
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2018

In-Memory Computing Using Formal Methods and Paths-Based In-Memory Computing Using Formal Methods and Paths-Based

Logic Logic

Alvaro Velasquez
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Velasquez, Alvaro, "In-Memory Computing Using Formal Methods and Paths-Based Logic" (2018).
Electronic Theses and Dissertations, 2004-2019. 6222.
https://stars.library.ucf.edu/etd/6222

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F6222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6222?utm_source=stars.library.ucf.edu%2Fetd%2F6222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

IN-MEMORY COMPUTING USING FORMAL METHODS AND PATHS-BASED LOGIC

by

ALVARO VELASQUEZ
B.S. University of Central Florida, 2014
M.S. University of Central Florida, 2016

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2018

Major Professor: Sumit Kumar Jha

c© 2018 Alvaro Velasquez

ii

ABSTRACT

The continued scaling of the CMOS device has been largely responsible for the increase in compu-

tational power and consequent technological progress over the last few decades. However, the end

of Dennard scaling has interrupted this era of sustained exponential growth in computing perfor-

mance. Indeed, we are quickly reaching an impasse in the form of limitations in the lithographic

processes used to fabricate CMOS processes and, even more dire, we are beginning to face funda-

mental physical phenomena, such as quantum tunneling, that are pervasive at the nanometer scale.

Such phenomena manifests itself in prohibitively high leakage currents and process variations,

leading to inaccurate computations. As a result, there has been a surge of interest in comput-

ing architectures that can replace the traditional CMOS transistor-based methods. This thesis is a

thorough investigation of how computations can be performed on one such architecture, called a

crossbar. The methods proposed in this document apply to any crossbar consisting of two-terminal

connective devices. First, we demonstrate how paths of electric current between two wires can

be used as design primitives in a crossbar. We then leverage principles from the field of formal

methods, in particular the area of bounded model checking, to automate the synthesis of crossbar

designs for computing arithmetic operations. We demonstrate that our approach yields circuits

that are state-of-the-art in terms of the number of operations required to perform a computation.

Finally, we look at the benefits of using a 3D crossbar for computation; that is, a crossbar consist-

ing of multiple layers of interconnects. A novel 3D crossbar computing paradigm is proposed for

solving the Boolean matrix multiplication and transitive closure problems and we show how this

paradigm can be utilized, with small modifications, in the XPoint crossbar memory architecture

that was recently announced by Intel.

iii

To my parents, without whose sacrifice this would not have been possible.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Sumit Kumar Jha, for his continued support and encourage-

ment. He was instrumental in providing me with the intellectual freedom and guidance necessary

to succeed in this discipline. I would also like to extend my sincerest gratitude to my friend and

mentor Dr. K. Subramani for enhancing my knowledge of combinatorial optimization and com-

plexity theory, as well as for providing a respite from the toils of research.

My gratitudes are also with many researchers from the Air Force Research Laboratory. From the

autonomous command and control systems branch (RISC), I would like to thank Dr. Robert Wright

for hosting and involving me in his cutting-edge research on deep reinforcement learning and Dr.

Nathaniel Gemelli and Dr. Jeffrey Hudack for advice and help in the interviewing process and the

inner workings of the laboratory. From the trusted systems branch (RITA), I am grateful to Steven

Drager for hosting me multiple times and for being constructively critical of my research agenda

and Dr. Matthew Anderson for his help and generosity.

Credit is also due to Dr. Nathaniel Cady and Zahiruddin Alamgir for their contributions in making

some of the theories in this thesis a physical reality. Finally, I would like to thank Dr. Gary Leavens

and Dr. Annie Wu for taking time out of their busy schedules to join my defense committee.

This research would not have been possible without the financial support of the National Science

Foundation Graduate Research Fellowship Program (GRFP) and award #1438989 titled ”XPS:

EXPL: FP: Collaborative Research: Formal methods based algorithmic synthesis of more-than-

Moore nano-crossbars for extreme-scale computing”, the Air Force Research Laboratory, and my

own Alma Mater, the University of Central Florida. The views expressed herein are my own and

do not necessarily reflect the views of these great institutions.

v

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . xvii

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: BACKGROUND . 6

Memristors . 6

Crossbar Computing . 8

Sneak Paths . 10

CHAPTER 3: LITERATURE REVIEW . 14

Logic Synthesis Methods . 14

Formula-Dependent Memristor Placement . 16

Rectifying-Memristor Crossbars . 17

Networks of Interconnected Crossbars . 19

CHAPTER 4: PATHS-BASED LOGIC . 21

Irreducible Paths in Crossbars . 22

vi

Universality of Paths-Based Logic . 29

CHAPTER 5: DESIGN AUTOMATION . 35

Bounded Model Checking . 39

Experimental Results . 43

Fault Tolerance . 47

Crossbar Networks . 49

CHAPTER 6: HETEROGENEOUS CROSSBARS . 52

Limitations of Paths-Based Logic . 52

Heterogeneous Crossbars . 54

Design Automation . 58

Fault Tolerance . 62

Experimental Results . 64

Concluding Remarks . 65

CHAPTER 7: DESIGN AUTOMATION OF VOLTAGE SEQUENCES 67

Methodology . 69

Results . 73

vii

Illustrative Execution of 1-bit Full Adder . 74

Conclusion and Future Work . 76

CHAPTER 8: BOOLEAN MATRIX MULTIPLICATION WITH 3D CROSSBARS 78

Methodology . 81

Experimental Results . 86

Concluding Remarks . 88

CHAPTER 9: TRANSITIVE CLOSURE WITHIN 2-LAYERED MEMORY 89

Methodology . 94

All-Pairs Shortest Paths . 101

Complexity . 103

Universal Computation . 103

Experimental Results . 108

Energy and Latency Considerations . 109

Concluding Remarks . 111

CHAPTER 10: CONCLUSION . 113

LIST OF REFERENCES . 115

viii

LIST OF FIGURES

2.1 A memristor can be modeled as a pair of resistances in series – a low-resistance

resistor of width w and a high-resistance resistor of width D−w (left). 4× 4

Memristor crossbar (right). 7

2.2 Flow behavior of sneak paths, where green nodes denote LRS memristors

and black nodes represent HRS memristors. The red bars represent flow of

current and we wish to read the value of the blue memristor by applying a

voltage at one terminal and grounding the other. It can be seen that a high

voltage value will be read at the grounded terminal due to sneak paths regard-

less of the state of the blue memristor. 13

3.1 Memristor implication logic. The green memristor P is in the LRS state

(p = 1) and the black memristor Q is in the HRS state (q = 0). The voltage

drop across Q will be approximately VSET − VCOND < VTH, so Q will remain

in the HRS state, meaning that q = 0 = (p =⇒ q). 15

3.2 Matrix (left) and crossbar (right) representations of a 3-bit parity construction

using the design proposed in [1], where green memristors are in the LRS

state, λ values specify a location in which there is no memristor, and the

states of blue memristors are determined by variables bi and their negations

¬bi in the Boolean formula φ which we wish to evaluate. The resulting value

of φ will be stored in the bottom right memristor of the crossbar when the

computation is finished. 17

ix

3.3 States of the 3-bit parity function over inputs b1, b2, b3 ∈ {0, 1} mapped to a

crossbar using the method in [2]. 18

3.4 Red dashed lines denote the flow of current and M∗(φ(i)) represents the cross-

bar that computes the ith clause of the Boolean formula φ, which must be in

either disjunctive normal form (top) or conjunctive normal form (bottom). . . 20

3.5 Network of crossbars method described in [3]. Here, S = (A∧¬B ∧¬C)∨

(¬A∧B∧¬C)∨ (¬A∧¬B∧C)∨ (A∧B∧C) and Cout = (A∧B)∨ (A∧

C) ∨ (B ∧ C) are the sum and carry-out bits over inputs A,B,C ∈ {0, 1},

and f4 is a 4-bit parity function over inputs x1, x2, x3, x4 ∈ {0, 1}. 20

4.1 (i) 4 × 4 crossbar X = (M,R,C). (ii) Mapping of the formula φ = (φ1 ∧

φ2 ∧ φ3) onto M , where R1 and R4 are the source and destination wires,

respectively. 23

4.2 (top) 8×8 crossbar mapping the formula φ = (φ1∧φ2∧φ9∧φ10). The red bars

represent the path ΠR1→R8 = {M11,M41,M43,M63,M68,M28,M26,M46,M45,

M85} corresponding to
∧10
i=1 φi. (bottom) Equivalent representation of ΠR1→R8

as a graph given by ΠR1→R8
G = {(R1, C1), (C1, R4), (R4, C3), (C3, R6), (R6, C8),

(C8, R2), (R2, C6), (C6, R4), (R4, C5), (C5, R8)}, where (Ri, Cj) ∈ ΠR1→R8
G

denotes a directed edge from Ri to Cj . 24

4.3 Memristor crossbars using our NNF construction for Boolean formulas (A∧

B) (left), (A ∨ B) (center), A ⊕ B ≡ (A ∨ B) ∧ (¬A ∨ ¬B) (right), where

A = B = 1 and the source and destination wires are R1 and R|R|, respectively. 33

x

4.4 Crossbar mapping the sum bit S = (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨

(¬A ∧ ¬B ∧ C) ∨ (A ∧ B ∧ C). A voltage is applied to wire R1 and R16

is grounded in order to read the value corresponding to S. Blue memristors

map a Boolean literal from φ. Green memristors are in the LRS state, black

memristors are in the HRS state, and the states of blue memristors are de-

termined by variables A,B,C and their negations. Simulation files can be

found in eecs.ucf.edu/∼velasquez/Homogeneous. 34

5.1 Crossbar X = (M,R = (R1, R2, R3), C = (C1, C2, C3, C4)) with mapping

matrix (5.6). If a voltage pulse is applied to R1 and R2, C3, C4 are grounded,

then we have an initial flow of current r1 = 1. The red bars represent the

current flow from R1 to C3 when y > x, i.e. when y ∧ ¬x holds. 39

5.2 The finite state machine L given the design P (5.6) for the comparator in

Fig. 5.1. There are 4 sub-automata L00,L01,L10,L11 corresponding to each

evaluation vector α ∈ B2. Each state ut in L is the union of states of its

sub-automata Ltα. 43

5.3 Crossbar design visualization of a 4-bit parity and the sum bit of a full adder. . 44

5.4 Crossbar design visualization of a full adder. 45

5.5 (left) Schematic cross-section of a memristor used in this work. (right) SEM

View of a 12× 12 memristor crossbar array. Crossbar arrays were fabricated

at SUNY Polytechnic Institute on 300 mm wafers using a modified IBM 65

nm 10LPe process flow. 46

xi

5.6 4-bit comparator as a cascade of highly defective crossbars with mapping

matrices (5.20). Black, green, red, and yellow components denote HRS, LRS,

stuck-on, and stuck-off nodes, respectively. Wire breaks are denoted by white

circles. The values of blue components correspond to some literal {xi,¬xi,

yi,¬yi} as specified by the P matrix (5.20). Given two bit-vectors x =

(x4, x3, x2, x1) and y = (y4, y3, y2, y1), we have ri5 ⇐⇒ (x ≡ y)i, ci5 ⇐⇒

(y > x)i, and ci6 ⇐⇒ (y < x)i and input ri1 = (x ≡ y)i+1, with initial

input r4
1 = 1. The red bars denote the flow of current under evaluation vector

α = (x4 = 1, x3 = 1, x2 = 0, x1 = 0, y4 = 1, y3 = 1, y2 = 0, y1 = 1)

when C4
5 , C

4
6 , C

3
5 , C

3
6 , C

2
5 , C

2
6 , C

1
5 , C

1
6 , R

1
5 are grounded. Design generation

files can be found in eecs.ucf.edu/∼velasquez/Comparator. 51

6.1 Modular representation of the construction in Theorem 6. The well-formed

design kij computes (φkj |si) for a given i and is used in Pi to compute (φk|si)

for all i. Pi is then used in the final design P to compute φ1, . . . , φq. 56

6.2 Variable-input heterogeneous design for a full adder, where S, Cin, and Cout

denote the sum, carry-in, and carry-out bits, and a, b are the bits to be added.

This design follows from the construction given in Theorem 6. We have

r1 = ¬Cin, r7 = Cin, r15 ⇐⇒ S, and r16 ⇐⇒ Cout for all evaluations

α ∈ B3 (see equations (6.1)). Blue rectangles denote constructions kij and Pi

from the proof and the red trajectory delineates the path ΠR1→R16 that makes

r16 true under evaluation vector α = (a = 1, b = 1,Cin = 0). 59

xii

6.3 4-bit ripple-carry adder as a cascade of crossbars with mapping matrix (6.8).

Given two bit-vectors X = (x4, x3, x2, x1) and Y = (y4, y3, y2, y1), we have

ri5 ⇐⇒ ¬Ci, ri6 ⇐⇒ Ci, and ci5 ⇐⇒ Si and inputs ri1 = ¬Ci−1

and ri2 = Ci−1 with r1
1 = ¬C0 = 1 since there is no carry-in bit for the

least significant bit addition. The red bars denote the flow of current under

evaluation vector α = (x4 = 1, x3 = 1, x2 = 0, x1 = 0, y4 = 1, y3 = 1, y2 =

0, y1 = 1) when wires C1
5 , C

2
5 , C

3
5 , C

4
5 , R

4
5, R

4
6 are grounded. Note that the

values read on these wires are S1 = 1,S2 = 0,S3 = 0,S4 = 1,¬C4 =

0,C4 = 1, respectively, yielding the correct result. That is, given x = 12

and y = 13, we read the value 25. After applying a voltage pulse of 5V

to R1
1, we obtain the following voltage values with respect to ground for

the grounded wires: 4.5751V, 39.9629mV, 34.0887mV, 3.7873V, 9.7456mV ,

3.6443V . Design and circuit generation files can be found in eecs.ucf.edu/

∼velasquez/HeteroAdder. 61

6.4 Variable-input crossbar design P for a crossbar X = (M,R,C) with in-

put/output wires S = (R1, R2), F = (R7, R8, C8) for a full adder φ =

(¬Ci,Ci,Si) (6.11) given inputs r1 = ¬Ci−1 and r2 = Ci−1 correspond-

ing to the carry bits of the previous addition operation. Black, green, red,

and yellow components denote HRS, LRS, stuck-on, and stuck-off nodes,

respectively. The values of blue components correspond to some variable

{xi,¬xi, yi,¬yi} as specified by the P matrix (6.11). Wire breaks are rep-

resented by θR2 = θC3 = (1, 2, 9), θR3 = (1, 4, 9), θR5 = (1, 7, 9) and

θC2 = (1, 3, 6, 9), θC6 = (1, 5, 9). These breaks are denoted by white circles.

The red bars denote the paths under evaluation vector α = (xi = 1, yi =

1,Ci−1 = 1). 64

xiii

7.1 State transitions for a memristor m given the voltage on its input wire w and the state

of the common wire u. 71

7.2 Memory state at each stage of a 1-bit full adder procedure for non-destructive (ND)

addition with inputs xk = yk = 1 and cin = 0. The blue wire (memristor) denotes

u = 1 (m = 1). 77

8.1 4× 4× 3 3D crossbar. There are two sets of row and column wires and three

layers of interconnects. 79

8.2 4×4×3 crossbar illustrating the configuration proposed in order to compute

the product of Boolean matrices. 82

8.3 Dashed lines represent interconnections between row and column wires. Yel-

low bars denote a wire with a truth value of 1 and solid red lines are due to

Axiom 4; they correspond to interconnects redirecting flow from one wire to

another. 85

9.1 (Left) A graphical illustration of a 3D crossbar X = (M1,M2, R, C) with

two layers of interconnects and external feedback loops. The dashed arcs

denote an external interconnection between the corresponding bottom and

top wires. (Right) Given X = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 1)),

we configure the crossbar in accordance with Theorem 8 so thatM1 = X and

M2 = XT . In order to compute the 4th row vector of the transitive closure of

X , a voltage bias is applied to R4 and R1, R2, R3 are grounded. Note that the

values (r1, r2, r3, r4) obtained from the voltage readings of (R1, R2, R3, R4)

will correspond to (1, 0, 0, 1), as expected. 90

xiv

9.2 Cyclic Boolean circuit for a given n × n crossbar X = (M1,M2, R, C).

In this circuit, each wire value ri, cj has a corresponding Boolean function

gri : {0, 1}n+1 7→ {0, 1}, gcj : {0, 1}n 7→ {0, 1} which is a logical disjunction

of its inputs. Similarly, g1
ij, g

2
ij : {0, 1}2 7→ {0, 1} are 2-bit conjunctions

corresponding to the logical output of each m1
ij and m2

ij , respectively. 93

9.3 Procedure for computing the transitive closure X∗ of directed graph G =

({v1, v2, v3, v4, v5}, E) (top). The two-layer crossbar with feedback loop

X = (M1,M2, {R1, R2, R3, R4, R5}, {C1, C2, C3, C4, C5}) (bottom) is un-

rolled in order to help visualize the computation. Dashed lines represent

interconnections between row and column wires, yellow bars denote a wire

with a value of 1 (i.e. current flows through it), and solid red lines correspond

to interconnects redirecting the flow of current from one wire to another. In

this case, we are computing the second row vector (X∗21, . . . , X
∗
25) of X∗ by

setting (r10, r20, r30, r40, r50) = (0, 1, 0, 0, 0). Note that (c12, c22, c32, c42, c52) =

(X∗21, X
∗
22, X

∗
23, X

∗
24, X

∗
25). 99

9.4 Boolean circuit corresponding to the example in Fig. 9.3. Boolean gates g1
ij

and g2
ij have inputs X(1)

ij and X(1)
ji in accordance with Theorem 8. Each gri

has an input Ii corresponding to the value of ri0. 100

9.5 Graph constructions for a given CNF (Top) and DNF (Bottom) formula with

|Φ| clauses and k literals per clause. The dashed lines denote edges whose

presence is a function of the literals in the formula as specified in our con-

structions. 106

xv

9.6 (Top) Given the CNF 3-bit parity formula φ = (b1 ∨¬b2 ∨¬b3)∧ (¬b1 ∨ b2 ∨

¬b3)∧ (¬b1 ∨¬b2 ∨ b3)∧ (b1 ∨ b2 ∨ b3), its corresponding graph construction

is given by the adjacency matrix X⊕CNF (9.20). (Bottom) Given the DNF 3-bit

parity formula φ = (b1 ∧¬b2 ∧¬b3)∨ (¬b1 ∧ b2 ∧¬b3)∨ (¬b1 ∧¬b2 ∧ b3)∨

(b1 ∧ b2 ∧ b3), its corresponding graph construction is given by the adjacency

matrix X⊕DNF (9.21). 107

xvi

LIST OF TABLES

5.1 Comparison of design performance, where time is defined as the number of

steps required to configure the crossbar and compute the formula of interest. . 44

5.2 Output voltages for wires R1 and R2 in the full adder design in Figure 5.4

under all possible evaluations. 47

5.3 Comparison between the proposed full adder architecture and the traditional

28-transistor CMOS full adder. 47

6.1 Comparison of our crossbar ripple-carry adder (XRCA) against other cross-

bar n-bit adder designs proposed in the literature. Our design is state-of-the-

art in terms of execution steps required to compute n-bit addition. 62

6.2 HSPICE simulation results for the full adder design in (6.8). Each column

entry denotes values under an evaluation vector α = (xi, yi,Ci−1). Wires

C5, R5, R6 are grounded and a 5V voltage pulse is applied to R1 if Ci−1 = 0

or to R2 if Ci−1 = 1. The voltage values read correspond to Si,¬Ci,Ci,

respectively. Each entry denotes the voltage reading obtained from grounded

wires C5, R5, R6. 65

xvii

6.3 Power comparison between the proposed crossbar ripple-carry adder archi-

tecture (XRCA) and adders presented in the survey [4] using traditional CMOS.

These are ripple-carry (RCA), increment (INCA), triangle (TRIA), uniform

and progressive carry-select (CSELA-UNIF, CSELA-PROG), conditional

(COND), uniform and progressive-carry bypass (CBYPASS-UNIF, CBYPASS-

PROG), and ripple-carry and hierarchical-carry lookahead (CLA-RIPPLE,

CLA-HIER) adders. All architectures are simulated using 180 nm technol-

ogy with a 1.8 V pulse and 10 MHz frequency. NVSIM files can be found in

eecs.ucf.edu/∼velasquez/Table6.3. 66

7.1 Comparison of our adder designs against other n-bit in-memory adder designs pro-

posed in the literature. 68

7.2 Voltage sequences for implementing the non-destructive, semi-destructive, and fully-

destructive 1-bit full adder. 74

7.3 Generalized memristor states at each stage of a non-destructive 1-bit full adder with

respect to arbitrary inputs . 74

8.1 DESTINY [5] simulations of different memory architectures using 22 nm

technology, including the 3D ReRAM used in this paper. In order to avoid

bias, we utilize the default parameters included in the simulator. Simulation

files can be found in eecs.ucf.edu/∼velasquez/Table7.1. 87

xviii

9.1 Number of nodes, edges, and diameter for all benchmark graphs exceeding

one million nodes from the Stanford Large Network Data Collection. Note

that the diameter of the networks is much smaller than their number of nodes

as stated in [6]. 97

9.2 HSPICE simulation results of graph transitive closure computation using our

3D crossbars. The first column denotes crossbar sizes. For each row in the

table, the transitive closure of 100 random matrices were computed and the

minimal voltage reading corresponding to a value of 1, or true, was recorded

in the first column. The maximal value corresponding to a value of 0 was

also recorded, as were the average and standard deviations of false and true

voltage readings. It can be seen that there is a two-orders-of-magnitude gap

between true and false readings in the average case and there is an order of

magnitude gap in the worst case; that is, in the case where we compare the

minimal true value and the maximal false value. Circuit generation files can

be found in eecs.ucf.edu/∼velasquez/TransitiveClosure. 110

9.3 Latency and power metrics of the proposed architecture for various memory

capacities using the NVSim [7] simulator. NVSIM files can be found in

eecs.ucf.edu/∼velasquez/TransitiveClosure. 111

xix

9.4 Computation time and energy usage metrics for various benchmark circuits

taken from the Stanford Large Network Data Collection. These networks

are mapped to the memories presented in Table 9.3 and the aforementioned

metrics are reported. In the (Read) columns, we report values that correspond

to memories whose cells contain the contents of the network. The (Write +

Read) columns assume that the memories must first be configured to contain

the contents of the network. 111

xx

CHAPTER 1: INTRODUCTION

Computing on current high-performance machines is exacerbated by three issues that arise from

challenges in the processing and storage of data. First, the era of sustained transistor scaling per

Moore’s law is now believed to be coming to an end. In the past, such predictions have been

made and the obstacles have been overcome by the ingenuity and collaboration of engineers and

scientists. However, the lithographic processes required to fabricate ever-smaller transistors result

in higher process variations and more unpredictable structures when working at the atomic scale

[8]. Furthermore, the alignment of these devices poses an even greater challenge as we traverse

deeper into the nanoscale [9].

In response to these difficulties, substantial research has been devoted to novel patterning methods

that can extend traditional optical lithography. This research effort has produced methods such

as extreme ultra-violet (EUV) lithography, nanoimprint lithography (NIL), maskless lithography

(ML2), and bottom-up directed self-assembly (DSA). The last of these methods shows promise as

a potential successor to top-down lithography [10]. DSA synthesizes relatively basic primitives

with precise shapes that may be used for computation. However, it is not suitable for fabricating

complex device topologies that frequently occur in modern circuits [8]. The use of these basic

primitive structures necessitates a paradigm shift in our circuit model. Motivated by the success

of assembling aligned nanowires [11] and the ease of reconfiguration, attention has shifted to

the use of crossbars [12], which consist of perpendicular sets of parallel wires with two-terminal

components at each wire junction. These can be easily assembled using DSA [13]. However, the

fabrication of crossbars using this approach suffers from high defect rates [8]. These defects occur

in the form of stuck-off and stuck-on devices as well as broken wires. The high defect rates make it

uneconomical to simply reject defective nanoscale crossbars [14]. Hence, there is a pressing need

to develop fault-tolerant computing approaches [15, 16, 17] that can ensure the fruitful use of even

1

defective nanoscale crossbars. To this end, we propose a new methodology for mapping logical

and arithmetic operations onto a defective crossbar that exploits the occurrence of faults.

The second limitation in high-performance computing stems from today’s popular DRAM and

SRAM memories, which are volatile in that their stored data is lost when the power source is

removed from the system. Consequently, these architectures require a constant supply of power to

refresh the stored data, resulting in poor energy efficiency. In order to meet the energy demands

of the future, we must move away from volatile memory. Fortunately, much work is being done

in this area. HP has announced their plans of building the Machine with non-volatile memory.

An overhaul of the traditional processor-centric computing model to a memory-driven one has

also been proposed [18]. Intel and Micron recently unveiled their groundbreaking 3D XPointTM

memory architecture [19] – a 3-dimensional crossbar architecture with two layers of non-volatile

memory cells which is orders of magnitude faster than traditional solid-state drives [20]. This

technology can already be found on the market in the form of Intel’s OptaneTM drives [21]. HP and

Sandisk have also announced a partnership for investigating the area of memory-driven computing

[22] in the hopes of leveraging their memristor and non-volatile resistive RAM technologies.

Though a useful step in the right direction, the adoption of non-volatile technology may not be

enough on its own. This brings us to our third problem in high-performance computing: the in-

famous memory wall [23] that arises in traditional von Neumann architectures where the memory

and processing units are segregated. This separation poses serious restrictions on performance.

Under a 45 nm process at 0.9 V, it has been reported [24] that 32-bit floating-point multiplication

consumes approximately 4 pJ of energy whereas accessing DRAM requires 1.3− 2.6 nJ. There is

a difference of three orders of magnitude in power consumption between computation and mem-

ory access in this case. A study by NVIDIA yielded similar results [25]. Namely, that a 64-bit

arithmetic operation consumes 20 pJ of energy as opposed to the 16 nJ consumed during DRAM

read/write operations.

2

The aforementioned problems motivate the need for a non-volatile in-memory computing archi-

tecture that uses post-CMOS devices. Such architectures have been studied in the domain of mem-

ristor crossbar computing. This powerful alternative to traditional computing uses crossbars to

perform both memory and logic operations, thereby eliminating the separation of memory and

processing units that is characteristic of traditional architectures and offering a potential solution

to the second and third problems mentioned. This topic has garnered significant attention in the

past few years due to the reasons mentioned earlier, as well as the breakthrough discovery of mem-

ristors [26], which are two-terminal non-volatile memory components that are regarded as potential

successors to the transistor. It is worth noting that these memristors have been successfully assem-

bled into crossbars through non-lithographic methods [8, 13]. Thus, in-memory memristor-based

computing helps to address the three problems mentioned. It is worth noting that the results pre-

sented in this document apply to other memory architectures as well. In particular, any memory

whose components store values and act as open or closed switches depending on these values. One

such example is phase-change memory (PCM).

The remainder of this thesis is organized as follows.

Chapter 2: A detailed exposition of the three main facets of crossbar architectures is presented.

These are the interconnects, their arrangement into crossbar designs, and the sneak paths constraint

that arises therein.

Chapter 3: Related work is presented. Namely, we present popular methods for computing

Boolean functions using crossbar memories. These include procedures based on logic synthesis,

formula-dependent placement of interconnects, and crossbar networks, among others.

Chapter 4: The theory of paths-based logic is presented. This theory provides a framework for

arguing about the number of trajectories, or paths, that electric current can flow through between

two wires in a crossbar. The notion of irreducible paths is introduced and is used to prove that only

3

a small subset of paths need to be considered in order to perform computations. The universality

of paths-based logic is also established by proposing a general design methodology for any given

Boolean formula.

Chapter 5: We leverage the results in Chapter 4 and advances in model checking to propose a

framework that generates compact crossbar designs to compute a given Boolean formula. This

framework is then extended to handle common crossbar faults such as stuck-on and stuck-off

defects as well as broken wires.

Chapter 6: The limitations of using traditional crossbars and paths-based logic to compute func-

tions are proven rigorously. We then demonstrate how such limitations can be overcome by using

heterogeneous crossbars. These crossbars augment the traditional model by allowing interconnects

to route the flow of current in some particular direction as opposed to restricting ourselves to inter-

connects that allow bidirectional flow of current across them. A fault-tolerant design automation

approach using these heterogeneous crossbars is proposed in a similar fashion to the one in Chapter

5.

Chapter 7: An alternative design automation approach using bounded model checking is pre-

sented. As opposed to searching through the space of possible memory configurations, we now

search the space of voltage inputs that can be applied on the wires of the memory. Namely, we syn-

thesize the shortest sequence of voltage pulses that will store the result of some desired formula.

By allowing the synthesis procedure to perform destructive operations wherein input data can be

overwritten, we achieve designs that are state-of-the-art in terms of space.

Chapter 8: We focus our attention on crossbars consisting of 1-diode 1-resistor (1D1R) inter-

connects and how they can be used to compute the product of Boolean matrices, a fundamental

problem in computer science. This problem is of interest for various reasons. It is an integral part

of group testing [27] and its applications in genetics, data forensics, fault diagnosis, and on-chip

4

sensing. Boolean matrix multiplication has also been studied in the context of matrix decomposi-

tion [28], cryptography [29], and CFG parsing [30, 31].

Chapter 9: We present a new in-memory computing architecture that can compute the transitive

closure of graphs within non-volatile 3D resistive memory (3D RRAM) with external feedback

loops. We demonstrate that our approach has a runtime complexity of O(n2) operations using

O(n2) devices. In practice, we argue that our method is both fast and energy-efficient (see Table 9.4

and Section VI).

Chapter 10: We briefly outline the contributions made, suggest potential avenues of research in

the area, and allude to future work.

5

CHAPTER 2: BACKGROUND

Memristors

The idea of a memristor was first theorized by Leon Chua in 1971 based on a fundamental sym-

metry argument. Chua argued that there were existing relationships between all of the different

electromagnetic elements, except for magnetic flux and charge. Hence, he postulated that a rela-

tionship between charge and magnetic flux must exist; he defined the component that establishes

this relationship as a memristor. Memristance, as defined by a nonlinear relationship between

voltage and current, has been serendipitously observed in circuits for decades. It was normally

considered an anomaly until 2008, when the quantum science research group at Hewlett Packard

laboratories developed the first working memristor and theoretical models explaining its behavior.

Since their discovery by HP Labs in 2008, memristors have been a topic of active research due to

several desirable properties, including (i) their small size (< 10 nm), (ii) the ability of a memristor

to maintain its state for years after bias has been removed, and (iii) their low power footprint

compared to traditional transistors.

The memristor, as detailed in [32], is a two-terminal passive component acting as two variable-state

resistors in series – one acting as a semiconductor doped with ion vacancies and the other acting

as an insulator. The doped region drifts as the result of electric fields generated by the voltage

bias. The properties of the memristor are dictated by its material composition. While the TiO2

film has been well-studied in memristive and resistance-switching devices, HfO2 [33], a-Si [34],

TaOx [35], a-LSMO [36], and a-SrTiO3[37] have also been studied, among others. These differing

electrochemical compositions give rise to varying degrees of nonlinearity in the voltage-current

relationship of the memristor. They also determine the endurance and power consumption of the

6

devices and can even cause interesting effects, such as producing unipolar rectifying memristors

that act similarly to diodes [38].

The state of the memristor is uniquely identified by the width w of the doped region of the mem-

ristor, as can be seen in Figure 2.1. Here, D is the entire width of the memristor. A positive current

causes the doped region to grow, thus increasing w and reducing the overall resistance (memris-

tance) of the memristor. Conversely, a negative current will decrease w and make the resistance

of the memristor higher. We denote the low resistance of the doped region by Ron and the high

resistance of the undoped region by Roff .

It is worth noting that a voltage threshold which must be exceeded in order to change the state

of a memristor, and therefore its resistance, is apparent when there exists a strong nonlinearity

in the I-V relationship of the memristor [6]. This allows us to use voltages smaller than said

threshold in order to read values from memristors or memristor crossbars without destroying data

by erroneously changing the state of the memristors involved.

Figure 2.1: A memristor can be modeled as a pair of resistances in series – a low-resistance resistor
of width w and a high-resistance resistor of width D − w (left). 4× 4 Memristor crossbar (right).

7

The focus of this thesis is on memristors acting as switches. To this end, we only deal with

memristors in one of the extreme states such that their resistance is Ron or Roff . A memristor M

in its lowest (highest) resistance state acts similarly to a closed (open) switch and is said to the in

the LRS (HRS) state. Here, LRS and HRS stand for low-resistance and high-resistance state. The

state m of memristor M is given by m = 1 (m = 0) to denote the LRS (HRS) state.

Crossbar Computing

A crossbar consists of two sets of mutually perpendicular wires. Each wire from one set is con-

nected to every wire from the other set through an electronic component. This interconnection

can be a two-terminal device such as a diode or memristor, or a three-terminal device such as the

CMOS transistor. In the remainder of this section, we will briefly discuss a few popular crossbar

computing architectures.

The NanoFabric [39] consists of an array of interconnected and reprogrammable nano-crossbars,

called nanoBlocks, with corresponding switch blocks. The NanoFabric is similar to an FPGA sans

the look-up tables. A number of NanoFabric designs have been proposed that include AND, OR,

XOR, and a half-adder. The NanoPLA [40] uses reconfigurable diodes or rectifying diode-like

elements in tandem with NOR-NOR logic in order to perform logical operations. The Nanoscale

Application-Specific Integrated Circuit (NASIC) architecture [41] is an ASIC that utilizes field-

effect transistors and crossbars. An extension of this framework that interfaces with a 3D CMOS

stack has also been explored [42].

Crossbar-computing frameworks using traditional CMOS-like logics have been proposed as well.

In one such methodology [43], crossbars of p- and n-type FETs and programmable switches are

used to evaluate logical conjunctions, disjunctions, and inversions. A hybrid approach, referred to

8

as CMOL [44], utilizes CMOS and molecular computing in the form of crossbars. The crossbars

are fabricated on top of the CMOS die and the two architectures interface via a set of pins that

connects the CMOS die to the top and bottom nanowires. Bottom-up self-assembly is perfectly

suited for this by allowing the crossbars to grow regardless of substrate used, thus not requiring the

high temperatures that restrict the fabrication of CMOS circuitry on top of another CMOS stack

[9]. The crossbars could function as memory or as reconfigurable computing fabrics. A variation of

CMOL [45] uses a field programmable nanowire interconnect (FPNI) to facilitate communication

between the crossbar and the CMOS stack. Some additional constraints are enforced, such as

confining logic to the CMOS stack and restricting routing to the crossbar. The resulting architecture

trades off speed and fault-tolerance for ease of fabrication when compared to traditional CMOS.

A 3D extension of CMOL was introduced in [46]. In this architecture, two CMOS stacks are used

and the crossbar is sandwiched between the two stacks. This allows each stack to communicate

with only one set of wires, thereby mitigating the pin interfacing difficulties of traditional CMOL.

Promising emerging technologies, such as the memristor [26] and spin-transfer-torque (STT) de-

vices, have also been introduced to the crossbar-computing domain both as memory and as com-

putation nodes. A 3-D crossbar architecture [47] uses memristors together with an interfacing

methodology similar to field programmable nanowire interconnect (FPNI). The use of Null Con-

vention Logic (NCL) [48] has also been explored to develop an asynchronous lookup table using a

memristor crossbar. Sneak paths [49] pose a problem in these architectures by causing HRS nodes

to be read as LRS nodes due to the flow of current through sequences of LRS nodes that run in par-

allel to the current being used to measure the HRS node. This problem is analogous to the crosstalk

problem in RRAM memories. Solutions have been proposed via the use of 1M1D memristor-diode

structures or diode-like rectifying memristors [50] [2]. In this thesis, we explore the application

of formal methods to the problem of designing crossbars that can exploit these sneak paths as a

means for evaluating Boolean formula [51] rather than suppress them.

9

One omission often made in the literature lies in addressing the robustness of crossbar computing

designs in the presence of stuck-off and stuck-on nodes as well as broken wires, which are com-

mon defects resulting from self-assembly [8]. Given a faulty n × n crossbar, one solution [52]

determines the k × k (k < n) maximum defect-free subset of the crossbar which can then be used

in the application-mapping stage of the fabrication process. However, the computational power of

the resulting crossbar can be diminished due to loss of significantly many computation nodes. An-

other algorithm for finding defect-free subcrossbars from a defective crossbar is proposed in [53].

Other methods include simply avoiding the defective devices altogether by providing redundancy

in the form of spare parts [54].

In light of the high defect rates associated with self-assembled crossbars, we propose a new ap-

proach to fault-tolerant crossbar computing that exploits the stuck-at interconnects and broken

wires to design nanoscale crossbars for computing Boolean formula. As our method does not try

to identify a sub-crossbar of defect-free interconnects and instead leverages defects during the de-

sign phase, it is capable of performing useful computations even on highly defective crossbars.

Our approach is independent of the underlying architecture and only requires the use of a crossbar

consisting of digital switches. As such, this framework can be easily implemented using memristor

crossbars, CMOL, and phase-change memories (PCMs).

Sneak Paths

One problem that arises in crossbar computing is that of sneak paths. That is, the paths of current

that flow through the crossbar which may cause wrong values to be read from memristors. These

sneak paths are formally defined in [55] for an |R|-by-|C| binary matrix representation of the

memristor states in the crossbar. A path of length 2k + 1 affecting the cell at position (i, j) is said

to be a sneak path if mij = 0 (i.e. the memristor connecting wires i and j is in the HRS state) and

10

there exist 2k positive integers 1 ≤ r′1, . . . , r
′
k ≤ |R| and 1 ≤ c′1, . . . , c

′
k ≤ |C| for some k ≥ 1

such that the following 2k + 1 memristor states satisfy

mic′1
= mr′1c

′
1

= mr′1c
′
2

= · · · = mr′k−1c
′
k

= mr′kc
′
k

= mr′kj
= 1 (2.1)

Thus, a path of LRS memristors can cause an HRS memristor’s interconnected wires to have

a significant flow of current across them. This is normally seen as a problem in the literature,

especially in individually-addressable memory designs where a current is applied to read the state

of a particular memristor. This same current can create a sneak path as mentioned above and cause

a wrong state to be read (i.e. an HRS memristor might be read as if it were an LRS memristor). For

example, suppose we wish to read the state of the blue memristor in the crossbar in Fig. 2.2, where

green and black nodes represent LRS and HRS memristors, respectively. Naturally, a voltage bias

is applied at one terminal of the blue memristor while the other terminal is grounded. It follows

that, if the blue memristor is in the HRS state, then the voltage drop across the resistor-to-ground

should be small. This basic principle can be violated by the sneak paths constraint, which can

cause the blue memristor to be read as if it were in the LRS state regardless of its true state.

Numerous solutions and alleviations to the sneak paths problem have been proposed [56, 57, 58,

59, 60, 61, 62, 63, 64]. We briefly present some of these works.

In [59], a multistage method is proposed to accurately read the state of some memristor in a cross-

bar via a sequence of read and write operations. A total of three read, three write, and one com-

parison operation is required. The method in [56] also utilizes multiple readings to accurately

determine the state of a memristor in the presence of sneak paths. This work improves upon [59]

by introducing multipoint access along with the multiple readings in order to reduce the number

of read/write operations from six to three. Unfortunately, both of these methods require additional

11

complex hardware and, perhaps more obtrusively, multiple operations are required for what would

ideally be a single operation.

Traditionally, transistors and diodes have been deployed in computer architectures to prevent the

propagation of undesired current. Thus, it is sensible to attempt such a deployment in memristor

crossbars. [60] proposes such a framework by positing a hybrid memristor-crossbar architecture

that utilizes the 1D1M and 1T1M structures, where each memristor requires a diode or a transistor,

respectively. The diodes in the 1D1M structure cause the flow of current to travel in only one di-

rection, thereby eliminating the sneak paths constraint. This does, however, introduce a significant

problem to the crossbar’s writing process, which requires dual polarities for effective writes and

erases. The 1T1M structure also has pervasive side effects in the form of significantly decreased

crossbar density and increased power consumption [58].

In order to preserve the outstanding fabrication density intrinsic to memristive devices, it is desir-

able to mitigate the sneak paths constraint without complex added circuitry. We propose a crossbar

computing framework that mitigates the sneak paths problem without added circuitry or time-

consuming multistage read and write operations. The designs proposed herein exploit sneak paths

as first-class design primitives and employ them to perform the proposed computations.

12

Figure 2.2: Flow behavior of sneak paths, where green nodes denote LRS memristors and black
nodes represent HRS memristors. The red bars represent flow of current and we wish to read the
value of the blue memristor by applying a voltage at one terminal and grounding the other. It can
be seen that a high voltage value will be read at the grounded terminal due to sneak paths regardless
of the state of the blue memristor.

13

CHAPTER 3: LITERATURE REVIEW

Since the discovery of the memristor in 2008, significant effort has been devoted to the develop-

ment of design methods that allow for memristor-based computation. While there are numerous

studies in the area of digital logic computations using individual memristors [65, 66, 67, 68, 2, 69,

3], the literature is scarce when it comes to digital memristor-crossbar computing. This is because

developing efficient memristor-crossbar computing frameworks is difficult due to the challenge

posed by sneak paths. In this section, we present four memristor-crossbar computing method-

ologies proposed in the literature and demonstrate how the novel architectures proposed therein

overcome the sneak paths constraint and at what cost.

Logic Synthesis Methods

In-memory crossbar computing is largely based on the implication-falsity logic presented in [70].

We briefly present an outline of this procedure. Let P and Q denote two memristors with cor-

responding states p, q ∈ {0, 1}, where 0 and 1 denote high-resistance and low-resistance states

(HRS, LRS), respectively. Both devices are connected to the same load resistor RG and let

VCOND, VTH, VSET denote voltages such that VSET is sufficient to switch a memristor to the LRS

state, VTH is the threshold voltage value that must be exceeded in order to switch said memristor,

and VSET − VCOND < VTH. Apply voltage bias VCOND to P and VSET to Q. This will cause Q to

switch to or remain in the LRS state if p =⇒ q. See Fig. 3.1 for a visualization of the case when

p = 1 and q = 0. It is easy to see that Q will be switched to or remain in the LRS state under the

other 3 evaluations of p and q because the voltage drop across Q will be VSET > VTH. A voltage

VCLEAR can be used to set the memristor to the HRS state corresponding to a binary value of 0, or

false. This combination of implication and falsity is functionally complete for Boolean operations.

14

This result catalyzed a host of design methodologies [71, 69, 67, 68] based on minimizing the

number of implication operations required to compute a formula of interest.

VSET

Q
VCOND

P
RG

Figure 3.1: Memristor implication logic. The green memristor P is in the LRS state (p = 1) and the
black memristor Q is in the HRS state (q = 0). The voltage drop across Q will be approximately
VSET − VCOND < VTH, so Q will remain in the HRS state, meaning that q = 0 = (p =⇒ q).

In [72] and [73], each interconnect is a complementary resistive switch consisting of two memris-

tors of opposite polarity. The basic logical operation on these interconnects follows the equation

Zt = (w ⇐= b) ∧ Zt−1 ∨ (w 6=⇒ b) ∧ ¬Zt−1, where Zt is the state of the device at time t, w

(b) is the wordline (bitline) such that w = 1 (b = 1) in the presence of a high voltage potential and

0 otherwise. This allows greater control over the flows of current throughout the crossbar and it is

demonstrated how under this approach an n-bit NAND operation can be computed in a constant

number of steps as opposed to the linear amount demonstrated in previous works. The results in

[73] apply specifically to the design of adders while the contribution in [72] is a general design

methodology using NOR-OR and NAND-AND logic.

In [74], a method for computing is proposed that deviates from the omnipresent implication-falsity

logic. Each gate consists of a set of input memristors programmed to the HRS or LRS state and an

output memristor that will be programmed to the LRS (HRS) state if the gate operation evaluates to

1 (0). Each input memristor is configured to the LRS (HRS) state if its corresponding variable is 1

(0). A programming voltage is then applied so that the output memristor will reach the LRS (HRS)

state if the underlying operation evaluates to 1 (0). For example, to perform an n-bit disjunction

(OR), n input memristors are placed in parallel and connected to the output memristor. It follows

that if any of the input memristors is in the LRS state, then the output memristor connected to it

15

will be switched to the LRS state, denoting a value of 1 as intended. Logical conjunction (AND) is

performed by placing the input memristors in series so that all of them must be in the LRS state in

order to switch the output memristor. Similar procedures are used to compute NAND, NOR, and

NOT. It is worth noting, however, that only the NOR operation is amenable to integration within a

traditional crossbar array. As such, a computing paradigm using this approach would necessitate

additional structural complexities.

The methods referenced in this section are used as benchmarks against which we compare the

complexity of some of our proposed designs (See Table 6.1). In particular, we demonstrate that our

design is state-of-the-art in terms of execution steps required to compute addition. Our approach

is fundamentally different from the methods mentioned in that the components in the crossbar

are programmed only once in such a way that the induced trajectories of current can be used to

compute.

Formula-Dependent Memristor Placement

In [1], a crossbar construction for evaluating Sum-of-Minterms form Boolean formulas is pro-

posed. The method consists of mapping each clause in the formula to a separate column in the

crossbar and mapping all of the literals to the first column. Every column, except the first, contains

an LRS memristor at the bottommost row in order to redirect current during the computation step.

To perform the actual computation, a read-out voltage is applied on the first column and the for-

mula evaluates to true if one of the columns redirects current to its corresponding LRS memristor,

which in turn would use this current to determine and save the state of the result memristor. The

design manages sneak paths by removing memristors from locations that are uniquely determined

by the formula being evaluated.

16

As an example, we construct the 3-bit parity function (b1 ∧ b2 ∧ ¬b3) ∨ (b1 ∧ ¬b2 ∧ b3) ∨ (¬b1 ∧

b2 ∧ b3) ∨ (b1 ∧ b2 ∧ b3) using this method in Figure 3.2.

Figure 3.2: Matrix (left) and crossbar (right) representations of a 3-bit parity construction using the
design proposed in [1], where green memristors are in the LRS state, λ values specify a location in
which there is no memristor, and the states of blue memristors are determined by variables bi and
their negations ¬bi in the Boolean formula φ which we wish to evaluate. The resulting value of φ
will be stored in the bottom right memristor of the crossbar when the computation is finished.

While this approach benefits from fast computation time, it overcomes the sneak paths issue by

adding significant complexity to the design, where only certain junctions may contain memristors

and the locations of said junctions vary from formula to formula. This can lead to prohibitively

expensive fabrication costs as well as difficulty in reconfiguring such crossbars.

Rectifying-Memristor Crossbars

Another crossbar computing method is introduced in [2]. This method leverages the diode-like

capabilities of rectifying memristors [50] to suppress the interference from sneak currents. Unlike

17

the previous design, there is no added complexity to the crossbar beyond the use of rectifying

memristors.

A new operation is introduced based on a procedure similar to the implication logic process de-

scribed in [66]. This operation is called converse nonimplication, and it provides a method for con-

figuring a crossbar of rectifying, diode-like memristors as well as for performing logical functions.

This memristive converse nonimplication logic is used in tandem with the multi-input implication

logic introduced in [68] to configure the crossbar and compute the Boolean formula of interest. In

the case of a 3-bit parity function φ, we can map the formula to a 5-by-4 crossbar as follows:

Figure 3.3: States of the 3-bit parity function over inputs b1, b2, b3 ∈ {0, 1} mapped to a crossbar
using the method in [2].

In Figure 3.3, we assume that the crossbar is initialized to state (1) in a constant number of steps.

State (2) is obtained in 2n steps via converse nonimplication, where n is the number of literals in

φ. State (3) can then be achieved in a single time step by performing a multi-input implication

operation on rows 1 through 4 in parallel. This operation is possible thanks to the unidirectional

sneak current flow provided by the rectifying memristors. Note that the resulting literal values in

column 4 are the negation of the literals in columns 1 through 3; this is because the implication

18

operation Mi4 = ((b1 ∨ b2 ∨ b3) =⇒ 0) = (¬b1 ∧ ¬b2 ∧ ¬b3). Similarly, applying a multi-input

implication step on column 4 yields state (4), where φ = (¬b1∨¬b2∨b3)∧ (¬b1∨b2∨¬b3)∧ (b1∨

¬b2∨¬b3)∧ (b1∨ b2∨ b3) is stored in m5,4. This method benefits from the use of a simple crossbar

layout and its intuitive use of rectifying memristors to mitigate the sneak paths problem. However,

having to reduce any formula to a sometimes complex sequence of implication logic operations

can lead to considerable overhead. For example, a 3-bit parity function requires 30 computational

steps to be evaluated using elementary implication logic [75].

Networks of Interconnected Crossbars

Finally, we have the framework proposed in [3]. This method can be seen as an extension of [76]

using a network of interconnected crossbars in order to improve the space complexity of the re-

sulting designs. Any individual crossbar in the network can be used to evaluate a conjunction or

disjunction of Boolean variables. By connecting multiple crossbars together, disjunctions (con-

junctions) of conjunctions (disjunctions) can be evaluated. Thus, the universal disjunctive and

conjunctive normal forms (DNF, CNF) can be computed. See Figure 3.4 for the DNF and CNF

designs and Figure 3.5 for an example.

The methods presented in this section succeed in computing Boolean formula using memristor

crossbars. These methods are diverse and have different benefits and drawbacks; however, none

of them meet all of the following three fundamental tenets of computing architectures: space

efficiency, fast computation time, and cost-effectiveness due to structural simplicity.

19

Figure 3.4: Red dashed lines denote the flow of current and M∗(φ(i)) represents the crossbar that
computes the ith clause of the Boolean formula φ, which must be in either disjunctive normal form
(top) or conjunctive normal form (bottom).

Figure 3.5: Network of crossbars method described in [3]. Here, S = (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧
B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C) ∨ (A ∧ B ∧ C) and Cout = (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C) are the
sum and carry-out bits over inputs A,B,C ∈ {0, 1}, and f4 is a 4-bit parity function over inputs
x1, x2, x3, x4 ∈ {0, 1}.

20

CHAPTER 4: PATHS-BASED LOGIC

We begin by formalizing the rather intuitive notion of a crossbar. A pictorial representation of the

definition below can be seen in Figure 4.1.

Definition 1. CROSSBAR An |R| × |C| crossbar is a 3-tuple X = (M,R,C) where

• M =

M11 M12 . . . M1|C|

...
...

M|R|1 M|R|2 . . . M|R||C|

 represents a matrix of interconnects with |R| rows

and |C| columns. mij ∈ {0, 1} denotes the state of device Mij connecting row i with column

j. mij = 0 (mij = 1) denotes a device in the HRS (LRS) state.

• R = {R1, . . . , R|R|} is the set of row wires, where ri ∈ {0, 1} provides the same input

voltage to every interconnect in row Ri. ri = 0 (ri = 1) denotes the absence (presence) of

electric current in wire Ri.

• C = {C1, . . . , C|C|} is the set of column wires, where cj ∈ {0, 1} provides the same input

voltage to every interconnect in column Cj . cj = 0 (cj = 1) denotes the absence (presence)

of electric current in wire Cj .

For the remainder of this thesis, we utilize capital letters to signify wires and components and

lowercase letters to denote their value. For example, we say that a wire W ∈ R ∪ C has value

w = 0 if there is negligible current on the wire and w = 1 if there is a significant amount.

21

Irreducible Paths in Crossbars

It is clear that if there is an electric potential difference between two wires Rα and Rβ , then there

must exist a sequence of interconnects that, when in the LRS state, would generate a current from

Rα toRβ . We refer to this sequence of nodes as a path. Any such path is represented by the ordered

set ΠRα→Rβ = {Mαj1 ,Mi1j1 ,Mi1j2 , . . . ,Mikjl ,Mβjl}, where each M ∈ ΠRα→Rβ is a constituent

component in the path. It is obvious that the first node resides on wire Rα and the last node must

reside on Rβ . For the sake of simplicity, we will assume that the source and destination of a path

are both row wires.

Definition 2 (Path). A path ΠRα→Rβ = {Mαj1 ,Mi1j1 ,Mi1j2 , . . . ,Mikjl ,Mβjl} is an ordered set of

nodes containing a source node Mαj1 and a destination node Mβjl .

Axiom 1 (Flow Axioms). Let X = (M,R,C) be an |R|×|C| crossbar. Then the following always

hold:

• ∀i ≤ |R|, j ≤ |C|, (ri ∧mij) =⇒ cj .

• ∀i ≤ |R|, j ≤ |C|, (cj ∧mij) =⇒ ri.

The basis of our approach lies in computing Boolean formula in a crossbar by mapping the vari-

ables of the formula to individual interconnects in the crossbar such that there will be a path of

electric current between two wires if and only if the formula we wish to compute evaluates to 1.

In Figure 4.1, bits φ1, φ2, and φ3 are mapped to M11, M23, and M34, respectively, while M21, M33,

and M44 are in the LRS state (i.e. m21 = m33 = m44 = 1). Note that this mapping creates the

path ΠR1→R4 = {M11,M21,M23,M33,M34,M44} which directs flow from wire R1 to wire R4 iff

φ = (φ1 ∧ φ2 ∧ φ3) = 1 given r1 = 1, i.e. an initial flow of current on R1.

22

Figure 4.1: (i) 4 × 4 crossbar X = (M,R,C). (ii) Mapping of the formula φ = (φ1 ∧ φ2 ∧ φ3)
onto M , where R1 and R4 are the source and destination wires, respectively.

Definition 3 (Irreducible Path). Let Π̃Rα→Rβ denote the set of all paths fromRα toRβ in a crossbar.

Π ∈ Π̃Rα→Rβ is an irreducible path if and only if ∀Π′ ∈ Π̃Rα→Rβ ,Π′ 6⊂ Π.

According to Definition 3, a path is irreducible if no other path with the same source and destination

nodes is contained within it. See Fig. 4.2 for an example. Path ΠR1→R8 = {M11,M41,M43,

M63,M68,M28,M26,M46,M45,M85} is not an irreducible path because path Π′ = {M11,M41,

M45,M85} is contained within it. That is, Π′ ⊂ ΠR1→R8 .

Graphs can be used to represent paths in crossbars. The vertices in this graph represent the row

and column wires while the edges correspond to the interconnects connecting these wires. The

unweighted connected digraph G = (V,E) corresponding to ΠR1→R8 is shown in Fig. 4.2b. We

define ΠR1→R8
G = {(R1, C1), (C1, R4), (R4, C3), (C3, R6), (R6, C8), (C8, R2), (R2, C6), (C6, R4),

(R4, C5), (C5, R8)} as a path in the graph. Note that ΠR1→R8
G and ΠR1→R8 are equivalent repre-

sentations of the same path. We distinguish between the interconnect and edge representations

Π = {Mij}i,j and ΠG = {(Ri, Cj), (Cj, Rk)}i,j,k of a path Π by adding the subscript G. Note that

the graph formed by ΠR1→R8
G has a cycle consisting of the edges in ΠR1→R8

G \ Π′G. Furthermore,

the irreducible path Π′G = {(R1, C1), (C1, R4), (R4, C5), (C5, R8)} contains no cycles.

23

Figure 4.2: (top) 8 × 8 crossbar mapping the formula φ = (φ1 ∧ φ2 ∧ φ9 ∧ φ10). The
red bars represent the path ΠR1→R8 = {M11,M41,M43,M63,M68,M28,M26,M46,M45,
M85} corresponding to

∧10
i=1 φi. (bottom) Equivalent representation of ΠR1→R8

as a graph given by ΠR1→R8
G = {(R1, C1), (C1, R4), (R4, C3), (C3, R6), (R6, C8),

(C8, R2), (R2, C6), (C6, R4), (R4, C5), (C5, R8)}, where (Ri, Cj) ∈ ΠR1→R8
G denotes a directed

edge from Ri to Cj .

24

Theorem 1. A path ΠRα→Rβ in an |R| × |C| crossbar X = {M,R,C} is reducible if and only if

Π
Rα→Rβ
G contains a cycle.

Proof. (=⇒) We argue the contrapositive. Let Π
Rα→Rβ
G = {(Rα, Cj1), (Cj1 , Ri1), . . . , (Rik , Cjl),

(Cjl , Rβ)}. Since there are no cycles, Π
Rα→Rβ
G is a minimally connected graph i.e. the out- and

in-degrees of all nodes are at most 1. Thus, by definition of minimally connected graphs, there is

only one path between any two nodes. It follows that there is only one path from Rα to Rβ in the

graph formed by Π
Rα→Rβ
G . Therefore, the path is irreducible.

(⇐=) Suppose, without loss of generality, that Π = {Mi1j1 ,Mi2j1 ,Mi2j2 , . . . ,Miα1 ,Miα2 , . . . ,

Miα3 ,Miα4 , . . . ,Miα2k−1
,Miα2k

, . . .
}

is an irreducible path containing a cycle(s). We can con-

struct Π′ = Π \ {Miα2 , . . . ,Miα2k−1
} ⊂ Π. Thus, since Π′ ⊂ Π, Π violates the irreducible paths

property, a contradiction. Thus, paths that contain cycles are reducible.

A reducible path will carry a flow of current from its source to its destination wire whenever the

irreducible path contained in it can carry a flow of current from the source to the destination. Thus,

the presence of reducible paths in crossbar designs does not permit the crossbar to compute new

Boolean formula.

Corollary 1. A crossbar design using only irreducible paths and a crossbar design using all paths

can evaluate the same set of Boolean formula.

Proof. It follows from Theorem 1 that reducible paths have cycles and irreducible paths do not.

Suppose we are given an n-ary Boolean formula φ(φ1, . . . , φn) and paths ΠRα→Rβ and Π′Rα→Rβ ,

such that Π′Rα→Rβ ⊂ ΠRα→Rβ . In the context of our framework, we say that φ evaluates to

true if and only if there is a path ΠRα→Rβ from Rα to Rβ or, equivalently, if Π
Rα→Rβ
G contains a

connected walk from Rα to Rβ . Since the inclusion or exclusion of edges in a cycle does not affect

25

the connectedness of the walk in the graph, it follows that ΠRα→Rβ is a connected walk if Π′Rα→Rβ

is a connected walk from Rα to Rβ .

Since reducible paths do not add to the expressive power of crossbars, our synthesis technique

relies on searching through the space of irreducible paths only. This allows us to prune the search

space of our approach substantially by ignoring the redundant reducible paths.

Theorem 2. A path ΠRα→Rβ forms a cycle if and only if there are more than two nodes in the path

that reside on the same wire in the crossbar.

Proof. (=⇒) Assume that Π
Rα→Rβ
G = {(Ri, Cj), (Cj, Rk)}i,j,k contains a cycle. It follows from

Definition 1 that (Rα, Ci1) is the only outgoing edge from Rα and (Cik , Rβ) is the only incoming

edge to Rβ . Since Π
Rα→Rβ
G forms a cyclic connected digraph, and Rα and Rβ cannot be nodes in a

cycle, there must exist some node Ri that belongs to a cycle as well as to a simple walk from Rα to

Rβ . It follows that there exist edges (Cj1 , Ri) and (Ri, Cj2) connecting Ri to the simple walk from

Rα to Rβ and edges (Cj3 , Ri) and (Ri, Cj4) connecting Ri to the cycle. See node R4 in Figure 4.2b

for an example. These edges correspond to interconnects Mij1 , Mij2 , Mij3 , and Mij4 in ΠRα→Rβ ,

leading to more than two nodes on the same wire.

(⇐=) Without loss of generality, assume that ΠRα→Rβ = {Mαj1 ,Mi1j1 ,Mi2j1 ,Mi2j2 , . . . ,Mi′p1 ,

Mi′p2 , . . . ,Mi′p3 ,Mi′p4 , . . . ,Mi′p2k−1
,Mi′p2k , . . . ,Mβcl

}
has more than two nodes on Ri′ . Note

that for all Ri 6= Ri′ , the out- and in-degrees are 1, while the out- and in-degrees of Ri′ are greater

than or equal to 2. Since Rα is the only node with no incoming edges, Rβ is the only node with

no outgoing edges, and all paths form connected digraphs, it follows that node Ri′ must be in a

cycle.

Corollary 2. A path Π is irreducible if and only if there are no more than two nodes on any wire.

26

We now have the foundations necessary to enumerate irreducible paths in a crossbar. The length

and number of such paths is discussed below.

Lemma 1. The maximum length |ΠRα→Rβ |max of an irreducible path ΠRα→Rβ = {Mαj1 ,Mi1j1 ,Mi1j2 ,

. . . ,Mikjl ,Mβjl} in an |R| × |C| crossbar X = (M,R,C) is 2(min{|R| − 1, |C|}).

Proof. It follows from Definition 1 that Mαj1 and Mβjl are in the path and are the only nodes on

Rα and Rβ , respectively. Let R′ = R \ {Rα, Rβ} denote the set of remaining rows, where nodes

of ΠRα→Rβ reside. Note that |R′| = |R| − 2. It follows from Corollary 1 that there can only be up

to two nodes per wire. Two cases arise:

• Case 1 (|C| ≥ |R| − 1): Each row in R′ can have two nodes. Thus, |ΠRα→Rβ |max =

2|R′|+ 2 = 2(|R| − 2) + 2 = 2(|R| − 1).

• Case 2 (|C| < |R|−1): Assigning two nodes to each column yields |ΠRα→Rβ |max = 2|C| and

it follows from case 1 that assigning two nodes to each row yields |ΠRα→Rβ |max = 2(|R|−1).

However, since |C| < |R|−1, it is not possible to have an irreducible path of length 2(|R|−1)

as this would require some column to contain more than two nodes, thereby violating the

irreducible paths property. Thus, |ΠRα→Rβ |max = 2|C|.

Theorem 3. There are |C|!(|R|−2)!
(|C|−k/2)!(|R|−1−k/2)!

irreducible paths of length k from Rα to Rβ in an

|R| × |C| crossbar.

Proof. Let f (k) denote the number of k-length paths and Π̃(k) denote the set of said paths. For

k = 2, Π̃(k) = {(Mαj,Mβj)}|C|j=1 for source Rα and destination Rβ . Thus, f (2) = |C|. For

k = 4, 6, . . . , |ΠRα→Rβ |max, there are k − 1 possibilities for choosing row and column coordinates

of the nodes in the path. Since our initial and final choices of row coordinate are fixed to the

source and destination wires Rα and Rβ , there will be one more choice of column coordinate than

27

row coordinate. There are
{
|R|−2
k/2−1

}
ways to choose row coordinates and

{
|C|
k/2

}
ways to choose

column coordinates, where
{ |C|

k

}
denotes the permutation of k elements from a |C|-element set.

Thus, we have f (k) =
{
|C|
k/2

}{
|R|−2
k/2−1

}
= |C|!(|R|−2)!

(|C|−k/2)!(|R|−1−k/2)!
.

Base case: Paths of length 2.

f (2) =
|C|!(|R| − 2)!

(|C| − 1)!(|R| − 2)!
= |C|

Inductive hypothesis: Paths of length k.

f (k) =
|C|!(|R| − 2)!

(|C| − k/2)!(|R| − 1− k/2)!

Inductive step: Note that, given the value of f (k) for any k, there will be (|R| − 2)− (k/2− 1) =

|R| − 1 − k/2 possible row choices and |C| − k/2 possible column choices for a (k + 2)-length

path. Therefore,

f (k+2) = f (k)(|C| − k/2)(|R| − 1− k/2)

=
|C|!(|R| − 2)!

(|C| − k/2)!(|R| − 1− k/2)!
(|C| − k/2)(|R| − 1− k/2)

=
|C|!(|R| − 2)!

(|C| − k/2− 1)!(|R| − k/2− 2)!

=
|C|!(|R| − 2)!

(|C| − k+2
2

)!(|R| − 1− k+2
2

)!

Hence, proved by mathematical induction.

Corollary 3. The number of irreducible paths fromRα toRβ in an |R|×|C| crossbar is T (|R|, |C|) =∑min{|R|−1,|C|}
k=1

{ |C|
k

}{ |R|−2
k−1

}
, where

{ |C|
k

}
denotes the permutation of k elements from an |C|-

element set.

28

Proof. Recall that |ΠRα→Rβ |max denotes the maximum length of a path from Rα to Rβ . It follows

directly from Theorem 3 and Lemma 1 that the total number of irreducible paths is

|ΠRα→Rβ |max∑
k=2, k even

f (k) =

|ΠRα→Rβ |max∑
k=2, k even

|C|!(|R| − 2)!

(|C| − k/2)!(|R| − 1− k/2)!

=

|ΠRα→Rβ |max/2∑
k=1

|C|!(|R| − 2)!

(|C| − k)!(|R| − 1− k)!
.

=

min{|R|−1,|C|}∑
k=1

|C|k

|R| − 2

k − 1

 = T (|R|, |C|)

The number of paths established in the preceding corollary grows rapidly in tandem with the size

of the crossbar. While this enormous number of potential paths of current through the crossbar

presents a great opportunity for the design of compact computing crossbars, it also poses a con-

siderable obstacle to the invention of spatially-efficient designs via human reasoning. Hence, we

suggest the use of automated synthesis techniques for designing nanoscale crossbars for computing

Boolean formula.

Universality of Paths-Based Logic

An n-ary Boolean function maps an n-tuple of Boolean values to a Boolean value. It can be

defined by a truth table of 2n rows, one for each possible value an n-tuple may take. Alternatively

and more concisely, it can be defined in terms of a few Boolean operators or connectives. A set

of Boolean connectives is complete if every Boolean function can be defined by an expression that

uses only the connectives in that set. The set consisting of the ¬ (negation), ∧ (conjunction), and

∨ (disjunction) connectives is complete. So any Boolean function can be defined by a well-formed

29

formula (wff) constructed as follows: (i) a Boolean (propositional) variable p is a wff; (ii) if φ is a

wff, ¬φ is a wff; (iii) if φ1 and φ2 are wffs, φ1 ∧ φ2 is a wff, and (iv) if φ1 and φ2 are wffs, φ1 ∨ φ2

a wff.

Our method to prove the universality of paths-based logic requires the formulas to be in negation

normal form (NFF), which is defined by a slight change to these rules. The negation connective

may not be applied to an arbitrary wff, but only to a propositional variable. A formula is in negation

normal form if it is constructed as follows: (i) a literal, that is, a propositional variable p or ¬p, is

in NNF, (ii) if φ1 and φ2 are in NNF, φ1 ∧ φ2 is in NNF, and (iii) if φ1 and φ2 are in NNF, φ1 ∨ φ2

is in NNF.

Any wff constructed using only connectives ¬, ∧ and ∨ can be transformed into an equivalent

formula in negation normal form by repeatedly applying the De Morgan Laws: ¬(p∧q) ≡ ¬p∨¬q,

and ¬(p∨ q) ≡ ¬p∧¬q, and simplifying ¬¬p to p. Thus, the method presented below can be used

to evaluate any Boolean function.

Let φ be a Boolean formula in negation normal form. We define the state of an |R| × |C| mem-

ristor crossbar Mφ as follows, where Ri, Ci denote row/column wires of Mφi when there are two

formulas φ1, φ2.

• Literal: For φ = a, a literal, we have

Ma =

 a

1

• Conjunction: For φ = φ1 ∧ φ2, the array has |R1| + |R2| − 1 rows, where Mφ1 and Mφ2

share row R|R1|, and |C1|+ |C2| columns. It is defined by:

30

• Disjunction: For φ = φ1 ∨ φ2, the array has |R1|+ |R2| rows and |C1|+ |C2|+ 2 columns,

and is defined by:

The arrayMφ is an operator on the wires it intersects. To compute the value of φ, it must be applied

to a set of wires in which only the first (or top) row R1 is in state r1 = 1. That is, there is a flow of

current along that wire.

We prove that given a crossbar in the state just described, which is induced by the formula φ, there

exists a path that takes current from the first (or top) row R1 to the last (or bottom) row R|R| if and

only if φ = 1.

Theorem 4. CROSSBAR COMPUTATION OF NNFS Let X = (M,R,C) be a crossbar mapping

φ ∈ NNF. If r1 = 1, then a sneak current will reach R|R| ∈ R iff φ = 1.

Proof. The proof is by structural induction on the negation normal form φ. We prove that given a

31

crossbar state where r1 = 1, a crossbar configuration Mφ creates a path that takes the wire R|R| to

have flow if and only if φ = 1.

Base case: literal. φ ≡ a. Note that ((r1 ∧ m11) =⇒ c1) ∧ (c1 ∧ m21 =⇒ r2). Thus, for

m11 = a = 1, we have a =⇒ r2. If m11 = a = 0, there is no path from R1 to R2 s.t. r2 = 1.

Inductive step: conjunction. φ ≡ φ1 ∧ φ2. We want to prove that φ1 ∧ φ2 ⇐⇒ r|R1|+|R2|−1.

Note that Mφ1 and Mφ2 share wire R|R1|, which is the output wire of Mφ1 . Thus, from the in-

ductive hypothesis we have r|R1| ⇐⇒ φ1. R|R1| is also the input wire to Mφ2 . It follows that

r|R1|+|R2|−1 ⇐⇒ r|R1| ∧ φ2 ⇐⇒ φ1 ∧ φ2.

Inductive step: disjunction. φ ≡ φ1 ∨ φ2. We want to prove that φ1 ∨ φ2 ⇐⇒ r|R1|+|R2|.

(=⇒): Suppose φ1 = 1. From the inductive hypothesis, we have r|R1| = 1. The implications

(r|R1| ∧m|R1|,|C1|+|C2|+2 =⇒ c|C1|+|C2|+2), (c|C1|+|C2|+2 ∧m|R1|+|R2|,|C1|+|C2|+2 =⇒ r|R1|+|R2|)

hold. Therefore, φ1 =⇒ r|R1|+|R2|. Now, suppose φ2 = 1. A similar chain of implications holds.

Namely, it follows that (r1 ∧m11 =⇒ c1) ∧ (c1 ∧m|R1|+1 =⇒ r|R1|+1). Since R|R1|+1 is the

input wire to Mφ2 , it follows that φ2 =⇒ r|R1|+|R2|.

(⇐=): We prove the contrapositive. That is, we prove that ¬φ1 ∧ ¬φ2 =⇒ ¬r|R1|+|R2|.

We know from the preceding argument and the inductive hypothesis that r|R1| ⇐⇒ φ1 and

φ2 =⇒ r|R1|+|R2|. Therefore, we must show that r|R1|+|R2| =⇒ φ2 when φ1 = 0, which follows

from the inductive hypothesis. Thus, we have r|R1|+|R2| = 0.

Some examples of Boolean formulas mapped using this inductive design can be seen in Figure 4.3.

For the case of a 1-bit adder, the sum bit S can be expressed by the formula S = (A∧¬B∧¬C)∨

(¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C) ∨ (A ∧B ∧ C). Its crossbar design can be seen in Figure 4.4.

This construction suffices to evaluate Boolean formula. However, in the spirit of parsimony, we

32

Figure 4.3: Memristor crossbars using our NNF construction for Boolean formulas (A∧B) (left),
(A ∨ B) (center), A⊕ B ≡ (A ∨ B) ∧ (¬A ∨ ¬B) (right), where A = B = 1 and the source and
destination wires are R1 and R|R|, respectively.

seek more space-efficient designs in order to avoid the signal degradation problems that can arise

in large crossbars.

It is easily seen that much of the crossbar consists of memristors in the HRS state – this is required

to prevent current flow through undesired sneak paths. Similarly, the placement of LRS memristors

advances the current of interest such that a current will flow into wire R|R| iff the formula φ being

mapped to the crossbar evaluates to 1 and an initial current flow is applied at the top row. That is,

we assume that r1 = 1.

This method can evaluate Boolean formulas and manages the sneak paths problem without signifi-

cant added structural complexity to the crossbar. It also does not require a complicated reduction to

other logics. However, there are two glaring drawbacks. First, the space complexity of the design

is very large. Second, the poor spatial efficiency can lead to poor delay and power consumption

due to the overhead of configuring such a large crossbar to the desired state.

33

Figure 4.4: Crossbar mapping the sum bit S = (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧
¬B ∧ C) ∨ (A ∧ B ∧ C). A voltage is applied to wire R1 and R16 is grounded in order to read
the value corresponding to S. Blue memristors map a Boolean literal from φ. Green memris-
tors are in the LRS state, black memristors are in the HRS state, and the states of blue memris-
tors are determined by variables A,B,C and their negations. Simulation files can be found in
eecs.ucf.edu/∼velasquez/Homogeneous.

34

CHAPTER 5: DESIGN AUTOMATION

While a universal design procedure was presented in the previous chapter, the resulting crossbars

were very large. In this chapter, we present a framework for generating compact crossbar de-

signs to compute a given Boolean formula. Our synthesis procedure is particularly well-suited

for mitigating common types of faults at the post-fabrication stage of the design process. We will

demonstrate how our approach can still provide valid crossbar configurations in the presence of

highly defective devices. The following faults are accounted for:

• Stuck-off: A component Mij has a stuck-off fault if mij = 0 and the node cannot be pro-

grammed to another state. That is, the interconnect is permanently in the HRS state.

• Stuck-on: A component Mij has a stuck-on fault if mij = 1 and the node cannot be pro-

grammed to another state. That is, the interconnect is permanently in the LRS state.

• Broken wire: This fault corresponds to wires that are segmented into multiple pieces. The

affected write Ri is represented by its constituent segments, where ri,k denotes the value of

the kth segment of Ri.

Our approach utilizes the paths of current throughout the crossbar in order to compute a Boolean

formula φ : Bp 7→ Bq, where B is the set {0, 1}. As we have seen, by methodically program-

ming the crossbar components to be variables in φ, we can manipulate the trajectories of paths

induced so that there is a flow of current between two specified wires if and only if φ holds. Given

φ : Bp 7→ Bq, we represent the set version of the kth formula φk as Φk, where Φk
i denotes the ith

clause of Φk and Φk
ij denotes the j th variable in the ith clause. For example, given φ : B2 7→ B2,

where φ1 = (a ∧ b) ∨ (¬a ∧ ¬b) and φ2 = (¬a ∧ b) ∨ (a ∧ ¬b), we represent these formu-

35

las as sets Φ1 = {{a, b}, {¬a,¬b}} and Φ2 = {{¬a, b}, {a,¬b}}, respectively. This alternative

representation facilitates later proofs.

Thus far, we have been concerned with traditional crossbars consisting of two-terminal compo-

nents capable of transmitting current in both directions. From this point on, we will refer to such

crossbars as homogeneous. We have formally defined homogeneous crossbars in the previous

chapter. For convenience, we provide a short definition below.

Definition 4 (Homogeneous Crossbar). A homogeneous crossbar is a tupleX = (M,R,C), where

M = (Mij) is the set of components such that mij = 1 (mij = 0) denotes an LRS (HRS) node. The

sets R = (Ri) and C = (Cj) denote the sets of wordlines, or row wires, and bitlines, or column

wires. A value of ri = 1 (ri = 0) denotes the presence (absence) of electric current in wire Ri. For

convenience, we often deal with the general wire set W = R ∪ C.

In a crossbar X = (M,R,C), if Mij is in the LRS state (mij = 1), it redirects current from one

terminal to the other. This motivates Axiom 2.

Axiom 2 (Homogeneous Flow). Given a homogeneous crossbar X = (M,R,C), (ri ∧mij) =⇒

cj and (cj ∧mij) =⇒ ri always hold. As a result, property (5.1) always holds.

|C|∧
j=1

cj ⇐⇒ |R|∨
i=1

mij ∧ ri

 ∧ |R|∧
i=1

ri ⇐⇒ |C|∨
j=1

mij ∧ cj

 (5.1)

As its name suggests, paths-based logic seeks to use the paths of current throughout the crossbar as

a means of computation. An initial flow of current is generated by applying a voltage bias to some

source wire and grounding another wire. As we have seen earlier, a path is a sequence of nodes

connecting two wires. For example, the path ΠRi→Cj = (Mij1 ,Mi1j1 ,Mi1j2 ,Mi2j2 , . . . ,Mikj) con-

nects wires Ri and Cj , where πRi→Cjd denotes the value of the dth component. From Axiom 1, the

36

following chain of implications holds.

(ri ∧mij1 =⇒ cj1) ∧ (cj1 ∧mi1j1 =⇒ ri1)∧

(ri1 ∧mi1j2 =⇒ cj2) ∧ · · · ∧ (rik ∧mikj =⇒ cj)

(5.2)

We can also show that (cj ∧mikj =⇒ rik)∧ · · · ∧ (cj1 ∧mij1 =⇒ ri). Thus, if every component

in a path ΠWi→Wj is in the LRS state, then current flowing in the source wire Wi will be redirected

to the destination wire Wj , and vice-versa. We call this the symmetry of paths property. A general

form of this property is captured by equation (5.3).

[
wi ∧

∧
d

π
Wi→Wj

d =⇒ wj

]
∧

[
wj ∧

∧
d

π
Wi→Wj

d =⇒ wi

]
(5.3)

We have seen that paths can be treated as a conjunction of variables mapped to components. Thus,

it is convenient to think of formulas in their disjunctive normal form (DNF). Any Boolean formula

can be written in DNF as a disjunction of conjunctive clauses (i.e.
∨
i

∧
j φij). For the remainder

of this thesis, we assume that all Boolean formulas are in DNF. We do this for ease of presentation

and it is not a restriction on the methods proposed.

Given a formula φ : Bp 7→ Bq and a crossbar X = (M,R,C), we want to find a mapping of the

components M to variables b1, . . . , bp in φ and constants {0, 1} denoting the HRS and LRS states.

We define such a mapping by P = (Pij), where Pij ∈ {B1,¬B1, B2,¬B2, . . . , Bp,¬Bp} ∪ {0, 1}.

P defines a configuration of M such that (5.4) holds. See Fig. 5.1 for an example.

(mij = 1) ⇐⇒ (Pij = 1) ∨ ((Pij = Bk) ∧ bk)∨

((Pij = ¬Bk) ∧ ¬bk)
(5.4)

37

Definition 5 (Well-Formed Design). Suppose we are given a Boolean formula φ : Bp 7→ Bq and

crossbar X = (M,R,C) with input and output wires S, F ⊆ W such that the value of the kth

formula φk will be output to wire Fk. A well-formed design is a mapping matrix P such that there

are paths ΠSi→Fj that satisfy (5.5) for all evaluations α ∈ Bp of φ.

q∧
k=1

(
fk ⇐⇒ φk

)
(5.5)

In order for (5.5) to hold, there must be paths from the source wires S to the destination wires F

such that current will flow from source Si to destination Fj if and only if φj is true. Let us elucidate

this with an example. Suppose we want to find a well-formed design for a 1-bit comparator using

a 3 × 4 homogeneous crossbar X = (M, (R1, R2, R3), (C1, C2, C3, C4)). Given two bits x and

y, we want outputs indicating the three possible outcomes (x ≡ y) = (x ∧ y) ∨ (¬x ∧ ¬y),

(y > x) = ¬x ∧ y, or (y < x) = x ∧ ¬y. Let S = (R1) and F = (R2, C3, C4) denote the

sets of source and destination wires, respectively. Suppose s1 = 1 for all evaluations α ∈ B2.

This means that there will be a flow of current on S1 regardless of the values in the evaluation

vector. We want a well-formed design P that assigns values to each component Mij so that there

will be paths ΠR1→R2 , ΠR1→C3 , ΠR1→C4 from the source wire to the destination wires resulting in

r2 ⇐⇒ (x ≡ y), c3 ⇐⇒ (y > x), and c4 ⇐⇒ (y < x). For each evaluation α ∈ B2, the paths

are as follows. See Fig. 5.1 for a visual interpretation.

• α = (x = 0, y = 0): ΠR1→R2 = (M11,M21)

• α = (x = 0, y = 1): ΠR1→C3 = (M12,M32,M33)

• α = (x = 1, y = 0): ΠR1→C4 = (M11,M31,M34)

• α = (x = 1, y = 1): ΠR1→R2 = (M12,M22)

38

+V

x
≡
y

y
>
x

y
<
x

¬y y 0 0

¬x x 0 0

x ¬x ¬x ¬y P =

R1

R2

R3

¬y y 0 0
¬x x 0 0
x ¬x ¬x ¬y

C1 C2 C3 C4

(5.6)

Figure 5.1: Crossbar X = (M,R = (R1, R2, R3), C = (C1, C2, C3, C4)) with mapping matrix
(5.6). If a voltage pulse is applied to R1 and R2, C3, C4 are grounded, then we have an initial flow
of current r1 = 1. The red bars represent the current flow from R1 to C3 when y > x, i.e. when
y ∧ ¬x holds.

Bounded Model Checking

We pose the problem of finding a well-formed design given the foregoing crossbar dynamics as a

model checking problem. Bounded model checking (BMC) algorithms construct a formulaMBMC

(5.7) from a state-transition system based on an initial state I , a transition relation τ , a property

specification to be checked ψ, and a time bound T specifying the maximum length of a trajectory

in the state-transition graph [77]. If a state is found wherein MBMC is evaluated to be false, a

counterexample is produced. We will demonstrate how to build a state-transition system such that

said counterexample produces a well-formed design P that computes a given formula φ.

Given φ : Bp 7→ Bq and a candidate design P for some crossbar X = (M,R,C) with source and

destination wires S, F , we have 2p evaluation vectors α ∈ Bp. For each such α, we define a finite

state machine Lα, where Lα[mij], Lα[ri], and Lα[cj] denote the values of mij , ri, and cj induced

by design P under evaluation α. Each Lα is a component in a transition system L consisting of

an initial state (5.8) and a transition relation (5.9) defining the dynamics of the system as it moves

from state ut to state ut+1 (See Fig. 5.2). The initial state specifies which wire(s) have an initial

39

flow of current and what values the components in the memory are initialized to. This information

is given by the source wire set S and the candidate design P . The transition relation encodes

Axiom 2. We are looking for a state ut such that specification (5.10) is violated. We have defined

(5.10) as the negation of (5.5) so that a counterexample to (5.10) yields a well-formed design P ,

i.e. one where (5.5) holds.

In order to determine the value of bound T , recall the results established in the previous chapter.

Namely, that the set of paths of length at most 2(min{|R|, |C|}) between any two wires has the

same computing power under paths-based logic as the set of all paths between said wires [78].

Using Fig. 5.2 as a reference, note that each transition from state ut to ut+1 corresponds to some

Mij redirecting current from one of its terminals to the other, where u0 is the initial state. Thus, we

need only look at trajectories in L of length at most T = 2(min{|R|, |C|}) to determine whether a

counterexample to (5.10) exists.

MBMC , I(u0) ∧
T−1∧
i=0

τ(ui, ui+1) ∧
T∧
i=0

ψ(ui) (5.7)

I(u0) ,
∧
α∈Bp

(∧
wi∈S

(L0
α[wi] ⇐⇒ si)

)
∧

 ∧
wi /∈S

¬L0
α[wi]

∧
(∧
i,j,k

Lα[mij] ⇐⇒ (pij = 1) ∨ ((pij = Bk) ∧ Lα[bk]) ∨ ((pij = ¬Bk) ∧ ¬Lα[bk])

)
(5.8)

τ(ut, ut+1) ,
∧
α∈Bp

 |R|∧
i=1

Lt+1
α [ri] ⇐⇒

|C|∨
j=1

Lα[mij] ∧ Ltα[cj]

 ∧
|C|∧
j=1

Lt+1
α [cj] ⇐⇒

|R|∨
i=1

Lα[mij] ∧ Ltα[ri]

 (5.9)

40

ψ(ut) , ¬

(∧
α∈Bp

(
q∧

k=1

(
Lα[fk] ⇐⇒ φk

)))
(5.10)

As an example, suppose we are given φ = (a ∧ ¬b) ∨ (¬a ∧ b) and a crossbar X = ((M,R =

(R1, R2), C = (C1, C2)) with input/output wires S = (R1), F = (R2) such that s1 = 1 for all

evaluations of a, b, c. Suppose the bounded model checking procedure is verifying whether the

design P is a well-formed design, where p11 = A, p12 = ¬A, p21 = B, p22 = ¬B. Then the

formulas (5.8), (5.9), (5.10) for this problem are (5.11), (5.12), (5.13), respectively.

I(u0) ,

(∧
α∈B2

L0
α[r1] ∧ ¬L0

α[r2] ∧ ¬L0
α[c1] ∧ ¬L0

α[c2]

)
∧

∧
α∈B2

Lα[m11] ⇐⇒ (p11 = 1) ∨ ((p11 = A) ∧ Lα[a]) ∨ ((p11 = ¬A) ∧ ¬Lα[a])∨

((p11 = B) ∧ Lα[b]) ∨ ((p11 = ¬B) ∧ ¬Lα[b])∧∧
α∈B2

Lα[m12] ⇐⇒ (p12 = 1) ∨ ((p12 = A) ∧ Lα[a]) ∨ ((p12 = ¬A) ∧ ¬Lα[a])∨

((p12 = B) ∧ Lα[b]) ∨ ((p12 = ¬B) ∧ ¬Lα[b])∧∧
α∈B2

Lα[m21] ⇐⇒ (p21 = 1) ∨ ((p21 = A) ∧ Lα[a]) ∨ ((p21 = ¬A) ∧ ¬Lα[a])∨

((p21 = B) ∧ Lα[b]) ∨ ((p21 = ¬B) ∧ ¬Lα[b])∧∧
α∈B2

Lα[m22] ⇐⇒ (p22 = 1) ∨ ((p22 = A) ∧ Lα[a]) ∨ ((p22 = ¬A) ∧ ¬Lα[a])∨

((p22 = B) ∧ Lα[b]) ∨ ((p22 = ¬B) ∧ ¬Lα[b])

(5.11)

41

τ(u0, u1) ,
∧
α∈B2

(
L1
α[r1] ⇐⇒ (L0

α[r1] ∨ (L0
α[c1] ∧ Lα[m11]) ∨ (L0

α[c2] ∧ Lα[m12]))
)
∧

∧
α∈B2

(
L1
α[r2] ⇐⇒ (L0

α[r2] ∨ (L0
α[c1] ∧ Lα[m21]) ∨ (L0

α[c2] ∧ Lα[m22]))
)
∧

∧
α∈B2

(
L1
α[c1] ⇐⇒ (L0

α[c1] ∨ (L0
α[r1] ∧ Lα[m11]) ∨ (L0

α[r2] ∧ Lα[m12]))
)
∧

∧
α∈B2

(
L1
α[c2] ⇐⇒ (L0

α[c2] ∨ (L0
α[r1] ∧ Lα[m12]) ∨ (L0

α[r2] ∧ Lα[m22]))
)

τ(u1, u2) ,
∧
α∈B2

(
L2
α[r1] ⇐⇒ (L1

α[r1] ∨ (L1
α[c1] ∧ Lα[m11]) ∨ (L1

α[c2] ∧ Lα[m12]))
)
∧

∧
α∈B2

(
L2
α[r2] ⇐⇒ (L1

α[r2] ∨ (L1
α[c1] ∧ Lα[m21]) ∨ (L1

α[c2] ∧ Lα[m22]))
)
∧

∧
α∈B2

(
L2
α[c1] ⇐⇒ (L1

α[c1] ∨ (L1
α[r1] ∧ Lα[m11]) ∨ (L1

α[r2] ∧ Lα[m12]))
)
∧

∧
α∈B2

(
L2
α[c2] ⇐⇒ (L1

α[c2] ∨ (L1
α[r1] ∧ Lα[m12]) ∨ (L1

α[r2] ∧ Lα[m22]))
)

(5.12)

ψ(u0) ,

(∧
α∈B2

L0
α[r2] ⇐⇒ φ

)

ψ(u1) ,

(∧
α∈B2

L1
α[r2] ⇐⇒ φ

)

ψ(u2) ,

(∧
α∈B2

L2
α[r2] ⇐⇒ φ

) (5.13)

A visualization of the state-transition system induced by the model checker for the comparator in

Fig. 5.1 can be seen in Fig. 5.2. A counterexample to (5.10) is found in state u3. Indeed, assuming

a source wire R1 and destination wires R2, C3, C4, note that we have L3
α[r2] ⇐⇒ (x ≡ y),

L3
α[c3] ⇐⇒ (y > x), and L3

α[c4] ⇐⇒ (y < x), thereby violating specification (5.10).

42

Figure 5.2: The finite state machine L given the design P (5.6) for the comparator in Fig. 5.1.
There are 4 sub-automata L00,L01,L10,L11 corresponding to each evaluation vector α ∈ B2. Each
state ut in L is the union of states of its sub-automata Ltα.

Experimental Results

We use our approach to automatically generate crossbar designs for the following formulae (design

and circuit generation files can be found in eecs.ucf.edu/∼velasquez/Homogeneous.).

• 3-bit parity: φ = (¬b1 ∧ ¬b2 ∧ b3) ∨ (¬b1 ∧ b2 ∧ ¬b3) ∨ (b1 ∧ ¬b2 ∧ ¬b3) ∨ (b1 ∧ b2 ∧ b3) is

mapped to a 3× 3 crossbar with source/destination wires S = (R3), F = (R1).

• 4-bit parity: φ = (¬b1 ∨ ¬b2 ∨ b3 ∨ b4) ∧ (¬b1 ∨ b2 ∨ ¬b3 ∨ b4) ∧ (¬b1 ∨ b2 ∨ b3 ∨ ¬b4) ∧

(b1 ∨¬b2 ∨¬b3 ∨ b4)∧ (b1 ∨¬b2 ∨ b3 ∨¬b4)∧ (b1 ∨ b2 ∨¬b3 ∨¬b4)∧ (b1 ∨ b2 ∨ b3 ∨ b4)∧

(¬b1 ∨ ¬b2 ∨ ¬b3 ∨ ¬b4) is mapped to a 3× 4 crossbar with S = (R3), F = (R1).

• Full adder: This design consists of computing the sum and carry-out bits simultaneously

within a single crossbar. We do so by mapping φ1 = Sum = (¬b1 ∧¬b2 ∧ b3)∨ (¬b1 ∧ b2 ∧

43

Table 5.1: Comparison of design performance, where time is defined as the number of steps re-
quired to configure the crossbar and compute the formula of interest.

2-bit XOR 1-bit Sum 4-bit Parity
Size Time Size Time Size Time

[1] 5× 4 4 steps 7× 6 6 steps 9× 10 10 steps
[2] 3× 3 7 steps 5× 4 9 steps 9× 5 11 steps

[76] 7× 8 8 steps 16× 16 17 steps 40× 40 41 steps
[3] 2× 2 3 steps 3× 8 7 steps 3× 31 7 steps

Auto.
Synth. 2× 2 3 steps 3× 3 4 steps 3× 4 4 steps

¬b3)∨ (b1 ∧¬b2 ∧¬b3)∨ (b1 ∧ b2 ∧ b3) and φ2 = Cout = (b1 ∧ b2)∨ (b1 ∧ b3)∨ (b2 ∧ b3) to

a 4× 5 crossbar with source/destination wires S = (R4), F = (R1, R2).

After reviewing the memristor crossbar generated in Fig. 5.4, we can compare this with our manual

design for the sum bit of a full adder (Fig. 4.4) in Chapter 4. The space efficiency of the automat-

ically generated design is due to the use of literals mapped to memristors in such a way that the

literal values themselves prevent unwanted sneak paths – hence drastically reducing the number

of HRS memristors required just for this purpose. These more space-efficient crossbars inherently

have the attributes of faster computation time due to reduced crossbar-configuration overhead, and

higher cost-effectiveness. See Table 5.1 for a comparison.

Figure 5.3: Crossbar design visualization of a 4-bit parity and the sum bit of a full adder.

We pay particular attention to the full adder due to its tremendous significance in modern comput-

ing. In order to study the performance of our full adder designs experimentally, crossbar arrays

44

Figure 5.4: Crossbar design visualization of a full adder.

(12 × 12) were implemented on a 300 mm wafer platform in a back-end-of-the-line (BEOL) pro-

cess. The IBM 65 nm 10LPe process was used as the mainframe to integrate a custom build

ReRAM layer between metal 1 (M1) and metal 2 (M2) (See Fig. 5.5). Metal 1 was fabricated in

a damascene process where 100 nm lines were etched into the SiO2 insulating layer and subse-

quently filled with a line consisting of TaN/Ta followed by electroplated Cu. After a planarization

step, the HfOx layer was deposited in a reactive PVD process and subsequently served as the active

part of the memristor. A subsequent TiN deposition created the top electrode and in a RIE step

followed by a wet etch, the 12 × 12 memristor elements were defined in the size of 100 × 100

nm2 on top of M1. By depositing SiO2 the active layer was encapsulated and the M2 insulation

was fabricated. A final dual-damascene step created the 100 nm wide M2 trenches and V1 holes to

connect to the created TiN top electrode. M2/V1 got fabricated by putting down the liner (TaN/Ta)

and again electroplating Cu. A final planarization step removed the excess copper resulting in in-

sulated M2 lines. For our adder circuit implementation, we used the 4 × 5 sub-matrix in a corner

of our 12× 12 matrix array. More details can be found in [79].

The adder operation was performed in two steps. In the first step, the array was configured to one

of the input combinations. In a commercial realization, a control circuit might be used to change

one input state to another input state. In the second step, pulse voltages of 0.1 and 0.2 volts were

45

Figure 5.5: (left) Schematic cross-section of a memristor used in this work. (right) SEM View of a
12× 12 memristor crossbar array. Crossbar arrays were fabricated at SUNY Polytechnic Institute
on 300 mm wafers using a modified IBM 65 nm 10LPe process flow.

applied to wire R4 and the voltages across wires R1 and R2 for all the input configurations of the

1-bit full adder were measured. In all the cases, output voltages corresponded to the expected logic

levels. The output voltage for output logic level 1 was at least 20 times higher than that of output

logic level 0. For example, when the inputs are A = 1, B = 1, C = 0, the output logic levels

are: Sum = 0, Cout = 1. In this case, the values V (R1) = 1.77 mv and V (R2) = 98.04 mV were

recorded. In this case, V (R2)/V (R1) = 55. The experimental results are summarized in the Table

5.2.

The speed of computation depends on the delay between the input and output signals. Cadence

Spectra circuit simulator (SPICE level simulator), tightly integrated with virtuoso custom design

platform, was used to design a schematic of a 4 × 5 crossbar array and a traditional 28T CMOS

adder and to simulate propagation delay and other metrics for both types of adders. Our crossbar

array was fabricated on the IBM 65 nm CMOS 10LPe Low Power technology platform. Line re-

sistances and other parasitic capacitances such as lateral capacitance, fringe capacitance etc. were

46

extracted for simulation following IBM 10LPe design specifications. The LRS state memristor

resistance values were set to 1 kΩ, and the HRS memristor resistances were set to 1 MΩ. The 28T

adder was designed based on the same technology platform and optimal transistor size was used to

maintain optimal delay.

Table 5.2: Output voltages for wires R1 and R2 in the full adder design in Figure 5.4 under all
possible evaluations.

b1 b2 b3 R1 Voltage R2 Voltage Sum Cout

0 0 0 0.94 1.33 0 0
0 0 1 95.53 0.74 1 0
0 1 0 98.50 0.79 1 0
0 1 1 1.04 98.43 0 1
1 0 0 98.95 0.84 1 0
1 0 1 4.58 98.42 0 1
1 1 0 1.77 98.04 0 1
1 1 1 97 99.04 1 1

Table 5.3: Comparison between the proposed full adder architecture and the traditional 28-
transistor CMOS full adder.

28T (1 GHz) Crossbar (1 Volt input) Crossbar (0.2 Volt input)

Propagation Delay (ps) 39 1.4 1.3
Power (µ W) 4.68 22.5 1
PDP (x1E-17 Joules) 182.52 31.5 1.3

Fault Tolerance

When compared to lithographic CMOS device manufacturing, self-assembled nanodevices have

high defect rates in the form of stuck-off and stuck-on devices, as well as broken or partitioned

nanowires [80]. This necessitates fault-tolerant mapping schemes at the post-manufacturing stage

47

[14] since rejecting faulty chips becomes unacceptable due to the high probability of defects per

chip [81].

One of the benefits of the proposed approach is how well it lends itself for modeling such crossbar

faults. To account for stuck-on and stuck-off defects, we define specification (5.14). Given a

crossbar X = (M,R,C), we define a defect matrix Z ∈ {+,−, ∗}|R|×|C|, where zij = + and

zij = − denote stuck-on/-off defects in node Mij .

|R|∧
i=1

|C|∧
j=1

(zij = + =⇒ pij = 1) ∧ (zij = − =⇒ pij = 0) (5.14)

Broken wires are also accounted for. Let θRi = (1, θRi2 , θRi3 , . . . , |C|+1) and θCj = (1, θ
Cj
2 , θ

Cj
3 , . . . ,

|R| + 1) be increasing sequences representing the position of breaks in wires Ri and Cj , respec-

tively, such that k ∈ θRi denotes a break in wire Ri between columns Ck−1 and Ck, thereby

splitting the wire into two segments Ri,1 and Ri,2. Similar reasoning applies to k ∈ θCj . A wire

Ri with no breaks has θRi = (1, n + 1). These ideas are formalized in (5.15) and (5.16), where

mr
ij and mc

ij denote the row and column wire segments that Mij resides in. Specification (5.16)

replaces the transition relation (5.9) when there are broken wires. By adding specifications (5.14)

and (5.15), we can generate designs for faulty crossbars. See Fig. 5.6 for a 4-bit comparator design

using highly defective crossbars.

|R|∧
i=1

|C|∧
j=1

|θRi |−1∧
k=1

θRik ≤ j < θRik+1 =⇒ mr
ij = k

 ∧
|θCj |−1∧

k=1

θ
Cj
k ≤ i < θ

Cj
k+1 =⇒ mc

ij = k

(5.15)

48

∧
α∈Bp

|R|∧
i=1

Lt+1
α [ri,mcij] ⇐⇒

|C|∨
j=1

(
Lα[mij] ∧ Ltα[cj,mrij]

)∧
|C|∧
j=1

Lt+1
α [cj,mrij] ⇐⇒

|R|∨
i=1

(
Lα[mij] ∧ Ltα[ri,mcij]

) (5.16)

Crossbar Networks

While the bounded model checking approach proposed in this chapter yields very compact and

correct crossbar designs, its runtime complexity is a function of the number of paths in the cross-

bar, which we have shown to be exponential. Naturally, one might think to break the formula

into smaller sub-formulas, generate designs for said sub-formulas, and merge the resulting de-

signs. Such a design philosophy is adapted in CMOS to fabricate n-bit adders and multipliers as

sequences of 1-bit adders. Indeed, we can apply a similar approach.

Let us consider the problem of generating a crossbar design for an n-bit comparator. Let x =

(xn, xn−1, . . . , x1) and y = (yn, yn−1, . . . , y1) denote two n-bit vectors, where xn and yn represent

the most significant bits (MSBs). There are three outputs that we would like to measure corre-

sponding to the cases where x ≡ y, y > x, and y < x. Let us consider how this operation can be

mapped to n inter-connected crossbars. Let (x ≡ y)i denote whether bit-vectors (xn, . . . , xi) and

(yn, . . . , yi) are equivalent. Furthermore, let (y > x)i and (y < x)i denote whether the bit-vectors

first differ on the ith bit so that y > x and y < x hold, respectively. These equations are defined

below.

49

(x ≡ y)i ⇐⇒ (x ≡ y)i+1 ∧ ((xi ∧ yi) ∨ (¬xn ∧ ¬yn)), (x ≡ y)n+1 = 1 (5.17)

(y > x)i ⇐⇒ (x ≡ y)i+1 ∧ (¬xi ∧ yi) (5.18)

(y < x)i ⇐⇒ (x ≡ y)i+1 ∧ (xi ∧ ¬yi) (5.19)

We can define crossbars X n, . . . ,X 1, where X i = (M i, Ri, Ci) will compute (x ≡ y)i, (y > x)i,

(y < x)i. For the case of mapping a 4-bit comparator to a set of defective crossbars, our approach

yields the design in Fig. 5.6 whose design matrices P i are shown below for convenience.

P 4 =

+ 1 x4 ¬x4 − 1

0 + − y4 ¬x4 0

1 ¬y4 0 1 0 −

¬x4 1 − 0 − x4

xi 0 ¬y4 x4 0 0

¬x4 ¬x4 + ¬y4 y4 0

P 3 =

¬y3 1 y3 + 0 −

0 y3 x3 y3 ¬x3 ¬y3

− 0 + 0 0 0

x3 ¬y3 1 y3 y3 ¬y3

¬x3 0 0 y3 − 0

x3 + 1 1 0 ¬y3

P 2 =

1 x2 1 − 0 ¬x2

− y2 0 + ¬y2 0

¬y2 1 − 0 − 0

¬x2 ¬y2 0 0 y2 x2

y2 + 1 1 0 0

¬x2 0 ¬x2 ¬y2 0 x2

P 1 =

¬x1 x1 x1 x1 + 0

y1 − ¬y1 − 1 0

0 ¬y1 0 − 1 1

¬x1 1 − 0 x1 ¬x1

¬y1 0 0 y1 0 0

0 1 + ¬y1 y1 0

(5.20)

50

y
>
x

y
<
x

y
>
x

y
<
x

y
>
x

y
<
x

x
≡
y

y
>
x

y
<
x

+ ¬y3 1 ¬x11 1 x2 x1x4 y3 1 x1¬x4 + - x1- 0 0 +1 - ¬x2 0

0 0 - y1+ y3 y2 -- x3 0 ¬y1y4 y3 + -¬x4

¬x3

¬y2 10 ¬y3 0 0

1 - ¬y2 0¬y4 0 1 ¬y10 + - 01 0 0 -0 0 - 1- 0 0 1

¬x4 x3 ¬x2

¬x11 ¬y3

¬y2 1- 1 0 -0 y3 0 0- y3 y2 x1x4

¬y3 x2 ¬x1

xi

¬x3 y2 ¬y10 0 + 0¬y4 0 1 0x4 y3 1 y10 - 0 00 0 0 0

¬x4 x3 ¬x2 0¬x4 + 0 1+ 1 ¬x2 +¬y4 1 ¬y2

¬y1y4 0 0 y10 ¬y3 x2 0

X 4 = (M4, R4, C4) X 3 = (M3, R3, C3) X 2 = (M2, R2, C2) X 1 = (M1, R1, C1)

Figure 5.6: 4-bit comparator as a cascade of highly defective crossbars with mapping matrices
(5.20). Black, green, red, and yellow components denote HRS, LRS, stuck-on, and stuck-off
nodes, respectively. Wire breaks are denoted by white circles. The values of blue components
correspond to some literal {xi,¬xi, yi,¬yi} as specified by the P matrix (5.20). Given two bit-
vectors x = (x4, x3, x2, x1) and y = (y4, y3, y2, y1), we have ri5 ⇐⇒ (x ≡ y)i, ci5 ⇐⇒ (y > x)i,
and ci6 ⇐⇒ (y < x)i and input ri1 = (x ≡ y)i+1, with initial input r4

1 = 1. The red bars denote
the flow of current under evaluation vector α = (x4 = 1, x3 = 1, x2 = 0, x1 = 0, y4 = 1, y3 =
1, y2 = 0, y1 = 1) when C4

5 , C
4
6 , C

3
5 , C

3
6 , C

2
5 , C

2
6 , C

1
5 , C

1
6 , R

1
5 are grounded. Design generation files

can be found in eecs.ucf.edu/∼velasquez/Comparator.

Recall the encouraging results of the full adder design studied in Table 5.3. If we consider the

use of a network of crossbars as was done for the n-bit comparator in Fig. 5.6, it would seem

obvious to exploit this same construction in order to create n-bit ripple-carry adders. However, as

we demonstrate in the next chapter, this is not possible for certain operations on the homogeneous

crossbars that we have looked at. Ripple-carry addition is one such operation. Fortunately, this

restriction can be overcome by introducing new elements into the crossbar.

51

CHAPTER 6: HETEROGENEOUS CROSSBARS

Given a crossbar X = (M,R,C) with source and destination wires S, F ⊆ W and a formula

φ : Bp 7→ Bq, we must make a distinction between the case where the input wire values are

constant (i.e. si = 1 for all α ∈ Bp), as has been the case so far, and the case where the value of an

input wire depends on the evaluation vector α ∈ Bp. As we established in Chapter 4, any Boolean

formula can be computed on a constant-input homogeneous crossbar using paths-based logic [82].

However, as we demonstrate in Theorem 5, this universality breaks down under variable inputs. In

particular, we show that ripple-carry addition cannot be computed in variable-input homogeneous

crossbars. For the remainder of this chapter, we use the terms unidirectional components and

diodes interchangeably.

Limitations of Paths-Based Logic

An adder is defined by its sum and carry-out bits S and Cout. Given bits a, b, and carry-in values

¬Cin and Cin, we define (S|¬Cin), (S|Cin), (Cout|¬Cin), (Cout|Cin) in (6.1), where (φ|ψ) is a formula

denoting the value φ when ψ holds.

S =(a ∧ ¬b ∧ ¬Cin) ∨ (¬a ∧ b ∧ ¬Cin)∨

(¬a ∧ ¬b ∧ Cin) ∨ (a ∧ b ∧ Cin)

Cout =(a ∧ b) ∨ (a ∧ Cin) ∨ (b ∧ Cin)

(S|¬Cin) =(a ∧ ¬b) ∨ (¬a ∧ b)

(S|Cin) =(¬a ∧ ¬b) ∨ (a ∧ b)

(Cout|¬Cin) =(a ∧ b), (Cout|Cin) = a ∨ b

(6.1)

52

The following theorem may seem esoteric, but it provides a guideline for determining which func-

tions cannot be computed on variable-input homogeneous crossbars using paths-based logic. We

motivate this limitation with a simple example. Suppose we are given a crossbar X = (M,R,C)

with variable inputs S = (R1, R2) and output F = (R3) such that s1 = ¬Cin, s2 = Cin, and we

want f1 ⇐⇒ Cout (See equations (6.1)). Use the figure below as a reference.

There must be a path ΠS1→F1 to compute (Cout|¬Cin) = a ∧ b and two paths ΠS2→F1 , Π′S2→F1 to

compute the two clauses in (Cout|Cin) = (a) ∨ (b). Note that when a = 1, b = 1,Cin = 0, we

have s1 = 1 and s2 = 0. Thus, path ΠS1→F1 will yield f1 = 1 as denoted by the solid red lines in

the figure. However, path Π′S2→F1 will then yield s2 = 1 as shown by the dotted lines, which is a

contradiction since s2 should be equal to Cin. This is due to the symmetry of paths property (5.3) in

homogeneous crossbars. As we will demonstrate, this limitation makes the problem of designing

a ripple-carry adder on a variable-input homogeneous crossbar impossible.

Theorem 5. There exists a class of Boolean formulas that cannot be computed on variable-input

homogeneous crossbars using paths-based logic.

Proof. Suppose there is a well-formed design P for a crossbar X = (M,R,C) with source and

destination wires S, F for some φ : Bp 7→ Bq and assume the following statements hold under

some evaluation vector α ∈ Bp for some β, ω, i, j, k, k′: (i) sβ ∧ ¬sω, (ii) φi is satisfied, (iii)

(Φi
k|sω) ⊆ (Φi

k′|sβ), (iv) (φik′|sβ) is satisfied.

Since (Φi
k|sω) ⊆ (Φi

k′ |sβ) and clause (φik′|sβ) is satisfied, the clause (φik|sω) must also be satisfied.

For every Sh ∈ S, there must exist a path ΠSh→Fh′ for each clause in (Φh′ |sh). Thus, there must be

paths ΠSβ→Fi , ΠSω→Fi corresponding to (Φi
k′|sβ) and (Φi

k|sω), respectively. Since we have chosen

53

α such that (φik′|sβ), (φik|sω), and sβ are satisfied, implication (6.2) follows from the symmetry of

paths property, yielding the contradiction sω ∧ ¬sω.

(
sβ ∧

∧
d

π
Sβ→Fi
d =⇒ fi

)
∧

(
fi ∧

∧
d

πSω→Fid =⇒ sω

)
(6.2)

An important operation that lies in this uncomputable class of functions is ripple-carry addition

(6.1). Suppose we want to find a well-formed design P that computes S, Cout for a crossbar

X = (M,R,C) with source/destination wires S, F . Let the inputs be defined by s1 = ¬Cin

and s2 = Cin, where (Cout|s1) = {{a, b}} and (Cout|s2) = {{a}, {b}}. Given evaluation vector

α = (a = 1, b = 1,Cin = 0), conditions (i)–(iv) from Theorem 5 hold. Indeed, we have (i)

s1 ∧ ¬s2, (ii) Cout is satisfied, (iii) (Cout1|s2) ⊆ (Cout1|s1), and (iv) (Cout1|s1) is satisfied.

From Theorem 5, we know that the symmetry property (5.3) yields s2. This is clearly a contradic-

tion since s1 = 1 = ¬Cin and s2 = 0 = Cin hold due to α.

Heterogeneous Crossbars

The use of heterogeneous crossbar designs defined below gives us greater control over the paths

induced by allowing the use of unidirectional components. The addition of these components

makes each interconnect in the crossbar a member of a trinary set and changes the dynamics of the

crossbar. The flow behavior in heterogeneous crossbars follows Axiom 3. The mapping matrix P ,

where Pij ∈ {B1,¬B1, B2,¬B2, . . . , Bp,¬Bp} ∪ {0, 1, D}, satisfies both (5.4) and the additional

proposition (mij = D) ⇐⇒ (Pij = D).

Definition 6. A heterogeneous crossbar is a crossbar X = (M = (Mij), R, C), where each

mij is chosen from a set of multiple components. For the purposes of this chapter, this would

54

be the set {0, 1, D} of bidirectional HRS and LRS components and row-to-column unidirectional

components, respectively.

Axiom 3 (Heterogeneous Flow). Given a heterogeneous crossbarX = (M ∈ {0, 1, D}|R|×|C|, R, C),

(ri ∧ mij ∈ {1, D}) =⇒ cj and (cj ∧ mij = 1) =⇒ ri hold. Consequently, equation (6.3)

holds.

 |C|∧
j=1

cj ⇐⇒

 |R|∨
i=1

(mij ∈ {1, D} ∧ ri)

∧
 |R|∧
i=1

ri ⇐⇒

 |C|∨
j=1

(mij = 1 ∧ cj)

 (6.3)

It follows from (6.3) that symmetry (5.3) does not hold for a path ΠWi→Wj withD ∈ πWi→Wj . This

is intuitive since D is a unidirectional component that allows the flow of current to traverse from

rows to columns, but suppresses current in the opposite direction. That is, if mij = D, we have

(cj ∧mij) 6=⇒ ri. This would violate the symmetry equation (5.3). Recall that symmetry causes

the contradiction in Theorem 5. In the next section, we demonstrate how this simple modification

allows us to design ripple-carry adders using variable-input heterogeneous crossbars and paths-

based logic.

Theorem 6. There exists a well-formed variable-input design P for any φ : Bp 7→ Bq when using

heterogeneous crossbars.

Proof. We will demonstrate how to construct a well-formed design P (i.e. one where (5.5) holds).

First, we construct well-formed designs kij for (φkj |si), i.e. the j th clause of formula φk given input

si. These designs are used to create the well-formed design Pi which computes (φk|s1), . . . , (φk|s|S|),

i.e. every formula φk under input si. These Pi designs are then used to construct the final design

55

Figure 6.1: Modular representation of the construction in Theorem 6. The well-formed design kij
computes (φkj |si) for a given i and is used in Pi to compute (φk|si) for all i. Pi is then used in the
final design P to compute φ1, . . . , φq.

P . See Figure 6.1 for a visual representation. For the remainder of this proof, let Rf (k
i
j), Rf (Pi),

Rf (P) and Cf ′(kij), Cf ′(Pi), Cf ′(P) denote the last rows and columns for the designs mentioned.

Let kij denote a well-formed design for a crossbar with source wire R1(kij) and destination wire

Rf (k
i
j) that computes (φkj |si). Given r1(kij) = si, there exists a path such that r1(kij)∧

∧
d π

R1(kij)→Rf (kij) =⇒

rf (k
i
j) and rf (kij) ⇐⇒ (φkj |si) for all evaluations α ∈ Bp. Since (φkj |si) is simply a conjunction

of variables, the mapping shown below suffices to compute it.

kij =

R1(kij)

R2(kij)

R3(kij)

...

Rf (k
i
j)

φkj1 0 0 0 . . . 0

φkj2 φkj3 0 0 . . . 0

0 φkj4 φkj5 0 . . . 0

...

0 0 0 0 . . . φkj∗

C1(kij) C2(kij) C3(kij) C4(kij) . . . Cf ′(k

i
j)

the design Pi computes formulas (φ1|si), . . . , (φq|si) for a crossbar with source wire R1(Pi) and

destination wire set F (Pi) = (Cf ′−(q−1)(Pi), . . . , Cf ′(Pi)). Note that component M11 is in the

56

LRS state m11 = 1. Thus, it follows from Axiom 3 that c1(Pi) = 1 if si = 1 and, consequently,

every r1(kij) will be 1 if c1(Pi) = 1. This is due to all of the LRS components in the first column

of Pi. If (φkj |si) evaluates to 1, then the design kij will yield rf (kij) = 1, which in turn will yield

cf ′−(k−1)(Pi) = 1 due to the unidirectional components on the rightmost columns of Pi.

Design P computes φ1, . . . , φq for a crossbar with source and destination wire sets S = (R1(P1), . . . ,

57

R1(P|S|)) and F = (Rf−(q−1)(P), . . . , Rf (P)), respectively. Note that there are paths induced by

Pi and P such that (6.4) holds.

(φq|si) =⇒ cf ′(Pi) =⇒ rf (P)∧

(φq−1|si) =⇒ cf ′−1(Pi) =⇒ rf−1(P)∧
...

(φ2|si) =⇒ cf ′−(q−2)(Pi) =⇒ rf−(q−2)(P)∧

(φ1|si) =⇒ cf ′−(q−1)(Pi) =⇒ rf−(q−1)(P)

(6.4)

This establishes condition (5.5) in one direction. That is, we have
∧
k rf−(q−k)(P) ⇐= φk. In

order to finalize the proof, we must show that
∧
k rf−(q−k)(P) =⇒ φk. Note that rf−(q−k) holds

iff there is some i for which cf ′−(q−k)(Pi) is true. In turn, cf ′−(q−k)(Pi) only holds if there are k, j

such that rf (kij) is true. We know that rf (kij) ⇐⇒ φkj =⇒ φk. Therefore, we conclude that

rf (P) ⇐⇒ φq, rf−1(P) ⇐⇒ φq−1, . . . , rf−(q−1)(P) ⇐⇒ φ1 as intended. See Fig. 6.2 for an

example.

Fig. 6.2 helps to elucidate the importance of unidirectional components. Indeed, suppose that every

mij = D in the design presented in Fig. 6.2 is replaced with mij = 1 and let α = (a = 1, b =

1,Cin = 0). Note that there would be a path Π′ = (M16,13,M14,13,M14,11,M13,11,M13,7,M7,7)

such that r1 ∧
∧
d π

R1→R16
d ∧

∧
d π
′
d =⇒ r7, contradicting r7 = Cin.

Design Automation

Theorem 6 establishes the universality of variable-input crossbars using paths-based logic when

heterogeneous components are used. However, the design methodology proposed therein leads to

58

Figure 6.2: Variable-input heterogeneous design for a full adder, where S, Cin, and Cout denote the
sum, carry-in, and carry-out bits, and a, b are the bits to be added. This design follows from the
construction given in Theorem 6. We have r1 = ¬Cin, r7 = Cin, r15 ⇐⇒ S, and r16 ⇐⇒ Cout

for all evaluations α ∈ B3 (see equations (6.1)). Blue rectangles denote constructions kij and
Pi from the proof and the red trajectory delineates the path ΠR1→R16 that makes r16 true under
evaluation vector α = (a = 1, b = 1,Cin = 0).

spatially complex crossbars as is evidenced by Fig. 6.2. This is not surprising since we encoun-

tered the same issue when a universal methodology was proposed for constant-input homogeneous

crossbars. This motivates the need for a design automation approach to produce compact crossbar

designs given a set of formulas to compute. We accomplish this in a similar fashion to the previ-

ous chapter. That is, by specifying the dynamics of variable-input heterogeneous crossbars using

temporal logic and framing the design synthesis problem as a bounded model checking (BMC)

problem.

The initial state I (6.5) and transition relation τ (6.6) are modified to account for unidirectional

59

components. The specification ψ (5.10) and BMC formulaMBMC (5.7) remain unchanged.

(Si|¬Ci−1) =(xi ∧ ¬yi) ∨ (¬xi ∧ yi)

(Si|Ci−1) =(¬xi ∧ ¬yi) ∨ (xi ∧ yi)

(Ci|¬Ci−1) =(xi ∧ yi), (Ci|Ci−1) = xi ∨ yi

(6.7)

By providing the model checking formulaMBMC (5.7) to the NuSMV 2.6.0 model checker [83],

we synthesized a mapping for an n-bit ripple-carry adder based on equations (6.7) given two n-bit

vectors x, y ∈ {0, 1}n. The well-formed design P i for the crossbar X i = (M i, Ri, Ci) with source

and destination wires S = (Ri
1, R

i
2), F = (Ri

4, R
i
5, C

i
5) computes (¬Ci,Ci, Si), where the inputs

are defined as si1 = ¬Ci−1 and si2 = Ci−1. This design is captured by equation (6.8). See Fig. 6.3

for an example of how this design can be used in a 4-bit adder.

I(u0) ,
∧
α∈Bp

(∧
wi∈S

(L0
α[wi] ⇐⇒ si)

)
∧
∧
wi /∈S

¬L0
α[wi] ∧

(∧
i,j

Lα[mij] = D ⇐⇒ Pij = D

)
∧(∧

i,j,k

(Lα[mij] = 1) ⇐⇒ (Pij = 1) ∨ ((Pij = Bk) ∧ Lα[bk]) ∨ ((Pij = ¬Bk) ∧ ¬Lα[bk])

)
(6.5)

τ(ut, ut+1) ,
∧
α∈Bp

(∧
i

(
Lt+1
α [ri] ⇐⇒

∨
j

Lα[mij] = 1 ∧ Ltα[cj]

)
∧

∧
j

(
Lt+1
α [cj] ⇐⇒

∨
i

(Lα[mij] ∈ {1, D}) ∧ Ltα[ri]

)) (6.6)

60

D 0 0 0 0

0 yi yi ¬yi 0

D 0 xi ¬xi 1

1 0 ¬yi yi 0

¬xi 0 ¬yi 0 0

0 ¬xi 0 xi 0

(6.8)

S1 S2 S3

C4

¬C4

S4

X 1 = (M1, R1, C1) X 2 = (M2, R2, C2) X 3 = (M3, R3, C3) X 4 = (M4, R4, C4)

D 0 0 0 0 D 0 0 0 0 D 0 0 0 0 D 0 0 0 0

0 y1 y1 ¬y1 0 0 y2 y2 ¬y2 0 0 y3 y3 ¬y3 0 0 y4 y4 ¬y4 0

D 0 x1 ¬x1 1 D 0 x2 ¬x2 1 D 0 x3 ¬x3 1 D 0 x4 ¬x4 1

1 0 ¬y1 y1 0 1 0 ¬y2 y2 0 1 0 ¬y3 y3 0 1 0 ¬y4 y4 0

¬x1 0 ¬y1 0 0 ¬x2 0 ¬y2 0 0 ¬x3 0 ¬y3 0 0 ¬x4 0 ¬y4 0 0

0 ¬x1 0 x1 0 0 ¬x2 0 x2 0 0 ¬x3 0 x3 0 0 ¬x4 0 x4 0

Figure 6.3: 4-bit ripple-carry adder as a cascade of crossbars with mapping matrix (6.8). Given
two bit-vectors X = (x4, x3, x2, x1) and Y = (y4, y3, y2, y1), we have ri5 ⇐⇒ ¬Ci, ri6 ⇐⇒ Ci,
and ci5 ⇐⇒ Si and inputs ri1 = ¬Ci−1 and ri2 = Ci−1 with r1

1 = ¬C0 = 1 since there is no
carry-in bit for the least significant bit addition. The red bars denote the flow of current under
evaluation vector α = (x4 = 1, x3 = 1, x2 = 0, x1 = 0, y4 = 1, y3 = 1, y2 = 0, y1 = 1)
when wires C1

5 , C
2
5 , C

3
5 , C

4
5 , R

4
5, R

4
6 are grounded. Note that the values read on these wires are

S1 = 1,S2 = 0, S3 = 0,S4 = 1,¬C4 = 0,C4 = 1, respectively, yielding the correct result.
That is, given x = 12 and y = 13, we read the value 25. After applying a voltage pulse of
5V to R1

1, we obtain the following voltage values with respect to ground for the grounded wires:
4.5751V, 39.9629mV, 34.0887mV, 3.7873V, 9.7456mV , 3.6443V . Design and circuit generation
files can be found in eecs.ucf.edu/ ∼velasquez/HeteroAdder.

In [84], it was shown that a crossbar X = (M,R,C) can be configured in min{|R|, |C|} + 1

steps. Thus, each crossbar in our n-bit adder design can be programmed independently in 6 steps

and a read voltage is then applied to read the values of the output wires in F . Therefore, we can

61

compute n-bit addition using a constant number of steps. See Table 6.1 for a comparison with

other approaches.

Table 6.1: Comparison of our crossbar ripple-carry adder (XRCA) against other crossbar n-bit
adder designs proposed in the literature. Our design is state-of-the-art in terms of execution steps
required to compute n-bit addition.

[74] [71] [69] [69] [67] [68] [72] [72] [73] [73] XRCA

Execution Steps 19n 8n+ 12 29n 5n+ 18 89n 15n 13n+ 2 7n+ 21 2n+ 4 4n+ 5 7
Crossbar Nodes 5n+ 1 35n 3n+ 3 9n 3n+ 5 5n+ 6 3n+ 6 8n 2n+ 2 n+ 2 30n

Fault Tolerance

The same stuck-on and stuck-off defect specifications that were introduced for homogeneous cross-

bars apply in the heterogeneous domain. However, we should now account for diode placement

in our specifications. This is important for the sake of efficient crossbar reconfiguration. Indeed,

suppose that φ is mapped to a crossbar at some point. However, computational demands change

and now φ′ must be mapped to this same crossbar. An ideal mapping would utilize the diodes

already placed on the crossbar; otherwise, the fabrication costs associated with removing and/or

adding components could become prohibitively expensive. To this end, we extend specification

(5.14) to the following (6.9).

|R|∧
i=1

|C|∧
j=1

(zij = + =⇒ pij = 1) ∧ (zij = − =⇒ pij = 0) ∧ (zij =↓ =⇒ pij = D) (6.9)

Broken wires are also accounted for differently in the case of heterogeneous crossbars due to the

62

presence of unidirectional components. As such, specification (5.16) is changed to (6.10).

∧
α∈Bp

|R|∧
i=1

Lt+1
α [ri,mcij] ⇐⇒

|C|∨
j=1

(
Lα[mij] = 1 ∧ Ltα[cj,mrij]

)∧
|C|∧
j=1

Lt+1
α [cj,mrij] ⇐⇒

|R|∨
i=1

(
Lα[mij] ∈ {1, D} ∧ Ltα[ri,mcij]

) (6.10)

As an example, suppose we are given a highly defective 8 × 8 crossbar X = (M,R,C) with

source wires S = (R1, R2) and destination wires (R7, R8, C8) such that s1 = ¬Ci−1, s2 = Ci−1,

and we want to design a full adder as defined by equations (6.7). Let the wire breaks be defined

by θR2 = θC3 = (1, 2, 9), θR3 = (1, 4, 9), θR5 = (1, 7, 9) and θC2 = (1, 3, 6, 9), θC6 = (1, 5, 9).

Let the stuck faults be given by z17 = z35 = z66 = z86 = +, z21 = z27 = z38 = z51 = z63 =

z64 = z71 = z85 = −, and z45 =↓. Using the bounded model checking approach presented, we

have generated the design (6.11). See Fig. 6.4 for a visualization.

0 yi ¬xi yi yi xi + 0

− ¬yi 0 ¬yi 0 yi − ¬xi

¬xi ¬yi 1 0 + yi 0 −

xi 0 ¬yi ¬yi ↓ ¬xi 0 yi

− yi ¬yi 1 0 0 ¬yi xi

0 0 − − 0 + 0 0

− ¬yi 0 0 ¬xi 0 ¬yi 0

0 yi yi xi − + 0 0

(6.11)

63

Ci

¬Ci

Ci−1

¬Ci−1

Si

0 y
i

y
i

x
i - + 0 0

- ¬y
i

0 0 ¬x
i

0 ¬y
i

0

0 0 - - 0 + 0 0

- y
i

¬y
i

1 0 0 ¬y
i

x
i

x
i 0 ¬y
i

¬y
i

D ¬x
i

0 y
i

¬x
i

¬y
i

1 0 + y
i 0 -

1 ¬y
i

0 ¬y
i

0 y
i - ¬x
i

0 y
i

¬x
i

y
i

y
i

x
i + 0

Figure 6.4: Variable-input crossbar design P for a crossbarX = (M,R,C) with input/output wires
S = (R1, R2), F = (R7, R8, C8) for a full adder φ = (¬Ci,Ci,Si) (6.11) given inputs r1 = ¬Ci−1

and r2 = Ci−1 corresponding to the carry bits of the previous addition operation. Black, green, red,
and yellow components denote HRS, LRS, stuck-on, and stuck-off nodes, respectively. The values
of blue components correspond to some variable {xi,¬xi, yi,¬yi} as specified by the P matrix
(6.11). Wire breaks are represented by θR2 = θC3 = (1, 2, 9), θR3 = (1, 4, 9), θR5 = (1, 7, 9) and
θC2 = (1, 3, 6, 9), θC6 = (1, 5, 9). These breaks are denoted by white circles. The red bars denote
the paths under evaluation vector α = (xi = 1, yi = 1,Ci−1 = 1).

Experimental Results

We utilize HSPICE for our experiments. For each mij = 1 (mij = 0), we use resistors with LRS

(HRS) resistance RLRS = 10Ω (RHRS = 1MΩ) and we implement the SDM02U30CSP diode

model from Diodes Incorporated R© [85] for unidirectional components mij = D. Resistors-to-

ground with resistance RG = 500Ω are placed before each grounded wire. See Table 6.2 and Fig.

6.3 for simulation results of different adder circuits.

We use the NVSim non-volatile memory simulator [7] to test the energy efficiency of our approach

against conventional CMOS adders (See Table 6.3). For our interconnects, we use the memristor

64

Table 6.2: HSPICE simulation results for the full adder design in (6.8). Each column entry denotes
values under an evaluation vector α = (xi, yi,Ci−1). Wires C5, R5, R6 are grounded and a 5V
voltage pulse is applied toR1 if Ci−1 = 0 or toR2 if Ci−1 = 1. The voltage values read correspond
to Si,¬Ci,Ci, respectively. Each entry denotes the voltage reading obtained from grounded wires
C5, R5, R6.

000 001 010 011 100 101 110 111

C5 17.4m 4.544 4.627 12.4m 4.717 14.7m 22.1m 4.551
R5 4.902 4.567 4.718 12.5m 4.807 14.7m 4.97m 11.7m
R6 9.89m 18.6m 24.4m 4.807 28.9m 4.807 4.807 4.38

studied in [86], which has switching time and energy of 85 ps and 3 fJ, respectively, under a 2 V

voltage pulse. The results can be seen in Table 6.3. Note that the power-delay product of our adder

is less than half that of the next most efficient CMOS adder, and this does not take into account the

energy consumed to fetch the operands from memory.

Concluding Remarks

We have presented a design automation framework for generating logic-in-memory heterogeneous

crossbar designs using bounded model checking. The necessity for heterogeneity was motivated by

defining a class of functions that cannot be computed using variable-input homogeneous crossbars

and paths-based logic. We demonstrated the effectiveness of the proposed approach by generating

ripple-carry adder circuits that are state-of-the-art in terms of execution steps. We also showed

how our approach is easily extended to handle various common defects that arise in self-assembled

crossbars.

65

Table 6.3: Power comparison between the proposed crossbar ripple-carry adder architecture
(XRCA) and adders presented in the survey [4] using traditional CMOS. These are ripple-
carry (RCA), increment (INCA), triangle (TRIA), uniform and progressive carry-select (CSELA-
UNIF, CSELA-PROG), conditional (COND), uniform and progressive-carry bypass (CBYPASS-
UNIF, CBYPASS-PROG), and ripple-carry and hierarchical-carry lookahead (CLA-RIPPLE,
CLA-HIER) adders. All architectures are simulated using 180 nm technology with a 1.8 V pulse
and 10 MHz frequency. NVSIM files can be found in eecs.ucf.edu/∼velasquez/Table6.3.

16-Bit Adder Delay (ns) Power (µW) PDP (×10−15)

RCA 8.764 5.134 44.99
INCA 7.413 6.369 47.21
TRIA 9.565 21.07 201.5
CSELA-UNIF 5.198 11.64 60.50
CSELA-PROG 5.095 12.74 64.91
COND 4.755 24.93 118.5
CBYPASS-UNIF 5.818 7.417 43.15
CBYPASS-PROG 4.432 9.020 39.98
CLA-RIPPLE 8.189 8.630 70.67
CLA-HIER 5.498 11.66 64.11
XRCA 0.777 24.42 18.97

66

CHAPTER 7: DESIGN AUTOMATION OF VOLTAGE SEQUENCES

In this chapter, we utilize the same bounded model checking technique that has been presented thus

far. However, we now search the space of voltage sequences that can be applied to the memory

so that a desired result will be stored within it. The underlying memory architecture differs from

previous chapters in that we will now use a linear array of memory cells. This can be thought of as

a crossbar with a single row wire and many column wires.

While the approach presented herein applies to Boolean formulas in general, we present results

for addition circuits. This allows us to compare our designs with several methods in the literature.

Indeed, we answer the following question. Given an initial memory configuration of predefined

size containing two bit-vectors x and y, what is the shortest sequence of voltage pulses that will

store the sum and carry bits of x + y in the memory? Note that the answer to such a question is

agnostic to the preservation or destruction of the values in the initial memory configuration. Indeed,

we consider the problem of designing n-bit adders under varying degrees of destructive operation.

The non-destructive (ND) design preserves stored data by storing the sum in a reserved section of

memory. The semi-destructive (SD) design reduces the number of computational components by

overwriting the memory storing one of the inputs and retaining the data for the other input. The

fully-destructive (FD) design does not attempt to retain either input, which reduces the number of

execution steps needed.

Designs for each adder are synthesized by posing the ND, SD, and FD problems as bounded model

checking procedures. By defining the initial memory configuration, a valid set of voltage inputs,

and modeling the memristor switching dynamics as logical formulas, the model checker searches

the space of valid sequences of voltage inputs to the wires in the memory such that the addition

results are stored. In particular, it returns the shortest such sequence. Thus, our approach generates

67

Adder Number of Nodes Execution Steps

[74] 5n+ 1 19n
[71] 35n 8n+ 12
[69] 3n+ 3 29n
[67] 3n+ 5 89n
[68] 5n+ 6 15n

Non-destructive 3n+ 3 7n
Semi-destructive 2n+ 3 7n
Fully destructive 2n+ 3 6n

Table 7.1: Comparison of our adder designs against other n-bit in-memory adder designs proposed in the
literature.

an addition procedure that is optimal in the number of execution steps given the number of nodes

in the memory.

Traditionally, logic synthesis algorithms have been used to design large memristive circuits by

reducing the problem to a combination of atomic logic gates, such as AND-INVERTER [87] or

MAJORITY-INVERTER [88] graphs. Rules of Boolean optimization are then applied to reduce

the size and delay of the resulting design. It is not clear how such an approach could leverage the

capability of performing destructive operations in applications that permit data loss. Our approach

to the design of memristive circuits does not reduce and transform a large logical Boolean formula

in terms of template designs implementing a specific fundamental logical operation. Instead, given

a memory array of predefined size, we use formal methods to discover the shortest sequence of

input operations that directly implement a given logical formula. In doing so, we trade off the

generality of logic synthesis methods for greater parsimony in space and time as well as for the

capability of exploiting the use of destructive operations.

68

Methodology

We first define the topology of our memory as a linear array of memristors as shown in Figure 7.2

at the end of this chapter. In this model, a common wire u is connected to a load resistor RG, and

each memristor m has one terminal connected to u. The other terminal of m is connected to a

tri-state voltage driver that serves as input to the memristor. This input voltage is encoded by the

wire w ∈ {VLOW , VHI , Z}, where VOFF < VLOW < VON < VHI and Z denotes high-impedance.

Additionally, we define VHI and VLOW such that VHI − VLOW > VON and VLOW − VHI < VOFF .

We encode the state of the common wire as a Boolean value such that u = 1 if it has a voltage of

significant magnitude and u = 0 otherwise. Similarly, the resistance states of m are encoded by

m = 0 for ROFF and m = 1 for RON .

Now, let x = x1x2 . . . xn and y = y1y2 . . . yn be the two n-bit input vectors to the adder, and let c

denote the carry-bit. Furthermore, let a1 and a2 denote auxiliary work units used to help calculate

the sum x + y. This choice is not arbitrary as it has been shown that two auxiliary memristors are

sufficient to compute any Boolean formula [89]. Let s = s1s2 . . . sn denote the desired sum to be

computed. Finally, let mα
i denote the state of the memristor used to encode the ith element of some

variable α, and let wαi denote the state of the corresponding input wire to the memristor. Then,

we can define an arbitary input and memory state of our system model by the respective k-tuples

W type and M type as follows, where type ∈ {ND,SD,FD} denotes the nature of the circuit being

synthesized – non-destructive, semi-destructive or fully-destructive:

WND = (wxn, . . . , w
x
1 , w

y
n, . . . , w

y
1 , w

c, wa1 , w
a
2 , w

s
n, . . . , w

s
1)

MND = (mx
n, . . . ,m

x
1 ,m

y
n, . . . ,m

y
1,m

c,ma
1,m

a
2,m

s
n, . . . ,m

s
1)

W SD = W FD = (wxn, . . . , w
x
1 , w

y
n, . . . , w

y
1 , w

c, wa1 , w
a
2)

MSD = MFD = (mx
n, . . . ,m

x
1 ,m

y
n, . . . ,m

y
1,m

c,ma
1,m

a
2).

69

We define the initial state of the system with no voltage on the common wire, i.e. u = 0, and the

memory components configured in accordance with M type
init . We then seek to learn a sequence of

input values W type such that the memory configuration defined by M type
final is eventually obtained.

The states M type
init and M type

final are defined as follows, where the ∗ symbol denotes a don’t-care value.

MND
init = (xn, . . . , x1, yn, . . . , y1, 0, 0, 0, 0, . . . , 0)

MND
final = (xn, . . . , x1, yn, . . . , y1, cout, ∗, ∗, sn, . . . , s1)

MSD
init = MFD

init = (xn, . . . , x1, yn, . . . , y1, 0, 0, 0)

MSD
final = (xn, . . . , x1, sn, . . . , s1, cout, ∗, ∗)

MFD
final = (∗, . . . , ∗, sn, . . . , s1, cout, ∗, ∗)

Given the state of the system at some time t, we define a transition relation that describes the state

behavior of the common wire u and captures the switching dynamics of a component memristor

m from t to t+ 1.

The voltage (with respect to ground) on the common wire u will be negligible (i.e. u = 0) unless

there exists some ON memristor m = 1 with the corresponding input w 6= Z. In the case that

w = VLOW , the resulting voltage on the common wire due to this memristor is not significant, so

again we have u = 0. Therefore, we obtain u = 1 if and only if some input w = VHI and its

corresponding memristor is ON (i.e. m = 1). For simplicity, the voltage across u can be defined

by Vu ≈ VHI when u = 1 and Vu ≈ VLOW when u = 0.

The dynamic switching of a memristor m is dependent on the electric potential difference across

its terminals and its current state; so, we can define this characteristic behavior with respect to the

states of w and the common wire u as shown in Figure 7.1. In particular, w = Z acts as an identity

operator by preventing any significant voltage acrossm. Hence, any component memristorm in an

70

wt mt ut mt+1

Z Rs ∗ Rs

VLOW 0 ∗ 0

VLOW 1 0 1

VLOW 1 1 0

VHI 0 0 1

VHI 0 1 0

VHI 1 ∗ 1

Figure 7.1: State transitions for a memristor m given the voltage on its input wire w and the state of the
common wire u.

arbitrary resistance state Rs will retain that state, regardless of the state of u, if its respective input

w = Z. As we consider the voltage on the common wire Vu ≈ VHI when u = 1, a component m

will retain or switch to the ROFF state if u = 1 and its corresponding w = VLOW because it will

be the case that VLOW −Vu < VOFF . Conversely, m will retain or switch to the RON state if u = 0

and w = VHI because Vu ≈ VLOW , so VHI − Vu > VON . The resistance state of m is unaltered in

all other cases.

Now, consider the following sub-computation of the kth sum bit sk and carry-bit c.

sk = xk ⊕ yk ⊕ cin

c = cout = (xk ∧ yk) ∨ (xk ∧ cin) ∨ (yk ∧ cin)

We define Wtype ⊂ W type and Mtype ⊂ M type to be the respective set of input wires and memory

71

components needed to perform this addition as follows.

WND = (wxk , w
y
k, w

c, wa1 , w
a
2 , w

s
k)

MND = (mx
k,m

y
k,m

c,ma
1,m

a
2,m

s
k)

WSD = WFD = (wxk , w
y
k, w

c, wa1 , w
a
2)

MSD = MFD = (mx
k,m

y
k,m

c,ma
1,m

a
2)

From the state transitions in Figure 7.1, we can isolate the execution of this sub-computation by

setting w = Z for all w /∈Wtype. Furthermore, a solution to this sub-problem, which is merely the

implementation of a 1-bit full adder, can be applied iteratively over the entire system to implement

the full n-bit adder. Thus, we can obtain a solution to the generalized ND, SD, and FD design

problems via a reduction to their respective 1-bit full adder equivalents.

To perform this reduction, we utilize the same transition relation (Fig. 7.1) but redefine our initial,

and corresponding final, memory configurations by Mtype
init and Mtype

final as follows.

MND
init = (xk, yk, cin, 0, 0, 0)

MND
final = (xk, yk, cout, ∗, ∗, sk)

MSD
init = MFD

init = (xk, yk, cin, 0, 0)

MSD
final = (xk, sk, cout, ∗, ∗)

MFD
final = (∗, sk, cout, ∗, ∗)

Let Wtype
t and Mtype

t define the states of the input wires and memory components at time t. Let

Mtype
1 = Mtype

init , and let tmax define the time at which the addition operation is completed. Observe

that for t > 1, Mtype
t is the memory configuration resulting from the application of input voltages

72

Wtype
t−1 . Therefore, our goal is to find a sequence of inputs Wtype

1 ,Wtype
2 , . . . ,Wtype

tmax−1 that yields

Mtype
tmax

= Mtype
final such that tmax is minimized.

Given the logical definition of our system, the adder design synthesis can be encoded as a bounded

model checking (BMC) problem. In particular, the BMC algorithm encodes the system dynamics

(Fig. 7.1) as a propositional formula and leverages satisfiability solvers to verify if the property

Mtype
final holds given an initial condition Mtype

init for all possible inputs. A solution to this problem

takes the form of an instantiation of the voltage sequences Wtype that derive Mtype
final from Mtype

init for

all possible inputs.

Results

Utilizing the NuSMV model checker ver. 2.6 [83], we obtained the voltage sequences shown

in Table 7.2 for implementing the 1-bit full adder sub-computation. The FD adder requires the

least number of execution steps because no input data needs to be recovered by the end of the

computation. However, the ND and SD adders only require one additional step, so the extra cost

associated with maintaining some or all of the input data is minimal with respect to our designs.

In terms of required memory components, all three designs utilize two auxiliary work memristors

to help reduce the number of execution steps. Additionally, a single memristor can be used for

the carry-bit as this memristor is simply overwritten with the carry-out value at the end of each

sub-computation. Since the ND design requires a reserved area of memory for the output, 3n + 3

memristors are necessary to implement n-bit addition. In contrast, the SD and FD n-bit adders

need only encode the input data, so 2n+ 3 memristors suffice for their implementation.

When compared to other in-memory serial adders in the literature (see Table 6.1), we find that the

semi-destructive and fully-destructive designs offer the greatest reduction in the required number

73

Time Step WND WSD WFD

1 (Z, VHI , VHI , VLOW , VHI , VLOW) (VHI , Z, VHI , VHI , VHI) (VHI , Z, Z, VHI , VHI)

2 (Z, VHI , Z, VHI , VHI , VHI) (VHI , Z, Z, Z, VHI) (Z, VHI , Z, VHI , VHI)

3 (Z, VLOW , VHI , VHI , VHI , VHI) (VLOW , Z, VLOW , Z, VHI) (VLOW , Z, VHI , VLOW , Z)

4 (Z, VHI , VLOW , Z, VHI , Z) (Z, VHI , VHI , VHI , Z) (Z, VHI , Z, VHI , Z)

5 (VHI , Z, Z, Z, VLOW , VLOW) (Z,Z, VHI , VHI , VLOW) (VLOW , Z, VLOW , VHI , VLOW)

6 (VLOW , Z, Z, VHI , VHI , VHI) (Z, VLOW , Z, VLOW , VHI) (VHI , VLOW , Z, VLOW , VHI)

7 (VHI , Z, VHI , VLOW , VHI , Z) (Z,Z, VLOW , VHI , VLOW) —

Table 7.2: Voltage sequences for implementing the non-destructive, semi-destructive, and fully-destructive
1-bit full adder.

Time Step mx
k my

k mc ma
1 ma

2 ms
k

Init xk yk cin 0 0 0
1 xk yk ∨ ¬cin ¬yk ∨ cin 0 ¬yk ∧ ¬cin 0
2 xk 1 ¬yk ∨ cin ¬yk ∧ cin ¬yk ¬yk ∧ cin
3 xk yk ∧ ¬cin 1 yk ⊕ cin ¬yk ∨ ¬cin yk ⊕ cin
4 xk yk yk ∧ cin yk ⊕ cin 1 yk ⊕ cin
5 1 yk yk ∧ cin yk ⊕ cin ¬xk ¬xk ∧ (yk ⊕ cin)

6 xk ∧ ¬ (yk ⊕ cin) yk yk ∧ cin xk ∨ (yk ⊕ cin) ¬xk ∨ ¬ (yk ⊕ cin) xk ⊕ yk ⊕ cin
7 xk yk (xk ∧ yk) ∨ (xk ∧ cin) ∨ (yk ∧ cin) xk ∧ (yk ⊕ cin) 1 xk ⊕ yk ⊕ cin

Table 7.3: Generalized memristor states at each stage of a non-destructive 1-bit full adder with respect to
arbitrary inputs

of memory components, while the non-destructive design is consistent with the optimized imple-

mentation from [69]. All three adders also improve computation time through a reduction in the

total number of execution steps compared current

Illustrative Execution of 1-bit Full Adder

To demonstrate the operation of the 1-bit full adder implementation, we consider an example

case of non-destructive addition when xk = yk = 1 and cin = 0. Therefore, we have MND
init =

74

(1, 1, 0, 0, 0, 0), and we expect to obtain MND
final = (1, 1, 1, ∗, ∗, 0) through the application of the

input voltage sequence WND in Table 7.2. The time evolution of our computational structure while

performing this addition is shown in Figures 7.2a-7.2h and is explained below.

At t = 1 (Fig. 7.2a), the circuit has just been initialized. The values for xk, yk, and cin are already

stored in their respective memristors mx
k, my

k, and mc. The remaining memristors are switched to

OFF . So, only mx
k and my

k are in the ON state, and u = 1 because VHI is being applied to my
k.

Consequently, mc and ma
2 retain the OFF state despite an input of VHI because VHI − Vu < VON .

Therefore, the memory configuration is unaltered after applying WND
1 . At t = 2 (Fig. 7.2b), an

identical result occurs when applying WND
2 . In particular, my

k is still in the ON state and has VHI

as input. Hence, u = 1 and the inequality VHI − Vu < VON holds, so memristors ma
1, ma

2, and

ms
k retain their OFF state. Similarly, mx

k and mc retain their respective states of ON and OFF ,

respectively, because the input Z acts as an identity function. At t = 3 (Fig. 7.2c), my
k is in theON

state with corresponding input VLOW , so u = 0 by definition. Consequently, my
k will remain in the

ON state because VLOW −Vu > VOFF . However, it will also be the case that VHI−Vu > VON . So,

the memristors mc, ma
1, ma

2, and ms
k will all switch to ON . At t = 4 (Fig. 7.2d), both my

k and ma
2

are in the ON state with input VHI , so u = 1. However, mc is in the ON state with input VLOW ,

and VLOW − Vu < VOFF . So, mc will switch to OFF , but the remaining memristors will all retain

their respective states. At t = 5 (Fig. 7.2e), we again have u = 1 because mx
k is ON with VHI as

input. Since ma
2 and ms

k both have VLOW as input and are in the ON state, these two memristors

will switch to OFF while all others retain their state. At t = 6 (Fig. 7.2f), VLOW is now being

applied to mx
k, but it is still the case that u = 1 because ma

1 is in the ON state with VHI as input.

Hence, ma
2 and ms

k will retain their state and mx
k will switch to OFF . At t = 7 (Fig. 7.2g), there

are no memristors in the ON state with a corresponding input of VHI , so u = 0 by definition.

Hence, VLOW − Vu > VOFF and VHI − Vu > VON . Therefore, memristors mx
k, mc, and ma

2 will

all switch to ON while the remaining components retain their respective states. The computation

75

is then completed at t = 8 (Fig. 7.2h) with MND
8 = (1, 1, 1, 1, 1, 0), which is consistent with the

desired output MND
final = (1, 1, 1, ∗, ∗, 0).

The sequence of memristor state evolutions for arbitrary xk, yk, and cin is shown in Table 7.3. In

particular, the memristors mx
k and my

k used to store the input data are utilized as work units in that

they can be overwritten during the procedure. However, the applied voltage sequence is structured

in such a way that the data is recovered by the end of the computation.

Conclusion and Future Work

We discover new one-bit adder designs using bounded model checking on the logical dynamics of

memristors without explicitly reducing addition to more fundamental operations such as IMPLY

logic. We present compact design solutions for n-bit in-memory addition using varying degrees

of destructive operations. Our non-destructive, semi-destructive, and fully-destructive adders are

shown to be state-of-the-art in the number of memristors required for computation.

Several directions for future research remain open. The automated design of n-bit multipliers

that compare favorably to other approaches is an immediate next step. Using learning methods

to explore different non-linear topologies of memristors may also lead to interesting non-intuitive

compact, fast and energy-efficient implementations of Boolean formula.

76

uRG

Z

mx
k

VHI

my
k

VHI

mc

VLOW

ma
1

VHI

ma
2

VLOW

ms
k

(a) t = 1

uRG

Z

mx
k

VHI

my
k

Z

mc

VHI

ma
1

VHI

ma
2

VHI

ms
k

(b) t = 2

uRG

Z

mx
k

VLOW

my
k

VHI

mc

VHI

ma
1

VHI

ma
2

VHI

ms
k

(c) t = 3

uRG

Z

mx
k

VHI

my
k

VLOW

mc

Z

ma
1

VHI

ma
2

Z

ms
k

(d) t = 4

uRG

VHI

mx
k

Z

my
k

Z

mc

Z

ma
1

VLOW

ma
2

VLOW

ms
k

(e) t = 5

uRG

VLOW

mx
k

Z

my
k

Z

mc

VHI

ma
1

VHI

ma
2

VHI

ms
k

(f) t = 6

uRG

VHI

mx
k

Z

my
k

VHI

mc

VLOW

ma
1

VHI

ma
2

Z

ms
k

(g) t = 7

uRG

mx
k my

k mc ma
1 ma

2 ms
k

(h) t = 8

Figure 7.2: Memory state at each stage of a 1-bit full adder procedure for non-destructive (ND) addition
with inputs xk = yk = 1 and cin = 0. The blue wire (memristor) denotes u = 1 (m = 1).

77

CHAPTER 8: BOOLEAN MATRIX MULTIPLICATION WITH 3D

CROSSBARS

In this chapter, we focus on a computation-in-memory solution to the problem of multiplying a set

of Boolean matrices, also known as Boolean matrix chain multiplication (BMCM). This is a funda-

mental computational task with applications in graph theory, group testing, data compression, and

digital signal processing. In particular, we propose a framework for mapping arbitrary instances of

BMCM to a 3-dimensional (3D) crossbar memory architecture consisting of unidirectional 1-diode

1-resistor (1D1R) structures.

As we have seen, traditional Resistive Random Access Memory (ReRAM) architectures are cross-

bars, or cross-point memories, consisting of two sets of parallel wires, with each wire from one set

placed perpendicularly to every wire in the other set. At every junction of wires, there is an inter-

connect acting as a switch between two wires. These interconnects typically consist of 1-transistor

1-resistor (1T1R) or 1-diode 1-resistor (1D1R) structures. However, it has been shown that in the

context of 3-dimensional memory stacking, the usage of 1D1R cells is a more effective [90] and

cost-efficient solution [91] than 1T1R. These 3D ReRAM memories are simply crossbars with

more than one layer of 1D1R interconnects. An example can be seen in Figure 8.1. An abstraction

of these memories is captured by Definition 7.

Definition 7. 3D CROSSBAR An |R| × |C| × L 3D crossbar is a 3-tuple X = (M,R,C) where

• M = {M1, . . . ,ML} is a set of |R| × |C| Boolean matrices, where

Mk =

Mk

11 Mk
12 . . . Mk

1|C|
...

...

Mk
|R|1 Mk

|R|2 . . . Mk
|R||C|

 represents a matrix of interconnects with |R| rows

and |C| columns. Each mk
ij ∈ {0, 1} denotes the state of the device connecting Ri with Cj

78

in layer k.

• R = {R1, . . . , RLR} is the set of row wire vectors, where Rk = {Rk
1 , . . . , R

k
|R|} and rki ∈

{0, 1} provides the same input voltage to every interconnect in Ri of layer 2k − 1.

• C = {C1, . . . , CLC} is the set of column wire vectors, where Ck = {Ck
1 , . . . , C

k
|C|} and

ckj ∈ {0, 1} provides the same input voltage to every interconnect in column j of layer 2k.

Figure 8.1: 4× 4× 3 3D crossbar. There are two sets of row and column wires and three layers of
interconnects.

Since all of the components in a 3D crossbar are unidirectional, they follow the unidirectional flow

axiom that we discussed in the previous chapter. We redefine it in Axiom 4 within the context of

3D crossbars. For the rest of this chapter, we assume square matrices for the sake of simplicity.

Axiom 4 (Unidirectional Flow). Let X = (M,R,C) be an n× n× L crossbar. Then ∀i, j, k; 1 ≤

i, j ≤ n; 1 ≤ k ≤ L− 1 :

79

[(
rki ∧m2k−1

ij

)
=⇒ ckj

]
∧
[(
ckj ∧m2k

ij

)
=⇒ rk+1

i

]
While the problem of performing logic computations using crossbars has been studied in the lit-

erature [51, 78, 79, 92, 93, 1, 69, 82], leveraging the structure of a 3-dimensional crossbar for

computation has largely gone unexplored. In this chapter, we take a step in this direction by

computing Boolean matrix chain products within 3D ReRAM. We use the terms 3D ReRAM and

crossbar interchangeably.

The Boolean matrix multiplication (BMM) problem may be defined as follows. Given two Boolean

matrices X1 = (x1
ij) ∈ {0, 1}n×n and X2 = (x2

ij) ∈ {0, 1}n×n, we wish to compute their product

S = X1X2 = (sij), where sij =
n∨
k=1

(x1
ik ∧ x2

kj).

X1 =

x1

11 . . . x1
1n

...

x1
n1 . . . x2

nn

 , X2 =

x2

11 . . . x2
1n

...

x2
n1 . . . x2

nn

S =

n∨
i=1

(x1
1i ∧ x2

i1)
n∨
i=1

(x1
1i ∧ x2

i2) . . .
n∨
i=1

(x1
1i ∧ x2

in)

n∨
i=1

(x1
2i ∧ x2

i1)
n∨
i=1

(x1
2i ∧ x2

i2) . . .
n∨
i=1

(x1
2i ∧ x2

in)

...
...

n∨
i=1

(x1
ni ∧ x2

i1)
n∨
i=1

(x1
ni ∧ x2

i2) . . .
n∨
i=1

(x1
ni ∧ x2

in)

Given Boolean matrices X1, . . . , Xα, where Xk = (xkij) ∈ {0, 1}n×n, we define the k-chain

product of these matrices by Sk = (skij) = X1X2 · · ·Xk+1 as defined by equation (8.3).

80

Methodology

The basis of our method consists of redirecting the flow of information through the crossbar based

on the values of its interconnects. In the case of an electrical system, this can be achieved by

applying a high voltage with respect to ground on some row wires in the first layer of the crossbar,

grounding all of the bottommost wires in said crossbar, and configuring the interconnects based

on variables of the formula φ that we wish to compute in such a way that electrical current will

flow into the grounded wires if and only if φ = 1. Thus, in principle this method follows the

paths-based logic paradigm. In the context of our abstraction, this means that, given a 3D crossbar

X = (M, {R1, . . . , RLR}, {C1, . . . , CLC}), a voltage is applied at some row wires r1
i1

= r1
i2

=

· · · = r1
ik

= 1. This will generate a flow of current such that, by successively applying Axiom 4,

will result in some rows rLRi1 = rLRi2 = · · · = rLRik = 1 having flow as well (or cLCi1 = cLCi2 = · · · =

cLCik = 1).

For any layer k, we can define the values of rki and ckj as specified in (8.1) and (8.2), respectively.

rki =
n∨
j=1

(
ck−1
j ∧m2(k−1)

ij

)
, r1
i is the ith input (8.1)

ckj =
n∨
i=1

(
rki ∧m2k−1

ij

)
(8.2)

skij =
n∨
t=1

(
sk−1
it ∧ xk+1

tj

)
, s1
ij =

n∨
t=1

(
x1
it ∧ x2

tj

)
(8.3)

We can expand equations (8.1) and (8.2) to obtain (8.4) and (8.5). Note the striking similarity

between the structure of these two formulas and (8.6), which corresponds to the expansion of

equation (8.3). Recall that (8.3) is an arbitrary entry in the matrix corresponding the product of

81

some Boolean matrices X1, . . . , Xk+1. This similarity provides some intuition as to the feasibility

of mapping the BMCM problem onto a 3-dimensional crossbar. In fact, the mapping is rather

simple, as specified in Theorem 7. The crux of the procedure lies in configuring the layers of

interconnects according to (8.7). A pictorial representation can be seen in Figure 8.2.

rki =
n∨

jk−1=1

. . .

 n∨
j2=1

 n∨
i2=1

 n∨
j1=1

(
n∨

i1=1

(
r1
i1 ∧m1

i1j1

)
∧m2

i2j1

)
∧m3

i2j2

 ∧m4
i3j2

 . . .

 ∧m
2(k−1)
ijk−1

(8.4)

ckj =

n∨
ik=1

. . .

 n∨
j2=1

 n∨
i2=1

 n∨
j1=1

(
n∨

i1=1

(
r1
i1 ∧m1

i1j1

)
∧m2

i2j1

)
∧m3

i2j2

 ∧m4
i3j2

 . . .

 ∧m2k−1
ikj

(8.5)

skγj =

n∨
i=1

. . .

 n∨
j2=1

 n∨
i2=1

 n∨
j1=1

(
n∨

i1=1

(
x1
γi1 ∧ x2

i1j1

)
∧ x3

j1i2

)
∧ x4

i2j2

 ∧ x5
j2i3

 . . .

 ∧ xk+1
ij

(8.6)

Figure 8.2: 4 × 4 × 3 crossbar illustrating the configuration proposed in order to compute the
product of Boolean matrices.

82

Mk =

Xk+1 , k odd

(Xk+1)T , k even
(8.7)

Theorem 7. Let X = (M,R,C) be an n × n × L 3D crossbar and let X1, . . . , Xα, α ≥ 2,

denote a set of Boolean matrices with k-chain product Sk = (skij) = X1X2 · · ·Xk+1. If Mk =
Xk+1 , k odd

(Xk+1)T , k even
, then

c
α/2
j = sα−1

γj , α even

r
(α+1)/2
i = sα−1

γi , α odd
for any row index γ ∈ {1, . . . , n}.

Proof. Let r1
i = x1

γi. The proof is by induction on α, where the notations =(i) and =IH indicate

that the result follows from equation (i) and the inductive hypothesis, respectively.

Base case: When α = 2,

c
α/2
j = c1

j =(8.2)

n∨
i=1

(r1
i ∧ x2

ij) =
n∨
i=1

(x1
γi ∧ x2

ij) =(8.3) s
1
γj

Inductive hypothesis: Assume that cβ/2j = sβ−1
γj for even β and r(β+1)/2

i = sβ−1
γi for odd β.

Inductive step: For α = β + 1 > 2, two cases arise.

83

• β + 1 even:

c
α/2
j = c

(β+1)/2
j =(8.2)

n∨
i=1

(
r

(β+1)/2
i ∧mβ

ij

)
=(8.1)

n∨
i=1

(
n∨
k=1

(
c

(β−1)/2
k ∧mβ−1

ik

)
∧mβ

ij

)

=(8.7)

n∨
i=1

(
n∨
k=1

(
c

(β−1)/2
k ∧ xβki

)
∧ xβ+1

ij

)

=IH

n∨
i=1

(
n∨
k=1

(
sβ−2
γk ∧ x

β
ki

)
∧ xβ+1

ij

)

=(8.3)

n∨
i=1

(
sβ−1
γi ∧ x

β+1
ij

)
=(8.3) s

β
γj

• β + 1 odd:

r
(α+1)/2
i = r

(β+2)/2
i

=(8.1)

n∨
j=1

(
c
β/2
j ∧mβ

ij

)
=(8.2)

n∨
j=1

(
n∨
k=1

(
r
β/2
k ∧mβ−1

kj

)
∧mβ

ij

)

=(8.7)

n∨
j=1

(
n∨
k=1

(
r
β/2
k ∧ xβkj

)
∧ xβ+1

ji

)

=IH

n∨
j=1

(
n∨
k=1

(
sβ−2
γk ∧ x

β
kj

)
∧ xβ+1

ji

)

=(8.3)

n∨
j=1

(
sβ−1
γj ∧ x

β+1
ji

)
=(8.3) s

β
γi

By applying Theorem 7 on X1, . . . , Xα ∈ {0, 1}n×n for some row index γ, we can compute the

entries in the γth row vector of Sα−1. That is, the values of sα−1
γ1 , sα−1

γ2 , . . . , sα−1
γn will be contained in

r
(α+1)/2
1 , r

(α+1)/2
2 , . . . , r

(α+1)/2
n when α is odd and in cα/21 , c

α/2
2 , . . . , c

α/2
n when α is even. Therefore,

we need only repeat this procedure n times, once for each γ ∈ {1, . . . , n}, in order to compute

84

Sα−1. We elucidate this approach with a simple example. Let X1, X2, X3 ∈ {0, 1}4×4.

X1 = X2 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, X3 =

1 0 0 1

0 1 0 1

1 0 1 0

1 1 1 0

Clearly, S2 = X1X2X3 = X3 since X1 and X2 are identity matrices. This problem instance can

be mapped to a 4×4×2 crossbarX = ({M1,M2}, {R1, R2, R3, R4}, {C1, C2, C3, C4}) by setting

M1 = X2 and M2 = (X3)T . In order to compute s2
11, s

2
12, s

2
13, s

2
14, let r1

1 = 1, r1
2 = r1

3 = r1
4 = 0.

From Theorem 7, it follows that r2
1, r

2
2, r

2
3, r

2
4 will hold the values of s2

11, s
2
12, s

2
13, s

2
14. Similarly, the

values for the second row of S2 (i.e. s2
21, s

2
22, s

2
23, s

2
24) are computed by setting r1

2 = 1, r1
1 = r1

3 =

r1
4 = 0 as can be seen in Figure 8.3.

Figure 8.3: Dashed lines represent interconnections between row and column wires. Yellow bars
denote a wire with a truth value of 1 and solid red lines are due to Axiom 4; they correspond to
interconnects redirecting flow from one wire to another.

85

Multiplying two n×n Boolean matrices has been shown to be computable inO(n3/p+log (p/n2))

time on a hypercube with n2 ≤ p ≤ n3 processors. This leads to the fastest runtime of O(n) with

n2 processors. Using this processor array model of parallel computation, we utilize n2 process-

ing elements in order to solve the Boolean matrix multiplication problem in linear time on a 2D

crossbar. In this case, each memristive device can be viewed as a processing element. Thus, the

proposed approach has an optimal runtime when we are multiplying two matrices. We conjecture

that this optimality holds for computing the product of an arbitrary number of matrices.

Experimental Results

The preceding example has been verified via HSPICE simulations using Schottky diodes and re-

sistors in 1D1R structures. Interconnects corresponding to variables with value 1 have LRS re-

sistances of 10Ω and variables with value 0 have HRS resistances of 100kΩ. A 2V voltage pulse

was applied on the topmost row wires in accordance with Theorem 7 and a resistor-to-ground

with resistance 1MΩ was placed on each of the bottommost wires in order to read the outputs,

which are shown in the matrix RV below. Note that the entries of RV coincide with the entries of

S2 = X1X2X3 = X3 as intended. It can be seen that whenever some s2
ij evaluates to 1, a voltage

value (with respect to ground) of 6− 8mV is read. Conversely, whenever s2
ij evaluates to 0, a volt-

age value of approximately 6µV is measured at the outputs. We have also verified our approach on

randomized Boolean matrices using a varying number of layers. While there is a significant read

margin between 0 and 1 values when up to 4 layers are used, a substantial signal degradation is

86

observed for 3D crossbars with 8 or more layers.

RV =

6.4374mV 6.1352µV 6.2094µV 8.4733mV

6.5884µV 8.4738mV 6.7009µV 8.4738mV

6.4275mV 6.3153µV 8.4734mV 6.0886µV

6.4288mV 8.4746mV 8.4747mV 7.8898µV

In order to compare the performance of 3D ReRAM against other popular memory architectures,

we have simulated a 2 MB memory using the DESTINY memory modeling tool [5]. The results

can be seen in Table 8.1. Note that each memory architecture prevails in some aspect of perfor-

mance. eDRAM has the lowest read and write latency, SRAM requires a low write energy at the

cost of area and substantial leakage power, 2D ReRAM has low leakage and read energy, and 3D

ReRAM benefits from exceptionally small area. In fact, DESTINY demonstrates that a 32 GB

memory would only occupy an area of 33.763 mm2 when using 22 nm technology in a 16-layer

3D ReRAM.

Table 8.1: DESTINY [5] simulations of different memory architectures using 22 nm technology,
including the 3D ReRAM used in this paper. In order to avoid bias, we utilize the default parame-
ters included in the simulator. Simulation files can be found in eecs.ucf.edu/∼velasquez/Table7.1.

Read
Latency

(ns)

Write
Latency

(ns)

Read
Energy

(pJ)

Write
Energy

(pJ)

Leakage
(mW)

Area
(mm2)

3D ReRAM 124.09 139.51 122.33 129.11 9.852 0.0027
2D ReRAM 14.325 22.9 41.179 21.132 2.268 0.0365
SRAM 41.541 41.541 386.6 2.31 1924 1.259
eDRAM 9.179 9.179 41.558 1009 2.637 0.2764

It is worth noting that the approach proposed in this paper is applicable to matrices whose dimen-

sions are greater than those of the 3D crossbar. This result follows from seminal work found in

87

Cannon’s thesis, where it is shown that matrix multiplication can be carried out by smaller sub-

matrix block products [94].

Concluding Remarks

We have shown how to compute the product of a set of Boolean matrices by mapping said matri-

ces to a 3-dimensional crossbar memory. The correctness of the proposed approach was proven

mathematically and a simple example was given to elucidate its effectiveness, with a read margin

of three orders of magnitude between the output voltages of 0 and 1 values. As with earlier chap-

ters, this result attempts to ameliorate the divide between the traditional computation model of von

Neumann architectures and the memory-processor integration paradigm in 3D ReRAM.

88

CHAPTER 9: TRANSITIVE CLOSURE WITHIN 2-LAYERED MEMORY

In the previous chapter, a framework for computing the product of a set of Boolean matrices was

presented. Recall that k−1 layers of interconnects are required to compute the product of k matri-

ces. Unfortunately, it is notoriously difficult to fabricate these 3-dimensional crossbars with many

layers. The most popular such architecture is Intel’s XPoint memory [19] which uses 2 layers. This

motivates the need for a computing paradigm that may be used on such existing architectures. In

this chapter, we introduce a new in-memory computing architecture that can compute the transitive

closure of graphs using the natural parallel flow of information in 3D crossbars with two layers in

a manner similar to the one discussed in the previous chapter.

The transitive closure problem is a well-studied graph theory problem with ubiquitous applications

in many different areas. In the theoretical domain, a classic result of Skyum and Valiant demon-

strates how problems computable by circuits of polynomial size can be reduced to the transitive

closure operation via projections [95]. In more applied domains, this problem underpins many

important procedures, such as resolving database queries [96], parsing grammars [30], determin-

ing data dependencies at compilation [97], as well as formal verification algorithms such as model

checking [98]. A thorough treatment of transitive closure computation and its applications can be

found in Nuutila’s doctoral thesis [99]. Inspired by these applications and motivated by the diffi-

culties of parallelizing transitive closure on John von Neumann architectures, we investigate if the

inherently parallel flow of information in 3D crossbar arrays can be used to perform graph transitive

closure in an efficient manner. The proposed architecture can be implemented using 3D crossbar

architectures with two layers of 1-diode 1-resistor (1D1R) interconnects. Our proposed procedure

has a runtime complexity of O(n2) using O(n2) devices. This compares favorably to efficient al-

gorithms on John von Neumann architectures with a time complexity of O(n3/p + n2 log p) on p

processors [100], leading to a runtime of O(n2 log n2) using O(n2) processors.

89

Figure 9.1: (Left) A graphical illustration of a 3D crossbar X = (M1,M2, R, C) with
two layers of interconnects and external feedback loops. The dashed arcs denote an exter-
nal interconnection between the corresponding bottom and top wires. (Right) Given X =
((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 1)), we configure the crossbar in accordance with The-
orem 8 so that M1 = X and M2 = XT . In order to compute the 4th row vector of the transitive
closure of X , a voltage bias is applied to R4 and R1, R2, R3 are grounded. Note that the values
(r1, r2, r3, r4) obtained from the voltage readings of (R1, R2, R3, R4) will correspond to (1, 0, 0, 1),
as expected.

The computational fabric we adopt in this paper is a 3D crossbar memory with two layers of 1-

diode 1-resistor (1D1R) interconnects. In our approach, the top and bottom rows or wires of the

crossbar are connected to each other using individual external connections as shown in Fig. 9.1.

Definition 8 presents an abstraction of the 3D crossbar architecture. As in the previous chapter, we

assume square matrices for simplicity.

Definition 8. An n × n 3D crossbar with two externally interconnected layers is a 4-tuple X =

(M1,M2, R, C), where

• Mk =

Mk

11 Mk
12 . . . Mk

1n

...
...

Mk
n1 Mk

n2 . . . Mk
nn

 is a Boolean matrix representing the interconnects with n

rows and n columns. Each mk
ij ∈ {0, 1} denotes the state of the device connecting Ri with

Cj in layer k ∈ {1, 2}. mk
ij = 1 denotes a 1D1R device in the low-resistance state (LRS)

90

state and mk
ij = 0 denotes the same device in a high-resistance state (HRS).

• R = {R1, . . . , Rn} is a vector of row wire values and ri ∈ {0, 1} provides the same in-

put voltage to every component M1
ij in the first layer. External feedback loops connect the

bottommost row wires with the corresponding topmost wires. Hence, it is enough to model

both the topmost and bottommost rows using the same vector of values. See Fig. 9.1 for an

illustrative example.

• C = {C1, . . . , Cn} is a vector of column wires and cj ∈ {0, 1} provides the same input to

every component M2
ij in the second layer of the 3D crossbar.

Since each 1D1R component contains a diode, current will only flow in one direction when said

component is in the LRS state. Thus, the unidirectional flow described in the previous chapter

holds. Without loss of generality, we assume that m1
ij and m2

ij allow current to flow only from

wires Ri to Cj and Cj to Ri, respectively.

In order to frame the dynamics of 3D crossbars within the framework of a well-studied computa-

tional model, we represent the foregoing dynamics as a Boolean circuit. In this Boolean circuit,

the value of each wire ri, cj is denoted by a Boolean function gri , g
c
j . Similarly, the outputs of

components M1
ij , M

2
ij are defined by Boolean functions g1

ij , g
2
ij . For the remainder of this section,

we define these functions.

Suppose we have a 3D crossbar X = (M1,M2, R, C). In order to induce a flow of current through

the crossbar, a voltage bias is applied to some row wire Ri and other wire(s) are grounded. The

trajectory of current will depend on the configuration of the interconnect matrices M1, M2. Due to

the unidirectional flow of current imposed by 1D1R interconnects, current will flow from wire Ri

to Cj if m1
ij is in the LRS state and wire Ri has a high voltage with respect to ground (i.e. m1

ij = 1

and ri = 1). Similarly, current will flow from Cj to Ri when m2
ij = 1 and cj = 1. We can thus

91

define the outputs of componentsM1
ij andM2

ij by g1
ij(ri,m

2
ij) = ri∧m2

ij and g2
ij(cj,m

1
ij) = cj∧m1

ij ,

respectively. We can now define the values of ri and cj by equations (9.1) and (9.2), where Ii is

1 if a voltage is applied to Ri and 0 if Ri is grounded. This behavior is well-captured by a cyclic

Boolean circuit [101]. See Fig. 9.2 for a pictorial definition.

cj = gcj
(
g1

1j(r1,m
1
1j), . . . , g

1
nj(rn,m

1
nj)
)

=
n∨
i=1

(
ri ∧m1

ij

) (9.1)

ri = gri
(
Ii, g2

i1(c1,m
2
i1), . . . , g2

in(cn,m
2
in)
)

= Ii ∨
n∨
j=1

(
cj ∧m2

ij

) (9.2)

In order to capture the dynamics of the feedback loop, we model the flow of information in the

crossbar through a discrete notion of time. Let ri,t and cj,t denote the state of wires Ri and Cj

during the tth iteration of the feedback loop. At time t = 0, we have ri,0 = Ii. The values of the

wires then evolve from t = 1 onwards according to equations (9.3) and (9.4).

cj,t =
n∨
i=1

(
ri,t−1 ∧m1

ij

)
(9.3)

ri,t =
n∨
j=1

(
cj,t ∧m2

ij

)
(9.4)

Equation (9.3) suggests that column j has a flow of current if and only if someRi has a flow at time

t− 1 and the corresponding component M1
ij is in the LRS state in the first layer of the 3D crossbar.

Similarly, equation (9.4) describes the fact that wire Ri has a new flow of current at time t if and

only if some wire Cj has a flow at time t and the corresponding component M2
ij is in the LRS state

92

in the second layer. While the state of the flows in the wires changes as time evolves, the states of

the interconnects are set at time t = 0 and do not evolve. Essentially, the interconnects store the

data values in the 3D crossbar while the interconnecting wires enable the desired computation in

our approach. This is in tune with the paths-based logic paradigm.

Figure 9.2: Cyclic Boolean circuit for a given n × n crossbar X = (M1,M2, R, C). In this
circuit, each wire value ri, cj has a corresponding Boolean function gri : {0, 1}n+1 7→ {0, 1}, gcj :
{0, 1}n 7→ {0, 1} which is a logical disjunction of its inputs. Similarly, g1

ij, g
2
ij : {0, 1}2 7→ {0, 1}

are 2-bit conjunctions corresponding to the logical output of each m1
ij and m2

ij , respectively.

93

Methodology

We are concerned with solving the transitive closure problem through repeated Boolean matrix

multiplication using in-memory computing. The mapping proposed may be suitable for memories

similar to Intel’s recently unveiled 3D XPointTM memory architecture [19], provided that feedback

loops are added externally (see Fig. 9.1). Given a graph G = (V,E), where V is the set of vertices

in the graph and E ∈ {0, 1}|V |×|V | is its adjacency matrix, the transitive closure of G consists of

the matrix X∗, where

X∗ij =

1 if i = j or there is a path from vi to vj in G

0 otherwise

Let X(k) denote the k-reachability matrix specifying which nodes are reachable by a path of at

most k edges. We assume that every node has a path of length 0 to itself, thus X(0) = I , where I

denotes the identity matrix. X(k) can be defined recursively as X(k) = (I ∨ E)k = X(k−1)X(1).

Since the maximum length of a path in G is |V | − 1, then X∗ = X |V |−1 = (I ∨E)|V |−1. However,

it is worth noting that a great deal of computations can be spared if the diameter of the graph

is known. This follows from the fact that the transitive closure problem converges on a solution

after diam(G) (diameter of G) iterations. Thus, X∗ = (I ∨ E)diam(G). It has been observed that

diam(G) << |V | in real-world networks [6] (See Table 9.1).

The preceding argument implies that the transitive closure of a graph can be computed using re-

peated matrix multiplication. Theorem 8 below demonstrates how this procedure can be efficiently

computed in an n×n crossbar with feedback loops. The values of the bits stored at the crosspoints

are fixed during initialization and do not change for the entirety of the procedure. See Fig. 9.1 for

a simple example.

94

Theorem 8. Let X = (M1,M2, R, C) be an n × n 3D crossbar, X denote a Boolean matrix, I

be the n × n identity matrix, and γ ∈ {1, . . . , n} be a row index . If M1 = X , M2 = XT and

(r10, . . . , rn0) = (Iγ1, . . . , Iγn), then rit = (X2t)γi and cjt = (X2t−1)γj at any given time index t.

Proof. The proof is by induction on the time index t.

(Base Case) t = 1:

cj1 =
n∨
k=1

(
rk0 ∧m1

kj

)
(9.5)

=
(
rγ0 ∧m1

γj

)
∨

n∨
k 6=γ

(
rk0 ∧m1

kj

)
(9.6)

= rγ0 ∧m1
γj = m1

γj = Xγj (9.7)

Equation (9.5) states that the column wire Cj1 has a flow if and only if a row wire has a flow and

its corresponding interconnect in layer 1 is in the LRS state. This arises naturally from the design

of our crossbar (see Eqn. (9.4)). Since the premise of the theorem sets wire values ri0 using a row

vector of the identity matrix, all values rk0 such that γ 6= k are set to 0. Equations (9.6) and (9.7)

use this fact to algebraically simplify the first equation.

95

ri1 =
n∨
j=1

(
cj1 ∧m2

ij

)
(9.8)

=
n∨
j=1

(
Xγj ∧m2

ij

)
(9.9)

=
n∨
j=1

(Xγj ∧Xji) =
(
X2
)
γi

(9.10)

Equation (9.8) captures the fact that the row wire gets a new flow if and only if one of the column

wires gets a flow from equations (9.5) through (9.7). Equation (9.9) is the result of algebraically

substituting equation (9.7) into equation (9.8). Equation (9.10) is derived using the fact that an

interconnect in the second layer of the crossbar is in the LRS state if and only if the corresponding

entry in the transpose of the matrix X is 1. The base case is established using equations (9.7)

and (9.10).

(Inductive Hypothesis): Assume that rit = (X2t)γi and cit = (X2t−1)γi for all γ and all i ≤ t.

(Induction): The value of the column wire cj,t+1 can be computed as follows.

cj,t+1 =
n∨
k=1

(
rkt ∧m1

kj

)
=

n∨
k=1

((
X2t
)
γk
∧m1

kj

)
(9.11)

=
n∨
k=1

((
X2t
)
γk
∧Xkj

)
=
(
X2t+1

)
γj

(9.12)

Equation (9.11) describes how the flow of current on a column arises from the flow of current on a

row wire and a corresponding interconnect being in the LRS state. It also leverages the inductive

hypothesis that rkt = (X2t)γk. Equation (9.12) exploits the fact that the first layer of the crossbar

96

stores the Boolean matrixX . Similarly, the value of the row wire ri,t+1 can be computed as follows:

ri,t+1 =
n∨
j=1

(
cj,t+1 ∧m2

ij

)
=

n∨
j=1

((
X2t+1

)
γj
∧m2

ij

)
(9.13)

=
n∨
j=1

((
X2t+1

)
γj
∧Xji

)
=
(
X2t+2

)
γi

(9.14)

Equation (9.13) uses the fact that there is a new flow on a row wire if and only if a column wire has

flow and its corresponding component in the second layer is in the LRS state. It also leverages the

result we proved in Equation (9.12) that cj,t+1 = (X2(t+1)−1)γj . Equation (9.13) is derived from

the transpose of the Boolean matrix X being stored in the second layer of the 3D crossbar.

Hence, we have proved that rit = (X2t)γi and cjt = (X2t−1)γj by mathematical induction.

Table 9.1: Number of nodes, edges, and diameter for all benchmark graphs exceeding one million
nodes from the Stanford Large Network Data Collection. Note that the diameter of the networks
is much smaller than their number of nodes as stated in [6].

Benchmark Number of nodes Number of edges Diameter

roadNet-PA 1, 088, 092 1, 541, 898 786
com-Youtube 1, 134, 890 2, 987, 624 20
as-Skitter 1, 696, 415 11, 095, 298 25
roadNet-TX 1, 379, 917 1, 921, 660 1054
soc-Pokec 1, 632, 803 30, 622, 564 11
roadNet-CA 1, 965, 206 2, 766, 607 849
wiki-Talk 2, 394, 385 5, 021, 410 9
com-Orkut 3, 072, 441 117, 185, 083 9
cit-Patents 3, 774, 768 16, 518, 948 22
com-LiveJournal 3, 997, 962 34, 681, 189 17
soc-LiveJournal1 4, 847, 571 68, 993, 773 16
com-Friendster 65, 608, 366 1, 806, 067, 135 32

97

From Theorem 8, we arrive at the transitive closure of a graph G using an in-memory computing

architecture that implements repeated Boolean matrix multiplication. Repeating this procedure for

each γ ∈ {1, . . . , n} yields the n vectors of the transitive closure matrixX∗. We illustrate this with

the simple example below, where the matrices X(1), . . . , X(4) are reachability matrices. Clearly,

the transitive closure matrix is X∗ = X(4). A visualization of how X∗ is computed in a 5 × 5

crossbar and its cyclic Boolean circuit can be seen in Figs. 9.3 and 9.4.

X(1) =

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

0 0 0 0 1

, X(2) =

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

X(3) =

1 1 1 1 0

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

, X(4) =

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

98

Figure 9.3: Procedure for computing the transitive closure X∗ of directed graph
G = ({v1, v2, v3, v4, v5}, E) (top). The two-layer crossbar with feedback loop X =
(M1,M2, {R1, R2, R3, R4, R5}, {C1, C2, C3, C4, C5}) (bottom) is unrolled in order to help visu-
alize the computation. Dashed lines represent interconnections between row and column wires,
yellow bars denote a wire with a value of 1 (i.e. current flows through it), and solid red lines
correspond to interconnects redirecting the flow of current from one wire to another. In this
case, we are computing the second row vector (X∗21, . . . , X

∗
25) of X∗ by setting (r10, r20, r30, r40,

r50) = (0, 1, 0, 0, 0). Note that (c12, c22, c32, c42, c52) = (X∗21, X
∗
22, X

∗
23, X

∗
24, X

∗
25).

It follows from Theorem 8 that, given a 3D crossbar X = (M1,M2, R, C), (r1, . . . , rn) and

(c1, . . . , cn) will converge on (X∗γ1, . . . , X
∗
γn) when the wire vector (r10, . . . , rn0) is configured

according to (Iγ1, . . . , Iγn), where I is the identity matrix. This convergence holds independently

of timing errors, as is evidenced by equation (9.15) below, which an expansion of (9.4). This

provides a definition for rit that is independent of time.

99

Figure 9.4: Boolean circuit corresponding to the example in Fig. 9.3. Boolean gates g1
ij and g2

ij

have inputs X(1)
ij and X(1)

ji in accordance with Theorem 8. Each gri has an input Ii corresponding
to the value of ri0.

rit =
n∨

j1=1

(
n∨

i1=1

. . .

(
n∨

jt=1

(
n∨

it=1

(rit,0 ∧m1
itjt) . . .

)))

=
n∨

j1=1

n∨
i1=1

· · ·
n∨

jt=1

(
m1
γjt ∧ · · · ∧m

1
i1j1
∧m2

ij1

)
(9.15)

Note from (9.15) that rit holds if and only if there is some sequence of interconnects in the LRS

state. This assertion is independent of differing delays in wires or interconnects. That is, wire

Ri will eventually have a high voltage with respect to ground as long as the right sequence of

interconnects is in the LRS state. It follows that delays arising from process variations or external

100

factors can be accounted for by increasing the time interval before reading the outputs of the

system. Thus, no additional complexity or circuitry need be introduced in order to deal with such

timing errors.

All-Pairs Shortest Paths

The all-pairs shortest paths problem seeks to compute the shortest length of a path between any pair

of nodes in a network. There is a well-known connection between this problem and the transitive

closure operation. In fact, these problems become synonymous when dealing with unweighted

graphs. While the shortest paths problem minimizes over additions of edge weights, the transitive

closure operation performs logical conjunctions and disjunctions over binary edge weights. In the

case of an unweighted graph G = (V,E) with k-reachability matrix X(k) = (I ∨E)k, the shortest

path length between two nodes vα and vβ can be determined using transitive closure by finding the

first t for which X(t)
αβ = 1, thereby minimizing over the number of edges in a path. Due to these

similarities, the mapping proposed in the previous section serves as a precursor to the solution of

the single-source and all-pairs shortest paths problems. Such a solution opens up the possibility

for a computation-in-memory approach to a variety of interesting problems, such as Gaussian

elimination [102], optimal routing [103], and generating regular expressions for Deterministic

Finite Automata [104], among others.

Theorem 9 demonstrates that the shortest path length between any two nodes vα and vβ can be

determined using the mapping described in the previous section by monitoring the values rβ , cβ .

Theorem 9. Let G = (V,E) denote an unweighted graph, where |V | = n and X(1) = (I ∨ E)

denotes the 1-reachability matrix of G. Given an n × n crossbar X = (M1,M2, R, C) with

M1 = X(1) and M2 = (X(1))T , if the shortest path between vα, vβ ∈ V is of length τ , then

rβ,τ/2 ∧ ¬cβ,τ/2 holds if τ is even and ¬rβ,(τ−1)/2 ∧ cβ,(τ+1)/2 holds if τ is odd.

101

Proof. Let (r10, . . . , rn0) = (Iα0, . . . , Iαn). From Theorem 8, we have rit = ((X(1))2t)αi and

cjt = ((X(1))2t−1)αj . Two cases arise.

• τ even:

rβ,τ/2 =
(
(X(1))τ

)
αβ

= X
(τ)
αβ (9.16)

cβ,τ/2 =
(
(X(1))τ−1

)
αβ

= X
(τ−1)
αβ (9.17)

Since the shortest path is of length τ , it follows that X(τ−1)
αβ = 0 and X(τ)

αβ = 1. Therefore,

rβ,τ/2 ∧ ¬cβ,τ/2 must hold.

• τ odd:

rβ,(τ−1)/2 =
(
(X(1))τ−1

)
αβ

= X
(τ−1)
αβ (9.18)

cβ,(τ+1)/2 =
(
(X(1))τ

)
αβ

= X
(τ)
αβ (9.19)

Since the shortest path is of length τ , it follows that X(τ−1)
αβ = 0 and X(τ)

αβ = 1. Therefore,

¬rβ,(τ−1)/2 ∧ cβ,(τ+1)/2 must hold.

It follows as a corollary to Theorem 9 that the length of the shortest path from vα to vβ can be

obtained by applying a voltage to wire Rα, grounding wires Rk (k 6= α), and reading the values of

wires Rβ and Cβ for every feedback loop iteration until rβ ⊕ cβ holds. This approach allows us to

solve the single-source shortest paths problem with some added circuitry required to continuously

monitor the values of wires Rβt and Cβt. Repeating this operation for each α ∈ {1, . . . , n} yields

a solution to the all-pairs shortest paths problem.

102

Complexity

Given a graph G = (V,E) with |V | = n and a crossbar X = (M1,M2, R, C), the mapping

proposed in Theorem 8 usesO(n2) devices. Since the maximum length of a path is n−1, we need

only compute (I ∨ E)n−1. It follows from Theorem 8 that, if M1 = (I ∨ E) and M2 = (I ∨ E)T ,

then cj,n/2 = (I ∨ E)
2(n/2)−1
γj = (I ∨ E)n−1

γj . Because this computation must be done for every

γ ∈ {1, . . . , n}, we have a time complexity ofO(n2) for the transitive closure and all pairs shortest

paths problems. The single-source variants of these problems can be solved in O(n) operations

since we only need to compute values for exactly one row vector indexed by γ ∈ {1, . . . , n}.

As a point of comparison, a straightforward parallelization of Floyd’s algorithm, which is itself

a generalization of transitive closure, yields a time complexity of O(n3/p + n2 log p) given p

processors [100]. This leads to a runtime of O(n2 log n2) using n2 processors as compared to our

O(n2) runtime using O(n2) devices.

An efficient in-memory hardware solution to the transitive closure problem can be a precursor to

other fast graph algorithms. This is due to the dependence of reachability problems for undirected

graphs on the transitive closure procedure. This has been well-documented and poses a significant

hurdle in the parallelization of several graph algorithms [105] on John von Neumann architectures.

Universal Computation

To the best of our knowledge, the first exposition of transitive closure as a computational model

was presented by Skyum and Valiant in [95]. The framework we have proposed in this paper allows

for a physical implementation of this theoretical study. However, it is worth noting that much work

remains to be done in the pursuit of efficient computation of Boolean formulas through the use of

103

a transitive closure model.

Consider a Boolean formula φ : {0, 1}p 7→ {0, 1} with p variables b1, . . . , bp, where a literal is

defined as a variable bi or its negation ¬bi. The formula φ is said to be in conjunctive normal

form (CNF) if it is structured as a conjunction of disjunctive clauses. That is, φ =
∧
i

∨
j l
i
j is in

CNF, where lij is the j th literal in the ith clause. Conversely, the disjunctive normal form (DNF)

is structured as a disjunction of conjunctive clauses φ =
∨
i

∧
j l
i
j . These forms are universal and

thus any model that computes arbitrary CNF or DNF formulas suffices to compute any Boolean

formula.

Given a CNF formula φ with |Φ| clauses and k variables per clause, we can construct a graph

G = (V,E) with source and terminal vertices s, t ∈ V such that there is a path from s to t if and

only if φ evaluates to 1. This can be accomplished in a straightforward manner by designating the

presence or absence of an edge to be the value of a literal in φ. The details of how we construct G

for a given CNF formula can be seen in the following list. See Figure 9.5 for a visualization and

Figure 9.6 for an example.

Vertices (CNF)

• Vertex v(i−1)k+j corresponds to the j th literal in the ith clause. Thus, the first k|Φ| vertices

correspond to literals.

• For the ith clause, we create the vertex vk|Φ|+i. Thus, vertices vk|Φ|+i, . . . , v(k+1)|Φ| correspond

to clauses. Of these, v(k+1)|Φ| functions as the terminal node t.

• The source node s is v(k+1)|Φ|+1.

Edges (CNF)

104

• The edge (v(i−1)k+j, vk|Φ|+i) ∈ E connects the j th literal in the ith clause with its correspond-

ing clause vertex. This edge is present if said literal evaluates to 1.

• For j = 1, . . . , k, edges of the form (v(k+1)|Φ|+1, vj) ∈ E connect the source vertex with the

literal vertices in the first clause.

We can similarly define a graph construction given a DNF formula. We have chosen to leave the

numbering of the vertices corresponding to literals and clauses the same as in the CNF construction

for convenience.

Vertices (DNF)

• Vertex v(i−1)k+j corresponds to the j th literal in the ith clause. Thus, the first k|Φ| vertices

correspond to literals.

• For the ith clause, we create the vertex vk|Φ|+i. Thus, vertices vk|Φ|+i, . . . , v(k+1)|Φ| correspond

to clauses.

• Vertex v(k+1)|Φ|+1 corresponds to the source node s.

• Vertex v(k+1)|Φ|+2 corresponds to the terminal node t.

Edges (DNF)

• The edge (v(i−1)k+j, v(i−1)k+j+1) ∈ E is present if the j th literal in the ith clause is 1.

• for all i = 1, . . . , |Φ|, we have (v(k+1)|Φ|+1, v(i−1)k+1) ∈ E. These edges correspond to the

connections from the source node s to the first literal in each clause.

• for all i = 1, . . . , |Φ|, we have (vk|Φ|+i, v(k+1)|Φ|+2) ∈ E. These edges correspond to connec-

tions from each clause to the terminal node t.

105

Figure 9.5: Graph constructions for a given CNF (Top) and DNF (Bottom) formula with |Φ| clauses
and k literals per clause. The dashed lines denote edges whose presence is a function of the literals
in the formula as specified in our constructions.

X⊕CNF =

0 0 0 0 0 0 0 0 0 0 0 0 b1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ¬b2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ¬b3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ¬b1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 b2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ¬b3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ¬b1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ¬b2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 b3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b3 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(9.20)

106

Figure 9.6: (Top) Given the CNF 3-bit parity formula φ = (b1 ∨ ¬b2 ∨ ¬b3) ∧ (¬b1 ∨ b2 ∨ ¬b3) ∧
(¬b1 ∨ ¬b2 ∨ b3) ∧ (b1 ∨ b2 ∨ b3), its corresponding graph construction is given by the adjacency
matrix X⊕CNF (9.20). (Bottom) Given the DNF 3-bit parity formula φ = (b1 ∧ ¬b2 ∧ ¬b3) ∨ (¬b1 ∧
b2 ∧ ¬b3) ∨ (¬b1 ∧ ¬b2 ∧ b3) ∨ (b1 ∧ b2 ∧ b3), its corresponding graph construction is given by the
adjacency matrix X⊕DNF (9.21).

107

X⊕DNF =

0 b1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ¬b2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ¬b3 0 0 0 0 0
0 0 0 0 ¬b1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 b2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ¬b3 0 0 0 0
0 0 0 0 0 0 0 ¬b1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ¬b2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 b3 0 0 0
0 0 0 0 0 0 0 0 0 0 b1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 b2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(9.21)

Suppose we are given a 3D crossbar C = (M1,M2, R, C) and a CNF formula φCNF. It follows

from Theorem 8 that, if we set M1 = X⊕CNF, M2 = (X⊕CNF)T , and γ = (k + 1)|Φ| + 1, then

we will read the wire value r(k+1)|Φ| = φCNF. Similarly, given a DNF formula φDNF, we can set

M1 = X⊕DNF, M2 = (X⊕DNF)T , and γ = (k + 1)|Φ|+ 1 to read the wire value r(k+1)|Φ|+2 = φDNF.

While the constructions presented in this section function as an interesting proof of concept, they

require crossbars of dimension O(k|Φ|)×O(k|Φ|). As such, the authors believe that this remains

a theoretical curiosity that is not yet practical enough to be implemented in real systems. However,

it is a first step in the direction of a universal in-memory computation model based on transitive

closure.

Experimental Results

In order to cement the validity and effectiveness of our approach, simulations were carried out

using HSPICE and NVSim. The HSPICE simulations were performed under the following pa-

rameters. The resistive components of the 1D1R interconnects corresponding to mk
ij = 1 have a

resistance of 1 mΩ, devices corresponding to mk
ij = 0 have a resistance of 1 GΩ, and resistors to

ground have a resistance of 1 kΩ. For our choice of diode model, we decided to use the Super

Barrier Rectifier (SBR) SPICE model SBR3U20SA designed by Diodes Incorporated R© [85].

108

We test our approach on random Boolean matrices of various sizes. For crossbars of sizes 4 × 4,

8 × 8, 16 × 16, 32 × 32, 64 × 64, and 128 × 128, we sample 100 random matrices and compute

their transitive closure using our approach. See Table 9.2 for results. It can be seen that there is a

margin of two orders of magnitude between 1 and 0 values in the average case and there is an order

of magnitude gap in the worst case; that is, in the case where we compare the minimal 1 value and

the maximal 0 value.

In defining these random matrices, we utilize a Bernoulli distribution to determine the probability

P (vi, vj) of two nodes being connected by an edge. We set this probability as the threshold function

(9.22) for Bernoulli graphs [106].

T (n) =
log(n)

n
(9.22)

Given a graph G = (V,E), we choose connectivity probabilities P (vi, vj) = T (|V |) according to

equation (9.22) for the simulations in Table 9.2. We choose this threshold function because it can

be shown that if P (vi, vj) = kT (|V |), the probability of a graph being connected approaches 0 (1)

if k < 1 (k > 1). This provides a good mix of values in our transitive closure matrices.

Energy and Latency Considerations

In order to test the latency and energy efficiency of our approach, we model our architecture within

the NVSim non-volatile memory simulation environment [7]. For the resistive component of the

1D1R interconnects, we modeled the memristor studied in [86]. This memristor exhibits a switch-

ing time of 85 ps under a 2 V pulse with switching currents below 15 µA, leading to a switching

energy of 3 fJ. The read and write latencies and energies for memories of various sizes under this

109

Table 9.2: HSPICE simulation results of graph transitive closure computation using our 3D cross-
bars. The first column denotes crossbar sizes. For each row in the table, the transitive closure of
100 random matrices were computed and the minimal voltage reading corresponding to a value
of 1, or true, was recorded in the first column. The maximal value corresponding to a value of 0
was also recorded, as were the average and standard deviations of false and true voltage readings.
It can be seen that there is a two-orders-of-magnitude gap between true and false readings in the
average case and there is an order of magnitude gap in the worst case; that is, in the case where we
compare the minimal true value and the maximal false value. Circuit generation files can be found
in eecs.ucf.edu/∼velasquez/TransitiveClosure.

Crossbar
dimen-
sions

Minimal
true

reading

Maximal
false

reading

Average
true

reading

Average
false

reading

Standard
Deviation of
true readings

Standard
Deviation of

false readings

4× 4 4.3156 V 0.0480 V 4.7615 V 0.0129 V 0.5049 V 0.0012 V
8× 8 3.9149 V 0.0800 V 4.6341 V 0.0194 V 0.9855 V 0.0027 V

16× 16 3.8664 V 0.0960 V 4.5495 V 0.0136 V 1.4698 V 0.0051 V
32× 32 3.8324 V 0.1280 V 4.4959 V 0.0326 V 1.6871 V 0.0131 V
64× 64 3.8383 V 0.1601 V 4.4231 V 0.1021 V 2.2237 V 0.0050 V

128× 128 3.8303 V 0.1762 V 4.3458 V 0.1195 V 2.7045 V 0.0061 V

configuration are presented in Table 9.3. We use these values to determine the computation time

and energy consumed by our approach when computing the transitive closure of graphs with tens

of thousands of nodes. These results are reported in Table 9.4. It can be seen that the transitive

closure of networks with tens of thousands of nodes can be computed using less energy (1.225 nJ

for the ca-HepPh benchmark) than it takes to access DRAM (1.3− 2.6 nJ) [24].

Note that the write latency and write energy dominate the computation time and energy consumed

in the benchmarks presented. Thus, it is important to further develop the graph-theoretic platform

presented in this paper so that multiple algorithms may be run on the stored graph data. This would

allow us to only configure the memory once, thereby minimizing latency and energy usage.

110

Table 9.3: Latency and power metrics of the proposed architecture for various mem-
ory capacities using the NVSim [7] simulator. NVSIM files can be found in
eecs.ucf.edu/∼velasquez/TransitiveClosure.

Memory
capac-

ity

Read
latency

(ns)

Write
latency

(ns)

Read
energy

(nJ)

Write
energy

(nJ)

1 MB 1.535 1.292 0.016 0.013
4 MB 2.200 2.100 0.029 0.25
16 MB 4.131 4.413 0.064 0.049
64 MB 10.028 11.459 0.175 0.098
256 MB 30.661 35.925 0.768 0.194

Table 9.4: Computation time and energy usage metrics for various benchmark circuits taken from
the Stanford Large Network Data Collection. These networks are mapped to the memories pre-
sented in Table 9.3 and the aforementioned metrics are reported. In the (Read) columns, we report
values that correspond to memories whose cells contain the contents of the network. The (Write
+ Read) columns assume that the memories must first be configured to contain the contents of the
network.

Benchmark Number of
Nodes

Time
(Read)

Time
(Write +

Read)

Energy
(Read)

Energy
(Write +

Read)

ego-Facebook 4, 039 2.712 ns 17.206 µs 0.116 nJ 0.205 µJ
wiki-Vote 7, 115 5.923 ns 72.309 µs 0.256 nJ 0.803 µJ
p2p-Gnutella09 8, 114 6.691 ns 72.309 µs 0.320 nJ 0.803 µJ
ca-HepPh 12, 008 23.34 ns 0.375 ms 1.225 nJ 3.208 µJ
ca-AstroPh 18, 772 87.977 ns 2.351 ms 5.376 nJ 12.699 µJ
p2p-Gnutella25 22, 687 71.601 ns 2.352 ms 3.840 nJ 12.699 µJ
ca-CondMat 23, 133 87.977 ns 2.352 ms 5.376 nJ 12.699 µJ
p2p-Gnutella24 26, 518 71.601 ns 2.352 ms 3.840 nJ 12.699 µJ
cit-HepTh 27, 770 83.883 ns 2.352 ms 5.376 nJ 12.699 µJ

Concluding Remarks

A new in-memory computing design for obtaining the transitive closure of a graph using a crossbar

with two layers of interconnects has been presented in this chapter. This procedure only requires

the addition of external feedback loops to already existing 3D memories. We have also shown that

111

the approach is both fast and energy-efficient on practical networks obtained from the Stanford

Large Network Data Collection.

We plan to extend this framework to solve the problem of parsing context-free grammars (CFG)

efficiently within memory as it has been shown that fast CFG parsing requires efficient transitive

closure algorithms [30]. We also plan to explore the hardware parallelization of other graph al-

gorithms via in-memory computing as we believe that success in this area would bring us much

closer to a unified in-memory computing architecture.

112

CHAPTER 10: CONCLUSION

In this thesis, we have demonstrated how computation can be performed within crossbar memories

by leveraging the paths of current between two wires. The theory of paths-based logic was devel-

oped as a foundation to argue mathematically about the meaning of paths when interconnects in

the memory are programmed according to variables in a given function. This theory yielded some

surprising results. Namely, that a small subset of paths between two wires has the same computing

power as all of the paths in the crossbar. This result was leveraged in our bounded model check-

ing procedures by providing an upper bound on the number transitions that the model checking

automata has to make in order to determine whether a design is valid for a given formula. A ro-

bust fault tolerance model was also proposed and verified experimentally. Since the complexity of

model checking procedures is exponential in the number of parameters, the proposed framework

was restricted to generating designs for small functions. We argued that such a constraint can be

overcome by separating a function into sub-formula and using a network of inter-connected cross-

bars to compute the function by using the output of one crossbar as input to the next. However, we

proved that in this case, paths-based logic on homogeneous crossbars is no longer universal and a

more expressive crossbar model is required. We demonstrated an effective solution by introducing

heterogeneous crossbars and established how our approach leads to state-of-the-art fault-tolerant

addition circuits in these non-traditional crossbars. An alternative synthesis technique that pro-

duces designs which are state-of-the-art in terms of space was also presented. This technique

searches through the space of valid voltage sequences as opposed to memory configurations.

In the later chapters, we looked at two problems of interest. First, the problem of computing the

product of a set of Boolean matrices was investigated. A 3-dimensional crossbar solution that is

parsimonious in space and execution time was presented. The second problem we considered was

that of computing the transitive closure of a network using only two layers of interconnects. We

113

proposed a solution and rigorously proved its correctness as well as verified it experimentally on

randomized matrices and real-world networks with tens of thousands of nodes.

114

LIST OF REFERENCES

[1] Tezaswi Raja and Samiha Mourad. Digital logic implementation in memristor-based

crossbars-a tutorial. In Electronic Design, Test and Application, 2010. DELTA’10. Fifth

IEEE International Symposium on, pages 303–309. IEEE, 2010.

[2] Eero Lehtonen, Jussi H Poikonen, and Mika Laiho. Applications and limitations of mem-

ristive implication logic. In Cellular Nanoscale Networks and Their Applications (CNNA),

2012 13th International Workshop on, pages 1–6. IEEE, 2012.

[3] Alvaro Velasquez and Sumit Kumar Jha. Parallel computing using memristive crossbar

networks: Nullifying the processor-memory bottleneck. In Design & Test Symposium (IDT),

2014 9th International, pages 147–152. IEEE, 2014.

[4] Luca Pilato, Sergio Saponara, and Luca Fanucci. Performance of digital adder architectures

in 180nm cmos standard-cell technology. In Applied Electronics (AE), 2016 International

Conference on, pages 211–214. IEEE, 2016.

[5] Matt Poremba, Sparsh Mittal, Dong Li, Jeffrey S Vetter, and Yuan Xie. Destiny: A tool

for modeling emerging 3d nvm and edram caches. In Proceedings of the 2015 Design, Au-

tomation & Test in Europe Conference & Exhibition, pages 1543–1546. EDA Consortium,

2015.

[6] Béla Bollobás and Oliver M Riordan. Mathematical results on scale-free random graphs.

Handbook of graphs and networks: from the genome to the internet, pages 1–34, 2003.

[7] Xiangyu Dong, Cong Xu, Norm Jouppi, and Yuan Xie. Nvsim: A circuit-level performance,

energy, and area model for emerging non-volatile memory. In Emerging Memory Technolo-

gies, pages 15–50. Springer, 2014.

115

[8] Andre DeHon and Benjamin Gojman. Crystals and snowflakes: building computation from

nanowire crossbars. Computer, 44(2):0037–45, 2011.

[9] Dmitri B Strukov and Konstantin K Likharev. Reconfigurable nano-crossbar architectures.

Nanoelectronics and Information Technology, pages 543–562, 2012.

[10] Mark Neisser and Stefan Wurm. Itrs lithography roadmap: 2015 challenges. Advanced

Optical Technologies, 4(4):235–240, 2015.

[11] Seong Jun Kang, Coskun Kocabas, Taner Ozel, Moonsub Shim, Ninad Pimparkar, Muham-

mad A Alam, Slava V Rotkin, and John A Rogers. High-performance electronics using

dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature nanotechnology,

2(4):230–236, 2007.

[12] Tezaswi Raja and Samiha Mourad. Digital logic implementation in memristor-based

crossbars-a tutorial. In Electronic Design, Test and Application, 2010. DELTA’10. Fifth

IEEE International Symposium on, pages 303–309. IEEE, 2010.

[13] Bao Liu. Advancements on crossbar-based nanoscale reconfigurable computing platforms.

In Circuits and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on,

pages 17–20. IEEE, 2010.

[14] Yehua Su and Wenjing Rao. Defect-tolerant logic hardening for crossbar-based nanosys-

tems. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013,

pages 1801–1806. IEEE, 2013.

[15] Yehua Su and Wenjing Rao. An integrated framework toward defect-tolerant logic imple-

mentation onto nanocrossbars. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 33(1):64–75, 2014.

116

[16] Bo Yuan, Xin Yao, Bin Li, and W Thomas. A new memetic algorithm with fitness approxi-

mation for the defect-tolerant logic mapping in crossbar-based nano-architectures. 2014.

[17] Masoud Zamani and Mehdi Baradaran Tahoori. Variation-aware logic mapping for crossbar

nano-architectures. In Design Automation Conference (ASP-DAC), 2011 16th Asia and

South Pacific, pages 317–322. IEEE, 2011.

[18] Kimberly Keeton. Memory-driven computing. In FAST, 2017.

[19] Intel PR. Intel and micron produce breakthrough memory technology. Accessed: 28 July,

2015.

[20] Katherine Bourzac. Has intel created a universal memory technology?[news]. IEEE Spec-

trum, 54(5):9–10, 2017.

[21] Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. Platform storage performance

with 3d xpoint technology. Proceedings of the IEEE, 2017.

[22] Sandisk PR. Sandisk and hp launch partnership to create memory-driven comput-

ing solutions. https://www.sandisk.com/about/media-center/press-

releases/2015/sandisk-and-hp-launch-partnership. Accessed: 8 Octo-

ber, 2015.

[23] Andreas Nowatzyk, Fong Pong, and Ashley Saulsbury. Missing the memory wall: The case

for processor/memory integration. In Computer Architecture, 1996 23rd Annual Interna-

tional Symposium on, pages 90–90. IEEE, 1996.

[24] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In Solid-

State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International,

pages 10–14. IEEE, 2014.

117

[25] Bill Dally. Challenges for future computing systems. https://www.hipeac.

net/events/activities/7151/challenges-for-future-computing-

systems/, January 19 2015. HiPEAC 2015 Keynote speech.

[26] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams. The

missing memristor found. Nature, 453(7191):80–83, 2008.

[27] George K Atia and Venkatesh Saligrama. Boolean compressed sensing and noisy group

testing. Information Theory, IEEE Transactions on, 58(3):1880–1901, 2012.

[28] Haibing Lu, Jaideep Vaidya, and Vijayalakshmi Atluri. Optimal boolean matrix decompo-

sition: Application to role engineering. In Data Engineering, 2008. ICDE 2008. IEEE 24th

International Conference on, pages 297–306. IEEE, 2008.

[29] Yeghisabet Alaverdyan and Gevorg Margarov. Fast asymmetric cryptosystem based on

boolean product of matrices. In Computer Systems and Applications, 2009. AICCSA 2009.

IEEE/ACS International Conference on, pages 392–395. IEEE, 2009.

[30] Leslie G Valiant. General context-free recognition in less than cubic time. Journal of

computer and system sciences, 10(2):308–315, 1975.

[31] Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.

Journal of the ACM (JACM), 49(1):1–15, 2002.

[32] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams. The

missing memristor found. Nature, 453(7191):80–83, 2008.

[33] Jie Sun, Erik Lind, Ivan Maximov, and HQ Xu. Memristive and memcapacitive character-

istics of a au/ti—inp/ingaas diode. Electron Device Letters, IEEE, 32(2):131–133, 2011.

[34] Sung Hyun Jo and Wei Lu. Cmos compatible nanoscale nonvolatile resistance switching

memory. Nano Letters, 8(2):392–397, 2008.

118

https://www.hipeac.net/events/activities/7151/challenges-for-future-computing-systems/
https://www.hipeac.net/events/activities/7151/challenges-for-future-computing-systems/
https://www.hipeac.net/events/activities/7151/challenges-for-future-computing-systems/

[35] John Paul Strachan, Gilberto Medeiros-Ribeiro, J Joshua Yang, M-X Zhang, Feng Miao,

Ilan Goldfarb, Martin Holt, Volker Rose, and R Stanley Williams. Spectromicroscopy of

tantalum oxide memristors. Applied Physics Letters, 98(24):242114, 2011.

[36] Dongqing Liu, Chaoyang Zhang, Guang Wang, Zhengzheng Shao, Xuan Zhu, Nannan

Wang, and Haifeng Cheng. Nanoscale electrochemical metallization memories based on

amorphous (la, sr) mno3 using ultrathin porous alumina masks. Journal of Physics D: Ap-

plied Physics, 47(8):085108, 2014.

[37] Hussein Nili, Sumeet Walia, Sivacarendran Balendhran, Dmitri B Strukov, Madhu

Bhaskaran, and Sharath Sriram. Nanoscale resistive switching in amorphous perovskite

oxide (a-srtio3) memristors. Advanced Functional Materials, 24(43):6741–6750, 2014.

[38] Kuk-Hwan Kim, Sung Hyun Jo, Siddharth Gaba, and Wei Lu. Nanoscale resistive mem-

ory with intrinsic diode characteristics and long endurance. Applied Physics Letters,

96(5):053106, 2010.

[39] Seth Copen Goldstein and Mihai Budiu. Nanofabrics: Spatial computing using molecular

electronics. ACM SIGARCH Computer Architecture News, 29(2):178–191, 2001.

[40] Andre DeHon and Michael J Wilson. Nanowire-based sublithographic programmable logic

arrays. In Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field

programmable gate arrays, pages 123–132. ACM, 2004.

[41] Teng Wang, Zhenghua Qi, and Csaba Andras Moritz. Opportunities and challenges in

application-tuned circuits and architectures based on nanodevices. In Proceedings of the

1st conference on Computing frontiers, pages 503–511. ACM, 2004.

119

[42] Pavan Panchapakeshan, Pritish Narayanan, and Csaba Andras Moritz. N3asics: designing

nanofabrics with fine-grained cmos integration. In Nanoscale Architectures (NANOARCH),

2011 IEEE/ACM International Symposium on, pages 196–202. IEEE, 2011.

[43] Greg Snider, Philip Kuekes, and R Stanley Williams. Cmos-like logic in defective,

nanoscale crossbars. Nanotechnology, 15(8):881, 2004.

[44] Xialong Ma, Dmitri B Strukov, Jung Hoon Lee, and Konstantin K Likharev. Afterlife for

silicon: Cmol circuit architectures. In Nanotechnology, 2005. 5th IEEE Conference on,

pages 175–178. IEEE, 2005.

[45] Gregory S Snider and R Stanley Williams. Nano/cmos architectures using a field-

programmable nanowire interconnect. Nanotechnology, 18(3):035204, 2007.

[46] D Tu, M Liu, Wei Wang, and S Haruehanroengra. Three-dimensional cmol: Three-

dimensional integration of cmos/nanomaterial hybrid digital circuits. Micro & Nano Letters,

IET, 2(2):40–45, 2007.

[47] Wei Fei, Hao Yu, Wei Zhang, and Kiat Seng Yeo. Design exploration of hybrid cmos and

memristor circuit by new modified nodal analysis. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 20(6):1012–1025, 2012.

[48] Jun Wu and Minsu Choi. Memristor lookup table (mlut)-based asynchronous nanowire

crossbar architecture. In Nanotechnology (IEEE-NANO), 2010 10th IEEE Conference on,

pages 1100–1103. IEEE, 2010.

[49] Mohammed Affan Zidan, Hossam Aly Hassan Fahmy, Muhammad Mustafa Hussain, and

Khaled Nabil Salama. Memristor-based memory: the sneak paths problem and solutions.

Microelectronics Journal, 44(2):176–183, 2013.

120

[50] Kuk-Hwan Kim, Sung Hyun Jo, Siddharth Gaba, and Wei Lu. Nanoscale resistive mem-

ory with intrinsic diode characteristics and long endurance. Applied Physics Letters,

96(5):053106, 2010.

[51] Alvaro Velasquez and Sumit Kumar Jha. Automated synthesis of crossbars for nanoscale

computing using formal methods. In Nanoscale Architectures (NANOARCH), 2015

IEEE/ACM International Symposium on, pages 130–136. IEEE, 2015.

[52] Mehdi B Tahoori. Application-independent defect tolerance of reconfigurable nanoarchi-

tectures. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2(3):197–

218, 2006.

[53] Bo Yuan and Bin Li. A fast extraction algorithm for defect-free subcrossbar in nanoelec-

tronic crossbar. ACM Journal on Emerging Technologies in Computing Systems (JETC),

10(3):25, 2014.

[54] André DeHon. Array-based architecture for fet-based, nanoscale electronics. Nanotechnol-

ogy, IEEE Transactions on, 2(1):23–32, 2003.

[55] Y. Cassuto, S. Kvatinsky, and E. Yaakobi. Sneak-path constraints in memristor crossbar

arrays. In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on,

pages 156–160, 2013.

[56] M Zidan, A Eltawil, Fadi Kurdahi, H Fahmy, and K Salama. Memristor multi-port readout:

A closed-form solution for sneak-paths. 2014.

[57] Rawan Naous, Mohammed Affan Zidan, Ahmad Sultan-Salem, and Khaled Nabil Salama.

Memristor based crossbar memory array sneak path estimation. In Cellular Nanoscale Net-

works and their Applications (CNNA), 2014 14th International Workshop on, pages 1–2.

IEEE, 2014.

121

[58] Mohammed Affan Zidan, Hossam Aly Hassan Fahmy, Muhammad Mustafa Hussain, and

Khaled Nabil Salama. Memristor-based memory: the sneak paths problem and solutions.

Microelectronics Journal, 44(2):176–183, 2013.

[59] Pascal O Vontobel, Warren Robinett, Philip J Kuekes, Duncan R Stewart, Joseph Straznicky,

and R Stanley Williams. Writing to and reading from a nano-scale crossbar memory based

on memristors. Nanotechnology, 20(42):425204, 2009.

[60] Harika Manem, Garrett S Rose, Xiaoli He, and Wei Wang. Design considerations for vari-

ation tolerant multilevel cmos/nano memristor memory. In Proceedings of the 20th sympo-

sium on Great lakes symposium on VLSI, pages 287–292. ACM, 2010.

[61] Seungjun Kim, Hu Young Jeong, Sung Kyu Kim, Sung-Yool Choi, and Keon Jae Lee. Flex-

ible memristive memory array on plastic substrates. Nano letters, 11(12):5438–5442, 2011.

[62] Chul-Moon Jung, Jun-Myung Choi, and Kyeong-Sik Min. Two-step write scheme for reduc-

ing sneak-path leakage in complementary memristor array. Nanotechnology, IEEE Trans-

actions on, 11(3):611–618, 2012.

[63] J Joshua Yang, M-X Zhang, Matthew D Pickett, Feng Miao, John Paul Strachan, Wen-Di Li,

Wei Yi, Douglas AA Ohlberg, Byung Joon Choi, Wei Wu, et al. Engineering nonlinearity

into memristors for passive crossbar applications. Applied Physics Letters, 100(11):113501,

2012.

[64] MS Qureshi, W Yi, G Medeiros-Ribeiro, and RS Williams. Ac sense technique for memris-

tor crossbar. Electronics letters, 48(13):757–758, 2012.

[65] Ella Gale, Ben de Lacy Costello, and Andrew Adamatzky. Boolean Logic Gates from a

Single Memristor via Low-Level Sequential Logic, pages 79–89. Springer, 2013.

122

[66] Shahar Kvatinsky, Avinoam Kolodny, Uri C Weiser, and Eby G Friedman. Memristor-based

imply logic design procedure. In Computer Design (ICCD), 2011 IEEE 29th International

Conference on, pages 142–147. IEEE.

[67] Eero Lehtonen and Mika Laiho. Stateful implication logic with memristors. In Proceedings

of the 2009 IEEE/ACM International Symposium on Nanoscale Architectures, pages 33–36.

IEEE Computer Society, 2009.

[68] Eero Lehtonen, Jussi Poikonen, and Mika Laiho. Implication logic synthesis methods for

memristors. In Circuits and Systems (ISCAS), 2012 IEEE International Symposium on,

pages 2441–2444. IEEE, 2012.

[69] Shahar Kvatinsky, Guy Satat, Nimrod Wald, Eby G Friedman, Avinoam Kolodny, and Uri C

Weiser. Memristor-based material implication (imply) logic: Design principles and method-

ologies. 2013.

[70] P Kuekes. Material implication: digital logic with memristors. In Memristor and memristive

systems symposium, volume 21, 2008.

[71] Divya Mahajan, Matheen Musaddiq, and Earl E Swartzlander. Memristor based adders.

In Signals, Systems and Computers, 2014 48th Asilomar Conference on, pages 1256–1260.

IEEE, 2014.

[72] Yuanfan Yang, Jimson Mathew, Salvatore Pontarelli, Marco Ottavi, and Dhiraj K Pradhan.

Complementary resistive switch-based arithmetic logic implementations using material im-

plication. IEEE Transactions on Nanotechnology, 15(1):94–108, 2016.

[73] Anne Siemon, Stephan Menzel, Rainer Waser, and Eike Linn. A complementary resistive

switch-based crossbar array adder. IEEE journal on emerging and selected topics in circuits

and systems, 5(1):64–74, 2015.

123

[74] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G Fried-

man, Avinoam Kolodny, and Uri C Weiser. Magicmemristor-aided logic. IEEE Transactions

on Circuits and Systems II: Express Briefs, 61(11):895–899, 2014.

[75] Eero Lehtonen, Jussi Poikonen, and Mika Laiho. Implication logic synthesis methods for

memristors. In Circuits and Systems (ISCAS), 2012 IEEE International Symposium on,

pages 2441–2444. IEEE, 2012.

[76] Sumit Jha, Dilia Rodriguez, Joseph E. Van Nostrand, and Alvaro Velasquez. Computation of

boolean formulas using sneak paths in crossbar computing, 2014. Work-in-Progress Poster

presented at the Design Automation Conference, June 1 – 5, San Francisco, CA.

[77] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking

using satisfiability solving. Formal methods in system design, 19(1):7–34, 2001.

[78] Alvaro Velasquez and Sumit Kumar Jha. Fault-tolerant in-memory crossbar computing

using quantified constraint solving. In Computer Design (ICCD), 2015 33rd IEEE Interna-

tional Conference on, pages 101–108. IEEE, 2015.

[79] Z. Alamgir, K. Beckmann, N. Cady, A. Velasquez, and S. K. Jha. Flow-based computing on

nanoscale crossbars: Design and implementation of full adders. In 2016 IEEE International

Symposium on Circuits and Systems (ISCAS), pages 1870–1873, May 2016.

[80] Sezer Gören, H Fatih Ugurdag, and Okan Palaz. Defect-aware nanocrossbar logic mapping

through matrix canonization using two-dimensional radix sort. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 7(3):12, 2011.

[81] Yehua Su and Wenjing Rao. Defect-tolerant logic mapping on nanoscale crossbar architec-

tures and yield analysis. In Defect and Fault Tolerance in VLSI Systems, 2009. DFT’09.

24th IEEE International Symposium on, pages 322–330. IEEE, 2009.

124

[82] Dilia E Rodriguez, Joseph E Van Nostrand, Sumit Jha, and Alvaro Velasquez. Computation

of boolean formulas using sneak paths in crossbar computing, December 17 2014. US Patent

App. 14/573,677.

[83] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin Keighren, Emanuele

Olivetti, Marco Pistore, Marco Roveri, and Andrei Tchaltsev. Nusmv 2.5 user manual,

2010. URL http://nusmv. fbk. eu/NuSMV/userman/v25/nusmv. pdf. Accessed on June, 24,

2013.

[84] A. Velasquez and S. K. Jha. Parallel boolean matrix multiplication in linear time using

rectifying memristors. In 2016 IEEE International Symposium on Circuits and Systems

(ISCAS), pages 1874–1877, May 2016.

[85] Diodes Incorporated. Spice models. http://www.diodes.com/spicemodels/search.php. Ac-

cessed: 2016-12-04.

[86] Byung Joon Choi, Antonio C Torrezan, John Paul Strachan, PG Kotula, AJ Lohn, Matthew J

Marinella, Zhiyong Li, R Stanley Williams, and J Joshua Yang. High-speed and low-energy

nitride memristors. Advanced Functional Materials, 2016.

[87] Jens Bürger, Christof Teuscher, and Marek Perkowski. Digital logic synthesis for memris-

tors. Reed-Muller 2013, pages 31–40, 2013.

[88] Saeideh Shirinzadeh, Mathias Soeken, Pierre-Emmanuel Gaillardon, and Rolf Drechsler.

Logic synthesis for majority based in-memory computing. In Advances in Memristors,

Memristive Devices and Systems, pages 425–448. Springer, 2017.

[89] Eero Lehtonen, JH Poikonen, and Mika Laiho. Two memristors suffice to compute all

boolean functions. Electronics letters, 46(3):239–240, 2010.

125

[90] H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-Shiu Chen,

Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai. Metal–oxide rram. Proceedings of

the IEEE, 100(6):1951–1970, 2012.

[91] Dimin Niu, Cong Xu, Naveen Muralimanohar, Norman P Jouppi, and Yuan Xie. Design of

cross-point metal-oxide reram emphasizing reliability and cost. In 2013 IEEE/ACM Inter-

national Conference on Computer-Aided Design (ICCAD), pages 17–23. IEEE, 2013.

[92] Eero Lehtonen, Jussi H Poikonen, and Mika Laiho. Applications and limitations of mem-

ristive implication logic. In Cellular Nanoscale Networks and Their Applications (CNNA),

2012 13th International Workshop on, pages 1–6. IEEE, 2012.

[93] Mika Laiho and Eero Lehtonen. Arithmetic operations within memristor-based analog

memory. In Cellular Nanoscale Networks and Their Applications (CNNA), 2010 12th In-

ternational Workshop on, pages 1–4. IEEE, 2010.

[94] Lynn E Cannon. A cellular computer to implement the kalman filter algorithm. Technical

report, DTIC Document, 1969.

[95] Sven Skyum and Leslie G Valiant. A complexity theory based on boolean algebra. Journal

of the ACM (JACM), 32(2):484–502, 1985.

[96] Juan L Reutter, Miguel Romero, and Moshe Y Vardi. Regular queries on graph databases.

In 18th International Conference on Database Theory (ICDT 2015), volume 31, pages 177–

194. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

[97] Dick Grune, Kees Van Reeuwijk, Henri E Bal, Ceriel JH Jacobs, and Koen Langendoen.

Modern compiler design. Springer Science & Business Media, 2012.

[98] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model

checking. In Computer Aided Verification, pages 403–418. Springer, 2000.

126

[99] E Nuutila. Efficient transitive closure computation in large digraphs, mathematics and com-

puting in engineering series no. 74 phd thesis helsinki university oftechnology, 1995.

[100] Michael J Quinn. Parallel Programming, volume 526. TMH CSE, 2003.

[101] Marc D Riedel and Jehoshua Bruck. Cyclic boolean circuits. Discrete Applied Mathematics,

160(13):1877–1900, 2012.

[102] Rezaul Alam Chowdhury and Vijaya Ramachandran. The cache-oblivious gaussian elimi-

nation paradigm: theoretical framework and experimental evaluation. In Proceedings of the

eighteenth annual ACM symposium on Parallelism in algorithms and architectures, pages

236–236. ACM, 2006.

[103] Alvaro Velasquez, Piotr Wojciechowski, K Subramani, Steven L Drager, and Sumit Kumar

Jha. The cardinality-constrained paths problem: Multicast data routing in heterogeneous

communication networks. In Network Computing and Applications (NCA), 2016 IEEE 15th

International Symposium on, pages 126–130. IEEE, 2016.

[104] Stephen Cole Kleene. Representation of events in nerve nets and finite automata. Technical

report, DTIC Document, 1951.

[105] Ming-Yang Kao and Philip N Klein. Towards overcoming the transitive-closure bottleneck:

Efficient parallel algorithms for planar digraphs. Journal of Computer and System Sciences,

47(3):459–500, 1993.

[106] Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci, 5(1):17–60, 1960.

127

	In-Memory Computing Using Formal Methods and Paths-Based Logic
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: BACKGROUND
	Memristors
	Crossbar Computing
	Sneak Paths

	CHAPTER 3: LITERATURE REVIEW
	Logic Synthesis Methods
	Formula-Dependent Memristor Placement
	Rectifying-Memristor Crossbars
	Networks of Interconnected Crossbars

	CHAPTER 4: PATHS-BASED LOGIC
	Irreducible Paths in Crossbars
	Universality of Paths-Based Logic

	CHAPTER 5: DESIGN AUTOMATION
	Bounded Model Checking
	Experimental Results
	Fault Tolerance
	Crossbar Networks

	CHAPTER 6: HETEROGENEOUS CROSSBARS
	Limitations of Paths-Based Logic
	Heterogeneous Crossbars
	Design Automation
	Fault Tolerance
	Experimental Results
	Concluding Remarks

	CHAPTER 7: DESIGN AUTOMATION OF VOLTAGE SEQUENCES
	Methodology
	Results
	Illustrative Execution of 1-bit Full Adder
	Conclusion and Future Work

	CHAPTER 8: BOOLEAN MATRIX MULTIPLICATION WITH 3D CROSSBARS
	Methodology
	Experimental Results
	Concluding Remarks

	CHAPTER 9: TRANSITIVE CLOSURE WITHIN 2-LAYERED MEMORY
	Methodology
	All-Pairs Shortest Paths
	Complexity
	Universal Computation
	Experimental Results
	Energy and Latency Considerations
	Concluding Remarks

	CHAPTER 10: CONCLUSION
	LIST OF REFERENCES

