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Abstract: In this paper, the crossing number of Cartesian products of a
specific 5-vertex graph with a star are given, and this fills up the crossing
number list of Cartesian products of all 5-vertex graphs with stars (presented
by Marian Klesc).
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1. INTRODUCTION

The graph theory terminology not defined here refer to [1], and with no special
explanation all the related graphs are simple connected graphs. Let G be a simple
graph with set vertex V and edge set E. The crossing number cr(G) of a graph G is
the minimum number of edge crossings in any drawing of G. It is well known that
the crossing number of a graph is attained only in good drawings of the graph, which
are those drawings with no edge crossing itself, no adjacent edges cross each other,
no two edges intersecting more than once, and no three edges having a common
point expected as their common vertex. Here make φ a good drawing of the graph
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G, with the number of crossings in φ denoted by crφ(G). If φ is a good drawing of
G satisfying crφ(G) = cr(G), then φ is called an optimal drawing of G. For more
on the theory of crossing numbers, we refer to [2].

The calculation of the crossing number of graph is a classical problem, and yet
it is also an elusive one. In fact, Garey and Johnson have proved that in general the
problem of determining the crossing number of a graph is a NP -complete problem
in [3].

The Cartesian product G1×G2 of graphs G1 and G2 has vertex set V (G1×G2) =
V (G1)× V (G2) and edge set

E(G1 ×G2) = {{(ui, vj) , (um, vn)} : ui = um and {vj , vm} ∈ E(G2)} ,
or {{ui, un ∈ E(G1)} and vj = vm}

At present, only few families of graphs with arbitrarily large crossing number for
the plane are known. Most of them are Cartesian products of special graphs. Let
cn and Pn be the cycle and the path with n vertexes, and Sn denotes the star k1n.
The crossing numbers of Cartesian products of all 4-vertexes graphs with cycles are
determined in [4] and with paths and stars in [5]. There are several known exact
results on the crossing numbers of Cartesian products of paths, cycles and stars with
5-vertex graphs in [6–10], Marian Klesc gave a description of Cartesian products of
all 5-vertex graphs with paths, cycles and stars by a table , whose crossing numbers
are known. In this paper, the crossing number of G18 × Sn are given (see Figure
1(a) for G18), and this fills up the crossing number list of Cartesian products of all
5-vertex graphs with stars. The main result of this paper is the following theorems.

Theorem 1: For n ≥ 1, cr (Hn) = Z (5, n) + n+
⌊
n
2

⌋
.

Theorem 2: For n ≥ 1, cr (G18 × Sn) = Z (5, n) + 2n +
⌊
n
2

⌋
. (For any real

number x, bxc denotes the maximum integer not greater than x).

2. CROSSING NUMBER OF G18 × Sn

Firstly, let us denote by Hn the graph obtained by adding eight edges to the graph
k5,n (containing n vertex of degree 5 and one vertex of degree n + 2, two vertex
of degree n + 3, two vertexes of degree n + 4, and 5n + 8 edges (see Figure 1(b)).
Consider now the graph G18 in Figure 1(a). It is easy to see that Hn = G18 ∪K5,n,
where the five vertexes of degree n in k5,n and the vertexes of G18 are the same.
For i = 1, 2, ..., n, let T i denote the subgraph of k5,n which consists of the five edges
incident with a vertex of degree five in k5,n, thus we have

Hn = G18 ∪ k5,n = G18 ∪
(
T 1 ∪ T 2 ∪ · · · ∪ Tn

)
Let φ be an optimal drawing of Hn (see Figure 1(b)). Under the drawing φ, we

observe the supper bound of Hn, therefore we obtain that
Proposition 1

cr (Hn) ≤ Z (5, n) + n+
⌊
n
2

⌋
We now explain some notations. Let A and B be two sets of edges of a graph G.

We use the sign crφ (A,B) to denote the number of all crossings whose two crossed
edges are respectively in A and in B. Especially, crφ (A,A) is simply written as
crφ (A). If G has the edge set E, the two signs crφ (G) and crφ (E) are essentially
the same. The following Lemma 1, which can be shown easily, is usually used in
the proofs of our theorem.
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Figure 1
(a) G18; (b) A Good Drawing of Hn; (c) Ti

Lemma 1 Let A,B,C be mutually disjoint subsets of E, then

(1)crφ(A ∪B) = crφ(A) + crφ(A,B) + crφ(B);

(2)crφ(A ∪B,C) = crφ(A,C) + crφ(B,C),
where φ is a good drawing of E.

On the crossing numbers of complete bipartite graph km,n, Kleitman obtained
the following result in [10].

Lemma 2 If m ≤ 6, then cr (km,n) = Z (m,n),

where Z (m,n) =

⌊
m

2

⌋⌊
m− 1

2

⌋⌊
n

2

⌋⌊
n− 1

2

⌋
.

Lemma 3 cr(H1) = 1, cr(H2) = 3

Proof. On the one hand, because H1 contains the subgraph k3,3 and cr(k3,3) = 1,
we have that cr(H1) ≥ 1. On the other hand, by Proposition 1, cr(H1) ≤ 1. This
implies that cr(H1) = 1.

Then we prove that cr(H2) = 3. On the one hand, by Proposition 1, cr(H2) ≤ 3.
On the other hand, we prove that cr(H2) ≥ 3; we may assume that crφ(H2) = x,
then the graph H2 in the drawing φ will turn into a planar graph by removing x
edges. According to Euler Theorem, v − e + f = 2, that is 7 − (18 − x) + f = 2,
and f = 13− x, and because 2e ≥ 3f , that is 2(18− x) ≥ 3(13− x), x ≥ 3. Hence
cr(H2) = 3.

Lemma 4 Let φ be a good drawing of Hn, if there exist T 1 and T 2, such that
crφ(T 1 ∪ T 2) = 0, then crφ(G18, T

1 ∪ T 2) ≥ 3, crφ(T 3, T 1 ∪ T 2) ≥ 4.

Figure 2
(a)A Good Drawing of T1 ∪T2 when crφ(T1 ∪T2) = 0; (b) A
Good Drawing of G18 ∪Ti when crφ(G18,T

i) = 0
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Let H =
〈{
T 1 ∪ T 2

}〉
be the edge-induced subgraph of H3. Obviously, H

is isomorphic to the complete bipartite graph with two division {t1, t2} and
{v1, v2, v3, v4, v5}. Since crφ(T 1 ∪ T 2) = 0, the subdrawing φ∗ of H induced
by φ must be isomorphic to Figure 2(a). As shown in Figure 2(a), each edge of the
subset of edges {v1v4, v2v5, v2v4} and the edge set T 1 ∪ T 2 has at least one cross,
so crφ(G18, T

1 ∪ T 2) ≥ 3. Because T 1 ∪ T 2 ∪ T 3 is isomorphic to the complete two
bipartite graph K3,5, then crφ(T 3, T 1 ∪ T 2) ≥ cr (K3,5) = 4.

Theorem 1: cr (Hn) = Z (5, n) + n+

⌊
n

2

⌋
.

The drawing in Figure 1(b) shows that cr (Hn) ≤ Z (5, n) + n+

⌊
n

2

⌋
. Thus, in

order to prove Theorem 1, we need only to prove that cr (Hn) ≥ Z (5, n) +n+

⌊
n

2

⌋
for any drawing φ of Hn. We prove the reverse inequality by induction on n. The
cases n = 1 and n = 2 are trivial.

Case 1 If there exist 1 ≤ i 6= j ≤ n, such that crφ(T i ∪T j) = 0, then cr (Hn) ≥

Z (5, n) + n+

⌊
n

2

⌋
.

Without loss of generality, we may assume that crφ(Tn−1∪Tn) = 0. By Lemma
3, crφ(G18, T

n−1 ∪ Tn) ≥ 3 and crφ(T i, Tn−1 ∪ Tn) ≥ 4 (for any i = 1, 2, ..., n− 2).
This implies that crφ(Hn−2, T

n−1 ∪ Tn) ≥ 4 (n− 2) + 3 = 4n − 5, since Hn =
Hn−2 ∪ (Tn−1 ∪ Tn), we have

crφ (Hn) = crφ(G18 ∪ T 1 ∪ T 2 · · · ∪ Tn−2 ∪ Tn−1 ∪ Tn)
= crφ(Hn−2 ∪ Tn−1 ∪ Tn) = crφ(Hn−2) + crφ(Hn−2, T

n−1 ∪ Tn)

≥ z (5, n− 2) + (n− 2) +

⌊
n− 2

2

⌋
+ (4n− 5) = z (5, n) + n+

⌊
n

2

⌋

Case 2 If every pair of T i and T j cross each other such that crφ(T i ∪ T j) ≥ 1

for all 1 ≤ i 6= j ≤ n, then cr (Hn) ≥ Z (5, n) + n+

⌊
n

2

⌋
.

Subcase 2.1 If there is at least one subgraph T i which does not cross G18, Let
us suppose crφ(G18∪Tn) = 0 and let F be the subgraph G18∪Tn of the graph Hn.

Consider the subdrawing φ∗ and φ∗∗ of G18 and F , respectively, induced by φ.
Since crφ(G18∪Tn) = 0, the subdrawing φ∗ divides the plane in such a way that all
vertices are the boundary of one “region” and all edges of G18 are in the “region”.
The subdrawing φ∗∗ of F induced by φ is only one (see Figure 2(b)).

Consider now the subdrawing F ∪ T i of the subdrawing φ and let ti(1 ≤ i ≤
n− 1) be the vertex of Ti of degree five. If ti is in the region marked with 2, then
crφ(T i, G18 ∪ Tn) ≥ 3, using crφ(T i ∪ T j) ≥ 1, thus crφ(T i, G18 ∪ Tn) ≥ 4. If ti is
in the region marked with 1 and 3, crφ(T i, G18 ∪ Tn) ≥ 4, then

crφ (Hn) = crφ(G18 ∪ Tn ∪ T 1 ∪ T 2 · · ·Tn−1)
= crφ

(
G18 ∪ Tn,

(
T 1 ∪ T 2 · · ·Tn−1

))
+ crφ(T 1 ∪ T 2 · · · ∪ Tn−1)

≥ 4 (n− 1) + z (5, n− 1) ≥ Z (5, n) + n+

⌊
n

2

⌋
36
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Figure 3
The Case when the Edge tnv1 of Tn and the Edge v3v4 of
G18 Cross

Subcase 2.2 If for any T i(1 ≤ i ≤ n), there is crφ(G18, T
i) ≥ 1, and there exists

one vertex ti, crφ(G18, T
n) = 1, then cr (Hn) ≥ Z (5, n) + n+

⌊
n

2

⌋
.

Without loss of generality, we may assume that crφ(G18, T
n) = 1. Let φ∗ be

the subdrawing of G18 ∪ Tn induced by φ. First we will illustrate the drawing of
G18 ∪ Tn only has the following two kinds of circumstances:

Subcase 2.2.1: If the edge tnv1 of Tn and the edge v3v4 of G18 cross, then it
can be assumed that the vertexes tn, v1, v3, v4 distribute on the plane illustrated in
Figure 3(a), and then the other three vertexes can be arbitrary distributed around
the above vertexes. As there is no cross on the other four edges connected to the
vertex tn, the edges can be connected in the way illustrated in Figure 3(b). The edge
v3v5 can not connect along the dotted line in the graph, otherwise crφ(G18, T

n) ≥ 1.
Because crφ(T i ∪ T j) ≥ 1 (1 ≤ i 6= j ≤ n), in Figure 3(b), no matter the vertex
ti (1 ≤ i ≤ n−1) is located, there is crφ(T i, G18∪Tn) ≥ 4. Both crφ(G18∪Tn) = 1
and T 1 ∪ T 2 · · ·Tn−1 are isomorphic to k5,n−1, hence

crφ (Hn) = crφ(G18 ∪ Tn ∪ T 1 ∪ T 2 · · ·Tn−1)
= crφ

(
G18 ∪ Tn,

(
T 1 ∪ T 2 · · ·Tn−1

))
+ crφ (G18 ∪ Tn) + crφ

(
T 1 ∪ T 2 · · · ∪ Tn−1

)
≥ 4 (n− 1) + 1 + z (5, n− 1) ≥ Z (5, n) + n+

⌊
n

2

⌋

Subcase 2.2.2: If the edge tnv1 of Tn and the edge v3v5 of G18 cross as in
Figure 4(a), this case can be analyzed and proved in a similar way in Case 1.

Figure 4
The Case when the Edge tnv1 of Tn and the Edge v3v5 of
G18 Cross
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Subcase 2.3 If for any T i (1 ≤ i ≤ n), there is crφ(G18, T
i) ≥ 2, then cr (Hn) ≥

Z (5, n) + n+

⌊
n

2

⌋
.

crφ (Hn) = crφ(G18 ∪ T 1 ∪ T 2 · · · ∪ Tn)
= crφ

(
G18,

(
T 1 ∪ T 2 · · · ∪ Tn

))
+ crφ (G18) + crφ(T 1 ∪ T 2 · · · ∪ Tn)

≥ 2n+ z (5, n) > Z (5, n) + n+

⌊
n

2

⌋

Let H be a graph ismorphic to G18. Consider a graph GH obtained by joining all
vertexes of a connected graph G such that every vertex of H will only be adjacent
to exactly one vertex of G. Let G∗

H be the graph obtained form by contracting the
edges of H.

Lemma 5 cr (G∗
H) ≤ cr (GH)− 1.

Proof. Consider a graph F obtained from GH by joining all vertexes of H to the
vertex Z. Because F contains the subgraph k3,3 and cr(k3,3) = 1, we have that
crφ(F ) ≥ 1. So there exists at least one crossing on the edges of H in F . Let φ
be the good drawing of GH , it is obviously that crφ(GH) ≥ 1 and contains one
subgraph S4. Then, according to the methods shown in Figure 5, it must reduce
at least one crossing by contracting GH to the vertex h. This proves the Lemma
5.

Figure 5
There are at Least 1 Crossing on F

Consider now the graph cr(G18 × Sn). For n ≥ 1 it has 5(n + 1) vertexes and
edges that are the edges in n + 1 copies Gi18 for i = 0, 1, ..., n and in the five stars
(see Figure 6), where the vertexes of are the central vertexes of the stars Sn.

Theorem 2: For n ≥ 1, Cr (G10 × Sn) = Z (5, n) + 2n+

⌊
n

2

⌋
.
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A God Drawing of G18 × Sn

Figure 6

The drawing in Figure 6 shows that cr (G18 × Sn) ≤ Z (5, n) + 2n +

⌊
n

2

⌋
. To

complete the proof, assume that there is an optimal drawing of G18 × Sn with

fewer than Z (5, n) + 2n +

⌊
n

2

⌋
crossings. Contracting the edges of Gi18 for all

i = 0, 1, ..., n in φ results in a graph isomorphic to Hn. In accordance with Lemma

4, we have cr (Hn) < Z (5, n) + n+

⌊
n

2

⌋
. This is impossible because in Theorem 1

it is shown that cr (Hn) = Z (5, n) + n +

⌊
n

2

⌋
. Therefore, the graph has crossing

number Z (5, n) + 2n+

⌊
n

2

⌋
.
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