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1. INTRODUCTION

Optimality conditions form the foundations of mathematical programming both
theoretically and computationally. The best known necessarily optimality condition
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for a mathematical programming problem is the Karush-Kuhn-Tucker optimality
condition. However, the Fritz John optimality conditions which appeared before the
Karush-Kuhn-Tucker optimality conditions by about three years, is regarded more
general in a sense. In order for Karush-Kuhn-Tucker optimality criterion to hold, a
constraint-qualification on the constraint functions of the problem is required to be
imposed while no such qualification need be imposed on the constraints for the Fritz
John optimality conditions to hold. In literature of mathematical programming,
Karush-Kuhn-Tucker optimality conditions are generally used to formulate for Wolfe
and Mond-Weir type duals, thus a constraint qualification is needed in order to
eliminate the requirement of constraint qualification, Weir and Mond [1] used Fritz
John optimality condition instead of Karush-Kuhn-Tucker optimality conditions to
study duality for a constrained nonlinear programming optimization problem.

Hanson [2] pointed out that some of the duality theorems of mathematical pro-
gramming have analogues in the variational calculus. This relationship between
mathematical programming and the classical calculus of variations is explored and
extended. Since mathematical programming and the classical calculus of variations
have undergone independent development, it is felt that the mutual adaption of
ideas and techniques may prove useful. Mond and Hanson [3] were the first two for-
mulate a dual problem for constrained variational problem and established duality
results using a regularity condition. Subsequently Chandra et al. [4] studied Wolfe
type duality for a class of nondifferentiable continuous programming problems while
Bector et al. [5] studied Mond-Weir type duality for the problem of [4]. In order
to derive duality results for the variational problem, they required a constraint
qualification.

Motivated with the results of Weir and Mond [1], in this paper we study Fritz
john type duality for a class of nondifferentiable continuous programming problems
with equalities and inequalities together which represent many realistic situations.
A pair of Fritz John type dual continuous programming with natural boundary
conditions rather than fixed end points is also presented. The relationship between
our results and those of [1] is also indicated.

2. STATEMENT OF THE PROBLEMS AND PRELIMINAR-
IES

Consider the following non-differentiable continuous programming problems treated
in [4]:

(CEP): Minimize∫
I

{
f (t, x(t), ẋ(t)) +

(
x(t)

T
B(t)x(t)

) 1
2

}
dt

subject to

x(a) = α, x(b) = β

g (t, x(t), ẋ(t)) ≤ 0, t ∈ I (1)

h (t, x(t), ẋ(t)) = 0, t ∈ I (2)
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(CP): Minimize ∫
I

{
f (t, x(t), ẋ(t)) +

(
x(t)

T
B(t)x(t)

) 1
2

}
dt

subject to

x(a) = α, x(b) = β

g (t, x(t), ẋ(t)) ≤ 0, t ∈ I

where
(i) I = [a, b] ⊂ R is a real interval and piecewise smooth x : I → Rn with

derivative ẋ.
(ii) f : I ×Rn×Rn → R, g : I ×Rn×Rn → Rm and h : I ×Rn×Rn → Rk are

continuously differentiable.
(iii) B(t) is positive semi-definite n× n matrix with continuous on I.
Chandra et al. [4] derived the following Fritz John type optimality condition for

(CEP):
Theorem 1 (Necessary optimality conditions): If x is an optimal solution

of (CEP) and hx (., x(.), ẋ(.)) maps onto a closed subspace of C(I,Rk) then there
exists Lagrange multipliers τ ∈ R piecewise smooth y : I → Rm, z : I → Rk and
ω : I → Rn

τ (fx (t, x(t), ˙̄x(t)) +B(t)ω̄(t)) + y(t)T gx (t, x̄(t), ˙̄x(t))

+z(t)Thx (t, x(t), ˙̄x(t))−D (τfẋ(t, x̄(t), ˙̄x(t)))

+y(t)T gẋ (t, x̄(t), ˙̄x(t)) + z̄(t)Thx̄ (t, x(t), ˙̄x(t)) = 0, t ∈ I
y(t)T g (t, x̄(t), ˙̄x(t)) = 0, t ∈ I

x(t)TB(t)ω(t) =
(
x(t)

T
B(t)x(t)

) 1
2

, t ∈ I

ω(t)TB(t)ω(t) ≤ 1, t ∈ I
(τ, y(t)) ≥ 0, t ∈ I

(τ, y(t), z(t)) 6= 0, t ∈ I

where
(i) C(I,Rk) denotes the space of continuous functions from I into Rk.
(ii) x is a vector space of piecewise smooth x : I → Rn equipped with the norm

‖x‖ = ‖x‖∞ + ‖Dx‖∞ with the extended differentiable operator D for x smooth,

by u = Dx⇔ x(t) = α+
t∫
a

u(s)ds;

Thus D =
d

dt
expect at discontinuities. Theorem1, gives Karush-Kuhn type

optimality conditions if τ = 1, the optimum may be then called normal if Robinson
condition [4] or Slater condition [4] is assumed.

We give the following definitions which will be required in proving duality results.
(i) The functional

∫
I

f dt is strictly pseudo convex if all x 6= u,∫
I

{
(x(t)− u(t))

T
fu (t, u(t), u̇(t)) + (ẋ(t)− u̇(t))

T
fu̇ (t, u(t), u̇(t))

}
dt ≥ 0
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∫
I

f (t, x(t), ẋ(t))dt >

∫
I

f (t, u(t), u̇(t))dt.

. (ii) If
∫
I

y(t)T gdt will be said to be semi-strictly pseudoconvex if
∫
I

y(t)T gdt is

pseudoconvex for all y(t) ≥ 0, t ∈ I, y(t) 6= 0, t ∈ I.
The generalized Schwartz inequality states that

x(t)TB(t)w(t) ≤
(
x(t)

T
B(t)x(t)

)1/2
(
w(t)

T
B(t)w(t)

)1/2
,

with equality if B (t) [x (t)− q (t) z (t)] = 0 for some q(t) ∈ R.

3. FRITZ JOHN TYPE DUALITY

Using Karush-Kuhn-Tuck optimality conditions, Chandra et al. [4] have formulated
the following Wolfe type dual continuous programming problem for the problem
(CP):

(WCED): Maximize∫
j

(
f(t, u(t), u̇(t) + u(t)

T
B(t)ω(t) + y(t)

T
g(t)u(t), u̇(t)

)
dt

subject to

u(a) = α, u(b) = β,

fx (t, x(t), ẋ(t)) +B(t)ω(t) + y(t)T gx (t, x̄(t), ˙̄x(t))

−D (fẋ(t, x̄(t), ˙̄x(t))) + y(t)T gẋ(t, x̄(t), ˙̄x(t)) = 0, t ∈ I
ω(t)TB(t)ω(t) ≤ 1, t ∈ I

y(t) ≥ 0, t ∈ I.

Bector et al. [5] formulated the Mond–Weir type dual for (CP) as the following:
(M-WCED): Maximize∫

j

(
f(t, u(t), u̇(t)) + u(t)TB(t)ω(t)

)
dt

subject to

u(a) = α, u(b) = β,

fx(t, x(t), ẋ(t)) +B(t)ω(t) + y(t)T gx ((t)x̄(t), ˙̄x(t))

−D (fẋ(t, x̄(t), ˙̄x(t))) + y(t)T gẋ (t, x̄(t), ˙̄x(t)) = 0, t ∈ I
ω(t)TB(t)ω(t) ≤ 1, t ∈ I

y(t) ≥ 0, t ∈ I.

Strong duality for both the Wolfe type dual and Mond–Weir type dual is estab-
lished using Karush-Kuhn-Tucker necessary optimality conditions at the optimum
of (CP).
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Here we consider (CEP) and propose a different dual to establish strong duality
using Fritz John type necessary optimality conditions. Consequently no regularity
condition is required.

The following is the Fritz John type dual to the problem (CEP):
(FrCED): Maximize∫

I

{
f (t, u(t), u̇(t)) + u(t)

T
B(t)w(t)

}
dt

subject to
u(a) = α, u(b) = β (3)

r (fu(t, u(t), u̇(t)) +B(t)ω(t)) + y(t)T gu(t, u(t), u̇(t)) + z(t)Thu(t, u(t), u̇(t))

−D
(
rfu̇(t, u(t), u̇(t)) + y(t)

T
gu̇(t, u(t), u̇(t)) + z(t)Thu(t, u(t), u̇(t))

)
= 0, t ∈ I

(4)∫
I

y(t)
T
g (t, x(t), u̇(t))dt ≥ 0 (5)

∫
I

z(t)
T
h (t, u(t), u̇(t))dt ≥ 0 (6)

ω(t)TB(t)ω(t) ≤ 1 t ∈ I (7)

(r, y(t)) ≥ 0 t ∈ I (8)

(r, y(t), z(t)) 6= 0 t ∈ I (9)

Theorem 2 (Weak Duality): Let x is feasible for (CEP) and (u, r, y, ω, z) fea-

sible for (FrCED). If
∫
I

(
f (t, ..,) + (.)

T
B (t)w (t)

)
dt pseudo convex,

∫
I

y(t)
T
g (t, ., .)dt

is semi-strictly pseudo convex and
∫
z(t)

T
h (t, ., .) dt is quasiconvex, then

inf(CEF) ≥ sup(FrCED).

Proof. Let x is feasible for (CEP) and (u, r, y, ω, z) feasible for (FrCED). Suppose∫
I

{
f(t, x(t), ẋ(t)) +

(
x(t)

T
B(t)x(t)

) 1
2

}
dt <

∫
I

{
f(t, u(t), u̇(t)) +

(
u(t)

T
B(t)ω(t)

)}
dt

Using x(t)TB(t)x(t) ≤
(
x(t)

T
B(t)x(t)

) 1
2
(
ω(t)

T
B(t)ω(t)

) 1
2

, t ∈ I with ω(t)TB(t)ω(t) 6

1, t ∈ I, this yields∫
I

{
f(t, x(t), ẋ(t)) + x(t)

T
B(t)ω(t)

}
dt <

∫
I

{
f(t, u(t), u̇(t)) + u(t)

T
B(t)ω(t)

}
dt

5



Fritz John Type Duality in Nondifferentiable Continuous Programming with
Equality and Inequality Constraints

By the pseudoconvexity of
∫
I

{
f(t, x(t), ẋ(t)) + x(t)

T
B(t)ω(t)

}
dt, this yields

∫
I

{
(x(t)− u(t))

T
(fx(t, u(t), u̇(t)) +B(t)ω(t)) + (ẋ(t)− u̇(t))

T
fu̇(t, u(t), u̇(t))

}
dt ≤ 0

(10)
implies

∫
I

{
(x− u)

T
r (fx(t, u, u̇) +B(t)ω(t)) + (ẋ(t)− u̇(t))

T
rfu̇(t, u(t), u̇(t))

}
dt ≤ 0

with strict inequality in (10) if r > 0.

From the constraints of (CEP) and (FrCED),

∫
I

y(t)
T
g(t, x(t), ẋ(t))dt ≤

∫
I

y(t)
T
g(t, u(t), u̇(t))dt

Since
∫
I

y(t)
T
g(t, x(t), ẋ(t))dt is semi-strictly pseudoconvex, this yields

∫
I

{
(x(t)− u(t))

T
y(t)

T
gu(t, u(t), u̇(t)) + (ẋ(t)− u̇(t))

T
y(t)

T
gu̇(t, u(t), u̇(t))

}
dt < 0

(11)
with strict-inequality in the above inequality if some y(t) > 0, i ∈ {1, 2, 3, ...,m}.
Also we have

∫
I

z(t)
T
h(t, x(t), ẋ(t))dt ≤

∫
I

z(t)
T
h(t, u(t), u̇(t))dt

By the quasi convexity of
∫
z(t)Thdt, this implies

∫
I

{
(x(t)− u(t))

T
(
z(t)

T
hu(t, u(t), u̇(t)

)
+ (ẋ(t)− u̇(t))

T
(
z(t)

T
hu̇(t, u(t), u̇(t)

)}
dt ≤ 0

(12)
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Combining (10), (11) and (12), we have

0 >

∫
I

(x(t)− u(t))
T
{

(rfu(t, u(t), u̇(t)) +B(t)ω(t)) + y(t)
T
gu(t, u(t), u̇(t))

+z(t)
T
hu(t, u(t), u̇(t))

}
+ (ẋ(t) − u̇(t))

T
(rfu̇(t, u(t), u̇(t))

+y(t)
T
gu̇(t, u(t), u̇(t)) + z(t)

T
hu̇(t, u(t), u̇(t))

)
dt

=

∫
I

[
(x(t)− u(t))

T {
r (fu(t, u(t), u̇(t)) +B(t)ω(t)) + y(t)T gu(t, u(t), u̇(t))

+ z(t)Thu(t, u(t), u̇(t))−D (rfu̇(t, u(t), u̇(t))) + y(t)T gu̇(t, u(t), u̇(t))

+ z(t)Thu(t, u(t), u̇(t))
}]

dt

+ (x(t)− u(t))
T
(
rfu̇(t, u(t), u̇(t)) + y(t)

T
gu̇(t, u(t), u̇(t)) + z(t)

T
hu̇(t, u(t), u̇(t))

) ∣∣b
a

=

∫
I

[
(x− u)

T {
r (fu(t, u(t), u̇(t)) +B(t)ω(t)) + y(t)T gu(t, u(t), u̇(t)) + z(t)Thu(t, u(t), u̇(t))

−D
(
rfu̇(t, u(t), u̇(t)) + y(t)

T
gu̇(t, u(t), u̇(t))z(t)

T
hu̇(t, u(t), u̇(t))

)}]
dt < 0

contradicting equality constraint of (FrCED).
Hence∫

I

{
f(t, x(t), ẋ(t)) + (x(t)

T
B(t)x(t))

1
2

}
dt ≥

∫
I

{
f(t, u(t), u̇(t) + u(t)

T
B(t)ω(t)

}
dt

That is,
inf(CEF) ≥ sup(FrCED).

Theorem 3 (Strong Duality): If x̄ is an optimal solution of (CEP), then
there exist x ∈ R, piecewise smooth y : I → Rm, z : I → Rp and ω : I → Rn, such
that (r, x(t), y(t), z(t), ω(t)) is feasible for (FrCED) and the corresponding value of
(CEP) and (FrCED) are equal. If also, the hypotheses of Theorem 2 hold then
(r, x(t), y(t), z(t), ω(t)) is an optimal solution of (FrCED).

Proof. Since x̄ is an optimal solution of (FrCED), by Theorem 1 there exist r ∈ R,
piecewise smooth y : I → Rm, z : I → Rp and ω : I → Rn such that

rfx (t, x̄, ˙̄x) + ȳ(t)
T
gx (t, x̄, ˙̄x) + z̄(t)

T
hx (t, x̄, ˙̄x)

−D
(
rfẋ (t, x̄, ˙̄x) + ȳ(t)

T
gẋ (t, x̄, ˙̄x) + z̄(t)

T
hẋ (t, x̄, ˙̄x)

)
= 0, t ∈ I

(13)

ȳ(t)
T
g (t, x̄, ˙̄x) = 0, t ∈ I (14)

w(t)TB(t)w(t) ≤ 1, t ∈ I (15)

(
x̄(t)

T
B (t) x̄ (t)

)1/2

= w(t)
T
B (t) x̄ (t) , t ∈ I (16)
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(r, ȳ (t)) ≥ 0, t ∈ I (17)

(r, ȳ (t) , z̄ (t)) 6= 0, t ∈ I (18)

From (14), it implies
∫
I

ȳ(t)
T
g (t, x̄, ˙̄x) dt = 0 and from h (t, x̄, ˙̄x) = 0, t ∈ I,∫

I

z̄(t)
T
h (t, x̄, ˙̄x) dt = 0. Consequently these along with (13), (15), (17) and (18)

yield the feasibility of (r, y, z, ω) for (FrCED). In view of (16), we have∫
I

(
f (t, x̄ (t) , ˙̄x (t)) +

(
x̄(t)

T
B (t) x̄ (t)

)1/2
)

dt

=

∫
I

(
f (t, x̄ (t) , ˙̄x (t)) + x̄(t)

T
B (t)w (t)

)
dt, t ∈ I

That is, the equality of objective functionals is obtained. Optimality of (r̄, x̄, ȳ, z̄, w̄)

for (FrCED) follows, given pseudoconvexity of
∫
I

(
f (t, ..,) + (.)

T
B (t) z (t)

)
dt, qua-

siconvexity of
∫
I

z(t)
T
h (t, ., .) dt and semi-strict pseudoconvexity of

∫
I

y(t)
T
g (t, ., ,) dt

from Theorem 2.

Theorem 4 (Strict-Converse duality): Assume that

(i)
∫
I

(
f(t, ., .) + (.)

T
B(t)z(t)

)
dt is strictly pseudoconvex,

(ii)
∫
I

y(t)
T
g(t, ., .)dt is semi- strictly pseudoconvex, and

(iii)
∫
I

z(t)
T
h(t, ., .)dt is quasiconvex.

(iv) x̄ is an optimal solution of (CEP).

Assume also that (CEP) has an optimal solution x̄. If (r, ū, ȳ, z̄, w) is an optimal
solution of (FrCED), then x̄(t) = ū(t), t ∈ I, i.e., ū(t) is an optimal solution of
(CEP).

Proof. We assume that x̄(t) 6= ū(t), t ∈ I and obtain a contradiction. Since x̄ is
an optimal solution of (CEP), piecewise smooth Theorem 3 implies that there exist
r ∈ R, y : I → Rm, z : I → Rp and ω : I → Rn such that (r, ū, ȳ, z̄, ω̄) is an optimal
solution of (FrCED). Since (r, ū, ȳ, z̄, ω̄) is also an optimal solution of (FrCED), it
implies that∫

I

(
f(t, x̄, ˙̄x) + x̄(t)

T
B(t)w̄(t)

)
dt =

∫
I

(
f(t, ū, ˙̄u) + ū(t)

T
B(t)w̄(t)

)
dt

This, in view of the hypothesis (i), we have∫
I

{
(x̄− ū)

T
(fu (t, u, u̇) +B (t) w̄ (t)) + ( ˙̄x− ˙̄u)

T
fu̇ (t, u, u̇)

}
dt < 0 (19)
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From the constraint of (CEP) and (FrCED), we obtain∫
I

ȳ(t)
T
g (t, x̄, ˙̄x)dt ≤

∫
I

ȳ(t)
T
g (t, ū, ˙̄u)dt (20)

and ∫
I

z̄(t)
T
h (t, x̄, ˙̄x)dt ≤

∫
I

z̄(t)
T
h (t, ū, ˙̄u)dt (21)

The inequality (20) in view of hypothesis (ii), implies∫
I

{
(x̄− ū)

T
(
ȳ(t)

T
gu (t, ū, ˙̄u)

)
+ ( ˙̄x− ˙̄u)

T
(
ȳ(t)

T
gu̇ (t, ū, ˙̄u)

)}
dt ≤ 0 (22)

with strict inequality for yi (t) > 0, t ∈ I.
The inequality (21), because of the hypothesis (iii), yields∫
I

{
(x̄− ū)

T
(
z(t)

T
hu (t, ū, ˙̄u)

)
+ ( ˙̄x− ˙̄u)

T
(
z(t)

T
hu̇ (t, ū, ˙̄u)

)}
dt ≤ 0 (23)

Combining (19), (22) and (23), we have

0 >

∫
I

{
(x̄− ū)

T
(
rfu (t, ū, ˙̄u) +B (t) w (t) + y(t)

T
gu (t, ū, ˙̄u) + z(t)

T
hu (t, ū, ˙̄u)

)
+( ˙̄x− ˙̄u)

T
(
rfu̇ (t, ū, ˙̄u) + y(t)

T
gu̇ (t, ū, ˙̄u) + z(t)

T
hu̇ (t, ū, ˙̄u)

)}
dt

=

∫
I

[
(x̄− ū)

T
{
rfu (t, ū, ˙̄u) +B (t)w (t) + y(t)

T
gu (t, ū, ˙̄u) + z(t)

T
hu (t, ū, ˙̄u)

−D
(
rfu̇ (t, ū, ˙̄u) + y(t)

T
gu̇ (t, ū, ˙̄u) + z(t)

T
hu̇ (t, ū, ˙̄u)

)}]
dt

+ (x̄− ū)
T
(
rfu̇ (t, ū, ˙̄u) + y(t)

T
gu̇ (t, ū, ˙̄u) + z(t)

T
hu̇ (t, ū, ˙̄u)

) ∣∣t=b
t=a

Using the boundary conditions of the problem (CEP) and (FrCED) we have∫
I

[
(x̄− ū)

T
{
rfu (t, ū, ˙̄u) +B (t) w (t) + y(t)

T
gu (t, ū, ˙̄u) + z(t)

T
hu (t, ū, ˙̄u)

−D
(
rfu̇ (t, ū, ˙̄u) + y(t)

T
gu̇ (t, ū, ˙̄u) + z(t)

T
hu̇ (t, ū, ˙̄u)

)}]
dt < 0

Contradicting the feasibility of (r, x̄, ȳ, z̄, ω) for (FrCED).
Hence x̄ (t) = ū (t), t ∈ I, i.e ū (t) is an optimal solution.
To establish the converse duality theorem, we may write the problem (FrCED)

in the form following form:
Maximize ∫

I

(
f (t, x, ẋ) + x(t)

T
B (t)w (t)

)
dt

subject to
x (a) = 0 = x (b)
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θ (t, x (t) , ẋ (t) , ẍ (t) , y (t) , ẏ (t) , z (t) , ż (t) , w (t) , r) = 0, t ∈ I∫
I

y(t)
T
g (t, x, ẋ)dt ≥ 0, t ∈ I

∫
I

z(t)
T
h (t, x, ẋ)dt ≥ 0, t ∈ I

w(t)
T
B (t)w (t) ≤ 1, t ∈ I

(r, y (t)) ≥ 0, t ∈ I

(r, y (t) , z (t)) 6= 0, t ∈ I

θ =θ (r, t, x (t) , ẋ (t) , ẍ (t) , y (t) , ẏ (t) , z (t) , ż (t) , w (t))

=r (fx (t, x, ẋ) +B (t)w (t)−Dfẋ (t, x, ẋ)) + y(t)
T
gx (t, x, ẋ)

+ z(t)
T
hx (t, x, ẋ)−D

(
y(t)

T
gẋ + z(t)

T
hẋ

)
Consider θ (r, t, x (t) , ẋ (t) , ẍ (t) , y (t) , ẏ (t) , z (t) , ż (t) , w (t)) as defining a map-

ping where Q : R+×X×Y ×Z×W → U , and Y and Z are spaces of differentiable
functions y and z, W is the space of piecewise smooth functions w and R+ is the
set of nonnegative real numbers and U is a Banach space.

In the proof the following converse duality theorem, we have some restriction on
the equality constraint θ (.) = 0 that appears in the dual (FrCED). If suffices if the
Frechet derivative Q′ = [Qγ , Qx, Qy, Qz, Qw] has weak (*) closed range [4].

Theorem 5 (Converse Duality): Let (r, x̄, ȳ, z̄, w̄) be an optimal solution of

(FrCED). Assume that (H1):
∫
I

(
f (t, , ..,) + (.)

T
B (t)w (t)

)
dt is pseudoconvex,

(H2):
∫
I

y(t)
T
g (t, ..,) dt is semi-strictly pseudoconvex,

(H3):
∫
I

z(t)
T
h (t, ..,) dt is quasiconvex,

(H4): Q′ = [Qγ , Qx, Qy, Qz, Qw] has closed range,

(H5):
∫
I

(
σ(t)

T
θx −Dσ(t)

T
θẋ +D2σ(t)

T
θẍ

)
σ (t) dt = 0 implies σ (t) = 0,

(H6): The set
{
y(t)

T
gx −Dy(t)

T
gẋ, z(t)

T
hx −Dz(t)Thẋ

}
is linearly indepen-

dent, and
(H6): y (a) = 0 = y (b) ; z (a) = 0 = z (b).
Then x̄ is an optimal solution of (CEP).

Proof. Since (r, x̄, ȳ, z̄, w) is an optimal solution of (FrCED), and Q′ has closed
range, the Fritz John optimality theorem (Theorem 1), show that there exist La-
grange multipliers τ ∈ R, α ∈ R, β ∈ R, and ξ ∈ R piecewise smooth µ : I → Rn,
η : I → Rm and φ : I → R such that

τ [(fx +B (t)w (t))−Dfẋ] + µ(t)
T
θx −Dµ(t)

T
θẋ +D2µ(t)

T
θẍ

+ α
(
y(t)

T
gx −Dy(t)

T
gẋ

)
+ β

(
z(t)

T
hx −Dz(t)Thẋ

)
= 0

(24)

10
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αg + µ (t) + µ (t) θy −Dµ (t) θẏ = 0 (25)

βh+ µ (t) θz −Dµ (t) θż = 0 (26)

µ(t)
T

[(fu +B (t)w (t))−Dfu̇] + ξ = 0 (27)

τB (t)x (t)− 2φ (t)B (t)w (t) = 0 (28)

φ (t)
(

1− w(t)
T
B (t)w (t)

)
= 0 (29)

α

∫
I

y(t)
T
gdt = 0 (30)

β

∫
I

z(t)
T
hdt = 0 (31)

ξr = 0 (32)

η(t)
T
y (t) = 0 (33)

(τ, α, β, φ (t) , η (t) , ξ) ≥ 0 (34)

(τ, α, β, φ (t) , µ (t) , η (t) , ξ) 6= 0 (35)

Multiplying (25) by y(t) and using (30), we get

0 =

∫
I

(
η(t)

T
θy

)
y (t)dt−

∫
I

y(t)
T
Dµ(t)

T
θẏdt

=

∫
I

µ(t)
T
(
y(t)

T
(gu −Dgu̇)

)
dt+

∫
I

y(t)
T
Dµ (t) gu̇dt

=

∫
I

µ(t)
T
(
y(t)

T
gx −Dy(t)

T
gẋ

)
dt+

∫
I

ẏ(t)
T
µ(t)

T
gẋdt+

∫
I

y(t)
T
Dµ(t)

T
gẋdt

=

∫
I

µ(t)
T
(
y(t)

T
gx −Dy(t)

T
gẋ

)
dt+ y (t) (µ (t) gẋ)

∣∣t=b
t=a

−
∫
I

y (t)Dµ (t) gẋ +

∫
I

y (t)Dµ (t) gẋ

Using y (a) = 0 = y (b), we have∫
I

µ(t)
T
(
y(t)

T
gu −Dy(t)

T
gu̇

)
dt = 0 (36)
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Multiplying (26) by z(t) and then using (31), we have∫
I

z(t)
T
(
µ(t)

T
θz −Dµ(t)

T
θż

)
dt = 0

This, in view of z (a) = 0 = z (b) , as earlier, reduces to∫
I

µ(t)
T
(
z(t)

T
hz −Dz(t)Thż

)
dt = 0 (37)

Multiplying (4) by µ(t)
T

and using (36) and (37), we have∫
I

µ(t)
T
r (fx +B (t)w (t)−Dfẋ)dt = 0 (38)

Multiplying (24) by µ(t)
T

and using (36) (37) and (38), we have∫
I

[(
rµ(t)

T
θx −D

(
rµ(t)

T
))

θẋ +D2
(
rµ(t)

T
)
θẍ

]
rµ (t) dt = 0

This because of the hypothesis (H5), yields σ (t) = r, µ (t) = 0, t ∈ I.
In view of (H6), (4) implies r 6= 0. Hence r > 0 and so µ (t) = 0, t ∈ I. Using

µ (t) = 0, t ∈ I from (24) along with (4), we have(τ
r
− α

) (
y(t)

T
gx −Dy(t)

T
gẋ

)
+
(τ
r
− β

)(
z(t)

T
hx −Dz(t)Thẋ

)
= 0

In view of the hypothesis (H6), this yields

τ

r
− α = 0 =

τ

r
− β

If τ = 0, it can be easily seen that α = 0, β = 0, η (t) = 0, t ∈ I, ξ = 0, φ (t) = 0,
i.e (τ, α, β, φ (t) , µ (t) , η (t) , ξ) = 0, contradicting (35). Hence τ > 0.

The relation (28) with τ > 0 yields

B(t)x(t) =
2φ(t)

τ
B(t)w(t), t ∈ I (39)

yielding

x(t)TB(t)w(t) =
(
x(t)

T
B(t)x(t)

)1/2
(
w(t)

T
B(t)w(t)

)1/2
(40)

If φ(t) > 0, t ∈ I, then (29) gives w(t)TB(t)w(t) = 1 and so (40) yields

x(t)TB(t)w(t) =
(
x(t)

T
B(t)x(t)

)1/2
(41)

If φ(t) = 0, then (39) gives B(t)w(t) = 0. So we still obtain

x(t)TB(t)w(t) =
(
x(t)

T
B(t)x(t)

)1/2
, t ∈ I

12
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That is, in either case, we have

x̄(t)TB(t)w̄(t) =
(
x̄(t)

T
B(t)x̄(t)

)1/2

Consequently (25) and (26) imply

g(t, x̄, ˙̄x) ≤ 0, t ∈ I and h(t, x̄, ˙̄x) = 0, t ∈ I

yielding the feasibility of x̄ for (CEP). Also using (41), we have∫
I

(
f(t, x̄(t), ˙̄x(t)) +

(
x(t)

T
B(t)x(t)

)1/2
)

dt =

∫
I

(
f(t, x̄(t), ˙̄x(t)) + x(t)

T
B(t)w(t)

)
dt.

This because of weak duality theorem (Theorem2) the optimality of x̄ (t) of
(CEP) follows.

4. PROBLEMS WITH NATURAL BOUNDARY VALUES

The duality results can be extended to the corresponding problems, (CEPN), omit-
ting the boundary conditions, and (CEPN) with natural boundary values. These
problems are given as follows:

(CEPN): Minimize∫
I

{
f (t, u(t), u̇(t)) +

(
x(t)

T
B(t)x(t)

) 1
2

}
dt

subject to
g (t, x(t), ẋ(t)) ≤ 0, t ∈ I

h (t, x(t), ẋ(t)) = 0, t ∈ I

(CEDN): Maximize∫
I

{
f (t, u(t), u̇(t)) +

(
u(t)

T
B(t)ω(t)

)}
dt

subject to
u(a) = α, u(b) = β

r (fu (t, u(t), u̇(t)) +B(t)ω(t)) + y(t)T gu (t, u(t), u̇(t)) + z(t)
T
hu (t, u(t), u̇(t))

−D
(

(rfu̇(t, u(t), u̇(t))) + y(t)
T
gu̇ (t, u(t), u̇(t)) + z(t)

T
hu (t, u(t), u̇(t))

)
= 0, t ∈ I∫

I

y(t)
T
g (t, x(t), u̇(t))dt ≥ 0

∫
I

z(t)
T
h (t, u(t), u̇(t))dt ≥ 0

ω(t)TB(t)ω(t) ≤ 1, t ∈ I
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(r, y(t)) ≥ 0, t ∈ I

(r, y(t)) 6= 0, t ∈ I

(
rfu̇(t, u(t), u̇(t)) + y(t)

T
gu̇ (t, u(t), u̇(t)) + z(t)

T
hu (t, u(t), u̇(t))

) ∣∣∣∣∣ t = b

t = a
= 0.

5. NONLINEAR PROGRAMMING PROBLEMS

If functions f , g and h in the problem (CEPN) and (CEDN) are independent of t
and B = 0, then these problems reduce to the following problems treated by Husain
and Srivastav [6].

(CEP1): Minimize f(x)
subject to

g(x) ≤ 0,

h(x) = 0.

(CED1): Maximize f(u)
subject to (

rfu(u) + yT gu(u) + zThu(u)
)

= 0

yT g(u) ≥ 0

zTh(u) ≥ 0

(r, y) ≥ 0

(r, y, z) 6= 0.
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