 = 0.8 0.1114 0.1113 0.1112
β12 = 0.2 0.1106 0.1108 0.1104
y3
β10 = 1.9 0.0828 0.0829 0.0827
β11 = 0.2 0.1071 0.1072 0.2070
β12 = 0.7 0.1058 0.1058 0.1057
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4.2. Discussion of Results

Relevant discussions of the simulation results obtained in this work are presented
in this section. The results of the simulation studies generally show that all the
three estimators (OLS, IOLS and FGLS) are increasingly efficient as the sample
size increases especially from 20. This is evident from the tables and the list of
figures given in Appendixes A and B.

From Tables 1 and 2, the parameter estimates and their standard errors when the
model is estimated with AR(1) are presented. The parameter estimates obtained
revealed that the estimates get closer to the assumed parameters as sample size
increased especially from 20.

The estimates and their standard errors obtained using OLS were the same
in the first regressions with that of IOLS and consistently lower than that of the
IOLS as the sample size increased and converged in first and second regressions for
sample size of 1000. The standard errors of the parameter estimates using FGLS
were consistently lower than that of the OLS and IOLS in all the regressions as the
sample size increased. The coefficients of the first order autoregressive disturbances
obtained increased as sample size increased and diminished at sample size of 1000
with the best coefficients obtained at sample sizes of 30 and 100. The biases reduced
as sample size increased.

The same results were valid when estimating the model without AR(1) as shown
in Tables 3 and 4 but better estimates and standard errors were obtained when the
model is estimated with AR(1).

5. CONCLUSION

From the results obtained, it is revealed that FGLS estimator is consistently better
than both the equation-by-equation technique of OLS and IOLS in estimating a sys-
tem of regression equations whose disturbances are contemporaneously and serially
correlated. Though, the three estimators increase in their efficiencies as the sam-
ple size increases, however SUR supremacy over the OLS and IOLS is maintained
whether or not the disturbances are inclusively serially correlated. It is established
that the estimators performed better with contemporaneous and serial correlations
of AR(1) than without serial correlations.
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APPENDIX A: GRAPHICAL DESCRIPTIONS OF ESTI-
MATORS

Figure 1
Description of Intercept β10 Across the Sample Sizes

The plot of standard error values for the intercept β10 against different sample sizes
for OLS, IOLS and FGLS (SUR) estimators for model y1 is described above. The
plot revealed that there is no difference between OLS and IOLS for the intercept in
the first regression. It indicated decrease in efficiency for small sample sizes of 10
and 20 using OLS and IOLS. The plot also revealed appreciable increase in efficiency
(lower standard errors) of the three estimators as sample size increases from 30 with
FGLS (SUR) estimator showing best performance over OLS and IOLS as sample
size increases.

Figure 2
Description of Slope β11 Across the Sample Sizes

The plot of standard error values for the slope β11 against different sample sizes
for OLS, IOLS and FGLS (SUR) estimators for model y1 is described above. The
plot revealed that there is no difference between OLS and IOLS for the slope β11
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in the first regression. It indicated decrease in efficiency for small sample sizes 10
through 30 using OLS and IOLS. The plot also revealed appreciable increase in
efficiency (lower standard errors) of the three estimators as sample size increases
from 30 with FGLS (SUR) estimator showing best performance over OLS and IOLS.

Figure 3
Description of Slope β12 Across the Sample Sizes

The plot of standard error values for the slope β12 against different sample sizes
for OLS, IOLS and FGLS (SUR) estimators for model y1 is described above. The
plot revealed that there is no difference between OLS and IOLS for the slope β11
in the first regression. It indicated decrease in efficiency for small sample sizes 10
through 30 using OLS and IOLS. The plot also revealed appreciable increase in
efficiency (lower standard errors) of the three estimators as sample size increases
from 30 with FGLS (SUR) estimator showing best performance over OLS and IOLS.

Figure 4
Description of Intercept β20 Across the Sample Sizes
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The plot of standard error values for the intercept β20 against different sample
sizes for OLS, IOLS and FGLS (SUR) estimators for model y2 is described above.
Though there were zigzag movements in the efficiency of the three estimators in
small sample sizes (10 through 30) but appreciable increase in the efficiency of the
three estimators in large samples (100 through 1000) was revealed. The plot also
revealed that the OLS performed better than the IOLS in both small and large
samples with the SUR (FGLS) estimator showing best performance over OLS and
IOLS in all cases.

Figure 5
Description of Slope β21 Across the Sample Sizes

The plot of standard error values for slope β21 against different sample sizes for
OLS, IOLS and FGLS (SUR) estimators for model y2 is described above. The plot
revealed that the OLS was better than the IOLS in small samples and conversely
in large samples but the SUR estimator performed best in all cases.

Figure 6
Description of Slope β22 Across the Sample Sizes
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The plot of standard error values for slope β22 against different sample sizes for
OLS, IOLS and FGLS (SUR) estimators for model y2 is described above. The plot
revealed that the OLS was better than the IOLS in both small and large samples
but the SUR estimator consistently performed best in all cases.

Figure 7
Description of Intercept β30 Across the Sample Sizes

The plot of standard error values for the intercept β30 against different sample
sizes for OLS, IOLS and FGLS (SUR) estimators for model y3 is described above.
The plot revealed that IOLS performed better in small sample size of 10 but from
small sample size 20 through large sample size 1000, OLS consistently performed
better than IOLS with the SUR estimator showing best performance in all cases.

Figure 8
Description of Slope β31 Across the Sample Sizes

The plot of standard error values for slope β31 against different sample sizes for
OLS, IOLS and FGLS (SUR) estimators for model y3 is described above. The plot
revealed that IOLS performed better than OLS in small sample size 10 but from
small sample size 20 through large sample size 1000, OLS consistently performed
better than IOLS with the SUR estimator showing best performance in all cases.
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Figure 9
Description of Slope β32 Across the Sample Sizes

The plot of standard error values for slope β32 against different sample sizes for
OLS, IOLS and FGLS (SUR) estimators for model y3 is described above. The plot
revealed that IOLS performed better than OLS in small sample size of 10 but as
sample size increases from 20, OLS consistently performed better than IOLS with
the SUR estimator showing best performance in all cases.

APPENDIX B: GRAPHICAL DESCRIPTION OF THE PER-
FORMANCE OF SUR ESTIMATOR USING BIAS AS A
CRITERION

Figure 10
Graph of Bias Versus Sample Size

From the graphical description above, it is deduced that bias reduces as sample size
increases.
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