E-Cordial Labeling for Cartesian Product of Some Graphs

S. K. Vaidya ${ }^{1, *}$; N. B. Vyas 2
${ }^{1}$ Department of Mathematics, Saurashtra University, Rajkot-360005, Gujarat, India
${ }^{2}$ Atmiya Institute of Technology \& Science, Rajkot-360003, Gujarat, India
*Corresponding author.
Email: samirkvaidya@yahoo.co.in
Received 10 October, 2011; accepted 27 November, 2011

Abstract

We investigate E-cordial labeling for some cartesian product of graphs. We prove that the graphs $K_{n} \times P_{2}$ and $P_{n} \times P_{2}$ are E-cordial for n even while $W_{n} \times P_{2}$ and $K_{1, n} \times P_{2}$ are E-cordial for n odd.

\section*{Key words}

E-Cordial labeling; Edge graceful labeling; Cartesian product S. K. Vaidya, N. B. Vyas (2011). E-Cordial Labeling for Cartesian Product of Some Graphs. Studies in Mathematical Sciences, 3(2),

11-15. Available from: URL: http://www.cscanada.net/index.php/sms/article/view/j.sms. 1923845220110302.175 DOI: http://dx.doi.org/10.3968/j.sms. 1923845220110302.175

1. INTRODUCTION

We begin with f nite, connected and undirected graph $G=(V(G), E(G))$ without loops and multiple edges. For standard terminology and notations we refer to West (2001). The brief summary of def nitions and relevant results are given below.
Definition 1.1 If the vertices of the graph are assigned values subject to certain condition(s) then it is known as graph labeling.

Most of the graph labeling techniques trace their origin to graceful labeling introduced independently by Rosa (1967) and Golomb (1972) which is def ned as follows.
Definition 1.2 A function f is called graceful labeling of graph G if $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ is injective and the induced function $f^{*}(e=u v)=|f(u)-f(v)|$ is bijective. A graph which admits graceful labeling is called a graceful graph.

The famous Ringel-Kotzig graceful tree conjecture and illustrious work by Kotzig (1973) brought a tide of labelig problems having graceful theme.
Definition 1.3 A graph G is said to be edge-graceful if there exists a bijection $f: E(G) \rightarrow\{1,2, \ldots,|E|\}$ such that the induced mapping $f^{*}: V(G) \rightarrow\{0,1,2, \ldots,|V|-1\}$ given by $f^{*}(x)=\sum f(x y)(\bmod |V|)$, $x y \in E(G)$.
Definition 1.4 A mapping $f: V(G) \rightarrow\{0,1\}$ is called binary vertex labeling of G and $f(v)$ is called the label of vertex v of G under f.
Notations 1.5 For an edge $e=u v$, the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ is given by $f^{*}(e=u v)=$ $|f(u)-f(v)|$. Then

Definition 1.6 A binary vertex labeling of graph G is called a cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph G is called cordial if admits cordial labeling.

The concept of cordial labeling was introduced by Cahit (1987). He also investigated several results on this newly introduced concept.
Definition 1.7 A function $f: E(G) \rightarrow\{0,1\}$ is called E-cordial labeling of graph G if the induced function $f^{*}: V(G) \rightarrow\{0,1\}$ def ned by $f^{*}(v)=\sum_{u v \in E(G)} f(u v)(\bmod 2)$ is such that $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\mid e_{f}(0)-$ $e_{f}(1) \mid \leq 1$. A graph is called E-cordial if admits E-cordial labeling.

Yilmaz and Cahit (1997) introduced E-cordial labeling as a weaker version of edge-graceful labeling and having bland of cordial labeling. They proved that the trees with n vertices, the complete graph K_{n} and cycle C_{n} are E-cordial if and only if $n \not \equiv 2(\bmod 4)$ while complete bipartite graph $K_{m, n}$ admits E-cordial labeling if and only if $m+n \not \equiv 2(\bmod 4)$

Devaraj (2004) has shown that $M(m, n)$ (the mirror graph of $K_{m, n}$) is E-cordial when $m+n$ is even while the generalized Petersen graph $P(n, k)$ is E-cordial when n is even. Vaidya and Vyas (2011) have proved that the mirror graphs of even cycle C_{n}, even path P_{n} and hypercube Q_{k} are E-cordial graphs.
Definition 1.8 Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. The cartesian product of G_{1} and G_{2} which is denoted by $G_{1} \times G_{2}$ is the graph with vertex set $V=V_{1} \times V_{2}$ consisting of vertices $V=\{u=$ $\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) / u$ and v are adjacent in $G_{1} \times G_{2}$ whenever $u_{1}=v_{1}$ and u_{2} adjacent to v_{2} or u_{1} adjacent to v_{1} and $\left.u_{2}=v_{2}\right\}$

In this paper we have investigated some results on E-cordial labeling for cartesian product of some graphs.

2. MAIN RESULTS

Theorem-2.1: $K_{n} \times P_{2}$ is E-cordial for even n.
Proof: Let G be the graph $K_{n} \times P_{2}$ where n is even and $V(G)=\left\{v_{i j} / i=1,2, \ldots, n\right.$ and $\left.j=1,2\right\}$ be the vertices of graph G We note that $|V(G)|=2 n$ and $|E(G)|=n^{2}$ as $\left|V\left(K_{n}\right)\right|=n$ and $\left|E\left(K_{n}\right)\right|=\frac{n(n-1)}{2}$.

Def ne $f: E(G) \rightarrow\{0,1\}$ as follows:
For $1 \leq i, k \leq n$

$$
\begin{gathered}
f\left(v_{i 1}, v_{k 1}\right)=0 ; \\
f\left(v_{i 2}, v_{k 2}\right)=1 ; \\
f\left(v_{i 1}, v_{i 2}\right)= \begin{cases}1 ; & i \equiv 0(\bmod 2) \\
0 ; & \text { otherwise }\end{cases}
\end{gathered}
$$

In view of the above def ned labeling pattern f satisf es the conditions for E-cordial labeling as shown in Table 1. That is, $K_{n} \times P_{2}$ is E-cordial for even n.

Table 1

	vertex condition	edge condition
n	$v_{f}(0)=v_{f}(1)=n$	$e_{f}(0)=e_{f}(1)=\frac{n^{2}}{2}$

Illustration 2.2: The E-cordial labeling for $K_{4} \times P_{2}$ is shown in Figure 1.

Figure 1
Theorem-2.3: $W_{n} \times P_{2}$ is E-cordial for odd n.
Proof: Let G be the graph $W_{n} \times P_{2}$ where n is odd and $V(G)=\left\{v_{i j} / i=1,2, \ldots, n+1\right.$ and $\left.j=1,2\right\}$ be the vertices of graph G. We note that $|V(G)|=2(n+1)$ and $|E(G)|=5 n+1$ as $\left|V\left(W_{n}\right)\right|=n+1$ and $\left|E\left(W_{n}\right)\right|=2 n$.

Def ne $f: E(G) \rightarrow\{0,1\}$ as follows:
For $1 \leq i, k \leq n+1$

$$
\begin{aligned}
f\left(v_{i 1}, v_{k 1}\right) & =0 ; f\left(v_{i 2}, v_{k 2}\right)=1 ; \\
f\left(v_{i 1}, v_{i 2}\right) & =1 ; \quad i \equiv 0(\bmod 2) \\
& =0 ; \quad \text { otherwise } .
\end{aligned}
$$

In view of the above def ned labeling pattern f satisf es conditions for E-cordial labeling as shown in Table 2. That is, $W_{n} \times P_{2}$ is E-cordial for odd n.

Table 2

	vertex condition	edge condition
n	$v_{f}(0)=v_{f}(1)=n+1$	$e_{f}(0)=e_{f}(1)=\frac{5 n+1}{2}$

Illustration 2.4: The E-cordial labeling for $W_{3} \times P_{2}$ is shown in Figure 2.

Figure 2

Theorem-2.5: $L_{n}=P_{n} \times P_{2}$ (also known as ladder graph) is E-cordial for even n.
Proof: Let G be the graph $P_{n} \times P_{2}$ where n is even and $V(G)=\left\{v_{i j} / i=1,2, \ldots, n\right.$ and $\left.j=1,2\right\}$ be the vertices of G. We note that $|V(G)|=2 n$ and $|E(G)|=3 n-2$. Def ne $f: E(G) \rightarrow\{0,1\}$ as follows:

For $1 \leq i, k \leq n$

$$
\begin{gathered}
f\left(v_{i 1}, v_{k 1}\right)=0 ; \\
f\left(v_{i 2}, v_{k 2}\right)=1 ; \\
f\left(v_{i 1}, v_{i 2}\right)= \begin{cases}1 ; & i \equiv 0(\bmod 2) \\
0 ; & \text { otherwise. }\end{cases}
\end{gathered}
$$

In view of the above def ned labeling pattern f satisf es conditions for E-cordial labeling as shown in Table 3 . That is, $P_{n} \times P_{2}$ is E-cordial for even n.

Table 3

	vertex condition	edge condition
n	$v_{f}(0)=v_{f}(1)=n$	$e_{f}(0)=e_{f}(1)=\frac{3 n-2}{2}$

Illustration 2.6: The E-cordial labeling for $P_{4} \times P_{2}$ is shown in Figure 3.

Figure 3

Theorem-2.7: $B_{n}=K_{1, n} \times P_{2}$ (also known as book graph) is E-cordial for odd n.
Proof: Let G be the graph $K_{1, n} \times P_{2}$ where n is odd and $V(G)=\left\{v_{i j} / i=1,2, \ldots, n+1\right.$ and $\left.j=1,2\right\}$ be the vertices of G. We note that $|V(G)|=2(n+1)$ and $|E(G)|=3 n+1$. Def ne $f: E(G) \rightarrow\{0,1\}$ as follows:

For $1 \leq i, k \leq n+1$

$$
\begin{gathered}
f\left(v_{i 1}, v_{k 1}\right)=0 ; \\
f\left(v_{i 2}, v_{k 2}\right)=1 ; \\
f\left(v_{i 1}, v_{i 2}\right)= \begin{cases}1 ; & i \equiv 0(\bmod 2) \\
0 ; & \text { otherwise. }\end{cases}
\end{gathered}
$$

In view of the above def ned labeling pattern f satisf es the conditions for E-cordial labeling as shown in Table 4. That is, $K_{1, n} \times P_{2}$ is E-cordial for odd n.
Illustration 2.8: The E-cordial labeling for $K_{1,3} \times P_{2}$ is shown in Figure 4.

Table 4

	vertex condition	edge condition
n	$v_{f}(0)=v_{f}(1)=n$	$e_{f}(0)=e_{f}(1)=\frac{3 n+1}{2}$

Figure 4

3. CONCLUDING REMARKS

Here we investigate E-cordial labeling for cartesian product of some graphs. Similar results can be derived for other graph families and in the context of different graph labeling problems is an open area of research.

REFERENCES

[1] Cahit I. (1987). Cordial Graphs: A Weaker Version of Graceful and Harmonious Graphs. Ars Combinatoria, 23, 201-207.
[2] Devraj J. (2004). On Edge-Cordial Graphs. Graph Theory Notes of New York, XLVII, 14-18.
[3] Gallian, J. A. (2010). A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 17(\#DS6). Retrieved from: http://www.combinatorics.org/Surveys/ds6.pdf
[4] Golomb S. W. (1972). How to Number a Graph. In Graph theory and Computing, R. C. Read, ed., New York: Academic Press. pp.23-27.
[5] Kotzig A. (1973). On Certain Vertex Valuations of Finite Graphs. Util. Math. 4, 67-73.
[6] Rosa A. (1967). On Certain Valuations of the Vertices of a Graph. Theory of graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris, 349-355.
[7] Vaidya S. K. \& Vyas, N. B. (2011). E-Cordial Labeling of Some Mirror Graphs, International Journal of Contemporary Advanced Mathematics, 2(1), 22-27. Retrieved from: http://www.ccsenet. org/journal/index.php/jmr/article/view/9863/8116
[8] Yilmaz R. \& Cahit, I. (1997). E-Cordial Graphs, Ars. Combinatoria, 46, 251-266.
[9] West D. B. (2001), Introduction to Graph Theory, Prentice-Hall of India.

