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State Feedback Stabilization of Discrete Singular 
Large-scale Control Systems 
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Abstract: This paper studies the state feedback stabilization of discrete singular large-scale 
control systems by using Lyapunov matrix equation, generalized Lyapunov function method and 
matrix theory.  There gives some sufficient conditions for determining the asymptotical stability 
and instability of the corresponding singular closed-loop large-scale systems while the 
subsystems are regular, causal and R-controllable.  At last, an example is given to show the 
application of main result. 
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The theory of singular control systems has been applied to our life more and more extensively, such as 
power systems, economic systems, population systems, etc.  But these systems often contain more than one 
singular system which compose singular large-scale  control systems.   Singular large-scale  control 
systems have a more practical background.  The actual production process can be described preferably by 
singular large-scale control systems, particularly by discrete singular large-scale control systems.  The 
causality of discrete singular systems makes related results complicated and challenging for us.  At present, 
the research results of the problem above are seldom.  The asymptotical stability and stabilization of  
singular large-scale systems has been considered by Lyapunov function method in [Zhao Jian-chuan,(2008), 
Zhang Qing-ling,(1997)].  This paper consider the same question by introduce weighted sum Lyapunov 
function method, and give its interconnecting parameters regions of stability. 

1.   DEFINITIONS AND PROBLEM FORMULATION 

Consider the discrete singular large-scale control systems with m  subsystems: 

       
1,

1
m

i i ii i ij j i i
j j i

Ex k A x k A x k BU k
 

      1, ,i m                                                                        (1) 
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where   in
ix k R is a semi-state vector, im

iU R is a control input 

vector;
iiA , i in n

iE R  , i in m
iB R  , they are constant matrices;  

1

m

i
i

n n


 ,
1

m

i
i

r r


 , lm
m

i

i 
1

, 

 i i irank E r n  ,  rank E r n  , 

 1, 2, , mE Block diag E E E   ,  1 2, , , mB Block diag B B B    . 

Now we give some concepts about discrete singular system 

                                     1Ex k Ax k                                                                                     (2) 

and discrete singular control system 

                     1Ex k Ax k Bu k                                                                                           (3) 

where E and A  are n n constant matrices, B is a n m constant matrix,  rank E r n  ,   nx k R is a 

semi-state vector,   mu k R is a control input vector. 

Definition 1[Yang Dong-mei. Zhang Qing-ling, 2004]: Discrete singular system (2) is said to be regular 
if  det 0zE A   for some z C . 

Definition 2[Yang Dong-mei, et al., 2004]: The zero solution of discrete singular system (2) is said to 

be stable if for every 0  ,there exists 0  , such that  0, 0x k k x ； , for all 0k k , whenever the 

arbitrary initial consistency value  0 0x k x  which satisfies 0x  . 

Definition 3[Yang Dong-mei, et al., 2004]: Discrete singular control system (3) is said to be causal if 

 x k can be uniquely determined by  0x  and control input vectors  0u , ,  u k  for any k .  

Otherwise, it is said to be non-causal. 

Now consider the isolated subsystems of systems: 

     1i i ii i i iE x k A x k BU k     1, ,i m                                          (4) 

Assume that all systems of systems (4) are R-controllable, we choose the linear control law  

    1, ,i i iU k K x k i m                                                                                                     (5) 

Then singular closed-loop large-scale systems of systems (1) are given by 

       
1,

1
m

i i ii i i i ij j
j j i

E x k A B K x k A x k
 

      1, ,i m                                                     (6) 

The corresponding closed-loop isolated subsystems are 

      1 1, ,i i ii i i iE x k A B K x k i m                                                                                          (7)  

In order to investigate the stabilization of discrete singular large-scale control systems (1), we give the 
following lemmas: 

Lemma 1[Dai Li-yi, 1986]: The system (3) is said to be R-controllable if rank zE A   B  = n  for 

some z C . 

Lemma2[Dai Li-yi, 1986]: Discrete singular control system (3) is said to be causal if and only 
if     deg det zE A rank E  . 

Lemma 3 [Wo Song-lin, 2004]: Assume that , nu v R , n nV R  is a positive semi-definite matrix, then 
12 T T Tu Vv u Vu v Vv     holds for all 0  . 
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Lemma 4[Wo Song-lin, Zou Yun, 2003]: Assume that the system (2) is regular and causal, then it is 
asymptotically stable if and only if given positive definite matrix W ,there exists a positive semi-definite 
matrix V which satisfies  T T TA VA E VE E WE   . 

Lemma 5[Liang Jia-rong, 2000]: Assume that the system (2) is regular, causal, and there exists a 
function  v Ex  which satisfies the following conditions: 

(a)        T
v Ex Ex k V Ex k ,where V is an positive semi-definite matrix, and 

   Trank E VE rank E r  ; 

(b)        T
V EX Ex k W Ex k   , where W  is a positive definite matrix; 

then the sub-equilibrium state of system(2) 0EX   is asymptotically stable. 

2.  MAIN RESULTS 

Theorem 1: Assume that all isolated subsystems (4) of systems (1) are R-controllable, all closed-loop 
isolated subsystems (7) are regular, causal and asymptotically stable, and there exists a real number 0  

which satisfies that  

       T T

ij j ij j j j j jA x k A x k E x k E x k                , 1, ,i j m j i                                        (8) 

then when 

0)1(22 2  iMii ImVW   1,i m                                                                                 (9) 

the zero solution of the singular closed-loop large-scale systems(6) are asymptotically stable, the 
discrete singular large-scale control systems(1) are stabilizable. The interconnecting parameter region of 
stability is given by (9).  Here

iW is a positive definite and 
iV is a positive semi-definite matrix by Lemma4 

given , and )}({
1

max iMM V
mi




  and iI  is a ii nn   identity matrix. 

Proof: systems (7) are regular and causal, as they are asymptotically stable, then given positive definite 
matrix 

iW , Lyapunov matrix equation     T T T
ii i i i ii i i i i i i i iA B K V A B K E V E E W E       have positive 

semi-definite solution 
iV . 

Construct quadratic form      T

i i i i i i i iv E x k E x k V E x k            as the scalar Lyapunov function of 

systems (7). 

Let     
1

m

i i i
i

v Ex k v E x k


        as the Lyapunov function of systems (1). 

We have  

 
 6i i iv E x k            

 6

1 1
T T

i i i i i i i i i iEx k V E x k Ex k V E x k                   

     
1,

T
m

ii i i i ij j i
j j i

A B K x k A x k V
 

 
   
 

      
1,

m

ii i i i ij j
j j i

A B K x k A x k
 

 
   
 

    T

i i i i iE x k V E x k        

       TT T
i ii i i i ii i i i i i ix k A BK V A BK E VE x k      +2      

1,

T
m

ij j i ii i i i
j j i

A x k V A B K x k
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+    
1, 1,

T
m m

ij j i ij j
j j i j j i

A x k V A x k
   

   
   
   
   

By using Lemma 3，choose 1  , we have  

 
 6i i iv E x k            

1, 1,

2

T
m m

T T
i i i i i ij j i ij j

j j i j j i

x k E WE x k A x k V A x k
   

   
      

   
 

       T

ii i i i i ii i i iA BK x k V A BK x k          

        
1, 1,

2

T
m m

T T
i i i i i ij j i ij j

j j i j j i

x k E WE x k A x k V A x k
   

   
      

   
  +        TT

i ii i i i ii i i ix k A B K V A B K x k     

=    2T T T
i i i i i i i ix k E W E E V E x k    +    

1, 1,

2

T
m m

ij j i ij j
j j i j j i

A x k V A x k
   

   
   
   
   

Noticing that  

   
1, 1,

T
m m

ij j i ij j
j j i j j i

A x k V A x k
   

   
   
   
  =    

1, 1,

Tm m

ij j i ij j
j j i j j i

A x k V A x k
   

 
    

 
   

    
1, 1,

m m T

ij j i is s
j j i s s i

A x k V A x k
   

    

    
1, 1,

1
2

2

m m T

ij j i is s
j j i s s i

A x k V A x k
   

    

    
1, 1,

1

2

m m T

ij j i ij j
j j i s s i

A x k VA x k
   

       T

is s i is sAx k V Ax k   

      
1, 1,

1

2

m m T

M i ij j ij j
j j i s s i

V A x k A x k
   

       T

is s is sA x k A x k   

      
1, 1,2

m m T

M i j j j j
j j i s s i

V E x k E x k
 

   

       T

s s s sE x k E x k   
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1
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m T

M i j j j j
j j i
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s s s s
s s i

E x k E x k
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M i j j j j
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s s s s
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2 1
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M i j j j j
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V m E x k E x k
 

 

 
  

 
           

1,

1
m T

M i j j j j
j j i

m V E x k E x k
 

    

Thus  

 
 6i i iv E x k       2

T

i i i i iE x k W E x k        +    T

i i i i iE x k V E x k      +    
1,

2 1
m T

M i j j j j
j j i

m V E x E x
 

         

Here  M iV denotes the maximum eigenvalue of matrix iV . Thereby， 
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Noticing that 
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by using Lemma5, we know,  lim 0
k

V Ex


 , therefore  lim 0i ik
E x k


  1,i m  . 

To prove      
   
   

1
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i
i i i

i

z k
z k Q x k

z k


 

   
  

)(0  k .By noticing that systems (7) are regular and 

causal, there exists reversible ，matrices iP ， iQ  1,i m   which satisfy 

 1 0

0 0
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i i i
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1

1
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i
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i

z k
z k Q x k

z k


 
   

  
， 

where  1
iI ,  2

iI is i ir r  and    i i i in r n r   identity matrix, respectively.  iP， iQ，M ，  1
ijA ，  12

ijA ，

 21
ijA ，  2

ijA are corresponding dimension constant matrices.  Thus the singular closed-loop large-scale 

systems (6) are equivalent to  

                    
                

1 1 1 1 12 2

1.

2 21 1 2 2

1.

1

0

m

i i ij j ij j
j j i

m

i ij j ij j
j j i

z k Mz k A z k A z k

z k A z k A z k

 

 

    


   





 

Noticing that  

 
   1

1

0
i

ii i i i i i i i i i i

z k
PE x PEQQ x PEQ z k  

     
 

 

we have       1 1 0i i i i iz k I PE x .    1lim 0ik
z k


  holds from  lim 0i i

k
E x k


 . 

Noticing that 

 
   

   

   
   

1 12 1

21 2 2

ij ij j

i ij j

ij ij j

A A z k
P A x k

A A z k

   
   
   
   

 

we have 
            21 1 2 2
ij j ij jA z k A z k =     20 i i ij jI P A x k . 
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Noticing that  lim 0ij jk
A x k


  holds from (8), that is             21 1 2 2lim 0ij j ij jk

A z k A z k


  , so 
   2lim 0ik

z k


 . 

Hence,  lim 0ik
z k


 , that is  lim 0

k
x k


 .  The theorem 1 is proved. 

Theorem 2: Assume that all subsystems (4) of system (1) are R-controllable, all closed-loop isolated 
systems (7) are regular, causal, and given positive definite matrix

iW , there exists a positive semi-definite 

matrix 
iV  which satisfies 

   T T T
ii i i ii i i i i i i i iA B K V A B K E V E E W E                 1,i m  , 

if there exists a real number 0  which satisfies  

       T T

ij j ij j j j j jA x k A x k E x k E x k                   , 1, ,i j m i j     （10） 

then when 

0)1(4 2  iMii ImVW   1,i m                        （11） 

the zero solution of the discrete singular closed-loop large-scale systems(6) are unstable, the discrete 
singular large-scale control systems(1) are not stabilizable. 

Proving is similar with Theorem 1. Here taking 
2

1
  (in Lemma 3). 

3.  EXAMPLE 

Consider the following 5-order discrete singular large-scale control system which consists of two 
sub-systems 

       
2

1,

1i i ii i ij j i i
j j i

E x k A x k A x k BU k
 

   
  1,2i      (12) 

where  

1

1 0 0

0 0 1

0 0 0

E

 
   
 
  ,

2

1 0

0 0
E

 
  
  ,

1

0 1

0 1

1 0

B

 
   
 
  ,

2

0

1

2

B
 
    
  , 

11

1
0 0

2
1

0 0
2

0 1 0

A

  
 
   
 
  
  ，

12

1
0

4
1

0
5
0 0

A

 
 
 
   
 
  
 ，

21

1 1
0

6 6
1 1

0
5 5

A

 
 
 
  
 ，

22

1
0

2
0 1

A
 
    
  . 

We choose the control law 

   i i iU k K x k   1, 2i 
, 
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here 

1

1
0 0

2
0 0 0

K
 
    
  ,

2

1
0

2
K

   
  , and 1 3W I , 2 2W I , 8

1


, then 

1

4
0 0

3
4

0 0
3

0 0 0

V

 
 
 
   
 
  
  ,

2

4
0

3
0 0

V
 
    
  . 

it is easy to test that (8) and (9) are held, then we know this system (12) is stabilizable from Theorem 1. 

4.  CONCLUSION 

In this paper, the state feedback stabilization of discrete singular large-scale control systems is investigated 
by using generalized Lyapunov function method. According to the bound limit parameter of 
interconnecting terms, there gives some sufficient conditions for determining the asymptotical stability and 
unstability of the singular closed-loop large-scale system while the subsystems are regular, causal, and 
R-controllable. 
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