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1. INTRODUCTION 

Throughout ω χ and Λ denote the classes of all, gai and analytic scalar valued 

single sequences, respectively. 

    We write 𝑤2 for the set of all complex sequences 𝓍𝑚𝑛 , where 𝑚 𝑛 ∈

ℕ , the set of positive integers. Then, 𝑤2  is a linear space under the 

coordinate wise addition and scalar multiplication. 

    Some initial works on double sequence spaces is found in Bromwich (1965). 

Later on, they were investigated by Hardy (1917), Moricz (1991), Moricz and 

Rhoades (1988), Basarir and Solankan (1999), Tripathy (2003), Turkmenoglu 

(1999), and many others. 

Let us define the following sets of double sequences: 

ℳ𝑢 𝑡 :=   { 𝓍𝑚𝑛 ∈ 𝑤2 ∶ sup𝑚 𝑛∈𝑁|𝓍𝑚𝑛|
𝑡𝑚𝑛 < ∞} , 

𝒞𝑝 𝑡 ≔  { 𝓍𝑚𝑛 ∈ 𝑤2: 𝑝 − lim𝑚 𝑛→∞ |𝓍𝑚𝑛 − 𝑙|𝑡𝑚𝑛 = 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑙 ∈ ℂ } , 

𝒞0𝑝 𝑡 ≔ { 𝓍𝑚𝑛 ∈ 𝑤2: 𝑝 − lim𝑚 𝑛→∞|𝓍𝑚𝑛|
𝑡𝑚𝑛 = 1} , 
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ℒ𝑢 𝑡 ≔ { 𝓍𝑚𝑛 ∈ 𝑤2: Σ𝑚=1
∞ Σ𝑛=1

∞ |𝓍𝑚𝑛|
𝑡𝑚𝑛 < ∞} , 

𝒞𝑏𝑝 𝑡 ≔ 𝒞𝑝 𝑡 ∩ ℳ𝑢 𝑡  and  𝒞0𝑏𝑝 𝑡 = 𝒞0𝑝 𝑡 ∩ ℳ𝑢 𝑡  , 
Where 𝑡 =  𝑡𝑚𝑛  is the sequence of strictly positive reals 𝑡𝑚𝑛 for all 𝑚 𝑛 ∈ ℕ and 

𝑝 − lim𝑚 𝑛 → ∞ denote the limit in the Pringsheim’s sense. In the case 𝑡𝑚𝑛 = 1 

for all 𝑚 𝑛 ∈ ℕ; ℳ𝑢 𝑡 , 𝒞𝑝 𝑡 , 𝒞0𝑝 𝑡 , ℒ𝑢 𝑡 , 𝒞𝑏𝑝 𝑡  and 𝒞0𝑏𝑝 𝑡  reduce to the 

sets ℳ𝑢, 𝒞𝑝, 𝒞0𝑝, ℒ𝑢, 𝒞𝑏𝑝, and 𝒞0𝑏𝑝, respectively. Now, we may summarize the 

knowledge given in some document related to the double sequence spaces. Gökhan 

and Colak (2004, 2005) have proved that ℳ𝑢 𝑡 , and 𝒞𝑝 𝑡 , 𝒞𝑏𝑝 𝑡  are complete 

paranormed spaces of double sequences and gave the α-, β-, γ- duals of the spaces 

ℳ𝑢 𝑡  and 𝒞𝑏𝑝 𝑡 . Quite recently, in her Ph.D. thesis, Zelter (2001) has essentially 

studied both the theory of topological double sequence spacesw and the theory of 

summability of double sequences. Mursaleen and Edely (2003) have recently 

introduced the statistical convergence and Cauchy for double sequences and given 

the relation between statistical convergent and strongly Cesὰro summable double 

sequences. Nextly, Mursaleen (2004) Mursaleen and Edely (2004) have defined the 

almost strong regularity of matrices for double sequences and applied these 

matrices to establish a core theorem and introduced the M - core for double 

sequences and determined those four dimensional matrices transforming every 

bounded double sequences 𝓍 =  𝑥𝑗𝑘  into one whose core is a subset of the M – 

core of 𝓍 . More recently, Altay and Basar (2005) have defined the spaces 

ℬ𝒮 ℬ𝒮 𝑡 ; 𝒞𝒮𝑝 𝒞𝒮𝑏𝑝 𝒞𝒮𝑟 and ℬ𝒱 of double sequences consisting of all double 

series whose sequence of partial sums are in the spaces ℳ𝑢, ℳ𝑢 𝑡 , 𝒞𝑝, 𝒞𝑏𝑝, 𝒞𝑟 

and ℒ𝑢, respectively, and also examined some properties of those sequence spaces 

and determined the α- duals of the spaces ℬ𝒮 ℬ𝒱 𝒞𝒮𝑏𝑝 and the 𝛽 𝓋 - duals of 

the spaces 𝒞𝒮𝑏𝑝 and 𝒞𝒮𝑟 of double seties. Quite recently Basar and Sever (2009) 

have introduced the Banach space ℒ𝑞 of double sequences corresponding to the 

well-known space ℓ𝑞of single sequences and examined some properties of the 

space ℒ𝑞. Quite recently Subramanian and Misra (2010) have studied the space 

χ𝛭 
2  𝑝 𝑞 𝑢  of double sequences and gave some inclusion relations. 

Spaces are strongly summable sequences were discussed by Kuttner 

(1946), Maddox (1979), and others. The class of sequences which are 

strongly Cesὰro summable withrespect to a modulus was introduced by 

Maddox (1986) as an extension of the definition of strongly Cesὰro 

summable sequences. Connor (1989) further extended this definition to a 

definition of strong A-summability with respect to a modulus where 
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𝐴 =  𝑎𝑛 𝑘  is a nonnegative regular matrix and established some 

connections between strong A-summability, strong A-summability with 

respect to a modulus, and A- statistical convergence. In (1900) the notion of 

convergence of double sequences was presented by A. Pringsheim. Also, in 

[35]-[38], and [39] the four dimensional matrix transformation  𝐴𝓍 𝑘 ℓ =

Σ𝑚=1
∞ Σ𝑛=1

∞  𝑎𝑘ℓ
𝑚𝑛𝑥𝑚𝑛 was studied extensively by Robison and Hamilton. 

 Let 𝛷𝑚𝑛 denotes the set of all subsets of ℕ, those do not contain more 

than  𝑚𝑛  elements. Further (𝛷𝑚𝑛) will denote a non-decreasing sequence 

of positive real numbers such that 𝑚𝑛𝛷𝑚+1 𝑛+1 ≤  𝑚 + 1 𝑛 + 1 𝛷𝑚𝑛, for 

all 𝑚 𝑛 ∈ ℕ. 

Now, if 𝑢 =  𝑢𝑚𝑛  is any sequence such that 𝑢𝑚𝑛 ≠ 0 for each 𝑚 𝑛 and 

𝑤2  𝑋  denote the space of all sequences with elements in X, where (X, q) 

denotes a semi normed space, seminormed by q, and 𝜂 𝜇 is any real number 

such that   𝜂 𝜇 ≥ 0. This will be accomplished by presenting the following 

sequence space: 

Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂
= 

         {𝑥 ∈ 𝑤2 : sup
𝑚 𝑛≥1 𝜎∈∅𝑚𝑛

1

𝛷𝑚𝑛
∑

𝑟∈𝜎
∑

𝑠∈𝜎
 𝑠𝑟 −𝜂𝜇 𝑓 𝑞  |𝐴𝑟𝑠 ∆𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄  𝑝𝑟𝑠 < ∞}; 

where f is a modulus function. Other implications, general properties and 

variations will also be presented. 

We need the following inequality in the sequel of the paper. For a, b ≥ 0 

and 0<p< 1; we have 

      𝑎 + 𝑏 𝑝 ≤ 𝑎𝑝 + 𝑏𝑝.                                           (1.1) 

The double series ∑𝑚 𝑛=1
∞ 𝑥𝑚𝑛  is called convergent if and only if the 

double sequence   s𝑚𝑛  is convergent, where s𝑚𝑛  = ∑𝑖 𝑗=1
𝑚 𝑛 𝑥𝑖𝑗 𝑚 𝑛 ∈

 ℕ  see [1] . 

A sequence 𝑥 =  𝑥𝑚𝑛  is said to be double analytic if 

sup𝑚𝑛 |𝑥𝑚𝑛|
1 𝑚+𝑛⁄ < ∞. The vector space of all double analytic sequences 

will be denoted by Λ2. A sequence 𝑥 =  𝑥𝑚𝑛  is called double gai sequence 

if   𝑚 + 𝑛 ! |𝑥𝑚𝑛| 
1 𝑚+𝑛⁄ → 0 as 𝑚 𝑛 →  ∞ . The double gai sequences 

will be denoted byχ2. Let𝛷 = {all finite sequences}. 

Consider a double sequence 𝑥 =  𝑥𝑖𝑗 . The  𝑚 𝑛 𝑡ℎ section 𝑥|𝑚 𝑛| of the 

sequence is defined by 𝑥|𝑚 𝑛| = ∑𝑖 𝑗=0
𝑚 𝑛 𝑥𝑖𝑗ℑ𝑖𝑗  for all 𝑚 𝑛 ∈ ℕ; where ℑ𝑖𝑗 
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denotes the double sequence whose only non-zero term is a 
1

 𝑖+𝑗 !
 in the 

 𝑖 𝑗 𝑡ℎ place for each 𝑖 𝑗 ∈ ℕ. 

 An FK-space (or a metric space) X is said to have AK property if  ℑ𝑚𝑛  

is a Schauder basis for X. Or equivalently 𝑥|𝑚 𝑛| → 𝑥. 

An FDK-space is a double sequence space endowed with a complete 

metrizable; locally convex topology under which the coordinate mappings 

𝑥 = (𝑥𝑘 →  𝑥𝑚𝑛  𝑚 𝑛 ∈ ℕ   are also continuous. 

Orlicz (1936) used the idea of Orlicz function to construct the space (𝐿𝑀). 

Lindenstrauss and Tzafriri (1971) investigated Orlicz sequence spaces in 

more detail, and they proved that every Orlicz sequence space ℓ𝑀 contains a 

subspace isomorphic to  ℓ𝑃 1 ≤ 𝑝 ≤ ∞ . Subsequently, different classes of 

sequence spaces were defined by Parashar and Choudhary (1994), 

Mursaleen et al. (1999), Bektas and Altin (2003), Tripathy et al. (2003), Rao 

and Subramanian (2004), and many others. The Orlicz sequence spaces are 

the special cases of Orlicz spaces studied in [6]. 

 Recalling [13] and [6] an Orlicz function is a function M : [0, ∞) →[0, ∞) 

which is continuous, non-decreasing, and convex with M (0) = 0, M (𝑥)> 0, 

for 𝑥 > 0 and 𝑀  𝑥 →  ∞ as 𝑥 →  ∞. If convexity of Orlicz function M is 

replaced by subadditivity of M, then this function is called modulus function, 

defined by Nakano (1973) and further discussed by Ruckle (1986) and 

Maddox (1986), and many others. 

An Orlicz function M is said to satisfy the ∆2 − condition for all values of 

u if there exists a constant 𝐾 > 0 such that M (2u) ≤ 𝐾𝑀  𝑢  𝑢 ≥ 0 . The 

∆2 − condition is equivalent to M   ℓ𝑢 𝐾ℓ𝑀 𝑢  for all values of 𝑢 and for 

ℓ > 1. 

Lindenstrauss and Tzafriri (1971) used the idea of Orlicz function to 

construct Orlicz sequence space 

 ℓ𝑀 = {𝑥 ∈ 𝑤 ∶  ∑𝑘=1
∞ 𝑀  

|𝑥𝑘|

𝜌
 <  ∞ for some 𝜌 > 0 } . 

The space  ℓ𝑀 with the norm 

‖𝑥‖ = 𝑖𝑛𝑓 {𝜌 > 0: ∑𝑘=1
∞ 𝑀  

|𝑥𝑘|

𝜌
 ≤ 1}, 

becomes a Banach space which is called an Orlicz sequence space. For 

M(t)= 𝑡𝑝 1 ≤ 𝑝 ≤  ∞ , the spaces  ℓ𝑀 coincide with the classical sequence 

space  ℓ𝑃. 
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If X is a sequence space, we give the following definitions: 

 i   𝑋’ = the continuous dual of X; 

(ii)  X
α
={𝑎 =  𝑎𝑚𝑛 :∑𝑚 𝑛=1

∞  |𝑎𝑚𝑛𝑥𝑚𝑛| < ∞ for each 𝑥 ∈ 𝑋}; 

 iii  𝑋𝛽{𝑎 =  𝑎𝑚𝑛 :∑𝑚 𝑛=1
∞ 𝑎𝑚𝑛𝑥𝑚𝑛 is convegent for each 𝑥 ∈ 𝑋}; 

(iv) 𝑋𝛾 = {𝑎 =  𝑎𝑚𝑛 : sup𝑚𝑛 ≥ 1|∑𝑚 𝑛=1
𝑀 𝑁 𝑎𝑚𝑛𝑥𝑚𝑛| < ∞ for each 𝑥 ∈ 𝑋 }; 

(v)  let 𝑋 bean 𝐹 𝐾 − space ⊃  ∅; then 𝑋𝑓 = {𝑓 ℑ𝑚𝑛 : 𝑓 ∈ 𝑋’ }; 

 vi  𝑋𝛿 = {𝑎 =  𝑎𝑚𝑛 : sup𝑚𝑛|𝑎𝑚𝑛𝑥𝑚𝑛|
1 𝑚+𝑛⁄ < ∞ for each 𝑥 ∈ 𝑋}; 

X
α
,𝑋𝛽   𝑋𝛾  are called α −  or Köothe −  Toeplitz  dual of X, 𝛽 - (or 

generalized - Köothe −  Toeplitz) dual of X, 𝛾- dual of X, 𝛿 - dual of X 

respectively. X
α 

is defined by Gupta and Kamptan (1981). It is clear that 

𝑥𝛼 ⊂ 𝑋𝛽  and 𝑋𝛼 ⊂ 𝑋𝛾 but 𝑋𝛽 ⊂ 𝑋𝛾 does not hold, since the sequence of 

partial sums of a double convergent series need not to be bounded. 

The notion of difference sequence spaces (for single sequences) was 

introduced by Kizmaz (1981) as follows  

𝑍 Δ =  {𝑥 =  𝑥𝑘 ∈ 𝑤:  ∆𝑥𝑘
 ∈ 𝑍}, 

for Z = c, c0 and ℓ∞, where ∆𝑥𝑘
= 𝑥𝑘-𝑥𝑘+1 for all k ∈  ℕ. 

Here c, c0 and ℓ∞ denote the classes of convergent, null and bounded 

sclar valued single sequences respectively. The difference space 𝑏𝑣𝑝 of the 

classical space  ℓ𝑃 is introduced and studied in the case 1 ≤ 𝑝 ≤  ∞, BaȘar 

and Altay in [42] and in the case 0 ≤ 𝑝 ≤  1, by BaȘar and Altay in [43]. 

The spaces c (Δ), c0 (Δ), ℓ∞ Δ  and 𝑏𝑣𝑝 are Banach spaces normed by 

‖𝑥‖ = |𝑥1| + sup𝑘≥1|∆𝑥𝑘| and ‖𝑥‖𝑏𝑣𝑝
=  ∑𝑘=1

∞ |𝑥𝑘|
𝑝 1 𝑝⁄   1 ≤ 𝑝 <  ∞  . 

Later on the notion was further investigated by many others. We now 

introduce the following difference double sequence spaces defined by 

𝑍 Δ =  {𝑥 =  𝑥𝑚𝑛 ∈ 𝑤2:  ∆𝑥𝑚𝑛 ∈ 𝑍}, 

where 𝑍  = Λ2 , X
2 

and ∆𝑥𝑚𝑛 =  𝑥𝑚𝑛 − 𝑥𝑚𝑛+1 −  𝑥𝑚+1𝑛 − 𝑥𝑚+1𝑛+1 =

𝑥𝑚𝑛 − 𝑥𝑚𝑛+1 − 𝑥𝑚+1𝑛 + 𝑥𝑚+1𝑛+1 for all m, n ∈  ℕ 

2. DEFINITIONS AND PRELIMINATIES 

Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂

  denote the Pringscheims sense of double analytic sequence 

space of modulus. 

2.1 Definition. A modulus function was introduced by Nakano (1953). 

We recall that a modulus f is a function from [0, ∞) →[0, ∞), such that 
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(1) f (x) = 0 if and only if x =0 , 

(2) f  𝑥 + 𝑦 ≤ 𝑓 𝑥 + 𝑓 𝑦  for all 𝑥 ≥ 0 𝑦 ≥ 0, 

(3) f is increasing, 

(4) f is continuous from the right at 0. Since |𝑓 𝑥 − 𝑓 𝑦 | ≤ 𝑓 |𝑥 − 𝑦| , it 

follows from here that f is continuous on [0, ∞). 

2.2. Definition. Let A = (𝑎𝑘 ℓ
𝑚𝑛) denote a four dimensional summability method 

that maps the complex double sequences x into the double sequence Ax where the k, 

ℓ − 𝑡 term to Ax is as follows: 

 𝐴𝑥 𝑘ℓ = ∑𝑚=1
∞ ∑𝑛=1

∞ 𝑎𝑘ℓ
𝑚𝑛 𝑥𝑚𝑛 

 

such transformation is said to be nonnegative if 𝑎𝑘ℓ
𝑚𝑛 is nonnegative.  

The notion of regularity for two dimensional matrix transformations was 

presented by Silverman (2011) and Toeplitz (1911). Following Silverman 

and Toeplitz, Robison and Hamilton presented the following four 

dimensional analog of regularity for double sequences in which they both 

added an adiditional assumption of boundedness. This assumption was 

made because a double sequence which is P- convergent is not necessarily 

bounded. 

 2.3 Definition. For a subspace 𝜓 of a linear space is said to be sequence 

algebra if x 𝑦 ∈ 𝜓,  implies that 𝑥 · 𝑦 =  𝑥𝑚𝑛𝑦𝑚𝑛 ∈ 𝜓. 

2.4 Definition. A sequence E is said to be solid (Or normal) if 

(λ𝑚𝑛𝑥𝑚𝑛 ∈ 𝐸, wherener (𝑥𝑚𝑛 ∈ 𝐸) for all sequences of scalars  λ𝑚𝑛 =

𝑘  with |λ𝑚𝑛| ≤ 1. 

2.5 Definition. A double sequence space E is said to be monotone if it 

contains the canonical pre-images of all its step spaces. 

2.6 Remark. From the above, it is clear that a sequence space E is solid 

implies that E is monotone. 

2.7 Definition. Let X be a real or complex linear space, g be a function 

from X to the set ℝ of real numbers. Then, the pair (X, g) is called a 

paranormed space and g is a paranorm for X, if the following axioms are 

satisfied for all elements 𝑥 𝑦 ∈ 𝐸 and for all scalars α 

      (PN.1) g (x) = 0 if x = θ. 

      (PN.2) g (-x) =g (x). 

      (PN.3) g (x + y) ≤ g (x) + g (y). 

      (PN.4) If (αn) is a sequence of scalars with αn → α as 𝑛 → ∞ and xn , x 



Subramanian, N. / Studies in Mathematical Sciences, 8(1), 2014       

 

33 

 

∈ 𝑋 for all n ∈ ℕ with xn → x as n → ∞ then αn xn → αx as n → ∞, in the 

sense that g(αxn- αx) → 0 as n → ∞. 

3. MAIN RESULTS 

3.1 Theorem.  Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂

 is linear space over the complex field ℂ. 

Proof: It is easy. Therefore omit the proof.  

3.2 Theorem. Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂

 is a paranormed space with 

𝑔  𝑥 = sup𝑚 𝑛≥1 𝜎𝜖∅𝑚𝑛

1

∅𝑚𝑛
∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠 𝑀⁄
 ,   (3.1)  

if and only if  = 𝑖𝑛 𝑓𝑝𝑟𝑠 > 0, where M = max (1, H) and H = suppmn. 

 ii Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂

 is a complete paranormed linear metric space if the condition 

p in (3.1) is satisfied. 

 Proof(i): suffciency: Let h > 0. It is trivial that 𝑔 𝜃 = 0 and 𝑔 −𝑥 =

 𝑔 𝑥 . 

 The inequality 𝑔 𝑥 + 𝑦 ≤  𝑔 𝑥 + 𝑔 𝑦  follows from the inequality 

(3.1), since 𝑝𝑟𝑠 𝑀⁄ ≤ 1 for all positive integers r, s. We also may write 

𝑔 𝜆𝑥 ≤ max |𝜆| |𝜆|ℎ 𝑀⁄   𝑔 𝑥 , since |𝜆|𝑝𝑚𝑛 ≤ max |𝜆|ℎ |𝜆|𝑀 for all 

positive integers r, s and for any 𝜆 ∈ ℂ, the set of complex numbers. Using 

this inequality, it can be proved that 𝜆𝑥 →𝜃, when x is fixed and 𝜆 →0, or 𝜆 

→0 and 𝑥 →𝜃, or 𝜆 is fixed and 𝑥 →𝜃. 

Necessity:  Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂
 Let be a paranormed space with the 

paranorm. 

𝑔  𝑥 = sup𝑚 𝑛≥1 𝜎𝜖∅𝑚𝑛

1

∅𝑚𝑛
∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠 𝑀⁄
  

and suppose that h = 0. Since |𝜆|𝑝𝑟𝑠 𝑀⁄ ≤ |𝜆|ℎ 𝑀⁄ = 1 for all positive integers r, s 

and 𝜆 ∈ ℂ such that 0 < |𝜆| <1, we have 

𝑔  𝑥 = sup𝑚 𝑛≥1 𝜎𝜖∅𝑚𝑛

1

∅𝑚𝑛
∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞  |𝜆| 𝑝𝑟𝑠 𝑀⁄  = 1. 

Hence it follows that 

𝑔  𝜆𝑥 = sup𝑚 𝑛≥1 𝜎𝜖∅𝑚𝑛

1

∅𝑚𝑛
∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞  |𝜆| 𝑝𝑟𝑠 𝑀⁄  = 1  

for x= (α) ∈ Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 

 as 𝜆 →0. But this contradicts the assumption  

Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 

 is a paranormed space with g (x). 

     (ii) The proof is clear. 
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3.3 Corollary. Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
is a complete paranormed space with the 

natural paranorm if and only if Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
=Λ𝑓

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
. 

3.4 Theorem. Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙1 𝜇

𝜂 
⊆ Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙2 𝜇

𝜂 
if and only if 

sup𝑚𝑛≥1
𝜙𝑚𝑛

1

𝜙𝑚𝑛
2 <  ∞. 

 Proof: Let 𝑥 ∈  Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙1 𝜇
𝜂 

 and T= sup𝑚𝑛≥1
𝜙𝑚𝑛

1

𝜙𝑚𝑛
2 . Then 

sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛
2  ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
 ≤ 

sup𝑚𝑛≥1
𝜙𝑚𝑛 

1

𝜙𝑚𝑛
2 sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛
1  ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
 =  

  T   × sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 
1

𝜙𝑚𝑛
1  ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
 . 

 

Therefore 𝑥 ∈  Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α ∅ 
𝜇

𝜂 
. 

    Conversely, let Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛  Α 𝜙1 𝜇
𝜂 

⊆ Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛  Α 𝜙2 𝜇
𝜂 

and 

𝑥 ∈  Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙1 𝜇
𝜂 
.  We have 

  sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛
1  ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
 < ∞. 

Suppose that sup𝑚𝑛≥1
𝜙𝑚𝑛

1

𝜙𝑚𝑛
2   < ∞. Then there exists a sequence of positive 

natural numbers (𝑚𝑖𝑛𝑗) such that lim𝑖 𝑗 → ∞
𝜙𝑚𝑖𝑛𝑗

1

𝜙𝑚𝑖𝑛𝑗
2  = ∞. Hence we can write 

sup𝑚 𝑛≥1 𝜎∈∅𝑚𝑛 

1

𝜙𝑚𝑛
2  ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
 ≥ 

sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 
1

𝜙𝑚𝑛
1  ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
 =  ∞. 

Therefore 𝑥 ∉  Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙2 𝜇
𝜂 

 which is a contradiction. Hence 

sup𝑚𝑛≥1
𝜙𝑚𝑛

1

𝜙𝑚𝑛
2 < ∞. 

 3.5 Theorem. Let f be an modulus function which satisfies the △2− 

condition. Then Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙1 𝜇

𝜂 
= Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙2 𝜇

𝜂 
 if and only if  

sup𝑚𝑛≥1
𝜙𝑚𝑛

1

𝜙𝑚𝑛
2 < ∞ and  sup𝑚𝑛≥1

𝜙𝑚𝑛
2

𝜙𝑚𝑛
1 < ∞. 

3.6 Theorem. Let f and f1 be modulus functions which satisfies the △2− 

condition. Then Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
⊆ Λ 𝑓0𝑓1 𝑝

2𝑞   Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
. 
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Proof: Let 𝑥 ∈ Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
 and ϵ > 0 be given and choose 𝛿 with 

0 < 𝛿 <1 such that f (t)< ϵ for 0 ≤ 𝑡 ≤ 𝛿. Therefore we have writ 
 

          sup
𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛

 ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 
−𝜂𝜇𝑓 𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )
𝑝𝑟𝑠

  = 

 

                  sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛

 ∑∑1 𝑟𝑠 
−𝜂𝜇𝑓 𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )
𝑝𝑟𝑠

  + 

 

sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 
1

𝜙𝑚𝑛
 ∑∑2 𝑟𝑠 

−𝜂𝜇𝑓 𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
  . 

 

Where the summation ∑∑1  is over 𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )  ≤  𝛿  and the 

summation ∑∑2 is over 𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )) > 𝛿. Since f is continuous, 

we have  

    sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛
 ∑∑1 𝑟𝑠 

−𝜂𝜇𝑓 𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
  ≤ 

max{1 𝑓 1 𝐻}sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛

 ∑∑1 𝑟𝑠 
−𝜂𝜇𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )
𝑝𝑟𝑠

 ≤ 

max{1 𝑓 1 𝐻}sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛
 ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
 . 

For 

      𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )) > 𝛿  we use the fact that 

𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )) <   𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )) 𝛿−1

≤ 1 +  𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )) 𝛿−1                      

Since f satisfies the △2−  condition, then there exists L > 1 such that 

𝑓 (𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ ))) 𝑓 1 +  𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )) 𝛿−1 ≤ 

1

2
 f (2)+ 1

𝐿
𝑓 2 𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )) 𝛿−1 + 

1

2
𝐿𝑓 2 𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )) 𝛿−1 = 

Lf (2) 𝛿−1𝑓1 (𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )). 

sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛
 ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
 ≤ 

max{1 𝑓 1 𝐻} sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛

  ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 
−𝜂𝜇𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )
𝑝𝑟𝑠

 

+ max{1 𝐿𝑓  2  𝛿−1 𝐻} sup𝑚 𝑛≥1 𝜎 ∈∅𝑚𝑛 

1

𝜙𝑚𝑛

 ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 
−𝜂𝜇𝑓1 𝑞 (|𝐴𝑟𝑠 Δ𝑢

𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )
𝑝𝑟𝑠

 . 

Therefore 𝑥 ∈ Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
. 
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3.7 Theorem. Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
is not separable. 

Proof: 𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
→ 0 as 𝑚 𝑛 →  ∞ , so it may so 

happen that first row or column may not be convergent, even may not be 

bounded. Let S be the set that has double sequences such that the first row is 

built up of sequences of zeros and ones. Then S will be uncountable. 

Consider open balls of radius 3
-1

 units. Then these open balls will not cover 

Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
. Hence is not separable. 

3.8 Remark. Let f = (fmn) be a modulus function q1 and q2 be two 

seminorms on X, we have 

        i  Λ𝑓𝑝

2𝑞1   Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
∩ Λ𝑓𝑝

2𝑞2   Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
⊆ Λ𝑓𝑝

2 𝑞1+𝑞2   Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
, 

      (ii) If q1 is stronger than q2 then Λ𝑓𝑝

2𝑞1   Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
∩ Λ𝑓𝑝

2𝑞2   Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
, 

      (iii) If q1 is equivalent to q2 then Λ𝑓𝑝

2𝑞1   Δ𝑢
𝑚𝑛  Α 𝜙 𝜇

𝜂 
= Λ𝑓𝑝

2𝑞2  Δ𝑢
𝑚𝑛  Α 𝜙 𝜇

𝜂 . 

3.9 Proposition. For every 

𝑝 =  𝑝𝑟𝑠  {Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}
𝛽
= {Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}
𝛼
= 

{Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛  Α 𝜙 𝜇
𝜂 
}
𝛾

= {𝜂𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛  Α 𝜙 𝜇
𝜂 
} where 𝜂𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛  Α 𝜙 𝜇
𝜂 

= ⋂𝑁∈𝑁−{1}, 

{𝑥 = 𝑥𝑚𝑛:
1

𝜙𝑚𝑛
 ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
 < ∞}. 

Proof(1): First we show that { 𝜂𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
} ⊂ {Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}
𝛽
. 

Let  ∈  { 𝜂𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
}  and 𝑦 ∈  {Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
}
𝛽

 . Then we 

can find a positive integer N such that  

 (|𝑦𝑚𝑛|
1 𝑚+𝑛⁄ ) <

max (1 sup𝑚 𝑛≥1 
1

𝜙𝑚𝑛
 ∑𝑟∈𝜎∑𝑠∈𝜎 𝑟𝑠 

−𝜂𝜇𝑓 𝑞 (|𝐴𝑟𝑠 Δ𝑢
𝑚𝑛𝑥 |1 𝑚+𝑛⁄ )

𝑝𝑟𝑠
) < ∞ < 𝑁, 

for all m, n. 

Hence we may write 

|∑𝑚 𝑛𝑥𝑚𝑛𝑦𝑚𝑛| ≤ ∑𝑚 𝑛|𝑥𝑚𝑛𝑦𝑚𝑛| ≤ ∑𝑚𝑛(𝑓 |𝑥𝑚𝑛𝑦𝑚𝑛| ) ≤ ∑𝑚 𝑛(𝑓 |△𝑢
𝑚𝑛 𝑥|𝑁𝑚+𝑛 ). 

Since 𝑥 ∈  { 𝜂𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}. The series on the right side of the above 

inequality is convergent, whence 𝑥 ∈  { 𝜂𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
} . Hence 

{ 𝜂𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
} ⊂ {Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}
𝛽

. 

Now we show that{Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
}
𝛽

⊂ { 𝜂𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
}. 
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For this, let 𝑥 ∈ {Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}
𝛽

and suppose that 𝑥 ∉ 

{Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}. Then there exists a positive integer N > 1 such that 

∑𝑚 𝑛(𝑓 |△𝑢
𝑚𝑛 𝑥|𝑁𝑚+𝑛 ) = ∞. 

If we define 𝑦𝑚𝑛 = 𝑁𝑚+𝑛𝑆𝑔𝑛∆𝑢
𝑚𝑛 m, n =1, 2…, then 

𝑦 ∈ {Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}. 

But, since  |∑𝑚 𝑛𝑥𝑚𝑛𝑦𝑚𝑛| = ∑𝑚𝑛(𝑓 |𝑥𝑚𝑛𝑦𝑚𝑛| ) = ∑𝑚 𝑛(𝑓 |△𝑢
𝑚𝑛 𝑥|𝑁𝑚+𝑛 ) = ∞ , 

we get 𝑥 ∉ {Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}
𝛽
  which contradicts to the assumption 𝑥 ∈ 

{Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
}
𝛽

. Therefore 𝑥 ∈  { 𝜂𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
}.  

Therefore {Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛  Α 𝜙 𝜇
𝜂 
}
𝛽

= { 𝜂𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛  Α 𝜙 𝜇
𝜂 
}.  

(ii) and (iii) can be shown in a similar way of (i). Therefore we omit it. 

 

4.  RESULT 

4.1. Proposition. The space Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 

is not monotone and such 

are not solid. 

Proof: The space Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 

 is not monotone follows from following 

examples. Since the space Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 

is not monotone, is not solid is clear 

from the remark 2.6. 

Example: Let 𝑋 =  ℂ and consider the sequence (xmn) defined by if 

(xmn) = 

(

 
 
 

1 1 …1
1 1 …1

.

.

.
1 1 …1)

 
 
 

for all 𝑚 𝑛 ∈ ℕ. 

Consider the sequence (ymn) in the preimage space defined as  

ymn={
𝑖2 if 𝑚 = 𝑛 𝑖 ∈  ℕ
0          otherwise.

 

Then (xmn) ∉  Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 

but (ymn   ∈ Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 

 are not 

monotone. 
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4.2 Proposition. The space Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇 

𝜂 
are not convergence free 

in general. 

Proof: The proof follows from the following example:  

Example: Consider the sequences (xmn), (ymn   ∈ Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
. 

Defined by  Δ𝑢
𝑚𝑛𝑥 =  1

𝑚+𝑛
 1 𝑚+𝑛⁄  and  Δ𝑢

𝑚𝑛𝑦 = 𝑚−𝑛

𝑚+𝑛
 1 𝑚+𝑛⁄ . Hence  

sup𝑚 𝑛≥1  
1

𝑚+𝑛
 1 𝑚+𝑛⁄ < ∞. which implies sup𝑚 𝑛≥1 |𝑥𝑚𝑛|

1 𝑚+𝑛⁄ < ∞. Also 

sup𝑚 𝑛≥1   
𝑚−𝑛

𝑚+𝑛
 1 𝑚+𝑛⁄ = 0. Hence sup𝑚 𝑛≥1  |𝑦𝑚𝑛|

1 𝑚+𝑛⁄ =0. Therefore 

the space Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
 are not convergence free. 

4.3. Proposition. Λ𝑓𝑝

2𝑞  Δ𝑢
𝑚𝑛 Α 𝜙 𝜇

𝜂 
is not sequence algebra. 

Proof: This result is clear the following example: 

Example: Let (xmn) =  𝑚

𝑚+𝑛
 1 𝑚+𝑛⁄  and (ymn  =   −𝑛

𝑚+𝑛
 1 𝑚+𝑛⁄ for all 

𝑚 𝑛 ∈  ℕ. Then we have 𝑥 𝑦 ∈  Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 
 but 

𝑥 ·  𝑦 ∉ Λ𝑓𝑝

2𝑞
  Δ𝑢

𝑚𝑛 Α 𝜙 𝜇
𝜂 

. 
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