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ABSTRACT

In recent years, the interests of introducing autonomous robots by growers into agri-

culture fields are rejuvenated due to the ever-increasing labor cost and the recent declining

numbers of seasonal workers. The utilization of customized, autonomous agricultural robots

has a profound impact on future orchard operations by providing low cost, meticulous in-

spection. Different sensors have been proven proficient in agrarian navigation including the

likes of GPS, inertial, magnetic, rotary encoding, time of flight as well as vision. To com-

pensate for anticipated disturbances, variances and constraints contingent to the outdoor

semi-structured environment, a differential style drive vehicle will be implemented as an

easily controllable system to conduct tasks such as imaging and sampling.

In order to verify the motion control of a robot, custom-designed for strawberry

fields, the task is separated into multiple phases to manage the over-bed and cross-bed

operation needs. In particular, during the cross-bed segment an elevated strawberry bed

will provide distance references utilized in a logic filter and tuned PID algorithm for safe

and efficient travel. Due to the significant sources of uncertainty such as wheel slip and

the vehicle model, nonlinear robust controllers are designed for the cross-bed motion, purely

relying on vision feedback. A simple image filter algorithm was developed for strawberry

row detection, in which pixels corresponding to the bed center will be tracked while the
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vehicle is in controlled motion. This incorporated derivation and formulation of a bounded

uncertainty parameter that will be employed in the nonlinear control. Simulation of the

entire system was subsequently completed to ensure the control capability before successful

validation in multiple commercial farms. It is anticipated that with the developed algorithms

the authentication of fully autonomous robotic systems functioning in agricultural crops will

provide heightened efficiency of needed costly services; scouting, disease detection, collection,

and distribution.
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INTRODUCTION

Precision agricultural has become a vastly expanding field over the past several decades.

The concept involves utilization of mechatronic systems such as robots or semi-intelligent

vehicles to improve the capable efficiency of agrarian businesses. Predominately, tasks that

are routine as well as easily repeatable have been the focus of this automation. Some of these

include land preparation, chemical dispersion, crop inspection and recently more difficult

tasks such as harvesting. The focus of this research is the design and development of an

autonomous ground vehicle that will conduct disease detection tasks.

Currently, diseases are found in agricultural crops (specifically strawberry) mostly

by visual inspection. The task can be tedious, costly and time consuming and consistent

repeatable results are not guaranteed. Hyperspectral technology advancements have recently

offered opportunities for specimen health analysis at an earlier stage of growth for a variety

of other field crops including the likes of wheat and tomatoes [1], [2]. For the application into

the large strawberry domain that exists in Florida, the challenge then becomes transportation

of the sensor efficiently throughout the field.

Strawberry farms can be considered semi-structured environments, where the plants

grow on top of elevated patterned rows. Significant sources of disturbances such as uneven
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terrain and soil densities as well as weed growth will make the control and navigation tasks

difficult for any unmanned vehicle. Chapter 1 will describe in more detail the developed

technologies that have extended into agricultural applications as well as more of the specific

intricacies of strawberry farms. Next, discussion of the vehicle design highlighting the me-

chanics and software precedes the description of the vehicle kinematics and control approach

for when the vehicle is traveling over one of the strawberry rows.

The most difficult portion of the safe travel for the autonomous system will be in the

headland at the end of each row. For the localization task during this portion, machine vision

was incorporated in a feedback configuration with non-linear type controllers. These control

algorithms were developed, simulated and tested in the real field terrain as presented in the

experimental validation chapter. Finally, reachability analysis was conducted to verify the

robotic vehicle would adequately converge to the desired location at the conclusion of each

control portion, with the inclusion of anticipated disturbances such as measurement noise

and control input uncertainty. The pinnacle point of the research is the integrated field

tests in which the vehicle travels over multiple rows safely and efficiently as presented in the

later portion of Chapter 6. Conclusively this navigation based research has the potential

to expand to virtually any agricultural province that involves elevated row structures.
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CHAPTER 1

BACKGROUND

1.1 Motivation and Literature Review

Of late, robotics and automation have permeated to the field of agronomy and cultivation,

popularly referred to as precision agriculture. As mechanization of critical tasks for large

scale crop production becomes increasingly easier due to innovative robotic design, higher

processing power, and improved reliability, overall farm efficiency is projected to increase

significantly. Autonomous systems also provide the opportunity for reducing labor costs

by performing repetitive tasks that can be highly susceptible to human error due to fa-

tigue. Some such tasks involve inspection of fields for disease, chemical disbursement, land

preparation, and harvesting [3], [4].

One of the most demanding tasks for an autonomous vehicle is traversal of the agri-

cultural fields with a margin of exactness, for example, on the scale of one degree for heading

and several centimeters for distances [5]. The most popular sensing devices used are GPS,

machine vision, encoding, inertial and ranging derivatives, varying substantially in estima-

tion methodology, precision, and cost. Low cost range finding has proven an accurate and

feasible solution when referencing a structured row or crop. Accuracy of up to 2.4◦ heading
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angle and 4 cm was achieved in [6] for a vehicle travelling in-between maize crop rows; while

tracking in white asparagus crops was reported as ±0.5 cm in [7]. Line tracking using an

enhanced carrier phase differential GPS system as reference was accurate to several centime-

ters for a farm tractor travelling in a bumpy field in [8]. While the above mentioned GPS

technology has been prevalent for a couple decades, the cost to achieve a specific location

is substantial. This is especially true for farm scenarios with restricting patterned paths,

smaller travel space, and unpredictable row conditions, as is expected in strawberry fields.

Fusion of multiple sensory data such as GPS, inertial and odometry, is also a viable option

for tracking the vehicle path shown in [9], [10] and [11]. If a GPS signal degrades as dis-

cussed in [12], other methods of referencing such as simultaneous localization and mapping

are feasible. Also mentioned is the importance of data selection and filtering for the laser

scanner device utilized, due to the real test environments. Machine vision has become an

increasingly popular navigation device used in agricultural environments [13], [14], and sev-

eral centimeters of accuracy have been verified in [15], [16], [17] and the vehicle operating

speed is up to 3 m/s in capricious farm environments including soybean, cultivated stubble

as well as citrus. In [18] the developed navigation algorithm is robust enough to operate

sufficiently in apple orchards with well structured tree rows as well as less structured rows

with grassy terrain. Distinct image processing algorithms have been exercised for agricul-

tural navigation e.g. the Hough Transform (HT) and the morphological and RGB image

filtering methods. The key issue of machine vision is dealing with substantially varying

lighting conditions [19], [20]. HT is robust to environmental disturbances and has a low
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computational cost [21], [22], [23], [24], [25]. Morphological and RGB image filtering are also

viable methods of detection and have proven better reliability than the HT gradient methods

(wheat, soybean and maize) [6], [26] however, the required processing time is significantly

higher [27], [28], [29].

However, all the aforementioned sensing devices have drawbacks if they are blindly

adopted in agricultural operations. GPS precision can be limited to several meters unless a

high fidelity and expensive package is used. IMUs are subjected to drifting characteristics

despite lack of an input. Encoder counting methods are susceptible to error due to wheel

slip, which is a common occurrence in the variable terrain types of commercial farms. Range

finding techniques use physical references however they are influenced by sensor orientation

[30] and can be jeopardized by dirt or leaves. Image or video sensors are sensitive to light

conditions and need to be re-calibrated whenever the working environment changes.

Based on available sensing information, different controllers have been investigated to

move a robotic system according to its assigned task. Proportional, integral and derivative

(PID) control was the first tested technique in [31], [32]. It has extended into field testing

for traveling over rows of white asparagus in [7], as well as a variety of other crops, e.g.

wheat, sorghum and chickpea as in [33]. Fuzzy logic which makes use of predefined sets and

discretized states to establish the control commands is successful in driving an autonomous

vehicle down rows and into the headland area of emulated maize rows [34]. By combination of

fuzzy logic and PID type control, the lateral offset as well as yaw rate error of an autonomous

tractor is substantially reduced as shown in [35]. In the visual servo algorithm of [36], the
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end of the maize crop rows are detected and compared to a GPS reference to conclude the

traversal portion through the field. Afterwards, the vehicle performs an ordered sequence of

motions to align with the next desired row. Another example of agrarian field navigation

using vision feedback for the control is shown in a vineyard crop [37]. The Lyapunov stability

was proven for the controller and the vehicle traveled between rows stably without diverging.

However, the proposed method may be limited to functioning in patterned fields with large

distances between rows and where the tracking error can exceed nearly twice the vehicle

dimension. Nonlinear controllers have also been introduced into the agricultural domain

to tackle inherent vehicle unmodeled dynamics, uncertainty and disturbances [38]. In [39],

a moving horizon estimation and nonlinear model predictive control is applied to guide a

tractor safely given bumpy and slippery conditions of the grassy test field. Sliding mode

control has also been implemented onto a large farm tractor which was subjected to wheel

slip [40] [41]. The control is stable and trajectory error is bounded despite the disturbances

and terrain, similarly, the overall accuracy is sufficient for the large tractor in the given field.

An analytical model is developed in [42] for improving the lateral control performance of a

tractor traveling at relatively high speeds for spraying applications.

It is a common practice to split the control task into individual regions with prescribed

initial conditions and restrictions based on the vehicle position and configurations [43] [44].

In [34] an Ackermann style vehicle uses fuzzy logic combined with Lidar techniques to navi-

gate the robot down corn fields and into the headland. Vision combined with GPS is used for

guidance in [33] for a robotic cart in patterned crop fields. The vehicle is capable of traveling
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through the headlands to execute turns, however it does not perform row tracking during

this portion. For the strategies of using different controllers in specific regions, reachability

analysis is an effective method of determining autonomous vehicle location and orientation

over time [44] with the objective of safely guided motion. This is because in real environ-

ments, disturbances as well as uncertainty exist for both the initial states, terrain conditions,

and control inputs [45]. It was discussed in [46] that large uncertainties of the system can

lead to unexpected terminal states and therefore failure of the system to remain within the

desired region. A tube-based model predictive control has been investigated by restricting

trajectories sequentially to tolerable regions for an off road mobile robot [47]. This method

has also been introduced for an autonomous agricultural robot comprising of a tractor and

coupled trailer in [48]. The navigation error was on the order of centimeters thus proving

the system robustness to uncertainties and other interactions.

1.2 Semi-structured Agrarian Environment

The autonomous robot is designed to perform in commercial strawberry orchards. Florida

had 10,900 Acres of strawberry farms in 2014 with an average farm size of 40 acres [49]. Uti-

lizing the raised bed plasticulture method, commercial farms typically have long symmetric

rows patterned throughout as seen in Fig. 1.1. The dimension of a typical strawberry or-

chard is the most important factor to be considered in the vehicle design. Following the

raised bed growth technique [50], Florida farms typically have the specifications shown in
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Figure 1.1: Sample strawberry rows in commercial farms

Table 1.1. The averages and variations listed here are established from our observations

and discussions with strawberry growers at multiple farms.

Some of the technicalities of strawberry fields are as follows: (1) they are elevated row

crops with definite dimensions, (2) field terrains can fluctuate substantially from soft loamy

sand to firm grass patches including holes and mounds, (3) semi-structured form leads to

different control objectives when over the rows and transferring between rows. Strawberry

farms use repetitive closely aligned rows for ease of production therefore, the control objective

while traveling over the row is comparison of the vehicle center and row center. Which is

considered a translational offset error, and should not deviate substantially from zero, to

prevent collision with bed walls on either side. The difference between the vehicle angle and

fixed bed orientation, is referred to as heading offset error. A smaller offset angle is desired

despite varying bed widths at different farms. As the strawberry rows are not perfect the

distance between each may alter slightly and also for different farms based on the bed

formation techniques. The control accuracy will need to be on the same order of magnitude

as compared to other agricultural vehicles. Translational accuracies will be within several
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Table 1.1: Strawberry Orchard Dimensions and Variances

Strawberry Row Parameters Average Dimension (cm) Variance +/- (cm)

Bed Width 70 5

Bed Height 20 5

Walking Path 50 10

Plant Height 18 4

Plant Diameter 20 6

Headland Length 300 50

centimeters while the robot heading angle will require limitation in each phase to several

degrees. While GPS has proven successful for navigation purposes, the cost for navigation

proficiency required for strawberry field dimensions is significantly higher. Furthermore, it is

labor prohibitive to log the position information of each and every row and strawberry bush.

Inertial type sensors must use some form of sensor fusion to negate the effects of drift. Thus,

direct distance sensing utilizing low-cost range finding provides adequate information while

the robot is over the row. For the second special condition in strawberry fields based on

field observations, disturbances, uneven and softer terrain will degrade the tracking capability

particularly odometry, therefore control techniques such as PID and fuzzy logic will be limited

to when the vehicle is over a row. Vision based control typically operates at a lower frequency

but will provide a higher accuracy for orientation, which is critical for aligning with the next

desired row while low cost GPS will not be sufficient for control reference. Machine vision
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combined with robust nonlinear control methods will deliver stable vehicle motion despite the

variety of disturbances that are anticipated. Inclusively, these detailed sensors and control

approaches will provide the required navigation information for performing special tasks in

the semi-structured strawberry farm environment.

It is now imperative to model the field conditions that will influence the vehicle

model and motion performance. These restrictions are sculpted from typical assumptions

pertinent to an autonomous robotic system [51] and agronomical environment [52], thus

form constraint formulae for specific regions of the farm. The assumptions mentioned here

are inherited from a paper currently under review titled “Vision Based Nonlinear Robust

Scouting Control in Agricultural Fields with Reachability Analyses.”

Assumption 1 (A1): Intuitively the vehicle speed will be set by bounded limits

for each portion and due to the low speed and vehicle mass, drag effects will be neglected,

νmin ≤ ν ≤ νmax and ωmin ≤ ω ≤ ωmax. [ν, ω]T are the translational and rotational control

inputs respectively that will be described in detail later.

Assumption 2 (A2): The focal lengths of the camera have the following uncertain-

ties: fx = (1 + ∆11)f̂x and fy = (1 + ∆22)f̂y, in which f̂x and f̂y are calibrated nominal focal

lengths of the camera. The ∆ terms will be numerically established by experimentation.

Assumption 3 (A3): A strawberry bed height can be approximated as a constant

due to its relatively small variance. Therefore, a planar model is adopted and as mentioned

in [21] and pitching and rolling of the vehicle will assumed to be minimal.
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Assumption 4 (A4): Since the safest and most power-efficient mode of over-bed

travel of the robot is translation (ω = 0), whenever the vehicle offset errors are within a

tolerance in the over-bed motion, only a translational command will be given.

Assumption 5 (A5): Variability of field terrain will induce a range of wheel slippage

during vehicle motion, which will be bounded as ∆νmin ≤ ∆ν ≤ ∆νmax and ∆ωmin ≤ ∆ω ≤

∆ωmax. Intuitively, the amount of slippage occurring during pure translation will be small

compared to a pure rotation.

Assumption 6 (A6): Elevated crop row widths can vary several centimeters, thus

the travel path width on each side of the row will be bounded by ∆RFrow,min ≤ ∆RFrow ≤

∆ RFrow,max, as a range finder estimated variance of the strawberry bed width. Similarly,

device resolution and noise from these sensors as ∆RFnoise,min ≤ ∆RFnoise ≤ ∆ RFnoise,max

will be estimated from variance of dynamic measurements.

Assumption 7 (A7): In the cross-bed motion, the heading angle is assumed to be

very small, except during the 90◦. turn. This is reasonable since the vehicle is moving in

straight paths during these portions except for the turn.

All of the bounds listed for the constraints will be restricted to ensure convergence and

stability within the environment yet relaxed enough considering dynamics of the mechanical

system as well as physical limitations of the travel paths.
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1.3 Contributions

The contributions of this study are summarized here: (1) a multi-phase control structure

and algorithms are proposed based on the strawberry orchard environment and operation

needs; (2) a simplified uncertainty bound is obtained as there is uncertainty associated with

the focal length of the camera which could significantly reduce the conservativeness of the

adopted nonlinear robust controllers; and (3) to the best knowledge of the authors, this is the

first experimentally validated controller for an agricultural robot to transverse throughout a

commercial strawberry field.

The rest of the dissertation is organized as follows; in Chapter 2 the Disease De-

tecting Agricultural Ground Robot (DDAGR, the name was proposed by the 2013-2014

senior design team) hardware and software is described in detail. Chapter 3 explains the

over-bed motion control and navigation architecture while Chapter 4 pertains to the cross-

bed control that utilizes vision based feedback in conjunction with the nonlinear controllers.

Chapter 5 highlights the preliminary experimental results including control and measure-

ment particularities. Reachability analysis and the combined navigation tests of Chapter

6 preclude the formulation for future work and conclusions in Chapter 7.
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CHAPTER 2

DISEASE DETECTING AGRICULTURAL GROUND VEHICLE

2.1 Motion Control Outline

To solve the motion tasks of the autonomous vehicle, splitting of control task into separate

regions will prove a feasible solution. This approach is necessary due to the specific field

conditions and variances. Fig. 2.1 displays an overview of the motion tasks and navigation

methodology implemented by the autonomous system. Phases 1 consists of motion over the

strawberry rows in which the vehicle will travel large distances to reach specific plants. Phase

2 indicates 90 degree in-site rotation of the vehicle as it aligns to travel in headlands while

off the rows. Phases 3 is split into two sections, while the vehicle travels to an adjacent row.

The first sub-phase (3.1) consist of a linear translation and subsequent specialized control to

reduce the offset of the vehicle center with respect to the row center. After the intermediate

rotation is performed the orientation as well as distance away from the desired row will need

to be reduced. Sub-phase 3.2 will simultaneously generate linear and rotational control to

produce arcing motion to reduce the orientation and distance respectively.
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Figure 2.1: Motion control phases

14



2.2 Hardware, Sensors and Software

The distinct characteristics of the autonomous ground robot are summarized via excerpts

from the author’s previously published papers [53], [54]. It is first important to enumerate

the hardware design specifications and requirements. The following list of requirements

was established based upon the previously mentioned challenges and field specifications for

commercial strawberry farms:

• Dimensions of the vehicle must allow it to travel over a variety of raised beds considering

the mentioned variations.

• Substantial motor torque as well as large contact surface between the vehicle drive and

ground is necessary to ensure significant traction in varying terrains.

• An electronics suite for data collection and integration of all the information and

interfacing with the control for autonomous navigation is required.

• The vehicle must traverse the field in a timely manner to cover a reasonable area.

• Multi-spectral technology will be incorporated into the vehicle to perform the disease

detection task efficiently and accurately.

In order to accommodate the strawberry bed variances of commercial farms, the

robot frame has been customized to be manually adjustable in the X and Z axes (so called

a transformer), by telescoping of the frame as indicated in Fig. 2.2(a), as the adjustable
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dimensions. DDAGR can expand its width up to an additional 50 cm and its height up

to an additional 25 cm while retaining vehicle symmetry which is critical for navigation

algorithms. Contingent to the second bullet point, the robot drivetrain is designed in the

differential skid-steer style with two drive banks (DG-158 24VDC motors capable of 135

RPM) and has a total of four wheels. Due to the vehicle weight and potential sinkage from

soft soil, a large wheel radius of 27.5 cm as well as 18.2 cm width, is employed ensuring a

larger contact surface area for the torque transfer. Shown in Fig. 2.2(b), Four ultrasonic

range finding sensors operate at the interior frame corners of DDAGR by measuring the time

delay of a wave reflected from the edge of the strawberry bed. An effectual measurement

angle from the distance sensor is 15 degrees outward in which the dynamic accuracy was

determined to be ±0.5 cm for distances between 2 and 500 cm. The robot roll, pitch and

yaw as well as rotation rates about the fixed inertial frame are determined by the IMU.

Encoder as well as IMU data is streamed through all phases of the experiment for reference.

Two pairs of mono-vision webcameras will be oriented around the upper portion of the robot

frame to provide an imaging plane that is parallel to the robot frame.

The third requirement is critical for extracting data from multiple sensors and gen-

erating control instructions. Therefore, the software package is designed and developed to

execute communication, information transmission, navigation, and controller command func-

tionalities of DDAGR. The overall data flow, device wiring and hardware are depicted in Fig.

2.3. Software programmed in MATLAB gives commands and handles function calls, makes

calculations, as well as completes processing of the data. Software developed in Arduino C
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(a)

(b)

Figure 2.2: (a) Solidworks ® rendition of DDAGR and dimensions (b) Actual vehicle and

sensor locations
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Figure 2.3: Electronics and communication methodology
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is enacted to initiate and trigger all the peripheral low level devices. The laptop computer

and Arduino microprocessor correspond with each other serially by Universal Asynchronous

Receiver Transmitter (UART) via USB hookup. The microprocessor (Arduino hardware)

auxiliary channels are then linked to sensors and actuators for operation. The assignment of

the microchip is to gather, compile and transmit sensory feedback data to the laptop CPU

and receive instructions or commands to implement the actuators or motors.

The fourth requirement for the agricultural robot is to travel efficiently throughout

the grounds. Based on the average field size, sensor update rates, and typical speeds of

manned agricultural vehicles, a desired velocity capability of 15 cm per second was pursued.

Considering control calculation as well as the range finder (RF), GPS and IMU rates, the

targeted average cycle time for navigation is 4 Hz during the over-bed control region and 1

Hz while transferring rows in the cross-bed vision based segment. Matlab is implemented as

the control software for ease of integration of other subsystems including the communication

with peripheral sensors which is accomplished through Arduino C.

Although not the focus of this dissertation is important to justify the robot design

and purpose. As discussed in [55] crop loss in strawberry can be as high as fifty percent,

even in well managed farms. The overall objective and concept is to introduce early stage

detection and identification of these infections before visual inspection is feasible, and subse-

quently prevent propagation of the disease [56]. A spectral sensor is a device that measures

electromagnetic radiation reflection from surfaces, it can work in both the visual as well as

infra-red region and will produce response plots of the reflectance amplitude with respect
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to wavelengths. As discussed in [57] distinct amplitude variances in both the visual and

near infra-red spectrum are discernible for fungal based infections in wheat crops allowing

for classification of the plant as healthy, asymptomatic or symptomatic. This research has

expanded to applications such as strawberry where Anthracnose, one of the primary con-

cerns in central Florida, was detected with an accuracy of 80% even in the early incubation

stages [58]. It is therefore ideal to utilize this methodology as a preventative measure in

commercial strawberry farms and the task now becomes safe transport and implementation

of the spectral sensors.
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CHAPTER 3

OVER-BED MOTION CONTROL

3.1 Differential Drive Robot Kinematics

The information presented here is adapted from the paper currently under review titled

“Vision Based Nonlinear Robust Scouting Control in Agricultural Fields with Reachability

Analyses.” The model from [59], [60] is adopted as the governing equation for DDAGR, a

differential drive style skid steer mobile robot. All four wheels have an equal radius, and are

on fixed direction axles with respect to the robot frame. Inherently, this will result in only

rotational motion of the wheel around the axle and not along it. The coordinate information

of DDAGR is shown in Fig. 3.1. The global coordinate is referred as xg and yg, and the

z axis is formed by the right hand rule. The heading angle of DDAGR is represented by

θ . The robot local reference frame is denoted xr and yr, which rotates from the global

coordinate with an angle of eθ referred to as the heading error. The distance between the

tread centerlines of the wheel banks in the yr axis is L. The distance of DDAGR center to

the bed center, considered the translational offset error, is denoted by ey and is calculated

based on the RF readings. The rotational angle between the DDAGR local coordinate with

respect to the global coordinate, eθ, is calculated using the geometric relation similar to that

21



Figure 3.1: DDAGR coordinates, kinematics and navigation design
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in [7] as

eθ = 0.5

[
tan−1

(
|RFFR −RFRR|

L

)
+ tan−1

(
|RFFL −RFRL|

L

)]
(3.1.1)

in which the subscripts FR, RR, FL, and RL denote the RF in the front right, rear right,

front left, and rear left, respectively. It is worth noting that the absolute value in 3.1.1

ensures a positive angle and therefore no cancellation from each pair. Consequently the

direction is established from comparison of the right vs the left range finder reading. The

distance of the vehicle center to the bed is calculated by

d =
RFFR −RFFL

2
+
RFRR −RFRL

2
(3.1.2)

This equation applies to both the forward or reverse travel direction, as it is a simple step

to invert the control command if traveling in reverse as opposed to redefining the navigation

structure. The offset of the vehicle center to the bed centerline, ey , is then computed by

ey = d cos eθ (3.1.3)

Both of the offset error terms from equations 3.1.1 and 3.1.3 will be utilized in the over-bed

controller. The drivetrain outputs motor angular velocities Wj, j = 1, 2 as shown in the

figure, which are converted to the wheel velocities (Vi, i = 1, 2, 3, 4) using the wheel radius

Ri and the reduction gear ratio η as

Vi = RiWj/η, i = 1, 2, 3, 4; j = 1, 2

V1 = V3 = VR; V2 = V4 = VL

(3.1.4)

The velocity of each wheel bank is combined to produce the overall translational and rota-

tional velocity with respect to the vehicle center of mass (COM) and are defined as ν and ω
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respectively, therefore

v = (VR + VL)/2

ω = (VR − VL)/L

u = [v, ω]T

(3.1.5)

Naturally, VR and VL are the right and left wheel bank velocities, in which the subscripts R

and L denote the wheels on the left and right sides of DDAGR. The kinematic model for

the drivetrain based on [61] can be written as 3.1.6
ẋg

ẏg

θ̇

 =


cos(θ)

sin(θ)

0

 v +


0

0

1

ω (3.1.6)

Here ẋg(t) ∈ <1 and ẏg(t) ∈ <1 are the differentiated cartesian coordinates of the robot in

the global frame while θ̇(t) ∈ <1 depicts the derivative of the orientation. The combined

control vector u(t) ∈ <2 is defined as u = [v, ω]T and is C1 .

The possible motions for the drivetrain are translation, in-site rotation, and logarith-

mic spiral [62]. The linear translation is performed by commanding the same motor speed

for both wheel banks and in the same direction. By instructing one of the wheel banks to

rotate at a larger or smaller rate than the opposing bank, the logarithmic spiraling motion is

achieved. The in-site rotation operation is fulfilled by rotating the banks in opposite direc-

tions at matched rotation rates, which will occur at the end of a row, or if the robot needs

to fix its orientation.
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3.2 Over-bed Algorithm

For the motion of the vehicle while over the strawberry rows (Phase 1) a desired travel

distance down the row is first established as: ex = xd−xa. Where {ex, xd, xa} ∈ <1, ex is the

travel distance error, xd is the desired travel distance (preprogrammed or GPS), xa is the

encoder measured travel distance. The translational velocity gain is computed as: v = kpxex

From tuning kpx was set equal to 1. When the velocity exceeds a defined value, it is set to

a limit before employed in the control as ν > νlim → ν = νlim The turn velocity ω is created

from a simple PID structure [7], [32].

ω = kpe+ ki

∫ t

t0

edt+ kdė (3.2.1)

Where an integral term is generated by utilizing the Euler method. The tunable propor-

tional, integral and derivative gains are kp ki and kd respectively. The error term e will be

constructed from eθ and ey from equations 3.1.1 and 3.1.3 as well as user defined weights wθ

and wy.

e = wθeθ + wyey (3.2.2)

Feasibility of a weighting method to produce the error term for the controller is exhibited

in [44]. The weights are necessary as the controller is designed to function given the variability

between field dimensions at different farms, and eθ or ey will be more critical for specific fields.

Control was implemented in the following algorithm structure observing the assump-

tions of Section 1.2. 1) ωmax was imposed for vehicle safety considering A1, 2) measurement

errors will contribute to state uncertainty ∆RF while environmental disturbances generate
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control input error ∆ν,∆ω which reflects A5-A6. 3) If the vehicle is adequately aligned with

the strawberry row it is most efficient to drive straight, ie. ω = 0 as mentioned by A4. In

the algorithm, all of the inequalities are user defined tolerances that may vary for specific

field circumstances. Initially, a desired drive distance is supplied as xd and the translational

velocity ν is set to the speed limit. The overall algorithm can be seen in Fig. 3.2(a) depicted

as a flow chart such as in [63]. Range finder data is then filtered using a zero-order hold

filter and smoothed to remove erroneous readings. Both the distance errors ex and ey are

continuously checked to determine when to turn off the motors. If ex is within the tolerance

εx , the vehicle has traveled far enough down the row to its desired location. As a safety

feature, if the robot is very close to a bed wall, within the halt tolerance i.e., ey ≤ δy it needs

to stop, reduce the heading error eθ and then move away from the row before continuing.

If ey is not outside of the turn tolerance εy , the vehicle is too close to a bed wall, then it

needs to turn. Contingent to A1, the turn rate ω will be fixed to a constant value and is

referred to as Control Region i in the diagram. Subsequently, if ey and eθ are outside of an

alignment tolerance σy and σθ , respectively, justified by assumptions A5 and A6, the PID

calculated control command 3.2.1 will be implemented as referred to be Control Region ii.

Alternatively, if the robot is within these bounds and respecting Assumption 4, the turn rate

will be set to 0 resulting in a constant speed translation or Control Region iii. Ordering of

the control regions is presumed based on the assumptions. It is important to note that the

PID gains will be tuned conservatively enough to compensate for disturbances however the

vehicle may still approach the bed wall too close and therefore the turn rate maximum is ideal
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(a)

(b)

Figure 3.2: (a) Over-bed motion control algorithm (b) Labelled parameters
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and necessary. Simple logic checks are enacted to establish travel direction e.g. (forward or

reverse) as well as clockwise or counterclockwise to adjust the offset errors. The algorithm

also contains the capability of detecting when the robot has reached the end of a row, and

will attempt to reduce eθ before leaving the row. Finally, the calculated command speeds

are sent to the controller and the loop is repeated. When the controller has reduced the x

error offset below the defined threshold, the vehicle has either traveled far enough down the

row and reached the desired destination or is at the end of the bed.

To properly asses the stability of the entire control system, at the conclusion of an over

bed section the final states must be measured and verified as settled within the mandatory

range.

Remark 1 . It is therefore required that eθ,min ≤ eθ ≤ eθ,max as well as ey,min ≤ ey ≤ ey,max

for this over-bed control region. These final state parameters will require modification at

different farms for varying strawberry row dimensions and accordingly adjustment of the

vehicle dimensions.
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CHAPTER 4

CROSS-BED MOTION CONTROL

4.1 Image Processing

This Chapter pertains to content presented by the author at the 2017 Dyncamic Systems and

Control Conference [54]. Also included is material from a paper currently under review titled

“Vision Based Nonlinear Robust Scouting Control in Agricultural Fields with Reachability

Analyses” For control phases 3.1 and 3.2, information from images collected by webcameras

mounted to the autonomous robot will generate navigation references. Conducive to utilizing

camera images as a means of course-plotting, feature detection must be accurately employed

[23], [28]. A control objective such as tracking is also necessary and will govern the vehicle

motion based on the interest points extracted from images. An algorithm was developed

specifically for operation in strawberry orchards based on the semi-structured environment

as well as the distinct colors of the plants and elevated rows. The first step is capturing an

image of the desired strawberry row. Next the image is cropped to reduce the processing

time and localized to a region of interest [26] [64].

The image is filtered by comparing the pixel intensity of each individual channel

(RGB) to a determined threshold. Then based on the comparison a single channel pixel is
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set to either black or white, commonly referred to as binarization [65]. Area and centroid

calculations are made from the Matlab® Image Processing toolbox on the filtered image.

As multiple rows may be visible in any given image, the returned pixel coordinates are

processed to match with the desired row the robot is to align with. The method is discussed

in more details in the authors work [54]. Finally, the pixel values are passed to be used in

the control derivations. The steps involved in the centerline detection are illustrated in Fig.

4.1.

4.2 Camera Model

Using the image information for vehicle guidance necessitates formulation of the camera

model to collect and reconstruct output pixels. It will first be critical to simulate the con-

trollers, by formation of the full camera matrix which can be used to convert cartesian

coordinates of a detected object or point to pixel coordinates and vice versa. The position

bias of the camera from the robot center of gravity is denoted by b =

[
bx by bz

]T
as

shown in Fig. 4.2, (bx = 0) The location of the row centerline points (red circles) in the

world frame are assumed to be xi =

[
xi yi zi

]T
, i = 1, 2 where zi will be taken as a con-

stant estimated from field data and is valid by consideration of Assumption 3. These terms

form the first portion of the extrinsic matrix identifying the camera location in the world

coordinate system. It is assumed that there are uncertainties associated with the camera
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Figure 4.1: Steps involved in the centerline points detection of strawberry rows [54]
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Figure 4.2: Coordinates and camera pose as vehicle prepares for control phase 3.1. In control

phase 3.2, the camera mounted to the front (along x global axis) will face the strawberry

row

intrinsic matrix.

K =


fx + ∆fx 0 cx

0 fy + ∆fy cy

0 0 1

 (4.2.1)

in which ∆fx and ∆fy are the bounded uncertainties associated with the focal lengths fx

and fy , respectively from Assumption 2. After the calibration [66], the following parameters

are obtained for the selected camera, fx ≈ fy ≈ 1040 pixels cx = 320 and cy = 240 pixels
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respectively. Based on [67], the projected points to camera coordinates are
Xc

Yc

Zc

 = KRX
φ R

Z
θ


bx − xg + xi

by − yg + yi

bz − zg + zi

 (4.2.2)

in which

RX
φ =


1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 (4.2.3)

and

RZ
θ =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (4.2.4)

where [ x y z ]T is the position state of the vehicle, and z is assumed to be constant based

on Assumption 3 (A3) from Section 1.2. The coordinate frame rotation angles φ and θ are

depicted in Fig. 4.2 and comprise rotations of the camera in the world frame as the second

portion of the extrinsic matrix. The scalar form of Eq. (4.2.2) to convert three-dimensional
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world coordinates to three-dimensional camera coordinates is

Xc = (fxcθ + cxsϕsθ)(bx − xg + xi)

+(fxsθ − cxsϕcθ)(by − yg + yi)

+cxcϕ(bz − zg + zi)

Yc = (cycϕ+ fysϕ)(bz − zg + zi)

+sθ(cysϕ− fycϕ)(bx − xg + xi)

+cθ(cysϕ− fycϕ)(by − yg + yi)

Zc = cϕ(bz − zg + zi) + sϕsθ(bx − xg + xi)

−sϕsθ(by − yg + yi)

(4.2.5)

in which s(·) and c(·) indicate the sine and cosine functions. A final step is to apply the

perspective projection to achieve the Cartesian image coordinates [xi,c, yi,c] by

xi,c = Xc/Zc

yi,c = Yc/Zc

(4.2.6)

Due to the compression of data from the imaging process only 2 data points (xp, yp) are

available from an image. However, 3 variables, (xi, yi, zi), of the centerline or interest point

exist in the world coordinate system and are needed for navigation. Solutions to this problem

exist in the literature [15], [16] binocular vision will capture two images simultaneously and

compare the pixel difference to solve the third unknown (Zc) of equation 6. A simpler

approach is used in this study following the assumptions required in [21]. Presume the

height of the centerline interest point on the bed is constant (20 cm) and the variance of

plant heights negligible due to the selected image filtering technique. In conjunction with
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this assumption, the pixel locations will be scaled using the following,

xi,p = a1xi,c
2 + b1xi,c + c1

yi,p = a2yi,c
2 + b2yi,c + c2

(4.2.7)

instead of the traditional constant scalar. All the parameters in Eq. 4.2.7 are calibrated

via experiments. The final scaled pixel results were compared to experimental data for

verification and to establish a numerical uncertainty bound. For an extreme set of three

dimensional coordinates (xi, yi, zi) the accuracy was within 5 pixels for each axis, (xp, yp) and

subsequently lower for more conservative trials. This value is reasonable given the sources of

error possible during the comparison: camera pitch angle, feature points of images estimated

by human and finally a fixed focal length of the webcamera. Overall, the pixel accuracy is

acceptable for 640x480 resolution images and after rounding will be modeled as 99% (from

the 5 pixel error compared to the average of the resolution). The percentage difference as

compared with the nominal model will be implemented as numerical uncertainty bounds for

the cross-bed controllers sufficing as the ∆ terms of Assumption 2 (A2).

4.3 Nonlinear Controllers Derivation and Simulation

4.3.1 Nonlinear Controller for the X-Axis Motion

Concluding an alignment check step after phase 2 (Fig. 2.1) and before phase 3.1, it can be

assumed the robot will be traveling nearly perpendicular towards the desired row. Applica-
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tion of the perspective projection from Eq. 4.2.6 including the scaling Eq. 4.2.7 will produce

the x-axis pixel output model

y1 = h = [Xc/Zc] = [h1/h3] = xp,1 (4.3.1)

The derivative of the output with respect to the position state is then

∂h/∂x1 = [(∂h1/∂x1)h3 − (∂h3/∂x1)h1]/h2
3 (4.3.2)

in which x1 is the first state in [ x y z ]T . This can be simplified as [(∂h/∂x1)B][(∂ĥ/∂x1)B]−1 =

∆fx to model the uncertainty. Here the caret symbol represents a nominal model. Lets as-

sume that 0 ≤ ‖∆fx‖ ≤ D < 1 The uncertainty will then simplify to

∆ = ∂h/∂x1

(
∂ĥ/∂x1

)−1

=
(∂h1/∂x)h3 − (∂h3/∂x)h1

(∂ĥ1/∂x)h3 − (∂h3/∂x)ĥ1

(4.3.3)

h1 and h3 are taken from Eq. 4.2.6 and after a long derivation and use of Assumption 7

(A7), we obtain ∂h1/∂x1 = −fx ∂h3/∂x1 = ∂ĥ3/∂x1 = 0 and ∂ĥ1/∂x1 = −
_

fx while

ĥ1 = [f̂xcθ + cxsφsθ](bx − x+ xi)

+[f̂xsθ − cxsφcθ](by − y + yi)

+cxcφ(bz + zi)

(4.3.4)

ĥ3 = h3 as the equation does not contain the focal length. Overall the uncertainty simplifies

to

∂h/∂x1

(
∂ĥ/∂x1

)−1

= (∂h1/∂x1)h3−(∂h3/∂x1)h1
(∂ĥ1/∂x1)h3−(∂h3/∂x1)ĥ1

= −fxh3/− f̂xh3 = −fx/− f̂ = fx/f̂x

(4.3.5)

An equivalent expression for Eq. 4.3.5 is

fx = (1 + ∆fx)f̂x (4.3.6)
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In order to create a tracking based control scheme, a reference error is formed as

e = e1 = xp,1 − xdp,1 (4.3.7)

The desired pixel value for this controller will be the center of the image on the x axis, and

can be modified based on the image resolution. The camera is fixed to the center of the robot

frame (Fig. 4.2). Therefore, once the controller has converged the center of the vehicle will

be very close to that of the strawberry row.

The following sliding surface is used

s = e1 + λ

∫ t

t0

e1dt (4.3.8)

Following [68], the SISO sliding mode control for this step is

u = (LBĥ)−1[ẏd1 − λy1 + λyd1 − ksign(s)] (4.3.9)

in which sign is the signum function, and ẏd1 = 0. To guarantee the asymptotic stability,

based on [68] and inclusion of the assumed bound D for uncertainty, the control gain k

should be calculated by

k = [D
∣∣s(xdp,1 − λxp,1 + λxdp,1)

∣∣+ ηs]/(1−D) (4.3.10)

The stability proof for the robust controller will be shown for the multi input, multi output

vector form in the following Section 4.3.2.

Remark 2 . It is necessary for this control section to converge to within several cm of

the center of the strawberry bed to bound the state uncertainty for the subsequent multi
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input multi output nonlinear controller in which the x initial offset states will assumed to be

minimized. This is essential due to the coupling effect that occurs between the vehicle states

and camera output through the camera matrix and projection, e.g. x offset and heading

error drastically influence x pixel value, therefore it is assumed the x offset to be small at

the beginning of the next control phase 3.2 of Fig. 2.1.

4.3.2 Nonlinear Controller for the Y-Axis Motion and Heading

For the next step of phase 3.2, controlling the translational distance in y and the heading

angle θ are simultaneously considered by using two pixels from the image, x-axis and y-axis.

The output model in this step is

hT =

[
Xc/Zc Yc/Zc

]T
= [ h1/h3 h2/h3

]T = [ y1 y2]T (4.3.11)

The derivatives of the outputs with respect to the states are found as

∂hi/∂xj = [(∂hi/∂xj)h3 − (∂h3/∂xj)hi]/h
2
3

i = 1, 2; j = 1, 2, 3

(4.3.12)

Here i = 1, 2 is the number of output pixels, j = 1, 2, 3 is the number of state vectors

xT = [x, y, θ]. The resultant combined derivative matrix becomes

∂h/∂x =

 ∂y1/∂x1 ∂y1/∂x2 ∂y1/∂x3

∂y2/∂x1 ∂y2/∂x2 ∂y2/∂x3

 (4.3.13)
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(LBh) =
(
∂h
∂x
B
)

=

 ∂y1/∂x1 ∂y1/∂x2 ∂y1/∂x3

∂h2/∂x1 ∂h2/∂x2 ∂h2/∂x3

 ·


cos θ 0

sin θ 0

0 1


=

 cos θ · ∂y1/∂x1 + sin θ · ∂y1/∂x2 ∂y1/∂x3

cos θ · ∂y2/∂x1 + sin θ · ∂y2/∂x2 ∂y2/∂x3


(4.3.14)

Via a similar derivation as in Eq. 4.3.5, the uncertainty bound is

∆ = (∂h/∂x)
(
∂ĥ/∂x

)−1

=

 fx/f̂x 0

0 fy/f̂y

 (4.3.15)

Once again the uncertainty is assumed as bounded and the following expression becomes

relevant

0 ≤ |∆ii| ≤ Dii < 1, i = 1, 2 (4.3.16)

For generation of the control term, it is first necessary to define an error, that will

drive the projected pixels of the target bed centerline point xp,1 and yp,1 to the desired pixel

locations xdp,1 and ydp,1. Thus the error term is

e =

 e1

e2

 =

 xp,1 − xdp,1

yp,1 − ydp,1

 = y − yd (4.3.17)

Here y = [y1, y2]T and yd = hd = [y1,d, y2,d]
T . An example of multi-input multi-output

control using integral control for non-holonomic robots is described in [69]. We define the

sliding surface as

s =

 s1

s2

 =

 e1 + λ1

∫ t
t0
e1dt

e2 + λ2

∫ t
t0
e2dt

 (4.3.18)
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, in which λ =

[
λ1, λ2

]T
, and the nonlinear robust controller is designed to be

u = (LBĥ)−1[ẏd − λ · e− k · sign(s)] (4.3.19)

Here k = [k1, k2]T and ḣd = 0, where sign is the signum function and produces the charac-

teristic switching inherent to sliding mode control. The ”·” is the point-wise multiplier.

Proof: The Lyapunov candidate function is selected to be

V =
1

2
sTs ≥ 0 (4.3.20)

Ensuring the closed-loop system will have asymptotic stability is accomplished by proving

the derivative of the Lyapunov function is negative definite. Consider the index term i = 1, 2

for brevity

V̇i = ṡisi ≤ −ηi |si| , ηi ≥ 0, i = 1, 2 (4.3.21)

Following the method in [68], the objective is stabilization of the model around the

sliding surface as ṡ = 0

ṡ = (ẏ− ẏd) + λ · (y− yd) = 0 (4.3.22)

The control term appears from only a single differentiation of the sliding equation as

ẏ =
∂h

∂xg
ẋg =

∂h

∂xg
Bu = (LBh)u (4.3.23)
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By using Eq. 4.3.15 and Eq. 4.3.16 to formulate (LBh)(LBĥ)−1 = (I + ∆) an expression for

the sliding surface is simplified as

ṡ = (LBh)(LBĥ)−1[ẏd − λ · y + λ · yd − k · sign(s)]

− ẏd + λ · (y− yd)

= ∆[ẏd − λ · y + λ · yd]−∆k · sign(s)− k · sign(s)

(4.3.24)

Let’s define Λi
∆
= ẏd,i − λiyi + λiyd,i, therefore, the scalar form of Eq. (4.3.24) is

ṡi = ∆iiΛi −∆iikisign(si)− kisign(si) (4.3.25)

Remembering the modeled uncertainty bound Eq. 4.3.16 and substituting into the differen-

tiated candidate function with the bounding parameter η produces

ṡisi = [∆iiΛi −∆iikisign(si)− kisign(si)] si

≤ Dii |siΛi|+Diiki − ki = −ηisi

(4.3.26)

It is now trivial to rearrange items and solve for the variable gain ki, i = 1, 2

ki =
Dii |siΛi|+ ηisi

1−Dii

(4.3.27)

which will be applied into the control law. Also as shown in [68], since Dii ≤ 1, there is

always a solution to Eq. 4.3.27. Considering the assortment of plausible initial conditions,

it is important to note λi > 0 and ηi > 0 are tunable parameters that will influence the

exponential convergence rate as well as amount of time for the errors to approach zero. For

the case when si = 0, once again, we can follow [68] to show it is a trivial case, thus the

closed-loop system is asymptotically stable.
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Remark 3 . The sign function in the controller Eq. 4.3.25 may cause high frequency chat-

tering. This can be easily addressed by replacing the sign function with the boundary layer

function [68]. However the driving system in this study only works at a low frequency (about

2 Hz), and the chattering phenomenon is not obvious as shown in the later experiments.

Remark 4 . The desired convergence is to within several centimeters y off set and a couple

degrees for heading for this multi input multi output controller. These parameters are more

relaxed compared to Remark 2, because of the coupling effect and an additional simple

feedback loop will be utilized to drive the vehicle closer until it is over the row concluding

the cross-bed control.

This additional step mentioned in Remark 4 after the multi pixel input and multi

control output is necessary. This is because the camera pitch orientation is fixed and the

detection algorithm will continually find a recurring y pixel location for the centroid once the

row runs from the top of the image to the bottom, ie. the robot is very close or over the row.

From the design of this controller, as the robot approaches the row the translational gain

decreases exponentially with the error to zero as desired. Therefore a simplistic proportional

vision based feedback loop will be utilized to drive the robot onto the strawberry row and

subsequently the robot will switch to the Over-bed navigation.
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4.4 Simulation

Before the controllers can be verified in experimental settings it is imperative to model

the vehicle, camera and control equations to perform numerical simulations. The control

equations are programmed directly from the derivations and grouped into the control block.

A camera model block incorporates all the calibration parameters as well as the ability

to reconstruct pixel coordinates from three-dimensional Cartesian coordinates as explained

in Section 4.2. The third block of vehicle kinematics will quantify the vehicle motion in

the world coordinate frame as a function of the control commands and current heading

angle. Fig. 4.3 is a diagram highlighting the connectivity and important parameters for the

simulation that are taken from Chapter 4 as well as the control derivations of Section 4.3.1

and 4.3.2. The first simulation was performed using the single input single output controller

Figure 4.3: Nonlinear controller with vision feedback block diagram

in which a single pixel is taken from the image of a sample strawberry row and centerline, then
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generation of the control command is done to reduce the offset error. Figure 4.4(a) shows

both the numerically simulated response using Simulink® software and the conventional

ODE solver as well the measured response for the laboratory simulated experiment. The

initial condition was set to 25 cm x offset from the desired location in the program and

an estimated 25 cm for the lab setup. Figure 4.4(a) depicts the exponential decrease of

the control gain and simultaneously asymptotic reduction of the error Fig. 4.4(b) to a

final value of approximately 8 pixels at about 5 seconds. This result was desirable as the

simulation duration was limited to 15 seconds with an exit command for the controller once

the error reached the tolerance set to 9 pixels. Simulation of the multi input multi output

nonlinear sliding mode controller was accomplished in a similar matter. Two pixels from the

emulated centerline image were fed into the program as initial conditions corresponding to

approximately 8 degrees heading offset and 40 cm translational y offset. Features of interest

for subplot of Fig. 4.5(a). include, exponential convergence of the control commands for

both translate and rotate, similar to that of Fig. 4.4(a) only differing in magnitudes. An

artificial saturation was placed upon the rotation channel so that the robot did not move

too quickly while turning. It is also important to note that the vehicle motion was simulated

by moving the cameras manually, this provides explanation as to the discrepancy between

the simulated rotate curve and measured saturated rotate curve. The important features of

Fig. 4.5(b) are the reduction of each error curve to within the preliminary defined tolerance

of 10 pixels magnitude for both x and y directions. Final error for the measured x pixel

was 10, while the y pixel was -5 at the end of the control duration at approximately 7
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(a)

(b)

Figure 4.4: Single input single output nonlinear sliding mode control simulation (a) control

(b) error
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seconds. The numerical simulation continues for the full duration of 15 seconds, in which

the chattering phenomena due to the inherent characteristics of the sliding controller can be

seen (Simulated x curve, between 10-15 seconds of Fig. 4.5(b)).
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(a)

(b)

Figure 4.5: Multi input multi output nonlinear sliding mode control simulation (a) control

(b) error
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CHAPTER 5

EXPERIMENTAL VALIDATION

5.1 Over-Bed PID Algorithm

The proposed over-bed path control method for DDAGR is first tested in Pappys Patch,

a small commercial farm with wide travel paths as shown in Fig. 5.1. The control algo-

rithm parameters and DDAGR width settings are listed in Table 5.1. Two experiments are

conducted: 30-meter forward motion with a small initial condition (IC) misalignment and

70-meter reverse motion with a large IC misalignment. As shown in Table 5.1, in the first

test, initially DDAGR has a 0.22 cm bias in the y direction and a 0.52◦ bias in heading.

Since two tests are conducted in different rows, the bed width is slightly different.

Fig. 5.2(a) shows the average measured RF distance for both sides of DDAGR. It is

reasonable that the average readings for the left and right bank are out of phase which is

apparent in the plot. The turn threshold indicates where the control for the turn channel

was fixed to the predefined limit to ensure the vehicle did not approach much closer to the

bed wall. The DDAGR center position along the path compared to idealized bed edges is

depicted in Fig. 5.2(b), note the scale difference between x and y axes to enhance the path

characteristics. In the real field the bed edges are not uniform nor perfectly straight. This
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Table 5.1: Small Commercial Farm Experiment Settings

Parameters/settings First test: 30 meters forward Second test: 70 meters reverse

Speed limit ω (drive) 15 cm/sec -15 cm/sec

Speed limit ω (turn) 2.25 ◦/sec 2.25 ◦/sec

I.C. ey 0.22 cm -1.11 cm

I.C. eθ 0.52◦ 5.4◦

εx 2 cm 2 cm

δy 4 cm 4 cm

εy 12 cm 12 cm

σy,σθ 5 cm, 1.5◦ 5 cm, 1.5◦

kp 0.003 0.003

ki 0 0

kd 0.03 0.03

wθ 0.6 0.6

wy 0.6 0.6

Vehicle internal width 107.0 cm 105.0 cm

Bed width 72.4 70.6

Path width 59.2 58.0
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Figure 5.1: Strawberry orchard tests with large travel path widths, DDAGR in its expanded

form

center position is calculated by first smooth filtering of the RF readings and then averaging

the pair on the left and right banks. It is evident from this figure that the final offset in the

y direction, ey , is -3.15 cm, while the final heading bias, eθ , is 1.05◦. Fig. 5.3(a) displays

the encoder measured drive speed with a zoomed-in portion shown in Fig. 5.3(b). Similarly,

Fig. 5.3(c) shows the turn speed of the vehicle for this test with a comparable zoomed-in

segment presented in Fig. 5.3(d). As expected the drive speed remains relatively constant

at the speed limit (15 cm/sec). Intuitively, the peaks for the turn channel occur at the same

time as the RF readings reaching the turn threshold which is expected (17 and 75 seconds).

Although the encoder data trends appear to have a chattering phenomenon, it is important to

keep in mind that the overall timescale for the experiment is several minutes. Furthermore,

all of the following attribute to the variability of the measurement of the vehicle speeds:
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(a) (b)

Figure 5.2: Range Finder navigation data in the 30-meter forward motion: (a) Left and

right wheel bank average RF reading; (b) Calculated vehicle center
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(a) (b)

(c) (d)

Figure 5.3: Encoder navigation data in the 30-meter forward motion (a) Drive speed; (b)

Zoomed-in drive speed; (c) Turn speed; and (d) Zoomed-in turn speed

encoder resolution, range finder accuracy, drivetrain imperfections, and soft sand inducing

wheel slip, as well as uneven terrain as is expected in the strawberry field. The average loop

time including calculation and commands was 0.15 seconds for this test. An average ey was

determined as -0.03 cm, while the calculated average eθ was 0.11◦ using Eqs. 3.1.1 and 3.1.3

and the time interval for each control loop.

In the second experiment, a relatively larger initial condition for eθ was used, and

the robot was driven backwards for 70 meters. A significant feature in Fig. 5.4(a) is the
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ability of DDAGR to compensate for the large biased initial condition, as the very first

crossing of the threshold (around 5 seconds) occurs at the beginning of the experiment as is

expected and each subsequent approach to the threshold the overshoot is minimized. One

other item of interest is the fact that the right bank average does not meet the threshold

on this trial, which we attribute to the filtering effect, sensor error, difference in response

capability of each drive side, and finally the initial condition offset bias towards the left bank.

Nevertheless, the vehicle center path is exhibited in Fig. 5.4(b) as stable and non-diverging

for the entire 70 meters of travel with the final ey and eθ determined to be 2.99 cm and

0.39◦. Similarly, as shown in Fig. 5.5(a), the drive speed is stable around the average speed

of -15 cm/sec, while the turn speed summits of Fig. 5.5(c) once again match time wise

with the RF readings crossing the threshold as expected. Based on experiment observation,

the actual motor speed follows the commanded value, however due to measurement noise

there are spikes above the preset turn speed limit as evident in the plot. Fig. 5.5(b) and

Fig. 5.5(d) are zoomed-in selections of the drive speed and turn speed plots respectively.

Once again, the average loop time was 0.15 seconds and an average ey was determined as

-1.2 cm, while eθ was 0.27◦. The second field test is used to validate the DDAGR design

and its over-bed control method in a commercial field with less room for steering. The field

conditions and robot are shown in Fig. 5.6 and Table 5.2 lists the experiment settings.

A typical travel path for over 21 meters is shown in Fig. 5.7. Only Control Region

(ii) for over-bed navigation, consisting of the PID equations was required in these tests

due to the smaller uniform path widths and consistent structured bed walls, therefore the
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(a) (b)

Figure 5.4: Range Finder navigation data in the 70-meter reverse motion: (a) Left and right

wheel bank average RF reading; (b) Calculated vehicle center
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(a) (b)

(c) (d)

Figure 5.5: Encoder navigation data in the 70-meter reverse motion (a) Drive speed; (b)

Zoomed-in drive speed; (c) Turn speed; and (d) Zoomed-in turn speed
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Table 5.2: Large Commercial Farm Experiment Settings

Parameters/settings First test: 21 meters traveling fast Second test: 10 meters with stops

Speed limit ω (drive) 20 cm/sec 10 cm/sec

Speed limit ν (turn) 4.5 ◦/sec 5.4 ◦/sec

I.C. ey -0.27 cm 0.16 cm

I.C. eθ 0.64◦ 0.26◦

εx 1 cm 1 cm

δy 1 cm 1 cm

εy 2 cm 2 cm

σy,σθ 0 cm, 0◦ 0 cm, 0◦

kp 1 1

ki 0.1 0.1

kd 0 0

wθ 0 0.5

wy 1 0.5

Vehicle internal width 80.0 cm 80.0 cm

Bed width 70.7 70.7

Path width 48.7 48.7

56



Figure 5.6: Commercial Strawberry orchard tests with small travel path widths, DDAGR in

compact form

controller tolerances were set relatively low. The initial conditions for the simulation were

established based on an average estimate of the vehicle orientation and offsets with respect to

the row center (denoted as the Simulated Path in Fig. 5.7). For the experiment, the vehicle

was driven to the end of the row at an average translational speed of 20 cm/sec. Using the

controller, the largest translational offset of the vehicle was 6.5 cm and the final y error was

0.86 cm. The scaling of the X to Y axis is 6.5:1 to enhance the path trajectory as before.

Overall, the integrated IMU data with the drivetrain encoder feedback (Kangaroo/IMU

Path) provides a very accurate projection of the stable vehicle path while travelling to

the end of the row. Furthermore, in order to accomplish auxiliary tasks such as imaging

and sample collection, DDAGR must be able to stop at a desired location while travelling

down the strawberry row. The steering algorithm package must be able to continue once
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Figure 5.7: PID controller and simulation for 21 meters in a commercial farm, the average

drive speed is 20 cm/sec

Figure 5.8: PID controller with scheduled stops in a commercial farm, the average speed is

10 cm/sec
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the intermediate steps have been performed without sacrificing navigational accuracy. To

demonstrate this task, the robot was allotted a 10 meter row portion in which it had to

stop and actuate an attached manipulator and XYZ system at 440 cm as well as 600 cm

and finally drive to the end of the row as shown in Fig. 5.8. The blue squares indicate

where DDAGR stopped for actuation of the manipulator system and stopped to reverse and

determine the robot heading with respect to the bed at the end of the row at 442, 596, and

1005 cm respectively. This data set proves the robustness of the controller, with respect to

the uncertainty that can be expected in a typical commercial strawberry farm. It also proves

that the high level logic allows the controller to be interrupted to perform supplementary

tasks and return to accurate navigation after the process is complete. Once again the X to

Y scaling is 5.5:1 to accentuate the robot offsets; nevertheless the maximum translational y

offset for the vehicle was 3.4 cm while over the strawberry bed.

5.2 SISO and MIMO Non-linear Controllers

The proposed nonlinear controllers for the cross-bed motion are implemented on DDAGR

and tested in a typical commercial strawberry field in Florida. Table 5.3 summarizes the

parameters of interest that are either defined, measured or calculated during the experiments.

It is important to note that the SISO controller only contain parameters for the x-axis. The

control was implemented in Matlab for ease of integrating the complementary sub-systems

that will be accessed during DDAGRs operation, however conversion to C would prove more
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Table 5.3: SMC Parameters and Field Experiment Settings

Parameter SISO MIMO

λy,λx 6× 10−6 6× 10−6,6× 10−6

ηx,ηy 7× 10−4 5× 10−3,5.5× 10−4

xp,1
d,yp,1

d 320 pixels [320,360] pixels

I.C. (x0, y0, θ0) x0 = 25 cm y0 = 40 cm, θ0 = 13◦

Control tol. xp, yp 9 pixels [13,15] pixels

Speed limit ω (drive) 8 cm/sec N/A

Speed limit ν (turn) N/A 4 deg/sec

Average update time 0.74 sec 0.78 sec

Final calc. error xp,yp 4 pixels [2,-6] pixels
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efficient for just the calculations. A saturation plateau is used to prevent the robot from

driving too fast, allowing adequate time for image capture and processing. Fig. 5.9(a)

depicts the calculated as well as the measured control efforts for the SISO controller in phase

3.1 of the over-bed control. Evident in the plot is the delay between the commanded control

and the actual measured control indicated by the first cross mark on the time axis. This is

attributed to the time required for initializing the stream of the navigation data. The vehicle

motion begins immediately after this step and is identified in the subsequent data update,

designated by the second cross mark as vehicle motion detected in the plot. As shown in

Fig. 5.9(b), the error of the pixel is driven towards zero at the end of this control section,

which means DDAGR drives to minimize the distance error in the x direction. Initial and

final images captured by the side camera onboard DDAGR are shown in Figure 5.10. In Fig.

5.10(a), the initial x-axis pixel of 433 corresponds to about a 25cm displacement between

the robot center and the row center (x0). In the final image (Fig. 5.10(b)), the x-axis pixel

is 319, which is very close to the desired value of 320, xdp,1 from Table 5.3.

In accordance of Remark 3, and the anticipated chatter phenomena of the sliding

surface, several parameters were noted that would contribute to mitigate the unwanted rapid

switching of the control. The first parameter is directly influenced as the control tolerance

values set in Table 5.3. In effect, this allows switching off the nonlinear controller once

the pixel error was within the set range, these were elected based on the desired accuracy

mentioned by Remarks 2 and 4 in Sections 4.3.1 and 4.3.2. The second parameter that will

reduce the frequency of chattering is the overall control loop time as recorded and indicated
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(a)

(b)

Figure 5.9: SISO controller in Phase 3.1, (a) Drive speed, and (b) Pixel error [54]
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by average update time in Table 5.3. This value is dependent upon the image acquisition

time, filtering, control calculation and actuation and therefore restricts how frequently the

commanded control value is changed which is approximately 1.33 Hz for these tests. One

final influence of the chatter magnitude was noted in the simulations as the control gain

parameters λ and η as seen in the table these were set conservatively.

In between the SISO and MIMO controllers is a rotation, step 2 of Fig. 2.1, in which

the vehicle utilizes encoder feedback to rotate to a specific angle. From the preliminary

alignment correction the desired rotation angle is 90 degrees. Inherently, operations in real

fields produce uncertainties for rotation from measurements, drivetrain symmetry, wheel slip,

ect. Therefore the MIMO controller developed in Section 4.3.2 is used to correct for either

under or overshoot of the robotic system. Simultaneously the robot will drive towards the

strawberry row to minimize the required effort of the next control phase, placing the vehicle

over the row. Figure 5.11(a) displays the commanded and actual control effort. Once again

a saturation is implemented, this time on the rotation channel so that the control loop has

adequate time to respond and the vehicle does not jolt. The initialization time and motion

detection are once again specified by cross marks. Based on Fig. 5.11(b), the final error

for the xaxis pixel is 2, while the final error for the y-axis pixel was -6. Both values are

within the tolerances defined in Table 5.3. The initial and final images captured by the

front camera aboard DDAGR are shown in Figure 5.12. In Fig. 5.12(a), the initial x-axis

pixel of 476 corresponds to about 13 degrees heading offset eθ. The initial y-axis pixel of 292

correlates to approximately 40 cm displacement between the robot center and the desired
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(a)

(b)

Figure 5.10: SISO controller in Phase 3.1, (a) Initial image, and (b) Final image
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(a)

(b)

Figure 5.11: MIMO controller in Phase 3.2: (a) Drive and turn speeds, and (b) Pixel

errors [54]
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distance away from the row (y0). In the final image (Fig. 5.12(b)), the x-axis pixel is 308,

close to the desired value of 320 while the y-axis pixel is 354 close to the desired value of 360.

While these values are within the defined tolerance, it is important to note they were taken

after the control had ended and were processed offline. Nevertheless, the final orientation of

the vehicle is shown in Fig. 5.13, substantially aligned with the desired row.
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(a)

(b)

Figure 5.12: MIMO controller in Phase 3.2, (a) Initial image, and (b) Final image
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Figure 5.13: DDAGR orientation after a cross-bed motion, desired row is visible appearing

at the center of the vehicle in the picture [54]
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CHAPTER 6

REACHABILITY AND COMBINED NAVIGATION

6.1 Reachability Analysis

The content discussed here is adopted from the paper currently under review titled “Vi-

sion Based Nonlinear Robust Scouting Control in Agricultural Fields with Reachability

Analyses.” It is important to verify the stability of the system considering the sources of

bounded uncertainties identified earlier by assumptions 1-7, which can be done formally us-

ing a method known as reachability analysis. A reachable set is a bounded region of states

that are attainable while respecting the restricted group as the system propagates through

time [70]. This method of analysis is commonly performed to search for unsafe states in

which if the reachable set intersects, the system cannot be deemed safe. For the purpose of

our work, proof of the final region of convergence is desired as stated by Remarks 1,2 and

4. By considering the reachable set of the system in conjunction with the control as the

robot reduces the error, the final state bounds can be approximated and therefore verified to

be within the requirements of each respective remark. Development of the formulations for

reachability analysis of a differential drive vehicle model will be similar to [44], [71] in which

the uncertainty parameters will be modeled and incorporated into the governing equations.
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First consider the model for the state evolution as a function of all the indicated

uncertainties which will vary slightly from the nominal dynamics model.

ẋ =


ẋ

ẏ

θ̇

 = f(x(t), rf(t), u(t), p(t)) (6.1.1)

x(0) =

[
x(0) y(0) θ(0)

]T
∈ X(0) ⊂ <n are the initial vehicle states in the world co-

ordinate system as n = 3. Error in the sensor based measurements for states will exist in

the over-bed section due to noise in range finder accuracy, resolution, as well as disturbed

strawberry row walls, rf(t) ∈ ∆RF ⊂ <n. The state estimation in the headland of the field

is only possible from encoder based measurements or reconstruction of three dimensional co-

ordinates from image data, either of these will have significantly higher accuracy compared

to a GPS approach. Since the uncertainty inherent of the camera is modeled and compen-

sated for in the nonlinear controllers, the state reachability analysis will be conducted on

the integrated encoder based velocity data. This will avoid inaccuracies from reconstruction

of coordinates using pixels but will require incorporation of the the acknowledged bounded

wheel slip in the agrarian environment. The control phases to be assessed in the reachability

study are depicted in Fig. 6.1. It is important to note that the reachability analysis as well

as the control capability will be correctly determined for either direction of travel to the

next desired strawberry row as will be shown later in the full field tests. The uncertainty

parameter for slip will be modeled by p(t) ∈ P ⊂ =m where = = [a, b] and [a, b] ∈ < are

intervals of the uncertainty that will influence the control, modelled around slip estimations
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Figure 6.1: Successive control phases used in reachability study (3.1a,3.1b,2,3.2)

from experiments and will vary during each control phase (3.1,2,3.2). Finally the control is

u(t) ∈ U ⊂ <m where m is restricted to two as the vehicle is only able to translate and rotate.

Intuitively, the control and its respective uncertainty must maintain a uniform continuity

over each control region also referred to as Lipschitz.

From Assumption 5, the translate speed will be modeled with uncertainty as: ∆νmin ≤

∆ν ≤ ∆νmax and so the actual translation control becomes

ν = νc + ∆ν (6.1.2)

Here νc indicates the commanded speed which is constant for Phase 1 and calculated from

Eq. 4.3.9 for Phase 3.1b. Similarly, the input uncertainty for rotation control (Phase 2) is

∆ωmin ≤ ωc ≤ ∆ωmax, where the actual rotation control is

ω = ωc + ∆ω (6.1.3)
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Here ωc indicates the commanded rotation rate which is constant for Phase 2. The multi-

input multi-output control section Phase 3.1b will calculate both control terms νc and ωc

from Eq. 4.3.19.

The reachability analysis is to determine the final states based on the closed-loop

vehicle dynamics in the form of ẋ = Bu , where u = [ν, ω]T = u(x,λ,η), and λ and η are

control parameters as shown in Eqs. 4.3.9 and 4.3.19. In addition to the aforementioned

control command uncertainties, the feedback x measured by sensors have uncertainties. The

uncertainties of the initial condition in the beginning of the cross-bed motion are determined

from the conclusion of the over-bed motion. Here we assume

∆xmin ≤ ∆xg(t0) ≤ ∆xmax

∆ymin ≤ ∆yg(t0) ≤ ∆ymax

(6.1.4)

As mentioned in [46] it is important to consider all sources of additive disturbance sequences

to evaluate the final controller stability and convergence to within an admissible set. There-

fore, the two sources for uncertainty include range finder sensor noise and strawberry bed

variance. Use of Minkowski addition in a single dimension for each of the indicated uncer-

tainties results in the expansion of the uncertainty set [72].

The uncertainty in the heading angle measurement is

∆θmin ≤ ∆θ(t0) ≤ ∆θmax (6.1.5)

at the end of the over-bed phase. The final range of states at the end of each controlled

phase are successively applied as the state uncertainty region for the next control phase. As
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the range finders can no longer be referenced once in the cross-bed section, the initial states

for each subsequent control phase are propagated from the drivetrain motor encoders. It is

also important to note that θ will change approximately 90◦ during Phases 2 and 3.2.

similarly, the Over-bed control of phase 1 is modeled from the summation of range

finder uncertainty where ∆RFrow,min ≤ ∆RFrow ≤ ∆RFrow,max and ∆RFnoise,min ≤ ∆RFnoise ≤

∆ RFnoise,max as discussed in Assumption 6.

∆RFrow + ∆RFnoise ≤ ∆RF (6.1.6)

Which will make

ẽθ = 0.5

 tan−1
(
|(RFFR+∆RF )−(RFRR+∆RF )|

L

)
+tan−1

(
|(RFFL+∆RF−RFRL+∆RF |

L

)
 (6.1.7)

similarly,

d̃ =
(RFFR + ∆RF )− (RFFL + ∆RF )

2
+

(RFRR + ∆RF )− (RFRL + ∆RF )

2
(6.1.8)

and

ẽy = d̃ cos ẽθ (6.1.9)

The control law then becomes modified to

ẽ = wθẽθ + wyẽy (6.1.10)

and

ω̃ = kpẽ+ ki

∫ t

t0

ẽdt+ kd̃̇e (6.1.11)
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The differential equations governing the vehicle motion are then modeled including the iden-

tified uncertainties for the cross-bed portion.
xg =

∫ tf
t0

(νc + ∆ν) cos(θ + ∆θ)dt+ ∆xg(t0) + xg(t0)

yg =
∫ tf
t0

(νc + ∆ν) sin(θ + ∆θ)dt+ ∆yg(t0) + yg(t0)

θ =
∫ tf
t0

(ωc + ∆ω)dt+ ∆θ(t0) + θ(t0)

(6.1.12)

Here ∆θ(t0) + θ(t0) can be modeled as ẽθ from the last iteration of phase 1 while ∆xg(t0) +

xg(t0) and ∆yg(t0) + yg(t0) can both be ascertained from ẽy before and after the 90 degree

rotation of phase 2 respectively.

The next step to analyze the reachable configuration of the vehicle comprises a con-

servative linearization [44]. This linearization step is necessary as propagation of a linear

system can be assumed as straight lines for trajectories. Since the dynamic model for the

differential drive robot is nonlinear as it is an Affine system, motion in the global frame

will be nonlinear. Therefore, the error induced from assuming linear motion will have to be

compensated for. This is accomplished by a first order Taylor series expansion of the form:

ẋi ∈ fi(z∗) +
∂fi(z)

∂z
|z=z∗(z − z∗) + Li(ts) (6.1.13)

where the Lagrange Remainder is

Li(ts) =

{
1

2
(z − z∗)T +

∂2fi(z)

∂z2
|z=ξ(z − z∗)|ξ ∈ X(ts)× U, z ∈ X(ts)× U

}
(6.1.14)

Here z =

[
xT uT

]T
and z∗ =

[
x∗ u∗

]T
are the linearization points of the states and

control including uncertainties and ts signifies a timestep for the loop. fi are the dynamic
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equations for the vehicle. After the linearization, the error is to be utilized in formulation of

the reachable sets or final states.

Representation of the reachable set is done through formation of zonotopes [73]. This

method has the benefit of linear transformations and are formulated by vector addition of

Minkowski sums of line segments. The subsequent steps include computation of a convex hull,

that will bound the current state as well as the uncertainty, an expansion of this hull formerly

referred to as enlargement, from the linearization error, and iteration through time to find the

final system states. These computations will be used to verify the autonomous robot will be

able to achieve the desired final conditions for each control phase, which will then formulate

the initial conditions for the next control phase. Numerical values for the uncertainties

were established from numerous field experiment data. The final state expansion for each

respective phase can be viewed in Fig. 6.2. Here t0 indicates the beginning of each control

phase while tf is the final time of that phase. For simplicity each of the initial states for

each control phase were reset to 0. However for the final phase, θ0 was set to a constant,

so that the multi-input multi-output actuation would not be a trivial translation and both

control terms would be necessary and executed as θ = 0 is what is desired.

It is mentioned in [44] that a constant time step is useful and so the uncertainties were

modeled statistically around the elected time step (0.5 s). As the first task, the undisturbed

desired vehicle path was simulated to obtain the control gains in Matlab and Simulink.

Then, numerical values for the control input uncertainty were established as averages from

experimental field data and are listed in Table 6.1. For Phase 3.1a, the desired travel distance

75



(a) (b)

(c) (d)

Figure 6.2: Results of Reachability Analysis (a) Phase 3.1a; (b) Phase 3.1b; (c) Phase 2;

and (d) Phase 3.2
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Table 6.1: Uncertainty Bounds for the Reachability Simulation

Bounds ∆ν ∆ω ∆θ ∆xg ∆yg

Phase [cm/s] [◦/s] [◦] [cm] [cm]

3.1a 0.12 0.17 2.0 3.0 3.0

3.1b 0.12 0.17 2.9 7.3 8.2

2 0 0.29 3.5 2 9.6

3.2 0.14 0.23 2.9 2 9.6

was 120 cm in x, while the single input controller distance was 25 cm for Phase 3.1b. An 82◦

(1.4 rad) rotation is required for Phase 2, while Phase 3.2 consists of 25 cm translation in y

and 8◦ rotation for θ from the multi-input control. It is a valid assumption for the simulation

that the translational speed of the robot is 0 during Phase 2, likewise the feedback nature of

Phase 3.2b will reset the uncertainty bound of xg to a smaller value, eg. ∆xg = 2 cm, as the

controller is designed for this purpose. By propagation of the dynamics with the uncertainty

the final states and vehicle path are modeled by the simulations using the CORA package in

Matlab [72]. As the specific phases selected for analysis are successive (Phase 3.1a - 3.2), the

final state set for each simulated region is used as the initial conditions for the subsequent

trial, as can be seen in Fig. 6.2. Fig. 6.2(a) depicts the dispersion of the position states in

the 120 cm of travel in Phase 3.1a. Figure 6.2(b) shows the position dispersion of the vehicle

in Phase 3.1b under the proposed controller Eq. 4.3.9. In Phase 2, an 82◦ rotation, the
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position information with respect to time is shown in Fig. 6.2(c); while the last subplot, Fig.

6.2(d) shows the vehicle position under the controller Eq. 4.3.19., denote the change of axes

due to the previous rotation step. The results of the simulation indicate a bounded region

of the states for each phase, ideally, the distance states xg and yg will be within 2 and 3 cm

respectively, once the tolerances and external webcamera feedback have been implemented.

These values are well within the capability range of the last translation step, that will place

the vehicle onto the desired row. θ will also be minimized from the control and within 1◦

based on the elected control tolerance.

6.2 Combined Field Test

6.2.1 Experimental Expectations and Circumstances

For the mobile robot to be considered fully autonomous in terms of navigation, it must be

capable of transferring from a position in the farm environment either over the strawberry

rows or in the headland to other locations. The first tasks conducted were simulation of each

of the controllers and tuning of any parameters that will help enhance performance. This step

is vital for making sure the robot is operational before taking it out to the field experiments.

Slip estimation will be conducted to provide a reference for the initial conditions to be used for

the nonlinear controllers. The preliminary results indicated the translational accuracy was up

to 98% while the rotational accuracy was around 97% for several samples. These parameters
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are important because there are several intermediate steps required between the nonlinear

controllers in which the only feedback mechanism available is the encoder measurements. As

these values will change depending upon field variances and soil density or composition, it

will be important to collect a distribution of the accuracies over several experimentations.

It is also important to consider the largest initial conditions that can be handled by the

nonlinear controllers. This is from the physical restrictions of the camera such as sensor size

and placement including orientation. Therefore, the nonlinear controllers will be tested with

significant initial conditions within their respective capable ranges. In conjunction with this,

assuming the wheel slip and other disturbances are adequately compensated for there will

also be tests with very small initial conditions in which the robot is very well aligned at

the beginning of each nonlinear control phase. Intuitively, the objective is to minimize the

control efforts, motor usage and time for all initial conditions or states within the control

space.

It is anticipated that the nature of the feedback for the non-linear controller will be

able to compensate in the existences of overshoot due to disturbance and other character-

istics. Overshoot is a common occurrence for systems that contain higher order terms such

as velocity, acceleration, inertia and damping. When describing the vehicle model as control

affine, meaning the actuation is linear however the system responds nonlinearly with respect

to the states, there exists a term formally referred to as drift in which the new state derivative

such as velocity is a function of a residual as well as the control and kinematics interaction.

This term can be extremely difficult to compensate for and is usually superfluous when de-
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veloping the control. As our vehicle will in fact have a significant amount of inertia once in

motion this can pose a substantial problem if overlooked. Once the system has been tested

and is capable of converging with the prescribed median initial conditions, the additive dis-

turbance will be enacted. The proposal is to induce reasonable bounded uncertainty into

the vision feedback loop during control iterations to ascertain the two following concepts:

(1) Switching of the control will happen slow in the event of overshoot with low magnitudes,

reducing inertial influences. (2) The nonlinear controller will be robust during operation and

will continually attempt to minimize error. Logical justification for bounded disturbances

include environmental factors such as wind and weed growth that can potentially influence

the shape and form of the strawberry bed during the image filtering and detection.

6.2.2 Data Filtering and Algorithm Enhancement

Although the Over-bed control algorithm of Section 3.2 worked adequately for the large

commercial farm in which the strawberry row structures were well defined and uniform, it

was slightly less successful at other test locations. Therefore, enhancements were made to

filter the range finder data, before it was utilized in the control calculations. In the events

where the PID gains were not sufficient at minimizing the offset errors (ey and eθ), or the

vehicle approached the row too closely due to other disturbances, the following cases were

implemented to prevent collision with the strawberry row. The parameters utilized here are

in reference to the the navigation diagram Fig. 3.2(b).
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Table 6.2: Algorithm for Over-bed Travel with Data Filtering

Step 1 Initialize function: X = OB(xd)

Step 2 While xd > xtol

Step 3 Get range finder data: RFi, i = 1 : 4

Step 4 Zero Order Hold filter of range finder data: for i = 1 : 4

Step 5 If abs((RFi + 1)−RF (i) > ∆tol) then (RFi + 1 = RFi),counter + +

Step 6 Else RF (i) + 1

Step 7 Average filter range finder data: RF(i) + 1 = (RF(i) + 1 +RF(i))/2

Step 8 Calculate eθ and ey: Eq. 3.1.1 and Eq. 3.1.3

Step 9 Check for stop conditions: eg. RFi = 0

Step 10 If true, ν = 0 and ω = 0

Step 11 Else check filter counter: counteri > val

Step 12 If true, pause and reset counter: for 0.75 seconds, ν = 0 and ω = 0. counteri = 0

Step 13 Else check ey < σyg and eθ < σθ

Step 14 If true, calculate PID gains: Eq. 3.2.1

Step 15 Elseif abs(ey) < σyg and abs(eθ) > σθ: Case 1

Step 16 Else abs(ey) > σyg : Case 2 (stop if pass xd)

Step 17 Return X
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Case 1: If |θe| > σθ and |ye| ≤ σy, DDAGR will first stop its translational motion as

ν = 0. Here σθ and σy are tolerance values in θe and θy. Then it will rotate with a turning

rate of ω = −sgn(θe)c until θe = 0. Here c is a constant turning rate, e.g. c = ωmax/2.

Case 2: If |ye| > σy, DDAGR will first stop. Then it will rotate with a turning rate of

ω = −sgn(ye)c and a constant translational velocity ν until ye < 0.5σy. After that DDAGR

will rotate with a constant turning rate of ω = −sgn(θe)c and no translational motion of

ν = 0, until θe = 0.

Table 6.2 shows psuedocode of the updated Over-bed algorithm. The first step is

implementation of the Over-bed function in which the desired travel distance xd is supplied.

The next step is a while loop, that will iterated the control calculations and process until

the robot has driven to within a small tolerance of xd down the strawberry row. Inside of

the loop, the range finder data is sampled and updated each cycle. A zero order hold filter is

first applied to the data to remove erroneous readings. If any current RF value exceeds the

previous by a specific amount, the current value is replaced with the previous and a counter

is incremented by 1 for that specific range finder. Otherwise, the current value is passed

along into an averaging filter. The averaging filter will take the previous measurement and

the current measurement and divide by two. It was determined that this window size of two,

would provide a reasonable smoothing effect to the data, yet would not cause significant

delay of the data accuracy.

Next, eθ and ey can be calculated from Eqs. 3.1.1 and 3.1.3. It is then necessary to

check for any of the stop conditions that may have occurred, for example, if the range finders
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readings are above a certain threshold, for several samples, the robot has passed the end of

the bed and needs to stop. If the vehicle has met a stop condition it will cease its motion

and wait for instruction, if it has passed the end of the strawberry bed, it will prepare to

execute a Cross-bed phase. Otherwise, here it will check the filter counter for each range

finder to verify several samples have not been replaced in a row from the zero order hold. If

any of the range finder counters (1:4) have exceeded a preset value, the vehicle will pause

it’s motion for 0.75 seconds before continuing. It was determined during experimentation

that this would provide a fluid transition as well as long enough duration for better range

finder readings, intuitively, the range finders are more accurate while motionless. Also all of

the range finder counters are reset after the pause.

Otherwise, the calculated values for eθ and ey will now be used to establish the control

gains. First, if eθ < σθ and ey < σy the PID gains will be calculated from Eq. 3.2.1. However,

if only the absolute value of ye is within tolerance, σy, and the heading angle is too high,

the vehicle will stop and rotate to reduce θe. Else, both errors exceed the defined tolerances,

the vehicle will stop, then perform the log spiral motion with both translation and rotation

to reduce eθ and ey simultaneously. Also, during this step if the travel distance exceeds xd

the vehicle will stop. An additional rotation only is subsequently executed here to ensure eθ

is close to zero. Finally, the total travel distance is returned by this function as it will be

necessary for other operations.
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6.2.3 Two Bed Test Left Turn

The parameters for the full experiment with first an over-bed portion followed by a cross-

bed section and finally an over-bed phase are highlighted in Table 6.3. The weights in Eq.

3.2.2, wy and wθ were both set to be 0.00025. It is evident that the single-input cross-bed

controller only contains parameters for one degree of freedom in the x -axis. Fig. 6.3 depicts

the vehicle path from the combined test with all of the individual motions labeled.

Figure 6.3: DDAGR path for bed transfer, start location (0,0)

It is evident that the vehicle travels safely and closely to the desired path of the center

of the strawberry beds, as well as successfully performs the cross-bed motion. The overall
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Table 6.3: Experiment Parameters Two Bed Test

Phase/Ctrl. Eq. Tuned Gains Initial States

1/Eq. (3.2.1) kp = 466 x0 = 0 cm

ki = 20 y0 = −7.1 cm

kd = 2 θ0 = 0.3◦

3.1a/Eq. (4.3.9) λx = 9.5× 10−4 x0 = 25 cm

ηx = 1.02× 10−5 y0 = 0 cm

θ = 0◦

3.2/Eq. (4.3.19) λx = 7.13× 10−6 x0 = 0 cm

ηx = 5.0× 10−3 y0 = 3 cm

λy = 7.13× 10−6 θ0 = 12◦

ηy = 9.0× 10−4

experimental results are shown in Table 6.4. Fig. 6.4(a) shows the measured drive speed for

Phase 1, as well as the robustness of the algorithm in the instance where multiple degraded

RF readings are observed and the vehicle briefly pauses at approximately 47 seconds. The

vehicle turn speed for Phase 1 can be visualized in Fig. 6.4(a). Predominantly, the calculated

gain from Eq. 3.2.1 and Eq. 3.2.2 determine the speed however, disturbances such as

measurement noise, wheel slip and motor actuation are also present. The control gains as

well as pixel errors are shown for each of the nonlinear controllers (Phase 3.1b and Phase
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Table 6.4: Experiment Results Two Bed Test

Phase/Ctrl. Eq. Control Param. Final Error

1/Eq. (3.2.1) σθ = 8◦ θe =1.8◦

σy = 20 cm ye = 1.2 cm

3.1a/Eq. (4.3.9) xdp,1 = 8 pixels xp,1 = 7 pixels

3.2/Eq. (4.3.19) xdp,1 = 7 pixels xp,1 = 2 pixels

ydp,1 = 8 pixels yp,1 = 7 pixels

3.2), indicating convergence of the controllers in Fig. 6.5. Evident in the plots is the

exponential decay of the control gain to zero as is expected for the nonlinear controllers

Figs. 6.5(a),6.5(b). Similarly the pixel error decays to within the desired tolerance within

the allotted control period of 20 seconds. It is also apparent that the control gains switch

at a relatively low frequency as desired and described in Section 6.2.1. A saturation was

placed on each of the control speeds to allow adequate time for image acquisition and prevent

the vehicle from moving too quickly. The control parameters listed in the table for Phase

1 determine when the robot would enter either of the cases mentioned in Section 6.2.2.

For the vision based controllers Phase 3.1b and Phase 3.2, the control parameters allow the

control loop to continue until the vehicle had converged to within an acceptable distance of

the desired location, based on the pixel difference between the detected centroid pixel and

the desired pixel.
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For Phase 1, an average offset error was determined to be -1.3 cm for yg, and 0.2◦

for θ, with the maximum deviation of 10 cm, and 3.3◦. For Phase 3.1b an initial pixel error

was calculated as 87 pixels, which was reduced to within the set tolerance as 7 pixels (Fig.

6.5(c)). For Phase 3.2, the initial pixel errors for the second nonlinear controller were -153

and -13 for x and y axes respectively. Definitively, the controller was able to reduce these

errors to 2 pixels for the x axis and -7 pixels for the y axis (Fig. 6.5(d)). It is apparent that

the translation control of the this controller was not very large, due to the small initial error.

This was accomplished by adequate performance of all other control phases contingent of

the prescribed initial conditions. Similarly, the translation control changes sign during the

trial due to the small initial error as well as the coupling between the gain calculations from

the derivative matrix as well as the small dependence of y pixel location with respect to the

heading angle. A sample of the before and after robot perspective can be seen for the single

input controller in Fig. 6.6 also included is the filtered image. Figure 6.7 shows the before

and after view from the robot for the multi input multi output controller.
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(a)

(b)

Figure 6.4: Phase 1, Two Bed Test, (a) Drive speed, and (b) Turn speed
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(a) (b)

(c) (d)

Figure 6.5: Control and Pixel Error, (a) Phase 3.1b, (b) Phase 3.2, (c) Phase 3.1b, (d) Phase

3.2
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(a) (b)

(c) (d)

Figure 6.6: Phase 3.1b, (a) Initial frame, (b) Final frame, (c) Initial frame filtered (d) Final

frame filtered
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(a) (b)

(c) (d)

Figure 6.7: Phase 3.2, (a) Initial frame, (b) Final frame, (c) Initial frame filtered (d) Final

frame filtered
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6.2.4 Three Bed Test Right Turn

To prove the capability of DDAGR, the final trial involved driving completely to the end

of two rows and onto the third row. Similarly, a right turn for the first cross-bed motion

with vision feedback was first implemented with an undershoot for the initial conditions for

x translation of the first control and θ for the multi-input controller. The second left turn

cross-bed motion operated purely from encoder feedback to test how well the robot could

capably align with a dead-reckoning attempt. This experiment was conducted on the north

side of the strawberry field and had multiple differences than compared with the southern

side which justifies the encoder only feedback for the cross-bed portion. The most significant

of these were, due to the elevation, water would collect making the soil fairly dense compared

to other portions, however this also cause a variety of colors which are less discernible from

the actual plastic covered bed. Likewise, reflection from the sun onto the plastic would cause

saturation of the webcamera sensor during preliminary samples as the camera was now facing

the sun.

It is important to note the Over-bed drive speed of DDAGR was increased from 15

cm/sec to 23 cm/sec for this experiment for two reasons. 1) Prove the robustness of the

Over-bed algorithm in it’s final form and 2) Demonstrate the vehicle travel efficiency has

been improved. Nevertheless, the overall vehicle path is shown in Fig. 6.8 Evident in the

figure is the capability of the vehicle to travel the full extent of the strawberry row (128
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Figure 6.8: Vehicle path three bed field experiment
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(a)

(b)

Figure 6.9: Excerpt of vehicle path for three bed test (a) Cross-bed, and (b) Over-bed
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meters), detect the end of the row, perform the cross-bed control phase and continue on to

the next over-bed portion.

A zoomed in portion of the Cross-bed vehicle path is presented in Fig. 6.9(a), some

of the variance from perfect motion can be perceived. Similarly, it is evident that the vehicle

performs the desired motion to properly align with the next strawberry row despite the

mentioned disturbances. In Fig. 6.9(b) a small portion of the Over-bed phase is shown for

both rows, with the axes scaled to the same order. The highlight from this figure is the ability

of the controller to follow the bed center considering the numerous sources of uncertainty, ie.

bed width, wheel slip, as well as measurement error. Overall the largest offset error ey for

the top row was -6.2 cm while the average error was only -2.0 cm. For the bottom row the

maximum offset error was determined to be 7.2 cm with an average of -0.4 cm. The average

eθ was found to be 0.17◦ and -0.16◦ for the top and bottom row respectively.

Figure 6.10 displays the vision based controllers with the corresponding pixel errors.

As expected the control gains as well as pixel errors approach zero over the duration of the

experiment. Also evident is the capability of the controller to adjust from a disturbance

that caused overshoot. In review of the images from the test it was apparent that the image

filter had significant noise due to cloud cover occurring during the trial at approximately

4-5 seconds. Despite this external disturbance and after changing sign, the control gain

converges to zero and reduces the pixel errors to within the desired tolerance within the

allotted amount of time. Figure 6.11 shows a time progression for the x-axis single input

controller. The first frame shows the beginning position with respect to the row before the
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controller actuates, while the final frame shows the convergence of the strawberry row to the

center of the image. The approximate duration between each frame is about 1 second.
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(a) (b)

(c) (d)

Figure 6.10: Control and Pixel Error, (a) Phase 3.1b, (b) Phase 3.2, (c) Phase 3.1b, (d)

Phase 3.2
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Figure 6.11: Time-lapse of single input controller, initial frame is top left
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CHAPTER 7

FUTURE WORK AND CONCLUSIONS

7.1 System Integration with Leaf Picking Mechanism and Future Work

The final objective of the autonomous robotic system is to perform disease detection effi-

ciently at many locations throughout the farm. The first intuitive step is to configure the

disease detecting sensor to work with Matlab and attach it to the robot system. One of the

goals of the autonomous vehicle is to store the dimension information for where the disease

is located within the field. This will not be too difficult of a task for a single row as the

encoder information will be available however for multiple rows it will be required to log

GPS information. Once all the subsystems have been integrated the overall efficiency of this

disease detection method will be evaluated. Ideally, it is desirable for the robot to visit as

many suspected disease locations as possible in a given timeframe. Therefore, increasing of

the travel speed while journeying down the rows, which constitutes the majority of travel

time (estimated as > 80%) will improve the evaluation and assessment. It will be neces-

sary for the vehicle to operate at different stages of production which will also provide some

variance in the aspect of field conditions. Therefore, full system tests will be desired at the

beginning, middle as well as end of the production season.
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In conjunction with the addition of the spectral sensor as one of the components

of the autonomous system, classification of the strawberry plants is an essential step. The

concept is to measure the spectral response of several healthy plants at multiple times during

the season. This data will be used as training information for the classification algorithm

and to which spectral responses of new samples will be compared. Identification as healthy,

asymptomatic as well as symptomatic will then be possible for any of the data sets collected

by the system.

While the vision system proved fairly robust to variable lighting conditions in the

sense of shading from clouds occurring during some experiments, there is opportunity for

improvement. In addition to the intensity change that can occur from cloud cover, when

the webcamera faces the sun, reflectance from the plastic covering the strawberry row can

cause saturation of the sensor. Implementation of lens polarization may provide heightened

precision and increased image filtering accuracy. It was also determined that the morpholog-

ical RGB and centroid method produced better preliminary results compared to the Hough

Transform for the real strawberry environment. The primary advantage of the HT method

over the centroid method is the time required, similarly it may also provide a better cen-

terline approximation for the bed if the sensor has been saturated due to the sunlight from

utilization of intensity gradients. Therefore, attempting the Hough Transform for the filter-

ing technique is a plausible endeavor. Likewise, conversion to an alternative colorspace other

than RGB which focuses more on hue, saturation or tone may prove to depict a greater vari-

ance between the elevated bed and the walking path along the side. It would be worthwhile
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to statistically compare the variance between multiple methods and elect the best based

on evaluation metrics of cost in the sense of amount of time, as well as overall centerline

detection accuracy.

Intuitively, the navigation algorithm will be capable to operate in any plasticulture

farming environment. Some minor adjustments such as travel dimensions and other tunable

parameters can be easily modified to accommodate a variety of fields and settings. From this

point, it would be appropriate to test the robotic system on other crops grown in a similar

manner to strawberries, the varieties of which includes: squash, onion, cabbage as well as

peppers.

7.2 Conclusions

Autonomous path control is required for an agricultural robot to safely and efficiently scout

throughout commercial fields to conduct labor intensive operations such as harvesting and

disease detection. In this research, three different controllers are designed for three distinct

portions in the over-bed and cross-bed motions of a typical commercial strawberry field

considering terrain variability, field patterns, and uncertainties in sensed information. With

practical considerations, range finders are used in the over-bed PID controller, while RGB

cameras are used in the cross-bed nonlinear robust controllers. Encoder feedback of the driv-

etrain is monitored throughout the entire operation. The over bed portion of the algorithm

incorporated data filtering, to eliminate noises and errors, as well as detection of the end of
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the row which is essential to begin the next control phase accurately. By inclusion of ma-

chine vision feedback along with several reasonable assumptions of the field such as operating

on a plane, transferring from one strawberry row to another is accomplished. Both of the

nonlinear controllers utilize pixels from collected images to formulate an error parameter to

be tracked during the vehicle motion as it is controlled to align with the desired strawberry

row. The closed-loop vision system under bounded uncertainties in the cross-bed portion

is proven to be asymptotically stable, and the reachability analyses are conducted to make

sure the state dispersion in the end of one phase is within the initial condition bounds of the

next phase. Successive phases of: translation (3.1a), single input nonlinear controller (3.1b),

pure rotation (2), and finally, arcing motion from the multi input multi output nonlinear

controller (3.2) were depicted in the reachable sets trajectories, as well as the real motion of

the vehicle in the field. The controllers were simulated prior to successful demonstration in

multiple experiments at several different commercial strawberry farms.

In addition to the contributions of applying different sensing (e.g. a single fixed

camera) and control technologies to drive an agricultural robot in and out of semi-structured

strawberry rows, it is shown that with the small heading angle assumption in the over-

bed motion, the uncertainty bound relating to the camera focal length is in a very simple

form and usable in the nonlinear controllers development. Conclusively, the accuracy for

each independent phase was evaluated from field experimentation and subsequently used for

tuning. As a final demonstration, the unmanned ground vehicle executed the navigation

steps consecutively for full path motion from one location in the strawberry field to another.
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Considering the variability and uncertainty of a mechanical vehicle operating in a real farming

environment, DDAGR’s navigation capability is comparable to that of other agricultural

vehicles based on an accuracy of several centimeters for distance as well as within a couple

degrees for the heading angle. By utilization of multiple economical sensory devices and the

developed control algorithms, in comparison to intricate and expensive navigation systems,

the subsequent tasks of field scouting, and sampling are efficiently conducted.

In the context of disease detection for agricultural crops, the benefits for this tech-

nology and primary motivation for this research comprise: (1) capability of accurate and

repeatable results considering the environment for imaging, as the workspace under the ve-

hicle will be controlled. (2) The detection task can be performed continually throughout the

production season, with information of the sample locations such as coordinates saved for

future reference. (3) Disease detection for this specific crop is currently conducted by visual

inspection which has the following drawbacks, overlooked locations, prevalence is dependent

upon progression into the season and finally the spectral technology that will be attached to

the leaf picking mechanism can perform at an earlier stage.
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