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ABSTRACT 

Many military systems utilize infrared sensors which allow an operator to see targets at night.  Several 

of these are either mid-wave or long-wave high resolution infrared sensors, which are expensive to 

manufacture.  But compressive sensing, which has primarily been demonstrated in medical applications, 

can be used to minimize the number of measurements needed to represent a high-resolution 

image.  Using these techniques, a relatively low cost mid-wave infrared sensor can be realized which has 

a high effective resolution.  In traditional military infrared sensing applications, like targeting systems, 

automatic targeting recognition algorithms are employed to locate and identify targets of interest to 

reduce the burden on the operator.  The resolution of the sensor can increase the accuracy and 

operational range of a targeting system.  When using a compressive sensing infrared sensor, traditional 

decompression techniques can be applied to form a spatial-domain infrared image, but most are iterative 

and not ideal for real-time environments.  A more efficient method is to adapt the target recognition 

algorithms to operate directly on the compressed samples.  In this work, we will present a target 

recognition algorithm which utilizes a compressed target detection method to identify potential target 

areas and then a specialized target recognition technique that operates directly on the same compressed 

samples.  We will demonstrate our method on the U.S. Army Night Vision and Electronic Sensors 

Directorate ATR Algorithm Development Image Database which has been made available by the Sensing 

Information Analysis Center.  
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CHAPTER 1 - INTRODUCTION 

Automatic Target Recognition (ATR) is a general field of study pertaining to the detection and 

identification of targets of interest in sensor data.  These sensors are commonly either forward looking 

infrared (FLIR) or visible spectrum cameras, but there are others like synthetic aperture radar (SAR) and 

laser radar [1].  The phrase “ATR” dates back to the early nineteen-eighties with aircraft-mounted 

targeting pods utilizing a FLIR sensor to detect ground targets of interest [2, 3].  Despite the age of this 

problem however, ATR is still a critical element of military applications in use today [1, 4]. 

Many modern ATR electro-optical/infrared (EO/IR) sensors operate in the mid-wavelength infrared 

(MWIR) or long-wavelength infrared (LWIR) frequency band.  MWIR has wavelengths in the range of 3-5 

µm and LWIR has wavelengths in the range of 8-12 µm [5].  Both MWIR and LWIR sensors require optics 

with materials such as germanium (Ge) and sapphire (Al2O3) which are costly [5].  In addition to the cost 

of the optics in MWIR and LWIR sensors, the infrared (IR) focal plane array (FPA) is also constructed from 

costly materials such as indium gallium arsenide (InGaAs) or germanium (Ge) [6].  Therefore, MWIR and 

LWIR sensor systems are extremely expensive and cost prohibitive for most applications. 

Rice University demonstrated with the single-pixel camera that a cost-effective focal plane can be 

realized using a single photodetector with a spatial light modulator (SLM) such as the Texas Instruments 

digital micromirror device (DMD) [7].  This camera uses the principles of compressive sensing to generate 

a spatial domain image.  In compressive sensing, the sparsity in naturally occurring signals in a basis set is 

used to reduce the sampling requirement to sub-Nyquist levels [8-12].  Using these same principles, an 

MWIR compressive imaging sensor was developed to reduce the cost of a high resolution FPA by using a 

lower resolution MWIR FPA and a dense DMD, which is necessary to resolve targets at long ranges without 

optical assistance [5, 13].  It may seem counterintuitive in compressive sensing to have extended range 
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by allocating more measurements on the target, but compressive sensing is typically accomplished in a 

transform domain where the target image has a sparse representation.  If we capture enough of the 

spatial domain signal to reconstruct the sparse representation, then we are still able to resolve targets at 

long range. 

Since a compressive imager does not produce a spatial domain image, a recovery process such as basis 

pursuit (BP), orthogonal matching pursuit or initialized iterative reweighted least squares (IIRLS) is 

typically needed before post-processing can be performed [14-16].  This extra processing is time 

consuming and adds complexity to the system.  In addition, many of these methods are iterative which 

means they have an indefinite convergence time.  This is not ideal for a deterministic real-time system 

which has a set amount of processing time allocated for each new frame of data.  However, there are 

closed-form methods that can be used for recovery which typically require some prior knowledge about 

the signal being recovered [17, 18]. 

ATR systems are generally broken up into two stages, detection and recognition, which can be 

performed as post-processing on a compressive infrared imaging system [1].  Target detection is done to 

reduce the burden on the more processing intensive recognition stage.  Target detection is a two-class 

discriminator which identifies potential target areas from background clutter.  Once the potential target 

areas are identified, then the target recognition multi-class discriminator can determine the type of target 

(with the background as a potential target class) [1].  Generally the detected target areas are much larger 

than the targets under consideration, so the target recognition classifier must also localize where the 

identified target is in the scene [19, 20]. 

Quadratic correlation filters (QCFs) have been shown to be an effective tool to identify targets in 

background clutter for target detection applications [21].  However, extending this to a multi-class 

discriminator for target recognition is not trivial.  One proposed solution is the quadratic maximum margin 



3 
 

correlation filter (QMMCF), which is a QCF paired with a support vector machine (SVM).  Each trained 

SVM represents a target identification class and the response of the SVM is used to determine the identity 

and the location of the target [20]. 

Convolutional neural networks (CNNs) have been used recently for deep learning image and video 

object classification applications [22, 23].  CNNs are classification models that are known to have 

invariance to some types of transformations on the input signals.  Typical image object classifiers have a 

feature extraction stage, but CNNs learn the feature extraction necessary to classify the data 

automatically [22].  Since target recognition is analogous to object recognition, this makes CNNs attractive 

to ATR applications. 

As mentioned previously, compressive sensing is used to minimize the cost of a high resolution MWIR 

sensor but it comes at a higher computational cost.  This higher computational cost, if not mitigated, can 

make this compressive imager prohibitive for real-time applications.  In order to maximize performance 

in a compressive ATR system, an ATR algorithm that processes compressive samples directly bypassing a 

non-linear, iterative decompression step is proposed.  Two methods are proposed, one is a modified 

quadratic multi-layer perceptron neural network (QMLPNN) and the other is a modified quadratic 

correlation filter convolutional neural network (QCFCNN).  Both are augmented with deconvolution layers 

designed to process compressed samples.  These methods are demonstrated using the SENSIAC ATR 

Algorithm Image Database [24]. 
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1.1 Background 

1.1.1 Convolutional Neural Network 

Fully connected neural networks for an image provides a weight connection for each pixel of the input 

image or feature vector.  These weights are then propagated throughout the network to the output layer.  

A convolutional neural network (CNN) takes advantage of the statistical stationarity of naturally occurring 

image signals [25].  A CNN typically has convolutional layers and pooling layers followed by fully-connected 

layers, see Figure 1.  Backpropagation of a cost objective function is used to train the network. 

A CNN will take an image, 𝐱𝑛 where 𝑛 ∈ [1, 𝑁] is an index in the set of 𝑁 training images, and provide 

an estimated label 𝑑𝑛 from the set of classes 𝒞.  If the input to a convolution layer is 𝐳𝑛,𝑠, or a sub-image 

of the image 𝐳, then the output of a convolutional layer is  

 𝐳𝑛,𝑠
(ℓ+1)

=  𝜎 (𝐇(ℓ)𝐳𝑛,𝑠
(ℓ)

+ 𝐛(ℓ)) , 1 ≤ ℓ ≤ 𝐿𝐹 − 1 (1) 

where 𝜎 is a non-linear activation function, 𝐿𝐹 is layer number for the first fully-connected layer and 

𝐳𝑛
(1)

= 𝐱𝑛.  The filter can be efficiently applied to the entire image through a valid 2D cross-correlation of 

the form 

Figure 1 - Sample convolutional neural network.  Convolution layers are denoted by C1 and C2 whereas pooling 
layers are denoted by P1 and P2.  These layers can be used for feature extraction.  The fully connected layers are 
denoted by FC1 and FC1. These layers are typically used for classification. 
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 𝐳𝑛
(ℓ+1)

= (𝜎 ( ∑ 𝐡𝑖,𝑘
(ℓ)

⊗ 𝐳𝑛,𝑖
(ℓ)

 + 𝑏𝑘
(ℓ)

𝑖∈𝐾ℓ−1

))

 𝑘∈𝐾ℓ

, 1 ≤ ℓ ≤ 𝐿𝐹 − 1, (2) 

where 𝐾ℓ−1 represents the number of input maps and 𝐾ℓ represents the number of output maps that 

connect the convolutional layers. 

CNNs typically have a pooling layer that follows a convolution layer.  This layer downsamples the 

convolution layer by either taking the maximum or average of a local area.  Pooling is done to promote 

translation invariance in a CNN [25]. 

A CNN also typically consists of fully-connected layers following the convolutional and pooling layers.  

A fully connected layer is represented by 

 𝐳𝑛
(ℓ+1)

=  𝜎 (𝐇(ℓ)𝐳𝑛
(ℓ)

+ 𝐛(ℓ)),   𝐿𝐹 ≤ ℓ ≤ 𝐿 − 1, (3) 

where 𝐿𝐹 is the first fully-connected layer in the CNN.  The output cost function of a CNN can be any one 

of a number of functions, but it is commonly a softmax regression function such as 

 𝐽(𝐇, 𝐛) = − [∑ ∑[𝑑𝑛 = 𝑐]log(
exp (〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝑏𝑐
(𝐿)

)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)〉 + 𝑏𝑗

(𝐿)
)𝑗∈𝒞

)

𝑐∈𝒞

𝑁

𝑛=1

], (4) 

where [𝑥 = 𝑦] is Iverson bracket notation for the Kronecker delta function with 𝐇 = {𝐇(1), 𝐇(2), … , 𝐇(𝐿)}  

and 𝐛 = {𝐛(1), 𝐛(2), … , 𝐛(𝐿)}. 

Like most neural networks, the CNN can be trained using backpropagation (see Section 3.2.1.1).  The 

output layer error term for the softmax regression function is 

 𝛅(𝐿+1) = −(∑ ([𝑑𝑛 = 𝑐] −  P [𝑑𝑛 = 𝑐 | 𝐳𝑛
(𝐿)

; 𝐇(𝐿), 𝐛(𝐿)])

𝑁

𝑛=1

)

𝑐∈𝒞

 (5) 

(see APPENDIX B).  The error function for a fully connected layer is 
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 𝛅(ℓ) = ((𝐇(ℓ))
𝑇
𝛅(ℓ+1)) ∘ 𝜎′ (𝐇(ℓ)𝐳𝑛

(ℓ) + 𝐛(ℓ)) , 𝐿𝐹 ≤ ℓ ≤ 𝐿 (6) 

where ∘ represents the Hadamard product of matrices.  The error function for a transition layer between 

the fully connected layers and convolution and pooling layers is defined by 

 𝛅(ℓ) = 𝜎′(𝐇(ℓ)𝐳(ℓ) + 𝐛(ℓ)) ∘  upsample(𝛅(ℓ+1)), (7) 

Where upsample() propagates the errors from higher layer to the lower layer through the downsampling 

layer.  Finally, the error function for a convolution layer is 

 𝛅(ℓ) = (𝜎′ ( ∑ 𝐡i,𝑘
(ℓ)

⊗ 𝐳𝑛,𝑖
(ℓ)

 + 𝑏𝑘
(ℓ)

𝑖∈𝐾ℓ−1

) ∘ upsample (𝛅𝑘
(ℓ+1)

⊗𝑓 𝐡𝑘
(ℓ+1)

))

𝑘∈𝐾ℓ

, (8) 

where 1 ≤ ℓ ≤ 𝐿𝐹 − 1, the operator, ⊗𝑓, represents a “full” 2D cross-correlation between the operands 

and the upsample() function typically performs a Kronecker product with a filter of all ones to propagate 

the error through the pooling layer. 

Finally, the gradients are updated using gradient descent.  The weight matrix (or tensor) 𝐇 with the 

objective function 𝐽(𝐇, 𝐛) can be found using 

 𝐇𝑡+1 = 𝐇𝑡 − 𝜂∇𝐇𝐽(𝐇, 𝐛), (9) 

where 𝑡 ≥ 0 and 𝜂 is the learning rate.  Similarly, the bias vector 𝐛 can be determined using 

 𝐛𝑡+1 = 𝐛𝑡 − 𝜂∇𝐛𝐽(𝐇, 𝐛). (10) 

The weights for each layer will be calculated in the same manner.  The gradients for the fully connected 

layers for both the weight and the bias are given by 

 ∇𝐇𝐽(𝐇, 𝐛) = 𝛅(ℓ+1) (𝐳𝑛
(ℓ)

)
𝑇
 and (11) 

 ∇𝐛𝐽(𝐇, 𝐛) = 𝛅(ℓ+1), (12) 

where 𝐿𝐹 ≤ ℓ ≤ 𝐿 − 1.  The gradients for the convolution layer bias and weight are given by 
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 ∇𝐇𝐽(𝐇, 𝐛) = ( ∑ 𝐳𝑛,𝑖
(ℓ)

⊗ 𝛅𝑘
(ℓ+1)

 

𝑖∈𝐾ℓ−1

)

 k∈𝐾ℓ

and (13) 

 ∇𝐛𝐽(𝐇, 𝐛) = (∑(𝛅𝑘
ℓ+1)

𝑥,𝑦
 

𝑥,𝑦

)

𝑗∈𝐾ℓ

, (14) 

where  1 ≤ ℓ ≤ 𝐿𝐹 − 1. 

CNN design is an active area of research.  Most pattern recognition algorithms, including other neural 

networks, require some type of feature extraction of the input data.  However, an advantage of CNNs is 

that the convolution layer will learn the necessary features needed to properly classify the dataset [22, 

25, 26]. 

1.1.2 Compressive Sensing 

Traditional image sensing is based on standard digital signal processing (DSP) principles.  The number 

of samples from the focal plane array (FPA) equals the number of discretized elements on the FPA.  For 

simplicity, we will assume that the only discretization occurs due to the discretized grid of the FPA and 

that no quantization of the signal, through digitization, is made.  According to the Nyquist-Shannon 

sampling theorem, the continuous signal can be accurately represented if the sampling rate is two times 

that of the highest frequency in the signal [27, 28].  However, natural signals have properties that may 

have an effect on the number of samples needed to accurately represent the continuous signal. 

Compressive sensors take advantage of these underlying properties of naturally occurring signals to 

reduce the required number of samples needed to accurately represent the continuous signal thereby 

incurring a sub-Nyquist rate [8-11, 29]. 

The sampling of a compressive imager can be modeled through a linear set of equations such as 
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 𝐲 = 𝚽𝐱 + 𝛈, (15) 

where 𝐲 ∈ ℝ𝑚 are the measurements, 𝐱 ∈ ℝ𝑁 is the original signal in discretized form, 𝚽 ∈ ℝ𝑚×𝑁 is 

called the measurement or sampling matrix, 𝛈 represents additive noise and 𝑚 < 𝑁.  There are an infinite 

number of solutions to Equation (15) for 𝐱 since it is an underdetermined system of equations.  So, in 

compressive sensing, an assumption is made about the discretized signal, 𝐱, in that it is sparse or contains 

many zeros which aides in finding a unique solution.  If the original signal, 𝐱, is not naturally sparse then 

is may be representable in another domain such as 

 𝐱 = 𝚿𝛂, (16) 

where 𝛂 is a sparse signal and 𝚿 is a sparsifying transformation such as the discrete cosine transform 

(DCT), discrete wavelet transform (DWT) or discrete Fourier transform (DFT).  Using (16) and assuming no 

additive noise, (15) can be solved using an optimization problem of the form 

 min‖𝛂‖0 subject to 𝚽𝚿𝛂 = 𝐲, (17) 

where the ℓ0-norm is defined as 

 supp(𝐱) = {𝑗 ∈ [1,…𝑁] ∶ 𝑥𝑗 ≠ 0} (18) 

 ‖𝐱‖0 = |supp(𝐱)|. (19) 

The optimization problem (17) is NP-hard meaning that it cannot be solved in polynominal time.  So, an 

ℓ1-norm relaxation is typically used, which is commonly called basis pursuit (BP) [14].  There are many 

other proposed methods for finding the solution to (15) including Initialized Iterative Reweighted Least 

Squares (IIRLS) which is tailored to ATR applications [15], Orthogonal Matching Pursuit [16], Iterative Hard 

Thresholding [30], and Compressive Sampling Matching Pursuit [31]. 

Since a compressive imager provides compressed samples, 𝐲, rather than the uncompressed image, 𝐱, 

any post-processing must either be tailored to operate on the compressed samples or first use one of the 
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reconstruction methods to find the uncompressed image estimate, 𝐱̂, and then perform processing on the 

uncompressed estimate.  Many of the reconstruction methods are iterative, meaning that they may have 

error if terminated before convergence.  This causes additional processing time on a compressive sensing 

system that would not be present on a traditional sensing system, which means that compressing sensing 

systems are typically more computationally expensive [8-12, 29, 32]. 

1.2 Dataset 

We chose the ATR Algorithm Development Image Database [24] from the Military Sensing Information 

Analysis Center (SENSIAC) for our dataset.  This dataset contains ten target classes in MWIR video running 

at 30Hz.  There are eight military and two civilian style vehicles, see Figure 2.  These videos are 14-bit, 640 

x 512 pixel images taken at various ranges, aspect angles and times of day.  The ground truth provides the 

approximate location of the center of the target(s) in each frame where an appropriate-sized window can 

be formed to select the target based on range.  We chose to use a 40 x 80 sized window for the targets 

and consider only targets within 1500 meters at any time of day. 

Several of the videos contain a target that is driving in a 100 meter diameter circle at about 10 miles/hr.  

Because of this, many of the targets exhibit a full 360 degrees of rotation.  The videos are 60 seconds at 

30 Hz or 1800 frames long.  Most scenarios contain a single target, but there are a few scenarios that 

contain multiple targets. 
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Figure 2 - Target data types from the SENSIAC ATR Algorithm Development Image Database [24].  (a) Self-propelled 
howitzer, (b) Armoured personnel carrier, (c) Infantry scout vehicle, (d) Armoured personnel carrer, (e) Towed 
howitzer, (f) Armoured reconnaissance vehicle, (g) Main battle tank, (h) Anti-aircraft weapon, (i) Civilian pickup truck, 
and (j) Civilian sport uility vehicle. 

1.3 Notation 

Throughout this dissertation, we shall use the following notation: 

• A bold lowercase letter represents a vector or vectorized ordering of a matrix, e.g. 𝐱. 

• A non-bold, italicized lowercase letter represents a scalar value, e.g. 𝑥. 

• A subscripted, non-bold, italicized lowercase letter represents an element of a vector or 

matrix, e.g. 𝑥𝑘 ,𝑚𝑖𝑗. 

• The symbol, ∘, represents the Hadamard operator. 

• The symbol, ⊗, represents a valid 2D cross-correlation operation, e.g. 

(a) 2S3 (b) BMP2 (c) BRDM2 (d) BTR70 

(e) D20 (f) MTLB (g) T72 (h) ZSU23-4 

(i) Pickup (j) SUV 
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 𝑦𝑗𝑘 = ∑ ∑ ℎ𝑚𝑛𝑥𝑚+𝑗,𝑛+𝑘

𝐾−𝑁+1

𝑛=1

𝐽−𝑀+1

𝑚=1

 where 𝐡 ∈ ℝ𝑀×𝑁, 𝐱 ∈ ℝ𝐽×𝐾 . (20) 

• The symbol, ⊗𝑓 , represents a full 2D cross-correlation operation, e.g. 

 𝑦𝑗𝑘 = ∑ ∑ ℎ𝑚𝑛𝑥𝑚+𝑗,𝑛+𝑘

𝐾+𝑁−1

𝑛=1

 where 𝐡 ∈ ℝ𝑀×𝑁, 𝐱 ∈ ℝ𝐽×𝐾 .

𝐽+𝑀−1

𝑚=1

 (21) 

• The superscript, 𝑇, represents the transpose of a matrix or vector, e.g. 𝐱𝑇 . 

• The use of brackets will be used to represent a set, e.g. 𝐴 ≔ {1,2,3} 

• The use of the parallel line operator, when used with a set, will be used to represent the 

cardinality of the set, e.g.  |𝐴| = 3.  Otherwise, it will represent the absolute value. 

• The norm operator of a vector will be defined as 

 ‖𝐱‖𝑃 ≔ (∑|𝑥𝑗|
𝑃

𝑁

𝑗=1

)

1/𝑃

 (22) 

• For neural network definitions a superscript, such as ℓ, represents a network layer, e.g. 𝐖(ℓ).  

This would represent the weight matrix, 𝐖, for the ℓ𝑡ℎ network layer. 

1.4 Overview 

Using the MWIR sensor proposed in [13], we will present compressed target detection methods that 

work directly with compressed sensor measurements in CHAPTER 2.  We will also present a sampling 

matrix that will be applied to the DMD when acquiring samples.  Our goal is to provide a method to identify 

and localize targets from the compressed samples.  To do this, we will first present a maximum-margin 

correlation filter that can be used to identify and localize targets.  Then, we will present a quadratic multi-

layer perceptron which, we will show, enhances the discrimination capability of a multi-layer perceptron 

for automatic target recognition applications.  Finally, we will present a CNN which has a QCF as an input 



12 
 

layer in CHAPTER 3 to take advantage of the discrimination properties of the QCF for target recognition.  

This allows us to use the multi-class classification and added localization properties of the CNN as an 

alternate method to the maximum-margin correlation filter.  Then, without resampling, in CHAPTER 4 we 

will present target recognition methods that identify the target type from the compressed measurements.  

Also in CHAPTER 4, we will include experiments demonstrating our proposed methods.  Finally, we will 

summarize our findings in CHAPTER 5. 
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CHAPTER 2 - COMPRESSED TARGET 

DETECTION 

Target detection is used to reduce the processing requirement of the usually more intensive target 

recognition algorithm.  Some popular approaches to target detection include anomaly detection and 

correlation.  Anomaly detection tries to detect an anomalous target in a background setting whereas 

correlation uses target descriptions that are converted to templates which can be then be used to find 

matches in new data [4].  One particular correlation filter method is the quadratic correlation filter (QCF).  

With a correlation filter, we generate a classification for each pixel of the test image [21].  However, for a 

compressed image, we are only interested in the classification of the region that is compressed.  Because 

of this, we only need to apply the filter once to the compressed region to generate a classification for the 

whole region. 

In order to use a compressed target detection method, we will require a special sampling matrix that 

will be applied to the DMD to capture the measurements.  Most methods used to solve (17) are iterative 

and require several iterations for a reasonable solution.  As mentioned, the ℓ1 relaxation of this equation 

is a popular choice and is called basis pursuit.  However, since perfect reconstruction is not our objective, 

we can relax this requirement and use ℓ2-based reconstruction methods which have closed-form 

solutions, as long as target detection performance is not impacted [18]. 

In this chapter, we will review a couple of ℓ2-based reconstruction methods.  The first method is based 

on a weighted object-specific least-squares reconstruction method [33].  The second method is based on 

the probability distribution of the spectral coefficients from the training data [18].  Specifically, this 

method uses the distributions of the training data to determine the probability of having a large 

coefficient.  This method is called stochastically trained least squares (STLS).  Following this, we will 

explore how ℓ2-based recovery methods can be paired with a target detection method, like QCF, to create 
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a compressed target detection method.  Alternatively, we can eliminate the reconstruction ℓ2-based 

recovery altogether by using a special sampling matrix for a faster solution [18]. 

2.1 ℓ2 Reconstruction Techniques 

It has been shown that iterative methods are significantly more time-consuming than closed-form 

solutions and will provide a non-optimal solution if terminated before convergence [18].  With a linear 

closed-form solution, optimized matrix algebra libraries and built-in parallel processing hardware can be 

employed to significantly accelerate execution.  Furthermore, we find that target detection performance 

is not notably impacted by compression using an ℓ2 reconstruction method [18].  In this section, we will 

recall the weighted object-specific least-squares reconstruction method presented in [33].  We will also 

review an ℓ2-based recovery method presented in [18] called STLS which is based on the probability 

distributions of the training data spectral components.   

 

Figure 3 - ℓ2-based reconstruction examples:  (a) original image with a single Anti-Aircraft Weapon (ZSU23-4) target, 
(b) STLS reconstructed image and (c) weighted ℓ2-based reconstructed image from 50 samples per 20 × 40 block.  
The measurements for (b) are captured using the STLS sensing matrix in equation (53) and the measurements for (c) 
are captured using a random Bernoulli matrix. 

2.1.1 Weighted Object-Specific Least-Squares Reconstruction 

In target detection, infrared image patches, 𝐱, have a compressible representation, 

(a) (b) (c) 
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 𝐱 = 𝚿𝛂 = ∑α𝑖𝝍𝑖

𝑁

𝑖=1

, (23) 

in some (DCT/DWT/KLT) basis 𝚿 = [𝝍1 𝝍2 ⋯ 𝝍𝑁], where 𝛂 = [α1 α2 ⋯ α𝑁]𝑻, is the sparse 

spectral representation of the infrared image patch in this basis. The measurement vector 𝐲 of the infrared 

image patch 𝐱 is 

 𝐲 = 𝚽𝐱 = 𝚽̂𝛂, (24) 

where 𝚽̂ = 𝚽𝚿 and 𝚽 is an 𝑚 ×  𝑁 random sensing matrix with 𝑚 < 𝑁. 

Since this is an underdetermined system, it requires additional information from the system to find a 

solution.  The solution in (17) uses the sparsity in naturally occurring signals to find a unique solution.  

Although (17) provides an ideal method for finding the sparsity in a naturally occurring signal, it is 

categorized as an NP-Hard program since a large search space needs to be created to find the solution [8-

12, 29].  As mentioned, a typical relaxation of (17) uses the ℓ1norm 

 min‖𝛂‖1 subject to 𝚽𝚿𝛂 = 𝐲, (25) 

and it is typically called basis pursuit which can be solved using linear programming [8-12, 14, 29]. 

However, the ℓ2-norm optimization problem takes the form 

 min‖𝛂‖2
2 subject to 𝚽𝚿𝛂 = 𝐲, (26) 

where we can solve for 𝛂 using LaGrange multipliers.  Using LaGrange multipliers 𝛌 = [𝜆1, 𝜆2, … , 𝜆𝑚]𝑇, 

we can rewrite the objective problem as 

 J(𝛂) = 𝛂𝑇𝛂 + 𝛌𝑇(𝚽𝚿𝛂 − 𝐲), (27) 

perform the minimization by taking the derivative, 

 
∂J(𝛂)

∂𝛂
= 2𝛂 + 𝛌𝑇𝚽𝚿 = 𝟎, (28) 
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and then solve for 𝛂, 

 𝛂̂ = −
1

2
𝚿𝑇𝚽𝑇𝛌. (29) 

Using this solution, we can substitute it back into the original constraint equation in (26) 

 𝚽𝚿𝛂̂ = −
1

2
𝚽𝚿𝚿𝑇𝚽𝑇𝛌 = 𝐲. (30) 

If we assume that the transformation matrix 𝚿 is orthonormal or unitary, then 𝚿𝚿𝑻 = 𝐈 where 𝐈 

represents the identity matrix and we can solve for the LaGrange multipliers 𝛌 

 𝛌 = −2(𝚽𝚽𝑇)−1𝐲. (31) 

We can now find the optimal 𝛂̂ by substituting (31) back into (29)  

 𝛂̂ = 𝚿𝑇𝚽𝑇(𝚽𝚽𝑇)−1𝐲 (32) 

and to convert it back into the original space, we can substitute (32) into (16)  

 𝐱̂ = 𝚿𝚿𝑇𝚽𝑇(𝚽𝚽𝑇)−1𝐲 = 𝚽𝑇(𝚽𝚽𝑇)−1𝐲 (33) 

given that 𝚿 is orthonormal or unitary.  This solution is known as the least squares solution [34].  We note 

that (33) does not depend on the transformation matrix 𝚿, but only on the random sensing matrix 𝚽 if 𝚿 

is orthonormal or unitary and does not find the optimal sparse solution. Hence, it is not an effective 

reconstruction technique. 

To force the spatial domain representation to be dependent on the transformation matrix 𝚿 for the ℓ2 

reconstruction, Mahalanobis et. al. [33] uses a weighted minimization problem to reconstruct to 

compressed data.  The new optimization problem is 

 min 𝛂𝑇𝐖𝛂  subject to 𝚽𝚿𝛂 = 𝐲, (34) 

which can be rewritten using LaGrange multipliers 
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 J(𝛂) = 𝛂𝑇𝐖𝛂 + 𝛌𝑇(𝚽𝚿𝛂 − 𝐲), (35) 

where we can again take the derivative with respect to 𝛂 to find the minimum 

 
∂J(𝛂)

∂𝛂
= 2𝐖𝛂 + 𝛌𝑇𝚽𝚿 = 𝟎. (36) 

 We can now find the optimal 𝛂̂ 

 𝛂̂ = −
1

2
𝐖−1𝚿𝑇𝚽𝑇𝛌 (37) 

using an invertible diagonal matrix 𝐖 and substitute this back into the original constraint equation (34) 

 𝚽𝚿𝛂̂ = −
1

2
𝚽𝚿𝐖−1𝚿𝑇𝚽𝑇𝛌 = 𝐲 (38) 

to find the LaGrange multipliers 

 𝛌 = −2(𝚽𝚿𝐖−1𝚿𝑇𝚽𝑇)−1𝐲. (39) 

To find the optimal 𝛂̂, we substitute (39) into (37) 

 𝛂̂ = 𝐖−1𝚿𝑇𝚽𝑇(𝚽𝚿𝐖−1𝚿𝑇𝚽𝑇)−1𝐲 (40) 

and convert back to the spatial domain 

  𝐱̂ = 𝚿𝐖−1𝚿𝑇𝚽𝑇(𝚽𝚿𝐖−1𝚿𝑇𝚽𝑇)−1𝐲. (41) 

This spatial domain recovery equation not only has a dependency on the new weight matrix 𝐖, but it also 

preserves the dependency on the sparsifying transform 𝚿. 

The weight matrix is defined as  

 𝐖 =

(

  
 

𝑤1
2 0 0 ⋯ 0

0 𝑤2
2 0 ⋯ 0

0 0 𝑤3
2 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑤𝑁

2)

  
 

 (42) 
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with entries based on the training data.  Most methods for finding the diagonal entries in 𝐖 utilize the 

autocorrelation matrix 𝐑𝛼 = 𝐸[𝛂𝛂𝑇] of the spectral components to describe the desired object.  The 

expected value is over the class of the target we wish to detect.   

An intuitive approach to finding the weights would be to emphasize large coefficients in 𝛂 and suppress 

small (or zero) coefficients.  To do this, Mahalanobis et. al. [33] proposes using 

 𝐽(𝐰) =
𝐰𝑇𝐑𝛼𝐰

𝐰𝑇𝐃𝐰
 (43) 

where 𝐃 is a diagonal matrix equal to the diagonal of 𝐑𝛼.  To maximize this quantity, we take the 

derivative with respect to 𝐰 and set it equal to zero 

 𝜕𝐽(𝐰)

𝜕𝐰
=

[𝐰𝑇𝐃𝐰]
∂[𝐰𝑇𝐑𝛼𝐰]

∂𝐰
− [𝐰𝑇𝐑𝛼𝐰]

∂[𝐰𝑇𝐃𝐰]
∂𝐰

(𝐰𝑇𝐃𝐰)2
= 0. 

(44) 

 Since we are interested when this quantity is equal to zero, we only need to consider the numerator 

 [𝐰𝑇𝐃𝐰]2𝐑𝛼𝐰 − [𝐰𝑇𝐑𝛼𝐰]2𝐃𝐰 = 0. (45) 

We can rearrange this equation and collect terms 

 𝐑𝛼𝐰 =
𝐰𝑇𝐑𝛼𝐰

𝐰𝑇𝐃𝐰
𝐃𝐰 (46) 

which can be rewritten as 

 𝐑𝛼𝐰 = 𝐽(𝐰)𝐃𝐰. (47) 

In this equation, 𝐽(𝐰) is a scalar value, so we can multiply both sides of the equation by 𝐰𝑇𝐃−1 given that 

 𝐃 is invertible and 𝐰 is orthonormal.  The resulting equation is 

 𝐽(𝐰) = 𝐰𝑇𝐃−1𝐑𝛼𝐰. (48) 

It can be seen from this equation that this is the eigendecomposition of the matrix 𝐃−1𝐑𝛼 with 𝐰 as the 

eigenvector and  𝐽(𝐰) as the eigenvalue.  So, in order for this quantity to be maximized, we will choose 
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the eigenvector that corresponds to the largest eigenvalue of 𝐃−1𝐑𝛼.  Another choice for the weights 

involves solving  

 𝐑𝛼 =  𝚿𝐖−1𝚿𝑇 (49) 

where 𝐑𝛼 is the autocorrelation matrix and 𝚿 contains the eigenvectors of 𝐑𝛼.  Given this, the diagonal 

matrix 𝐖 can be determined using the eigenvalues 𝜆𝑖 

 𝜆𝑖 = 
1

𝑤𝑖
2 (50) 

or  

 𝑤𝑖 = ±𝜆𝑖
−1/2

. (51) 

The quantity will be maximized by allowing 𝐰 to be the eigenvector for the largest eigenvalue of  𝐃−1𝐑𝛼.  

An example of an image that has been reconstructed using weighted least squares is shown in Figure 3c. 

2.1.2 Stochastically Trained Least Squares 

Since the image 𝐱 is compressible, it can be approximated by a sparse image 𝐱̂ = 𝚿𝛂∗ with small ‖𝛂‖0.    

The support of the recovered signal 𝐱̂ is denoted by the set 𝑆 which has cardinality 𝑠.  In most applications 

like target detection, the true support set 𝑆 is unknown.  But, the training data can be used to identify the 

most probable locations 𝑇 of the largest coefficients.  In [18], this was defined as 

 𝑇 = {𝑖 ∈ [1, 𝑁] | 𝑃[|𝛼𝑖| ≥ 𝜌] ≥ 𝜅}, (52) 

where 𝑃 is the coefficient probability distribution, 𝜌 is the coefficient discrimination threshold and 𝜅 is 

the probability threshold for the set 𝑇. 

In [18], we assumed that formation of the measurement matrix 𝚽 depends on the statistical properties 

of the signal 𝐱 such that 
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 𝚽 = 𝚿𝑇 , (53) 

where 𝚿 is some basis (DCT/DWT/KLT) matrix and 𝚿𝑇 is created by selecting the rows in 𝚿 specified by 

𝑇.  This matrix is used to capture the measurements 𝐲.  We note that most sensing matrices for 

compressive imaging are random, thereby sampling the signal in the spatial domain.  This has been shown 

[8-10, 29] to be optimal for recovering a signal from a sparsifying domain.  However in the case of STLS, 

we find that a fixed deterministic sensing matrix is sufficient for capturing dominant spectral coefficients 

and recover essential data for target detection and recognition applications.  This sampling matrix is put 

on the DMD providing samples that are in the transformed domain. 

Since we have some statistical information about the support set 𝑆 of the target image, the probability 

of the set 𝑆 with cardinality 𝑠 to be contained in the set 𝑇 with cardinality 𝑡 ≥  𝑠 is high.  Therefore, we 

can use the least squares solution 𝛂𝑇 of the linear system 

 𝐲 = 𝚽̂𝑇𝛂𝑇 , (54) 

to approximate the compressible coefficient vector 𝛂∗.  The matrix 𝚽̂𝑇 is a submatrix of 𝚽̂ and is formed 

by selecting the columns of 𝚽̂ in 𝑇.  Using STLS, equation (54) has the solution 

 𝛂𝑇 = 𝚽̂𝑇
+𝐲 (55) 

where 𝚽̂𝑇
+ is the Moore-Penrose pseudoinverse of the matrix 𝚽̂𝑇. 

In [18], by using DCT coefficients 𝛼𝑖 can be assumed to be independent with a Laplace distribution, cf. 

[35] and have a corresponding population mean and variance, 

 𝛼𝑖~LaPlace(𝜇𝑖, 𝑏𝑖) for 𝑖 = 1,… ,𝑁, (56) 

which can be approximated by the sample mean and variance. The 𝑖-th sample mean (𝛼̅𝑖) and sample 

variance (2𝑏̃𝑖
2) are evaluated by 
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 𝛼̅𝑖 =
1

𝑁𝑆
∑𝛼𝑖(𝑗)

𝑁𝑆

𝑗=1

 (57) 

and 

 2𝑏̃𝑖
2 =

1

𝑁𝑆 − 1
∑(𝛼𝑖(𝑗) − 𝛼̅𝑖)

2,   1 ≤ 𝑖 ≤ 𝑁𝑆 ,

𝑁𝑆

𝑗=1

 (58) 

where 𝑁𝑆 is the total number of target training images.  Therefore, the probability of having a large 

coefficient at the  𝑖-th position can be calculated as 

 𝑃[|𝛼𝑖 ≥ 𝜌|] = 1 −
1

2𝑏̃𝑖
2
∫ 𝑒

−
|𝛼𝑖−𝛼̅𝑖|

𝑏̃𝑖 d𝛼𝑖

𝜌

−𝜌

, (59) 

with the measurement matrix defined as 𝚽 ∈ ℝ𝑡×𝑁 as in (53) for STLS.  An example of an image that has 

been reconstructed using STLS is shown in Figure 3b. 

2.2 The Quadratic Correlation Filter 

The quadratic correlation filter is a fast and efficient way to find targets in a cluttered scene.  The 

original quadratic correlation filter (QCF), introduced by Mahalanobis et. al. [21] utilized the Fukunaga-

Koontz Transform (FKT) to separate target image areas from background clutter [36].  In their same paper, 

an alternative filter creation method was also presented which finds the filter that maximizes the 

separation between the expected values of the target and background statistics.  In [18], another filter 

was introduced that minimizes the sum of the squared error between the output statistic and the true 

label.  We will review these methods in this section. 
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Figure 4 – Target detection using QCF with three different filter selection methods : (a) An MWIR image containing 
a single Sport Utility Vehicle (SUV) target type. Three different methods of generating the coefficient matrix for the 
quadratic correlation filter are applied to this image: (b) the Fukunaga-Koontz Transform method, (c) the max 
distance between expected values method and (d) the single-layer perceptron method. 

2.2.1 Fukunaga-Koontz Transform Method 

In Mahalanobis et. al. [21], the first filter introduced was derived from the Fukunaga-Koontz Transform 

(FKT).  In this method, we denote a target pattern as 𝐱𝑡𝑔𝑡 and a background pattern as 𝐱𝑏𝑘𝑔.  These 

patterns have correlation matrices 

 𝐑𝑡𝑔𝑡 = 𝔼[𝐱𝑡𝑔𝑡𝐱𝑡𝑔𝑡
𝑇 ] and 𝐑𝑏𝑘𝑔 = 𝔼[𝐱𝑏𝑘𝑔𝐱𝑏𝑘𝑔

𝑇 ], (60) 

respectively.  These correlation matrices are positive semidefinite.  The sum of the target and background 

correlation matrices can be decomposed into the form 

 𝐑𝑡𝑔𝑡 + 𝐑𝑏𝑘𝑔 = 𝐕𝚫𝐕𝑇 , (61) 

where the columns of the orthogonal matrix 𝐕 are the eigenvectors and the diagonal matrix 𝚫 contains 

the corresponding eigenvalues of (𝐑𝑡𝑔𝑡 + 𝐑𝑏𝑘𝑔). We can then define a transform matrix 

 𝐏 = 𝐕𝚫−1/2 (62) 

and rewrite (61) as 

 𝐏𝑇(𝐑𝑡𝑔𝑡 + 𝐑𝑏𝑘𝑔)𝐏 = 𝐈, (63) 

where 𝐈 is the identity matrix. 

Using the transform matrix, we can define target and background image patch correlation matrices 

(a) (b) (c) (d) 
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 𝐑̂𝑡𝑔𝑡 = 𝐏𝑇𝐑𝑡𝑔𝑡𝐏  and  𝐑̂𝑏𝑘𝑔 = 𝐏𝑇𝐑𝑏𝑘𝑔𝐏 (64) 

in the new domain, which reduces equation (63) to 

 𝐑̂𝑡𝑔𝑡 + 𝐑̂𝑏𝑘𝑔 = 𝐈. (65) 

We can then perform another decomposition on the new domain correlation matrices which gives 

 𝐑̂𝑡𝑔𝑡 = 𝐌𝚲𝐌𝑇 , (66) 

where the columns of the orthogonal matrix 𝐌 are the eigenvectors and the diagonal matrix 𝚲 contains 

the corresponding eigenvalues of 𝐑̂𝑡𝑔𝑡.  Using (65) and (66), we obtain 

 𝐑̂𝑏𝑘𝑔 = 𝐌(𝐈 − 𝚲)𝐌𝑇 , (67) 

where the eigenvalues of 𝐑̂𝑡𝑔𝑡  and 𝐑̂𝑏𝑘𝑔 lie between zero and one as demonstrated in Figure 5. 

 
Figure 5 - Eigenvalue plots : (a) uncompressed QCF and (b) compressed QCF, with 𝑡 =  50. As mentioned in [21], for 
the QCF and CQCF to be effective in target detection, we need to choose a proper threshold 𝜖 so that the eigenvalues 
associated with the targets and background are sufficiently separated. We observe that, due to the compression, 
CQCF has less eigenvalues and the resulting discrimination statistic will be smaller in magnitude than QCF. These 
plots were generated using the sample correlation matrices calculated from the training set. 

Given a threshold 𝜖 ∈ (0,1), we choose the largest |Ω𝑡𝑔𝑡| eigenvalues 𝜆𝑖 in 𝚲 for the target (positive) 

class, where 

 Ω𝑡𝑔𝑡 ≔ {𝑖 ∈ [1,𝑁]  |  𝜆𝑖 ≥ 1 − 𝜖}. (68) 

(a) (b) 
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Similarly, we chose the |Ω𝑏𝑘𝑔| eigenvalues 𝜆𝑖 in 𝚲 for the background (negative) class, where 

 Ω𝑏𝑘𝑔 ≔ {𝑖 ∈ [1, 𝑁]  |  𝜆𝑖 ≤ 𝜖}. (69) 

Using the indices of the set Ω𝑡𝑔𝑡 to select the columns of the matrix 𝐌, we create a target projection 

submatrix 𝐌Ω𝑡𝑔𝑡
.  We can also create the background projection submatrix 𝐌Ω𝑏𝑘𝑔

 in a similar fashion 

using the set Ω𝑏𝑘𝑔. 

Given a test image patch, 𝐱, we can classify it as a target or background by projecting it into 

 𝐦𝑡𝑔𝑡 = 𝐌Ω𝑡𝑔𝑡

𝑇 𝐏𝑇𝐱 (70) 

and 

 𝐦𝑏𝑘𝑔 = 𝐌Ω𝑏𝑘𝑔

𝑇 𝐏𝑇𝐱 (71) 

We can then define a statistic 

 𝜑 = 𝐦𝑡𝑔𝑡
𝑇 𝐦𝑡𝑔𝑡 − 𝐦𝑏𝑘𝑔

𝑇 𝐦𝑏𝑘𝑔, (72) 

which can also be written as 

 𝜑(𝐱) = 𝐱𝑇𝐇𝐱, (73) 

where 𝐇 = 𝐅𝐅𝑇 − 𝐆𝐆𝑇, 𝐅 = 𝐏𝐌Ω𝑡𝑔𝑡
, 𝐆 = 𝐏𝐌Ω𝑏𝑘𝑔

.   This statistic is used to discriminate between target 

and background areas in an image.  The values for 𝜑 will be large and positive for target areas and small 

or negative for background areas, see Figure 4b. 

An efficient way of applying the filter, 𝐇, from (73) to a full image is by using a correlation.  If we allow 

𝐟𝑖  to represent a column vector of 𝐅 rearranged into an 𝑟 × 𝑐 mask and similarly 𝐠𝑖 to represent a column 

vector of 𝐆, then we can compute (73) using 
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 𝛗 = ∑ |𝐱 ⊗ 𝐟𝑖|
2 −

|Ω𝑡𝑔𝑡|

𝑖=1

∑ |𝐱 ⊗ 𝐠𝑖|
2

|Ω𝑏𝑘𝑔|

𝑖=1

 (74) 

for every element in the full-sized test image 𝐱.  The peaks in the resulting map 𝛗 from (74) represent 

potential target areas from the test image 𝐱. 

2.2.2 Maximum Distance Between Expected Values Method 

 Another method of generating the coefficient matrix, 𝐇, for the QCF is to maximize the distance 

between the expected values of the target and background statistics. Denote the statistics of a target 

image patch 𝐱𝑡𝑔𝑡 and background image patch 𝐱𝑏𝑘𝑔 by 

 𝜑(𝐱𝑡𝑔𝑡) = 𝐱𝑡𝑔𝑡
𝑇 𝐇𝐱𝑡𝑔𝑡 (75) 

and 

 𝜑(𝐱𝑏𝑘𝑔) = 𝐱𝑏𝑘𝑔
𝑇 𝐇𝐱𝑏𝑘𝑔, (76) 

respectively.  The objective is the find the filter 𝐇∗such that  

 𝐇∗ = argmax
𝐇

(𝔼[𝜑(𝐱𝑡𝑔𝑡)] − 𝔼[𝜑(𝐱𝑏𝑘𝑔)]), (77) 

which maximizes the distance between the expected values of the target and background statistics. 

 If we assume that the matrix 𝐇 can be decomposed such that 𝐇 = 𝐐𝐐𝑇 − 𝐏𝐏𝑇 then the target and 

background statistics are  

 𝜑(𝐱𝑡𝑔𝑡) = 𝐱𝑡𝑔𝑡
𝑇 (𝐐𝐐𝑇 − 𝐏𝐏𝑇)𝐱𝑡𝑔𝑡 (78) 

and 

 𝜑(𝐱𝑏𝑘𝑔) = 𝐱𝑏𝑘𝑔
𝑇 (𝐐𝐐𝑇 − 𝐏𝐏𝑇)𝐱𝑏𝑘𝑔. (79) 

respectively.  Using the identity 𝐱𝑇𝐱 = tr(𝐱𝐱𝑇), we can rewrite (77) as 
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𝐇∗ = argmax
𝐇

(𝔼[tr(𝐐𝑇𝐱𝑡𝑔𝑡𝐱𝑡𝑔𝑡
𝑇 𝐐 − 𝐏𝑇𝐱𝑡𝑔𝑡𝐱𝑡𝑔𝑡

𝑇 𝐏)]

− 𝔼[tr(𝐐𝑇𝐱𝑏𝑘𝑔𝐱𝑏𝑘𝑔
𝑇 𝐐 − 𝐏𝑇𝐱𝑏𝑘𝑔𝐱𝑏𝑘𝑔

𝑇 𝐏)]), 

(80) 

or 

 𝐇∗ = argmax
𝐇

(tr{𝐐𝑇(𝐑𝑡𝑔𝑡 − 𝐑𝑏𝑘𝑔)𝐐} − tr{𝐏𝑇(𝐑𝑡𝑔𝑡 − 𝐑𝑏𝑘𝑔)𝐏}), (81) 

where 𝐑𝑡𝑔𝑡 = 𝔼[𝐱𝑡𝑔𝑡𝐱𝑡𝑔𝑡
𝑇 ] and 𝐑𝑏𝑘𝑔 = 𝔼[𝐱𝑏𝑘𝑔𝐱𝑏𝑘𝑔

𝑇 ].  If we assume that the matrix (𝐑𝑡𝑔𝑡 − 𝐑𝑏𝑘𝑔) can 

be decomposed such that 

 𝐐𝑇(𝐑𝑡𝑔𝑡 − 𝐑𝑏𝑘𝑔)𝐐 = 𝚲 (82) 

and 

 𝐏𝑇(𝐑𝑡𝑔𝑡 − 𝐑𝑏𝑘𝑔)𝐏 = 𝚪, (83) 

where 𝐐 and 𝐏 contain the eigenvectors of (𝐑𝑡𝑔𝑡 − 𝐑𝑏𝑘𝑔) and 𝚲 and 𝚪 contain the corresponding 

eigenvalues, then (81) can be maximized by choosing the eigenvectors in 𝐐 corresponding to the positive 

eigenvalues in 𝚲 and the eigenvectors in 𝐏 corresponding to the negative eigenvalues in 𝚪.  The filter 𝐇∗ 

that is made up of these two matrices can be applied to a new image patch 𝐱 to generate the discriminator 

statistic 

 𝜑(𝐳) = 𝐱𝑇𝐇∗𝐱, (84) 

which will be positive and large for target image patches and small or negative for background image 

patches, see Figure 4c. 

2.2.3 Single-Layer Perceptron Method 

A third method of generating the coefficient matrix 𝐇 that was introduced in [18] minimizes the sum 

of the squared error between the output of the statistic 𝜑 and the true label 𝑑 for all of the training 
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samples.  This method is based on the backpropagation training algorithm for kernel neurons to generate 

the filter [37].  Denote the statistic of an image patch 𝐱𝑖  by 

 𝜑(𝐱𝑖) = 𝐱𝑖
𝑇𝐇𝐱𝑖, 1 ≤ 𝑖 ≤ 𝑁𝑒 , (85) 

where 𝑁𝑒 = 2𝑁𝑆 is the total number of training images.  The image patch 𝐱𝑖  has the true label 𝑑𝑖 ∈ {−1,1} 

where -1 represents a background image patch and 1 represents a target image patch.  As with the 

previous methods, the statistic 𝜑 in (85) is large and positive when image patch 𝐱𝑖  is a target and small or 

negative if it is background.  To force the output of the SLP to be between -1 and 1, we use a differentiable 

squashing function 𝜎(𝜑(𝐱𝑖)) = tanh(𝜑(𝐱𝑖)).  The objective function is 

 𝐽(𝐇) =
1

2
∑|𝑑𝑖 − 𝜎(𝜑(𝐱𝑖))|

2

𝑁𝑒

𝑖=1

=
1

2
∑|𝑑𝑖 − 𝜎(𝐱𝑖

𝑇𝐇𝐱𝑖)|
2

𝑁𝑒

𝑖=1

 (86) 

which has gradient 

 ∇𝐻𝐽(𝐇) = −∑|𝑑𝑖 − 𝜎(𝜑(𝐱𝑖))|

𝑁𝑒

𝑖=1

(1 − 𝜎2(𝜑(𝐱𝑖))) 𝐱𝑖𝐱𝑖
𝐓. (87) 

We can iteratively solve for the filter 𝐇 using gradient descent 

 𝐇𝑛+1 = 𝐇𝑛 − 𝜂∇𝐻𝐽(𝐇), (88) 

where 𝑛 ≥ 0 is the iteration number, 𝜂 is the learning rate and 𝐇0 = 𝟎𝑟×𝑐 assuming that 𝑟 and 𝑐 denote 

the number of rows and columns in 𝐇, respectively. 

The best approximate solution to (88) can be denoted by 𝐇∗ and occurs after a maximum number of 

iterations or a convergence criterion has been met.  So now, (85) can be written in terms of the 

approximate solution 

 𝜑(𝐱𝑖) = 𝐱𝑖
𝑇𝐇∗𝐱𝑖, 1 ≤ 𝑖 ≤ 𝑁𝑒 . (89) 

This statistic is what will be used to distinguish target image patches from background, see Figure 4d. 
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2.3 Compressed Quadratic Correlation Filters 

The compressed quadratic correlation filter (CQCF) was introduced in [18] as a modification of the QCF 

algorithm for compressive imagers so that its data could be classified without decompression of the 

sensed image.  In this section, we will discuss how the STLS or weighted least squares and QCF algorithms 

can be combined to form a target detection algorithm on compressed samples.  We will then show how 

the QCF algorithm can be modified to incorporate the compressed measurements directly using the 

sampling strategy from STLS. 

2.3.1 Quadratic Correlation Filter Using STLS or Weighted Least Squares 

 The STLS and WLS recovery methods are alternatives to OMP, IIRLS or BP. The main advantage of the 

STLS or WLS as compared to these, and many other reconstruction methods is that they have closed-form 

solutions, which typically requires much less execution time than other iterative methods.  This method 

takes a compressively sampled infrared image patch, 𝐲, and reconstructs it using (55) together with (24) 

giving 

 𝐱̂ = 𝚿𝚽̂𝑇
+𝐲 (90) 

for STLS reconstruction and (41) for weighted least squares reconstruction.  Using (73), (84) or (89) and 

the recovered image patch from (90) or (41), we have 

 𝜑(𝐱̂) = 𝐱̂𝑇𝐇𝐱̂ = 𝐲𝑇𝐇̃𝐲, (91) 

where 𝐇̃ = 𝐀𝑇𝐇𝐀 and 𝐀 = 𝚿𝚽̂𝑇
+ for STLS where 𝚽 is the matrix define in (53) and 𝐀 =

𝚿𝐖−1𝚿𝑇𝚽𝑇(𝚽𝚿𝐖−1𝚿𝑇𝚽𝑇)−1 for WLS where 𝚽 is a random Bernoulli matrix.  In (91), the compressed 

infrared image patch, 𝐲, is captured using the corresponding sensing matrix for each method.  Then it is 

uncompressed using STLS or WLS and applied to a standard QCF filter.  This can be implemented using 

optimized linear algebra libraries resulting in very fast execution speeds due to its closed-form.  In 
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addition, because of the linear relationship, if the filter operation can be expressed in terms of the 

recovered image, then it can also be expressed in terms of the compressed image 𝐲, giving a compressed 

target recognition method.  This is one main advantage of ℓ2 recovery methods to iterative methods. In 

this method, the filter 𝐇 is ℝ𝑁×𝑁
  dimensional space where 𝐲 is in ℝ𝑚

  dimensional space and 𝑚 <  𝑁.  

The STLS or WLS operation performs a mapping from ℝ𝑚
  to ℝ𝑁. 

 
Figure 6 – Comparison of target detection methods on compressed data : (a) Original mid-wave infrared image 
containing a single Self-propelled howitzer (2S3) target. (b) Target detection statistic 𝜑 from QCF applied to the 
uncompressed original image.  (c) QCF applied to a decompressed image using STLS.  QCF applied to a 20 × 40 
blockwise reconstruction of the image using (d) STLS and (e) WLS where 𝑚 =  50, and (f) compressed quadratic 
correlation filter (CQCF) where 𝑡 =  50.  The sensing matrix for (e) is a random Bernoulli matrix and for (d) and (f) it 
is the matrix defined in (53). 

2.3.2 The Compressed Quadratic Correlation Filter 

Similar to the QCF, the CQCF can take multiple forms.  In this section, we cover three methods that 

include the Fukunaga-Koontz transform method, the maximum distance between expected values 

method and the single-layer perceptron method first presented in [18]. 

(a) (b) (c) 

(d) (f) (e) 
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2.3.2.1 Fukunaga-Koontz Transform Method 

Section 2.3.1 showed how the STLS or WLS method could be used to create a pseudo-compressed 

quadratic correlation filter.  It is not fully compressed because the filter is in the uncompressed domain.   

Due to the linear nature of QCF, we can create a compressed version of QCF and bypass decompression 

using just the sensing matrix in (53) for STLS which will further save processing time. 

In this method, we denote a compressed target pattern as 𝐲𝑡𝑔𝑡 and a compressed background pattern 

as 𝐲𝑏𝑘𝑔 which are captured according to 

 𝐲 = 𝚽𝐱, (92) 

for STLS where 𝐱 is an uncompressed target or background pattern and 𝚽 defined by (53).  These patterns 

have correlation matrices 

 𝐑̂𝑡𝑔𝑡 = 𝔼[𝐲𝑡𝑔𝑡𝐲𝑡𝑔𝑡
𝑇 ] 𝑎𝑛𝑑 𝐑̂𝑏𝑘𝑔 = 𝔼[𝐲𝑏𝑘𝑔𝐲𝑏𝑘𝑔

𝑇 ], (93) 

respectively.  Following a derivation very similar to that presented in Section 2.2.1, we generate the 

statistic 

 𝜑̂ = 𝐲𝑇(𝐅̂𝐅̂𝑇 − 𝐆𝐆̂)𝐲 = 𝐲𝑇𝐇̂𝐲, (94) 

where 𝐇̂ ∈ ℝ𝑚×𝑚. 

The statistic in (94) has less eigenvalues than the method presented in the standard uncompressed 

QCF FKT method, see Figure 5b.  As before, this statistic will have higher magnitude values for compressed 

target image patches and lower magnitude values for compressed background image patches.  Therefore, 

we can use (94) to classify compressed image patches from a compressive MWIR sensor, see Figure 6f. 
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2.3.2.2 Maximum Distance Between Expected Values Method 

Another method of generating a compressed coefficient matrix, 𝐇̂, for the CQCF is to maximize the 

distance between the expected values of the compressed target and background image patch statistics. 

Denote the statistics of a compressed target image and background image patches as 𝐲𝑡𝑔𝑡 and 𝐲𝑏𝑘𝑔 by 

 𝜑̂(𝐲𝑡𝑔𝑡) = 𝐲𝑡𝑔𝑡
𝑇 𝐇̂𝐲𝑡𝑔𝑡 (95) 

and 

 𝜑̂(𝐲𝑏𝑘𝑔) = 𝐲𝑏𝑘𝑔
𝑇 𝐇̂𝐲𝑏𝑘𝑔, (96) 

respectively.  The objective is the find the filter 𝐇̂∗such that  

 𝐇̂∗ = argmax
𝐇̂

(𝔼[𝜑̂(𝐲𝑡𝑔𝑡)] − 𝔼[𝜑̂(𝐲𝑏𝑘𝑔)]), (97) 

which maximizes the distance between the expected values of the target and background statistics.  If we 

assume 𝐇̂ = 𝐐̂𝐐̂𝑇 − 𝐏̂𝐏̂𝑇, then (97) can be written as 

 𝐇̂∗ = argmax
𝐇̂

(tr{𝐐̂𝑇(𝐑̂𝑡𝑔𝑡 − 𝐑̂𝑏𝑘𝑔)𝐐̂} − tr{𝐏̂𝑇(𝐑̂𝑡𝑔𝑡 − 𝐑̂𝑏𝑘𝑔)𝐏̂}), (98) 

where 𝐑̂𝑡𝑔𝑡= 𝔼[𝐲𝑡𝑔𝑡𝐲𝑡𝑔𝑡
𝑇 ] and 𝐑̂𝑏𝑘𝑔 = 𝔼[𝐲𝑏𝑘𝑔𝐲𝑏𝑘𝑔

𝑇 ].  Just as before, 𝐐̂ will contain the vectors that 

correspond to the positive eigenvalues and 𝐏̂ contain the vectors corresponding to the negative 

eigenvalues. 

Given a new compressed infrared image patch, 𝐲, we can classify it as a target or background using 

 𝜑̂(𝐲) = 𝐲𝑇𝐇̂∗𝐲, (99) 

where 𝐇̂∗ ∈ ℝ𝑚×𝑚.   We observe that 𝜑̂ will be positive and large when the compressed image patch is a 

target and small or negative if it is background. 
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2.3.2.3 Single-Layer Perceptron Method 

A third method of generating the coefficient matrix 𝐇̂ minimizes the sum of the squared error between 

the output of the statistic 𝜑̂ and the true label 𝑑 for all of the compressed training samples.  Denote the 

statistic of a compressed image patch 𝐲𝑖 by 

 𝜑̂(𝐲𝑖) = 𝐲𝑖
𝑇𝐇̂𝐲𝑖, 1 ≤ 𝑖 ≤ 𝑁𝑒 , (100) 

where 𝑁𝑒 = 2𝑁𝑆 is the total number of compressed training samples.  The compressed image patch 𝐲𝑖 

has the true label 𝑑𝑖 ∈ {−1,1} where -1 represents a background image patch and 1 represents a target 

compressed image patch.  As with the previous compressed methods, the statistic 𝜑̂ in (100) is large and 

positive when image patch 𝐲𝑖 is a target and small or negative if it is background.  The objective function 

is 

 𝐽(𝐇̂) =
1

2
∑|𝑑𝑖 − 𝜎(𝜑̂(𝐲𝑖))|

2

𝑁𝑒

𝑖=1

=
1

2
∑|𝑑𝑖 − 𝜎(𝐲𝑖

𝑇𝐇̂𝐲𝑖)|
2

𝑁𝑒

𝑖=1

 (101) 

which has gradient 

 ∇𝐻̂𝐽(𝐇̂) = −∑|𝑑𝑖 − 𝜎(𝜑̂(𝐲𝑖))|

𝑁𝑒

𝑖=1

(1 − 𝜎2(𝜑̂(𝐲𝑖))) 𝐲𝑖𝐲𝑖
𝐓. (102) 

We can iteratively solve for the filter 𝐇̂ using gradient descent 

 𝐇̂𝑛+1 = 𝐇̂𝑛 − 𝜂∇𝐻𝐽(𝐇̂), (103) 

Given a test compressed image patch, 𝐲, from the MWIR compressive sensor, we can classify it as 

target or background by examining 𝜑̂(𝐲) = 𝐲𝑇𝐇̂∗𝐲 or 𝜎(𝜑̂(𝐲)) where the first will be positive if the 

compressed image patch is a target and negative otherwise and the second will be between 0 and +1 for 

a target and between -1 and 0 for background. 

  



33 
 

CHAPTER 3 - TARGET RECOGNITION 

Automatic target recognition (ATR) includes two stages: detection and recognition [1, 4].  As shown in 

CHAPTER 2, detection involves separating targets from background clutter.  The target identification step 

is typically more processing intensive than the target detection stage.  This is the main reason why a fast 

and efficient target detection stage is employed [1, 4].  As with target detection, there are many target 

identification methods that can be employed for ATR.  They range from model-based methods to learning 

classifiers [4].  Some examples of learning classifiers are support vector machines (SVMs) and neural 

networks (NNs). 

Correlation filters are another method of classification.  The correlation filter takes advantage of the 

linear nature of the correlation operation in another domain (like the Fourier domain).  This provides a 

fast and efficient way to classify (and localize) targets in an image by simply looking for peaks on the 

correlation surface [38].  The MACH filter is one such correlation filter [39].   While correlation filters can 

be used for classification, they fail to perform as well as SVMs and NNs for target identification.  

Support vector machines (SVMs) are a type of learning linear classifier that tries to find the line that 

maximally separates the closest samples from opposing classes [40].  The SVM can be augmented with a 

correlation filter to enhance the localization performance of the SVM.  This proposed method is called the 

maximum margin correlation filter (MMCF) [19, 20]. 

Another type of learning classifier is a convolutional neural network.  Convolutional neural networks 

(CNNs) were introduced by LeCun et al [41, 42] to build networks that are invariant to certain 

transformations of the inputs.  Rather than performing the feature extraction manually, it is built into the 

network and learned through the training process [22].  A typical CNN has correlation and pooling layers 

followed by fully-connected layers for performing the feature extraction and classification.  However in 
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[43], a CNN was augmented with a QCF layer to take advantage of the target discrimination and 

localization properties of the QCF along with the classification properties of the CNN.  

In this chapter, we review a few learning-based target recognition approaches.  The first approach we 

will review is a dual-objective support vector machine which has a max margin objective and a correlation 

peak objective.  Then, we will then review how neural networks can be augmented with the quadratic 

correlation filter, which is inherently a two-class discriminator, to generate effective multi-class 

discriminators. 

3.1 Maximum Margin Correlation Filter 

The maximum margin correlation filter (MMCF) is a dual-objective constrained optimization problem 

introduced in [19, 20].  It contains a correlation filter objective and a maximum margin objective.  To fully 

understand the MMCF, we will briefly review correlation filters and support vector machines in this 

section. 

3.1.1 Correlation Filters 

A correlation is used to measure the degree to which two signals are similar [28].  A finite one-

dimensional cross-correlation can be expressed as 

 𝑔[𝑛] = 𝐱 ⊗  𝐰 = ∑𝑥[𝑚]𝑤𝑁[𝑛 + 𝑚]

𝑚

, (104) 

for a periodic signal 𝑤 of period 𝑁.  The correlation output 𝑔 gives peaks when the input image is similar 

to the filter.  An ideal output of the correlation is equal to the Kronecker delta function 𝑔[𝑛] = 𝛿[𝑛] for 

𝑛 ∈ [1, 𝑁].  We can take the Fourier Transform of (104) to get 
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 𝑔[𝑘] = ∑∑𝑥[𝑚]𝑤𝑁[𝑛 + 𝑚]

𝑚𝑛

𝑒−
2𝜋𝑖𝑛𝑘

𝑁 . (105) 

If we let 𝑙 = 𝑛 + 𝑚, then (105) can be rewritten as 

 𝑔[𝑘] = ∑∑𝑥[𝑚]𝑤𝑁[𝑙]

𝑚𝑙

𝑒−
2𝜋𝑖(𝑙−𝑚)𝑘

𝑁  (106) 

which can be reorganized as 

 𝑔[𝑘] = ∑𝑤𝑁[𝑙]𝑒−
2𝜋𝑖𝑙𝑘

𝑁 ∑𝑥[𝑚]

𝑚𝑙

𝑒
2𝜋𝑖𝑚𝑘

𝑁  (107) 

or just 

 𝑔[𝑘] = 𝑤̂[𝑘]𝑥̂∗[𝑘], 1 ≤ 𝑘 ≤ 𝐾 (108) 

where * represents the complex conjugate and 𝐾 is the length of the discrete Fourier transform.  We can 

denote Fourier transform of the vector 𝐱 as 𝐱̂ = ℱ{𝐱} and create a diagonal matrix 𝐗̂ such that 

 𝐗̂ = [

𝑥[1] 0 ⋯ 0

0 𝑥[2] ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑥[𝐾]

] (109) 

and efficiently compute the vector 𝐠̂ using 𝐠̂ = 𝐗̂∗𝐰̂ where 𝐰̂ = [𝑤̂[1] 𝑤̂[2] ⋯ 𝑤̂[𝐾]]. 

To find the optimal filter that responds to similar patterns as a delta function, we solve 

 𝐰 = argmin
𝐰

∑‖𝐱𝑖  ⊗ 𝐰 − 𝐠𝑖‖
2

𝐿

𝑖=1

, (110) 

which can also be expressed as 

 𝐰 = argmin
𝐰

∑‖𝐲𝑖‖
2

𝐿

𝑖=1

, (111) 

For 𝐲𝑖 = 𝐱𝑖  ⊗ 𝐰 − 𝐠𝑖.  If we allow 𝐲̂ = 𝓕{𝐲}, then (111) is just 
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 𝐰̂ = argmin
𝐰̂

1

𝐾
∑𝐲̂𝑖

∗𝐲̂𝑖

𝐿

𝑖=1

, (112) 

where we used Parseval’s Theorem.  We can see that  𝐲̂𝑖 = 𝐗̂𝑖
∗𝐰̂ − 𝐠̂𝑖 which gives 

 𝐰̂ = argmin
𝐰̂

1

𝐾
∑(𝐰̂†𝐗̂𝑙𝐗̂𝑙

∗𝐰̂ − 2𝐰̂†𝐗̂𝑙𝐠̂𝑙 + 𝐠̂𝑙
†𝐠̂𝑙)

𝐿

𝑙=1

, (113) 

where the † operator denotes a conjugate transpose.  The spatial domain filter is just 𝐰 = ℱ−1{𝐰̂} [38]. 

3.1.2 Support Vector Machines 

 

Figure 7 - Example of a support vector machine classification.  Opposing classes are separated by a line (𝛉𝑇𝐱𝑖 = 0) 
that maximizes the distance between them.  The distance 𝛼 is exactly half of that distance. 

A support vector machines is a linear classifier which maximizes the distance between the closest 

opposing class members [40].  In this section, we will assume that an input pattern can be represented by 
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𝐱𝑖 and that it has a label 𝑦𝑖 ∈ {−1,1} for 1 ≤ 𝑖 ≤ 𝐿 where 𝐿 is the number of training samples.  Figure 7 

provides and illustration of a support vector machine classification.  The lines 𝛉𝑇𝐱𝑖 = 𝜀 and 𝛉𝑇𝐱𝑖 = −𝜀 

represent the support vectors 𝐱𝑖  which correspond to the positive and negative classes, respectively.  For 

simplicity in derivation, we have assumed that the support vectors are augmented with a one to account 

for the bias. The value, 𝛼, is the distance from each support vector to the classification line 𝛉𝑇𝐱𝑖 = 0 also 

called the margin.  This equation for the classification line involves two vectors on the left-hand side.  We 

know that two vectors 𝐚 and 𝐛 are orthogonal if 𝐚𝑇𝐛 = 0.  From this definition, we can see that the vectors 

𝛉 and 𝐱𝑖 are orthogonal.  The margin 𝛼 is the magnitude along the orthogonal vector 𝛉 from the optimal 

classification line.  Suppose we wish to find equation of a support vector in terms of the classification 

vector.  We will assume that the classification vector is represented by 𝐱𝑖(0) and a support vector at the 

margin is 𝐱𝑖(𝛼).   We will assume that 𝛼 represents the distance between the two vectors, so the support 

vector is just 

 𝐱𝑖(𝛼) = 𝐱𝑖(0) + 𝛼
𝑦𝑖𝛉

‖𝛉‖
, (114) 

where the scalar 𝑦𝑖  is used to represent either the positive or negative support vector.  To find a scalar 

value for 𝛼, we can multiply both sides by 𝑦𝑖𝛉
𝑇.  This gives 

 𝑦𝑖𝛉
𝑇𝐱𝑖(𝛼) = 𝑦𝑖𝛉

𝑇 [𝐱𝑖(0) + 𝛼
𝑦𝑖𝛉

‖𝛉‖
], (115) 

where 𝑦𝑖𝛉
𝑇𝐱𝑖(𝛼) = 𝜀 and 𝑦𝑖𝛉

𝑇𝐱𝑖(0) = 0.  We can rewrite this as 

 𝜀 = 𝛼
‖𝛉‖𝟐

‖𝛉‖
, (116) 

since 𝑦𝑖
2 = 1.  Given this, we can see that the margin 𝛼 =

𝜀

‖𝛉‖
.  So, to find the line that maximizes this 

margin, we solve 
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 max
𝛉,b

𝜀

‖𝛉‖
 subject to 𝑦𝑖(𝛉

𝑇𝐱𝑖 + 𝑏) ≥ 𝜀 for 𝑖 = 1,… , 𝐿, (117) 

where we have explicitly included the bias (instead of using augmented vectors). This is the same as  

 min
𝛉,b

‖𝛉‖2

𝜀2
 subject to 𝑦𝑖(𝛉

𝑇𝐱𝑖 + 𝑏) ≥ 𝜀 for 𝑖 = 1,… , 𝐿 (118) 

and can also be written as  

 min
𝐰,b

 ‖𝐰‖2  subject to 𝑦𝑖(𝐰
𝑇𝐱𝑖 + 𝑏) ≥ 1 for 𝑖 = 1,… , 𝐿 (119) 

if 𝐰 =
𝛉

𝜀
.  This is the equation for a support vector machine and assumes there are no mistakes in the 

classification (i.e. the line perfectly separates the opposing classes).  If the classes are not perfectly linearly 

separable then a slack variable is typically introduced and takes the form 

 min 
𝐰,b

‖𝐰‖2 + 𝐶 ∑𝜉𝑖

𝑖

 subject to 𝑦𝑖(𝐰
𝑇𝐱𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 for 𝑖 = 1,… , 𝐿 (120) 

for 𝜉𝑖 ≥ 0, where 𝜉𝑖  are the slack variables [40]. 

There are several methods for converting a binary classifier to multi-class.  One method is called the 

one-versus-all method.  In one-versus-all, there is an SVM trained for each class with the negative class 

containing samples from all other classes.  The SVM with the maximum response provides the label for a 

given test pattern [22]. 

3.1.3 Proposed Method 

As previously mentioned, the maximum margin correlation filter (MMCF) is a dual-objective 

optimization problem.  It combines the discrimination capability of support vector machines and the 

localization properties of correlation filters.  The MMCF assumes that the output  
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 𝑔[𝑛] = ∑𝛿[𝑛]𝑥𝑖[𝑚]𝑤𝑁[𝑛 + 𝑚]

𝑚

= 𝛿[𝑛]𝐰𝑇𝐱𝑖, 1 ≤ 𝑛 ≤ 𝑁, (121) 

for 1 ≤ 𝑖 ≤ 𝐿, where 𝐿 is the number of training images, which has transform 

 𝑔[𝑘] = ∑∑𝛿[𝑛]𝑥𝑖[𝑚]𝑤𝑁[𝑛 + 𝑚]

𝑚

𝑒−
2𝜋𝑖𝑛𝑘

𝑁

𝑛

= 𝐰𝑇𝐱𝑖, 1 ≤ 𝑘 ≤ 𝐾, (122) 

or can be written in vector form as 

 𝐠̂ = 𝐞𝐱𝑖
𝑇𝐰, (123) 

where 𝐞 = [1,1,1,… ,1]𝑇 and 𝐞 ∈ ℝ𝐾.  From (122), we can take the inverse discrete Fourier transform of 

𝑥 and 𝑤 giving 

 𝑔[𝑘] = ∑
1

𝐾
∑𝑥𝑖[𝑙]𝑒

2𝜋𝑖𝑚𝑙
𝐾

𝑙

1

𝐾
∑𝑤̂𝑁[𝑗]

𝑗

𝑒
2𝜋𝑖𝑚𝑗

𝐾

𝑚

, 1 ≤ 𝑘 ≤ 𝐾, (124) 

or 

 
𝑔[𝑘] =

1

𝐾
∑𝑥𝑖[𝑙]

𝑙

1

𝐾
∑𝑤̂𝑁

∗ [𝑗]

𝑗

∑𝑒
2𝜋𝑖𝑚(𝑙−𝑗)

𝐾

𝑚

, 1 ≤ 𝑘 ≤ 𝐾. 
(125) 

But the last summation is just a geometric series equal to 

 
∑𝑒

2𝜋𝑖𝑚(𝑙−𝑗)
𝐾

𝑚

=
𝑒2𝜋𝑖𝑚(𝑙−𝑗) − 1

𝑒
2𝜋𝑖𝑚(𝑙−𝑗)

𝐾 − 1

= 𝐾𝛿[𝑙 − 𝑗] 
(126) 

which gives 

 
𝑔[𝑘] =

1

𝐾
∑𝑥𝑖[𝑙]

𝑙

1

𝐾
∑𝑤̂𝑁

∗ [𝑗]

𝑗

𝐾𝛿[𝑗 − 𝑙] =
1

𝐾
∑𝑥𝑖[𝑙]𝑤̂𝑁

∗ [𝑙]

𝑙

=
1

𝐾
𝐰̂†𝐱̂𝑖, 

(127) 

for  1 ≤ 𝑘 ≤ 𝐾 or in vector form it will be 

 𝐠̂ =
1

𝐾
𝐞𝐱̂𝑖

†𝐰̂.  (128) 

If we substitute this into (113), we have 
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 𝐰̂ = argmin
𝐰̂

1

𝐾
∑(𝐰̂†𝐗̂𝑙𝐗̂𝑙

∗𝐰̂ −
2

𝐾
𝐰̂†𝐗̂𝑙𝐞𝐱̂𝑙

†𝐰̂ +
1

𝐾2
𝐰̂†𝐱̂𝑙𝐞

𝑇𝐞𝐱̂𝑙
†𝐰̂)

𝐿

𝑙=1

, (129) 

or 

 𝐰̂ = argmin
𝐰̂

1

𝐾
∑(𝐰̂†𝐗̂𝑙𝐗̂𝑙

∗𝐰̂ −
2

𝐾
𝐰̂†𝐱̂𝑙𝐱̂𝑙

†𝐰̂ +
1

𝐾
𝐰̂†𝐱̂𝑙𝐱̂𝑙

†𝐰̂)

𝐿

𝑙=1

, (130) 

for 𝐗̂𝑙𝐞 = 𝐱̂𝑙  and 𝐞𝑇𝐞 = 𝐾.  We can rewrite this as 

 𝐰̂ = argmin
𝐰̂

1

𝐾
𝐰̂† (∑𝐗̂𝑙𝐗̂𝑙

∗

𝐿

𝑙=1

−
1

𝐾
∑𝐱̂𝑙𝐱̂𝑙

†

𝐿

𝑙=1

)𝐰̂ = argmin
𝐰̂

1

𝐾
𝐰̂†𝐙̂𝐰̂ . (131) 

The MMCF operates in the frequency domain, so we must take the DFT of (120) 

 min 
𝐰,b

1

𝐾
𝐰̂†𝐰̂ + 𝐶 ∑𝜉𝑖

𝑖

 subject to 
𝑦𝑖

𝐾
(𝐰̂†𝐱̂𝑖 + 𝑏) ≥ 1 − 𝜉𝑖  for 𝑖 = 1,… , 𝐿 (132) 

for 𝜉𝑖 ≥ 0 where we have made use of Parseval’s Theorem shown (112) and (127).  This can also be put 

into a more general form 

 min 
𝐰,b

1

𝐾
𝐰̂†𝐰̂ + 𝐶 ∑𝜉𝑖

𝑖

 subject to 
𝑦𝑖

𝐾
(𝐰̂†𝐱̂𝑖 + 𝑏) ≥ 𝑦𝑖𝑢𝑖 − 𝜉𝑖 for 𝑖 = 1,… , 𝐿, (133) 

where 𝜉𝑖 ≥ 0.  If we let 𝜉𝑖
′ = 𝐾𝜉𝑖, 𝑏

′ = 𝐾𝑏 and 𝑐𝑖 = 𝐾𝑦𝑖𝑢𝑖, we can write (133) as  

 min 
𝐰,b

𝐰̂†𝐰̂ + 𝐶 ∑𝜉𝑖
′

𝑖

 subject to 𝑦𝑖(𝐰̂
†𝐱̂𝑖 + 𝑏′) ≥ 𝑐𝑖 − 𝜉𝑖

′ for 𝑖 = 1,… , 𝐿, 𝜉𝑖
′ ≥ 0 . (134) 

To combine the SVM objective in (133) and the correlation filter objective in (131), we will use a 

parameter 𝜆 to control the contribution of each.  Applying the parameter 𝜆 and adding the contribution 

of (131) to (133), we have 

 min 
𝐰,b

𝜆𝐰̂†𝐰̂ + 𝜆𝐶 ∑𝜉𝑖
′

𝑖

+ (1 − 𝜆)𝐰̂†𝐙̂𝐰̂  (135) 
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subject to 𝑦𝑖(𝐰̂
†𝐱̂𝑖 + 𝑏′) ≥ 𝑐𝑖 − 𝜉𝑖

′ for 𝑖 = 1,… , 𝐿, 𝜉𝑖
′ ≥ 0 . 

If we let 𝐒̂ = 𝜆𝐈 + (1 − 𝜆)𝐙̂ and 𝐶′ = 𝜆𝐶, then we have 

 

min 
𝐰,b

𝐰̂†𝐒̂𝐰̂ + 𝐶′ ∑𝜉𝑖
′

𝑖

  

subject to 𝑦𝑖(𝐰̂
†𝐱̂𝑖 + 𝑏′) ≥ 𝑐𝑖 − 𝜉𝑖

′ for 𝑖 = 1,… , 𝐿, 𝜉𝑖
′ ≥ 0 . 

(136) 

To use a standard SVM solver, we have let 𝐰̃ = 𝐒̂1/2𝐰̂ and 𝐱̃𝑖 = 𝐒̂−1/2𝐱̂𝑖 which gives 

  

 

min 
𝐰,b

𝐰̃†𝐰̃ + 𝐶′ ∑𝜉𝑖
′

𝑖

  

subject to 𝑦𝑖(𝐰̃
†𝐱̃𝑖 + 𝑏′) ≥ 𝑐𝑖 − 𝜉𝑖

′ for 𝑖 = 1,… , 𝐿, 𝜉𝑖
′ ≥ 0 . 

(137) 

Figure 8 shows an example of the output of the MMCF and an application of the MMCF on an image 

using its identification and localization properties. 

 

Figure 8 – MMCF identification and location example: (a) the output of the MMCF, where the strongest peak 
indicates the presence of the target and the location, (b) the image with the PKP target identified by using the MMCF 
with the highest peak and centered on the peak. 

(a) (b) 



42 
 

3.2 Neural Network Approaches for Automatic Target Recognition 

In Section 2.2.3, we recalled a single-layer perceptron QCF for two-class target detection. However, 

target recognition requires a multi-class discriminator.  Therefore, in this section we propose a multi-layer 

perceptron neural network with a quadratic filter input layer for multi-class target recognition.  Since 

multi-layer perceptron neural networks are fully-connected networks, the input size must match the 

training input patch size.  To remedy this, we propose an all-convolutional CNN with a QCF layer for multi-

class target recognition and take advantage of the invariance properties of the CNN [22].   In addition, all-

convolutional CNN offers the ability to identify targets in an image while training on image patches [44].  

This makes this type of CNN ideal for ATR applications. 

3.2.1 Quadratic Multi-Layer Perceptron Neural Network for Target Recognition 

In this subsection, we introduce a quadratic multi-layer perceptron neural network (QMLPNN) for 

multi-class target recognition. The quadratic multi-layer perceptron neural network (QMLPNN) for multi-

class target recognition was introduced in [43].  To fully understand the QMLPNN, we will briefly review 

multi-layer perceptron neural networks and the backpropagation training algorithm.   
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3.2.1.1 Multi-Layer Perceptron Neural Network 

 

Figure 9 - Fully-connected multi-layer perceptron neural network.  This network has an input layer, two hidden layers 
and an output softmax layer.  The first hidden layer has 𝐾1 nodes, the second has 𝐾2 nodes and the output softmax 
layer has 𝐾3 nodes which is equal to the number of classes.  The input layer has 𝑀 nodes with is the length of the 

vector 𝐱𝑛.  The weight matrices 𝐇(1), 𝐇(2) and 𝐇(3) and bias vectors 𝐛(1), 𝐛(2) and 𝐛(3) are learned from the training 
data using the backpropagation training algorithm. 

 

Figure 9 illustrates as sample multi-layered perceptron neural network [22, 45-47].  In this example, 

there are three layers: an input layer, an output layer and a hidden layer.  The number of nodes in the 

input layer is equal to the length of the input pattern vector 𝐱𝑛 plus one for the bias node.  The hidden 

layer nodes are denoted by 𝐳𝑛
(2)

 and 𝐳𝑛
(3)

 with lengths 𝐾1 and 𝐾2, respectively.  These lengths are equal to 

the number of nodes in the hidden layer (not including the bias node). The first hidden layer can be 

determined using 
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 𝐳𝑛
(2)

= 𝜎(𝐇(1)𝐱𝑛 + 𝐛(1)), (138) 

where 𝐇(1) is the weight matrix and 𝐛(1) is the bias vector for the first hidden layer.  The function 𝜎 is a 

non-linear activation function which can be a sigmoid  

 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 , (139) 

hyperbolic tangent 

 𝜎(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 , (140) 

rectified linear function 

 𝜎(𝑥) = max(𝑥, 0) (141) 

or any number of other differentiable functions.  The inner hidden layers can be determined using 

 𝐳𝒏
(ℓ+1)

= 𝜎 (𝐇(ℓ)𝐳𝒏
(ℓ)

+ 𝐛(ℓ)) , 2 ≤ ℓ ≤ 𝐿 − 1. (142) 

Since this network only has three layers, we have 𝐿 = 3.  We reserve the weight matrix 𝐇(3) and bias 

vector 𝐛(3) for the objective function which is defined as  

  𝐸(𝐇, 𝐛) = − ∑ ∑[𝑑𝑛 = 𝑐]log(
exp (〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝐛𝑐
(𝐿)

)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)〉 + 𝐛𝑗

(𝐿)
)𝑗𝜖𝒞

)

𝑐∈𝒞

𝑁

𝑛=1

, (143) 

 

where 𝒞 is the set of possible target labels and 

  [𝑑𝑛 = 𝑐] = {
0 𝑑𝑛 ≠ 𝑐
1 𝑑𝑛 = 𝑐

  (144) 

is the Iverson bracket notation for the Kronecker delta function. 
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Backpropagation is used for neural networks to solve for the gradients for each layer so that gradient 

descent can be used to update the weights and biases.  Gradient descent for a weight matrix is 

 𝐇(ℓ) = 𝐇(ℓ) − 𝜇∇𝐇(ℓ)𝐸(𝐇, 𝐛), 1 ≤ ℓ ≤ 𝐿 (145) 

and for the bias it is 

 𝐛(ℓ) = 𝐛(ℓ) − 𝜇∇𝐛(ℓ)𝐸(𝐇, 𝐛), 1 ≤ ℓ ≤ 𝐿 (146) 

where 𝜇 is the learning rate which can either be a static or dynamic number. 

The gradient for the last layer is 

 𝜕𝐸(𝐇, 𝐛)

𝜕𝐇(𝐿)
= 𝛅(𝐿+1) (𝐳𝑛

(𝐿)
)
𝑇

 
(147) 

where 

 
𝛅(𝐿) = −(∑[𝑑𝑛 = 𝑐] −  P [𝑑𝑛 = 𝑐 | 𝐳𝑛

(𝐿)
; 𝐇(𝐿), 𝐛(𝐿)]

𝑁

𝑛=1

)

𝑐∈𝒞

 
(148) 

and 

 

P [𝑑𝑛 = 𝑐 | 𝐳𝑛
(𝐿)

;𝐇(𝐿), 𝐛(𝐿)] =
exp (〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝐛𝑐
(𝐿)

)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)〉 + 𝐛𝑗

(𝐿)
)𝑗𝜖𝒞

 

(149) 

which is called the error function (see proof in APPENDIX B). To find the gradient for the weights in the 

next layer, we just perform the chain rule such as 

 𝜕𝐸(𝐇, 𝐛)

𝜕𝐇(𝐿−1)
=

𝜕𝐸(𝐇, 𝐛)

𝜕𝐳𝑛
(𝐿)

𝜕𝐳𝑛
(𝐿)

𝜕𝐇(𝐿−1)
= (𝐇(𝐿))

𝑇
𝛅(𝐿+1) 𝜕𝐳𝑛

(𝐿)

𝜕𝐚𝑛
(𝐿)

𝜕𝐚𝑛
(𝐿)

𝜕𝐇(𝐿−1)
 

(150) 

where 

  𝐚𝑛
(𝐿)

= 𝐇(𝐿−1)𝐳𝒏
(𝐿−1)

+ 𝐛(𝐿−1). (151) 
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We will denote 
𝜕𝐳𝑛

(𝐿)

𝜕𝐚𝑛
(𝐿) as 𝜎′ (𝐚𝑛

(𝐿)
) and create another error function equal to 

  𝛅(𝐿) = (𝐇(𝐿))
𝑇
𝛅(𝐿+1) ∘ 𝜎′ (𝐚𝑛

(𝐿)
) (152) 

where ∘ denotes the elementwise Hadamard product.  So, now we have 

 
∇𝐇(𝐿−1)𝐸(𝐇, 𝐛) =

𝜕𝐸(𝐇, 𝐛)

𝜕𝐇(𝐿−1)
= 𝛅(𝐿) (𝐳𝒏

(𝐿−1)
)
𝑻

 
(153) 

So, in general, we have for an internal layer  

 𝛅(ℓ−1) = (𝐇(ℓ))
𝑇
𝛅(ℓ) ∘ 𝜎′ (𝐚𝑛

(ℓ)) , 3 ≤ ℓ ≤ 𝐿 (154) 

and the gradient is 

 
∇𝐇(ℓ)𝐸(𝐇, 𝐛) =

𝜕𝐸(𝐇, 𝐛)

𝜕𝐇(ℓ)
= 𝛅(ℓ+1) (𝐳𝒏

(ℓ)
)
𝑇
, 2 ≤ ℓ ≤ 𝐿 

(155) 

for the weights and  

 ∇𝐛(𝓵)𝐸𝑛(𝐇, 𝐛) = 𝛅(ℓ+1) (156) 

for the bias vectors with the first layer being 

 
∇𝐇(1)𝐸(𝐇, 𝐛) =

𝜕𝐸(𝐇, 𝐛)

𝜕𝐇(1)
= 𝛅(2)(𝐱𝑛)𝑇 

∇𝐛(1)𝐸(𝐇, 𝐛) = 𝛅(2). 

(157) 

3.2.1.2 Proposed Method 

In this section, we present the quadratic multi-layered perceptron (QMLPNN) from [43] which 

combines the properties of the quadratic filter and the discrimination capability of a multi-layer 

perceptron neural network.  In this network configuration, we assume that a training pattern or image 

patch 𝐱𝑛, 1 ≤ 𝑛 ≤ 𝑁 of length 𝑀 is the input to the first layer of the network.  The first hidden layer 
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consists of a weight tensor, which is learned through the network backpropagation training and takes the 

form 

 𝐳𝑛
(2)

= (𝜎 (𝐱𝑛
𝑇𝐇𝑘

(1)
𝐱𝑛 + 𝑏𝑘

(1)
))

1≤𝑘≤𝐾1

, (158) 

where 𝐾1 is the number of nodes in the hidden layer, (𝐇𝑘
(1)

)
1≤𝑘≤𝐾1

is a learned three-dimensional weight 

tensor of size 𝑀 × 𝑀 × 𝐾1, (𝑏𝑘
(1)

)
1≤𝑘≤𝐾1

 is the bias vector and 𝜎 is a non-linear activation function such 

as a hyperbolic tangent or sigmoid.  The internal layers in the network are conventional multi-layer 

perceptron layers 

 𝐳(ℓ+1) = (𝜎 (〈𝐡𝑘
(ℓ)

, 𝐳𝑛
(ℓ)〉 + 𝑏𝑘

(ℓ)
))

1≤𝑘≤𝐾ℓ

, 2 ≤ ℓ ≤ 𝐿 − 1, (159) 

where 𝐇(ℓ) = (𝐡𝑘
(ℓ)

)
1≤𝑘≤𝐾ℓ

 is the learned weight matrix of size 𝐾ℓ × 𝐾ℓ−1, 𝐛(ℓ) = (𝑏𝑘
(ℓ)

)
1≤𝑘≤𝐾ℓ

 

represents the learned bias vector for layer ℓ and 𝐿 is the total number of internal hidden layers [22, 45, 

46]. 

We denote the output of the network as 𝑑𝑛 ∈ 𝒞, 1 ≤ 𝑛 ≤ 𝑁 where 𝒞 ≔ {Pickup, SUV,… , ZSU23 −

4, Background} is the set of all possible network outputs.  We note that the last layer in the network has 

𝐾𝐿 nodes equal to the size of the set 𝒞 (i.e. 𝐾𝐿 = |𝒞|).  Given this, the learned weight matrix in the last 

layer is denoted as  𝐇(𝐿) = (𝐡𝑐
(𝐿)

)
𝑐∈𝒞

 for convenience.  The objective function for the network 𝐸𝑛( 𝐇, 𝐛) 

can be defined as 

  𝐸𝑛(𝐇, 𝐛) = −∑[𝑑𝑛 = 𝑐]log(
exp(〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝐛𝑐
(𝐿)

)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)〉 + 𝐛𝑗

(𝐿)
)𝑗𝜖𝒞

)

𝑐∈𝒞

, (160) 

where 𝐇 = {𝐇(1), 𝐇(2), … , 𝐇(𝐿)} and 𝐛 = {𝐛(1), 𝐛(2), … , 𝐛(𝐿)}.  Given this, the total network objective is 

just  
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 𝐸(𝐇, 𝐛) = ∑ 𝐸𝑛(𝐇, 𝐛)

𝑁

𝑛=1

. (161) 

Training for this network is accomplished using gradient descent for each layer with gradients 

determined by the backpropagation algorithm for neural networks.   The gradient for the weight matrices 

and bias vectors are determined using (155) and (156), respectively, for internal layers 2 ≤ ℓ ≤ 𝐿 −

1 [46].   

The architecture of the first layer is specifically designed for target recognition and has a unique 

gradient of the form 

 ∇
𝐇𝑘

(1)𝐸𝑛(𝐇, 𝐛) = 𝛿𝑘
(2)

𝐱𝑛𝐱𝑛
𝑇 , 1 ≤ 𝑘 ≤ 𝐾1, (162) 

for the weight tensor (𝐇𝑘
(1)

)
1≤𝑘≤𝐾1

 and  

 ∇𝐛(1)𝐸𝑛(𝐇, 𝐛) = 𝛅(2) (163) 

for the bias vector.  Using gradient descent, we can determine the weight tensor in the first layer using 

 𝐇𝑘
(1)

= 𝐇𝑘
(1)

− 𝜇∇
𝐇𝑘

(1)𝐸(𝐇, 𝐛), 1 ≤ 𝑘 ≤ 𝐾1. (164) 

3.2.2 Quadratic Correlation Filter Convolutional Neural Network for Target Recognition 

The quadratic correlation filter convolution neural network (QCFCNN) first presented in [43] is an 

alternative target recognition approach to the MMCF.  By using a fully convolutional CNN, we can train on 

image patches and allow the network to localize the targets on full images [48] as well as identify the 

target type using an augmented convolutional neural network.  The weight tensor in the first hidden layer 

𝐇(1) = (𝐇𝑘
(1)

)
1≤𝑘≤𝐾1

contains multiple quadratic correlation filters 𝐇𝑘
(1)

 of size 𝑀1 × 𝑀1 that are applied 

to the input image.  To apply the QCF to the input image, we define 
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 𝚯𝑘
(1)

= 𝐇𝑘
(1)

+ (𝐇𝑘
(1)

)
𝑇
, (165) 

and perform its eigendecomposition 

 𝚯𝑘
(1)

𝐕𝑘 = 𝐕𝑘𝚲𝑘, (166) 

where the diagonal matrix 𝚲𝑘 has real eigenvalues 𝜆𝑘,𝑀1
≥ 𝜆𝑘,𝑀1−1 ≥ ⋯ ≥ 𝜆𝑘,1 as its diagonal entries and 

orthonormal matrix 𝐕𝑘 = [𝐯𝑘,1, … , 𝐯𝑘,𝑀1
] contains the corresponding eigenvectors.  The first layer is 

 𝐳𝑛
(2)

= (𝜎 (∑𝜆𝑘,𝑖|𝐱𝑛 ⨂ 𝐯𝑘,𝑖|
2
+ 𝑏𝑘

(1)

𝑀1

𝑖=1

))

1≤𝑘≤𝐾1

  (167) 

for every location in the image 𝐱 of height 𝑀 and width 𝐾, where ⨂ indicates the 2D cross-correlation 

operation.  The internal layers are standard convolutional layers 

 𝐳𝑛
(ℓ+1)

= (𝜎 (∑ 𝐳𝑛,𝑖
(ℓ)

 ⨂ 𝒉𝑘,𝑖
(ℓ)

+ 𝑏𝑘
(ℓ)

𝐾ℓ−1

𝑖=1

))

1≤𝑘≤𝐾ℓ

, 2 ≤  ℓ ≤ 𝐿 − 1, (168) 

where 𝐿 is the total number of layers in the CNN. 

Similar to the multi-layer perceptron networks, gradient descent is used for training with gradients 

defined through standard backpropagation for convolutional neural networks. The standard error 

function for CNN network internal layers is 

 𝛅𝑘
(ℓ)

= upsample(∑ 𝐡𝑖,𝑘
(ℓ) ⨂𝑓 𝛅𝑖

(ℓ+1)

𝐾ℓ+1

𝑖=1

) ∘ 𝜎′ (∑ 𝐳𝑛,𝑖
(ℓ)

 ⨂ 𝐡𝑘,𝑖
(ℓ)

+ 𝑏𝑘
(ℓ)

𝐾ℓ−1

𝑖=1

). (169) 

which can be used to define the gradient, where , 2 ≤  ℓ ≤ 𝐿 − 1, 1 ≤  𝑘 ≤ 𝐾ℓ and the notation ⨂𝑓 

denotes the full 2D cross-correlation operation.  The gradient for the internal network layers is defined as  
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 ∇𝐇(ℓ)𝐸𝑛(𝐇, 𝐛) = (𝐳𝒏
(ℓ)

⊗ 𝛅𝑘
(ℓ+1)

)
1≤𝑘≤𝐾ℓ

, (170) 

and similarly for the bias, we define 

 ∇𝐛(ℓ)𝐸𝑛(𝐇, 𝐛) = (∑(𝛅𝑘
(ℓ+1)

)
𝒙,𝒚

𝑥,𝑦

)

1≤𝑘≤𝐾ℓ

. (171) 

However, for the first layer gradient definition, we must first define the vectorization of a 𝑑 ×  𝑑 subimage 

𝐗𝑙,𝑚
(𝑛)

 

 

vec (𝐗𝑙,𝑚
(𝑛)

)

= [𝑥𝑙,𝑚
(𝑛)

, … , 𝑥𝑙,𝑚+𝑑−1
(𝑛)

, 𝑥𝑙+1,𝑚
(𝑛)

, … , 𝑥𝑙+1,𝑚+𝑑−1
(𝑛)

, … , 𝑥𝑙+𝑑−1,𝑚
(𝑛)

, … , 𝑥𝑙+𝑑−1,𝑚+𝑑−1
(𝑛)

]
𝑇
. 

(172) 

The gradient for the first layer can now be defined as 

 ∇𝐇(1)𝐸𝑛(𝐇, 𝐛) =
𝜕𝐸𝑛

𝜕𝐇𝑘
(1)

=
𝜕𝐸𝑛

𝜕𝚯𝑘
(1)

𝜕𝚯𝑘
(1)

𝜕𝐇𝑘
(1)

= ∑𝛿𝑘
(2)

vec (𝐗𝑙,𝑚
(𝑛)

) vec (𝐗𝑙,𝑚
(𝑛)

)
𝑇

𝑙,𝑚

, (173) 

where 1 ≤ 𝑘 ≤ 𝐾1.  Figure 10 demonstrates how a trained QCFCNN network can be utilized to localize 

and identify targets.  The mode of each connected component is used to identify the type of target 

whereas the location of the target is determined by the centroid of each connected component. 
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Figure 10 – Sample target recognition examples using QCFCNN: (a) and (c) contain target identification map outputs 
from the QCFCNN for the PKP and SUV target types, respectively.  (b) and (d) are pictures of the identified target 
using a 40 × 80 bounding box.  

  

(a) (b) 

(c) (d) 
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CHAPTER 4 – COMPRESSED TARGET RECOGNITION 

Target recognition, like target detection, on a compressive imaging system can be performed in 

traditional ways after full image reconstruction has taken place.  However, just as with compressed target 

detection, a more efficient approach is to process the compressed measurements directly [49].  Since the 

goal is to identify targets, a full image reconstruction is not necessary [50-52]. 

The sensor presented in Figure 11 represents a block-wise compressive sensing architecture.  While 

similar to the single-pixel camera [7], the block-wise compressive sensing structure uses light from blocks 

on the spatial light modulator (SLM), in this case a DMD, to multiple detectors on a photodetector array 

while the single-pixel camera uses light from all elements of the SLM to a single photodetector.  In this 

architecture, the FPA senses mid-wave infrared (MWIR) signals. 

We assume that an image on the DMD can be represented by 𝐗, which can be broken up into sub-

images of size 𝑡 × 𝑠  

 𝐗 =

[
 
 
 
𝐗1,1 𝐗1,2 … 𝐗1,𝑄

𝐗2,1 𝐗2,2 ⋯ 𝐗2,𝑄

⋮ ⋮ ⋱ ⋮
𝐗𝑃,1 𝐗𝑃,2 … 𝐗𝑃,𝑄]

 
 
 

 , (174) 

where 𝐗𝑝,𝑞 represents a sub-image captured by an DMD block onto a single photodetector on the 

photodetector array.  Using the definition of vectorization given by (172), we can represent a sub-image 

by a vector.  We will denote a sub-image in vectorized form by 𝐱𝑝,𝑞 using 

 𝐱𝒑,𝑞 =  vec(𝐗𝒑,𝑞), 1 ≤ 𝑝 ≤ 𝑃, 1 ≤ 𝑞 ≤ 𝑄, (175) 

forming a 𝑡𝑠 × 1 vector for a 𝑡 × 𝑠 DMD block.  A set of codes on the DMD will be represented by 𝚽 and 

a compressed measurement captured by the photodetector from the DMD block is denoted by 𝐲𝑝,𝑞 where 
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 𝐲𝑝,𝑞 = 𝚽𝐱𝑝,𝑞 , 1 ≤ 𝑝 ≤ 𝑃, 1 ≤ 𝑞 ≤ 𝑄. (176) 

 

Figure 11 – Architecture for block-wise compressive sensing. : (a) Scene is optically imaged on an SLM, in this case a 
DMD, and a coded version is reimaged onto a photodetector array. The scene is partitioned in block (b) that is 
weighted by a code at the SLM (c).  The relay optical system is designed such that light from one coded block is 
collected on a single element on the photodetector array (d).  Reprinted with permission [13]. 

Just as in (16), this vectorized image can be sparsely represented in a basis 𝚿 

 𝐱𝑝,𝑞 = 𝚿𝛂𝑝,𝑞 , 1 ≤ 𝑝 ≤ 𝑃, 1 ≤ 𝑞 ≤ 𝑄 (177) 

where 𝛂𝑝,𝑞 is the sparse representation of 𝐱𝑝,𝑞.  We can employ the STLS or WLS recovery methods given 

in Section 2.1 to find an approximate recovered image or use (17) to find a more exact solution.  We will 

denote the solution to STLS or WLS as 𝛂𝒑,𝒒
∗  and a recovered sub-image by 𝐱̂𝑝,𝑞 such that 

 𝐱̂𝑝,𝑞 = 𝚿𝛂𝑝,𝑞
∗ , 1 ≤ 𝑝 ≤ 𝑃, 1 ≤ 𝑞 ≤ 𝑄. (178) 
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A completely reconstructed image 𝐗̂ is then given by 

𝐗̂ =

[
 
 
 
 
𝐗̂1,1 𝐗̂1,2 … 𝐗̂1,𝑄

𝐗̂2,1 𝐗̂2,2 ⋯ 𝐗̂2,𝑄

⋮ ⋮ ⋱ ⋮
𝐗̂𝑃,1 𝐗̂𝑃,2 … 𝐗̂𝑃,𝑄]

 
 
 
 

, 

where 𝐗̂𝑝,𝑞 is the vector 𝐱̂𝑝,𝑞 of length 𝑡𝑠 × 1 reshaped into a 𝑡 × 𝑠 sub-image. 

4.1 Related Work 

Compressive target classification has been addressed in other works, but most methods attempt to 

classify the entire sample rather than localize the target within the sample.  In [53], which is an extension 

to the work in [54-57], a method is proposed to find the closest point on a 𝑘-dimensional manifold to the 

compressive measurement, which represents the most likely class for the compressive measurement 

under consideration.  Alternatively, the work in [51] primarily deals with object detection in DCT-based 

compression methods like JPEG or MPEG.  In this work, the distance criterion in eigenspace is used to 

classify images.  The linearity of the DCT transform preserves the distance measurement so that the 

eigendecomposition can be used.   Lastly in [50, 52], a MACH correlation filter is integrated in a polynomial 

correlation filter, also known as the discrete wavelet transform, to form a tiered object recognition filter.  

This is similar to our approach of integrating a correlation filter, but the neural network in our method 

offers the ability to learn a non-linear mapping of inputs to outputs that the MACH filter does not offer. 

4.2 Target Recognition from Compressed Samples 

4.2.1 Compressed Target Detection for Target Recognition 

Target detection is typically used for reducing false detections in target recognition as mentioned in 

CHAPTER 2.  Similarly, in compressed target recognition, compressed target detection is used to find 
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candidate image areas for application of compressed target recognition and localization algorithms.  A 

candidate set of potential target areas is determined using the discrimination criterion 

 S ≔ {𝑝 ∈ [1, 𝑃], 𝑞 ∈ [1, 𝑄]  |   𝜑(𝐲𝑝,𝑞) ≥ 𝜅} (179) 

where 𝜅 is the candidate threshold value.  The target recognition algorithm will only consider compressed 

image patch 𝐲𝑝,𝑞 such that 𝑝, 𝑞 ∈ 𝑆 and its neighbors, which will allow an accurate identification. 

 

Figure 12 – Example of a Compressed Multi-Layered Perceptron Neural Network.  In this network, the first layer has 
and compressed weight matrix with compression values determined by the WLS or STLS reconstruction method.  
The other layers have weights that are learned through the backpropagation algorithm. 

4.2.2 Compressed Target Recognition Using a Multi-Layered Perceptron Neural Network 

In Figure 12, a sample compressed multi-layered perceptron neural network is shown.  Similar to the 

method presented in Section 3.2.1, this network can also be augmented to support compressed target 

recognition by replacing the first weight layer with a compressed three-dimensional tensor.  We will 
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denote a compressed input pattern, indexed by 𝑛, by 𝐲𝑛 for 1 ≤ 𝑛 ≤ 𝑁 where 𝑁 denotes the number of 

training input patterns.  Throughout this section, we will assume that 𝐱̂𝑛 is a reconstructed image using 

either the STLS method presented in Section 2.1.2 such that 𝐱̂𝑛 = 𝚿𝚽̂𝑇
+𝐲𝑛 = 𝐀𝐲𝑛 with 𝚽̂ defined by (53). 

The output of the first hidden layer is a quadratic function with a compressed filter the is learned by 

the backpropagation algorithm, which can be defined as 

 𝐳𝑛
(2)

= (𝜎 (𝐱̂𝑛
𝑇𝐇𝑘

(1)
𝐱̂𝑛 + 𝑏𝑘

(1)
))

1≤𝑘≤𝐾1

= (𝜎 (𝐲𝑛
𝑇𝐇̃𝑘

(1)
𝐲𝑛 + 𝑏𝑘

(1)
))

1≤𝑘≤𝐾1

, (180) 

where 𝜎 is a non-linear activation function and 𝐇̃(1) = (𝐀𝑇𝐇𝑘
(𝟏)

𝐀)
1≤𝑘≤𝐾1

 is a compressed weight tensor 

of dimension 𝑚 × 𝑚 × 𝐾1.  The other hidden layers are composed of standard activation layers, 

 𝐳𝑛
(ℓ+1)

= (𝜎 (〈𝐡𝑘
(ℓ)

, 𝐳𝑛
(ℓ)

〉 + 𝑏𝑘
(ℓ)

))
1≤𝑘≤𝐾ℓ

, 2 ≤ ℓ ≤ 𝐿 − 1, (181) 

with the output of the last hidden layer denoted by 𝐳𝑛
(𝐿)

 and 𝐿 being the total number of layers in the 

network [22, 25]. 

Each recovered input pattern 𝐱̂𝑛 with associated compressed pattern 𝐲𝑛 has a label 𝑑𝑛 ∈ 𝒞 where 𝒞 is 

the set containing all target type labels.  With these definitions, the objective function 𝐸𝑛(𝐇, 𝐛) can be 

defined as 

  𝐸𝑛(𝐇, 𝐛) = −∑[𝑑𝑛 = 𝑐]log(
exp(〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝑏𝑐
(𝐿)

)

∑ exp (〈𝐡𝑗

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝑏𝑗
(𝐿)

)𝑗𝜖𝒞

)

𝑐∈𝒞

, (182) 

where [𝑖 = 𝑗] is the Iverson bracket notation for the Kronecker delta function. 

Training is accomplished using gradient descent with gradients determined by the backpropagation 

learning algorithm.  All layers will result in a weight matrix, with the exception of the first layer, which is 
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a compressed three-dimensional tensor.  To define the gradient, we must first define the error-term [25] 

for internal layers as 

 𝛅(ℓ) = (𝐇(ℓ))
𝑇
𝛅(ℓ+1) ∘  𝜎′(𝐇(ℓ)𝐳(ℓ) + 𝐛(ℓ)), 2 ≤ ℓ ≤ 𝐿 − 1. (183) 

Now, the gradient for the first layer can be defined as 

 ∇𝐇̃(1)𝐸𝑛(𝐇, 𝐛) = 𝛿𝑘
(2)

𝐲𝑛𝐲𝑛
𝑇, 1 ≤ 𝑘 ≤ 𝐾1, (184) 

where 𝛿𝑘
(2)

 is an element from the vector determined from (183).  All other layers are standard fully-

connected layers with gradients as defined in [22, 25]. 

 

Figure 13 - QCFCNN with fixed-weight deconvolution layer.  The decompression layer is used to create an estimate 
of the image patch before the QCFCNN is applied for target recognition and localization. 

4.2.3 Compressed Target Recognition using Convolutional Neural Networks 

The compressed QCFCNN can be used for target localization and identification for compressed 

measurements.  By comparison, the MMCF presented in 3.1 can also be used to localize and identify 

targets in an image, but only after a full recovery of the measurements has been accomplished.  The 

compressed QCFCNN will decompress compressed input patterns using a decompression layer and then 

perform target recognition and localization.  The decompression is necessary for localization as most basis 

sets do not preserve spatial coherence. 
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To define the compressed target recognition for convolutional neural networks, we must first define a 

neighborhood for the set, 𝑆.  The neighborhood for 𝑆 is defined as 

 
𝑁(𝐲𝑝,𝑞) ∶=

 {𝑖 ∈ [1, 𝑃], 𝑗 ∈ [1, 𝑄]|  𝑝 − 1 ≤ 𝑖 ≤ 𝑝 + 1, 𝑞 − 1 ≤ 𝑗 ≤ 𝑞 + 1 and  𝑝, 𝑞 ∈ 𝑆}.   

(185) 

The convolutional neural network input will be an image area consisting of members from this 

neighborhood set. 

A recovered neighborhood input sample for the convolutional neural network can be represented by 

𝐗̂𝑁(𝐲𝑝,𝑞) and is defined as 

 𝐗̂𝑁(𝐲𝑝,𝑞) = [

𝐗̂𝑝−1,𝑞−1 𝐗̂𝑝−1,𝑞 𝐗̂𝑝−1,𝑞+1

𝐗̂𝑝,𝑞−1 𝐗̂𝑝,𝑞 𝐗̂𝑝,𝑞+1

𝐗̂𝑝+1,𝑞−1 𝐗̂𝑝+1,𝑞 𝐗̂𝑝+1,𝑞+1

] (186) 

in the spatial domain.  We will define a vector 𝐱̂𝑝,𝑞 as  

 𝐱̂𝑝,𝑞 = vec(𝐗̂𝑝,𝑞) = 𝚿𝚽̂𝑇
+𝐲𝑝,𝑞 = 𝐀𝐲𝑝,𝑞 , (187) 

where 𝐲𝑝,𝑞 of dimension 𝑚 is the vector is compressed space and 𝐀 is matrix that performs STLS 

decompression and provides a spatial domain representation.  Each image patch in the neighborhood set 

has an associated compressed vector 

 𝐲𝑁(𝐲𝑝,𝑞) = [

𝐲𝑝−1,𝑞−1 𝐲𝑝−1,𝑞 𝐲𝑝−1,𝑞+1

𝐲𝑝,𝑞−1 𝐲𝑝,𝑞 𝐲𝑝,𝑞+1

𝐲𝑝+1,𝑞−1 𝐲𝑝+1,𝑞 𝐲𝑝+1,𝑞+1

]. (188) 

As mentioned, we can recreate 𝐗̂𝑁(𝑆) of dimension 3𝑡 × 3𝑠 containing sub-images of dimension 𝑡 × 𝑠 

from 𝐲𝑁(𝑆) of dimension 3𝑚 × 3 by using correlations.  The matrix 𝐀 is of dimension 𝑡𝑠 × 𝑚 with column 

vectors 𝐚𝑖
𝑇 of length 𝑡𝑠 × 1 can be represented as 

 𝐀 = [𝐚1
𝑇 𝐚2

𝑇 ⋯ 𝐚𝑚−1
𝑇 𝐚𝑚

𝑇 ]. (189) 
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To define the decompression operation, we must first define a reshape() function to form a matrix from 

a vector 

 reshape(𝐚𝑇) =

[
 
 
 
 

𝑎1 𝑎2 ⋯ 𝑎𝑡−1 𝑎𝑡

𝑎𝑡+1 𝑎𝑡+2 … 𝑎2𝑡−1 𝑎2𝑡

⋮ ⋮ ⋱ ⋮ ⋮
𝑎𝑡(𝑠−2)+1 𝑎𝑡(𝑠−2)+2 ⋯ 𝑎𝑡(𝑠−1)−1 𝑎𝑡(𝑠−1)

𝑎𝑡(𝑠−1)+1 𝑎𝑡(𝑠−1)+2 ⋯ 𝑎𝑡𝑠−1 𝑎𝑡𝑠 ]
 
 
 
 

. (190) 

Using this definition, we can recover an image patch 𝐗̂𝑝,𝑞 by performing a correlation of the reshaped 

column vector with each element 𝑦𝑝,𝑞
𝑖  of vector 𝐲𝑝,𝑞 

 𝐗̂𝑝,𝑞 = ∑reshape(𝐚𝑖
𝑇) ⊗ 𝑦𝑝,𝑞

𝑖

𝑚

𝑖=1

. (191) 

Following this decompression layer, we define a quadratic correlation filter layer for automatic target 

recognition.  To do so, we define a symmetric weight matrix  

 𝚯𝑘
(2)

= 𝐇𝑘
(2)

+ (𝐇𝑘
(2)

)
𝑇

 (192) 

just as in Section 3.2.2.  As before, we perform the eigendecomposition of the symmetric weight matrix 

 𝚯𝑘
(2)

𝐕𝑘 = 𝐕𝑘𝚲𝑘. (193) 

and compute the correlation 

 𝐳𝑛
(3)

= (𝜎 (∑𝜆𝑖 |𝐗̂𝑁(𝐲𝑝,𝑞)

(𝑛)
 ⨂ 𝐯𝑘,𝑖|

2

𝑖

+ 𝑏𝑘
(2)

))

1≤𝑘≤𝐾2

, (194) 

where 𝐾2 is the number of hidden nodes in the second layer.  All other layers are as defined in Section 

3.2.2.  The gradient for the second layer is  

 ∇𝐇(2)𝐸𝑛(𝐇, 𝐛) =
𝜕𝐸𝑛

𝜕𝐇𝑘
(2)

=
𝜕𝐸𝑛

𝜕𝚯𝑘
(2)

𝜕𝚯𝑘
(2)

𝜕𝐇𝑘
(2)

= ∑𝛿𝑘
(3)

vec (𝐗̂𝑙,𝑚
(𝑛)

) vec (𝐗̂𝑙,𝑚
(𝑛)

)
𝑇

𝑙,𝑚

, 

where the objective function as defined in (160). 
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4.3 Experiments 

We conducted our experiments on a Dell® Precision T5610 with dual Intel® Xeon® E5-2680 @ 2.70 GHz 

with 64.0 GB of RAM installed and an Apple® Mac Pro (Early 2008) with dual Intel® Xeon® 5400 series @ 

2.80 GHz series processors and 16.0GB RAM.  For target detection we created a bounding box of 20 × 40 

for each target type, resizing as necessary based on range to target to create the correlation matrices.  For 

each target detection tile that meets the threshold criterion, we create a window of 60 × 120 around the 

detection for target recognition.  To evaluate the QMLPNN, we assumed the target was centered in a 

40 × 80 image patch.  The QMLPNN can evaluate a larger image patch by using a sliding window 

approach.  In QCFCNN, the entire window is provided to the network so that the network can identify and 

localize the target 

We compared CQCF, WLS/QCF, STLS/QCF with some traditional decompression methods like basis 

pursuit [14], orthogonal matching pursuit [16] and initialized iterative reweighted least squares [15] 

paired with QCF to evaluate the performance of our compressed target detection method.  In Figure 14, 

we note that STLS/QCF, WLS/QCF and CQCF have high accuracy even with few measurements whereas 

the performance degrades for BP/QCF, OMP/QCF and IIRLS/QCF when there are fewer measurements. 
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Figure 14 - Detection accuracy versus number of measurements.   This chart compares STLS/QCF, BP/QCF, 
OMP/QCF, IIRLS/QCF, CQCF and WLS/QCF. 

To evaluate the performance of our compressive classifier, we utilized the compressed and 

uncompressed QMLPNN.  Figure 15 shows us that the unique patterns due to data lost from compression 

can be learned in network training giving almost perfect accuracy.  However, if we train on uncompressed 

data and provide a compressed input or train on compressed data and provide uncompressed input, the 

performance degrades as the number of measurements decreases due to the loss of information.  In 

Figure 16, we can see how classes are confused together as information is lost due to compression in the 

QMLPNN.  We can see that similar target types and ones that appear together in the training data are 

misclassified as less measurements are used to represent the target. 
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Figure 17 shows a comparison of target recognition methods with varying levels of compression.  The 

MLPNN and QMLPNN both improve as more measurements are added.  These networks are trained on 

uncompressed samples and given compressed samples, as they both have decompression layers.  The 

CNN and QCFCNN both perform very well for the compressed samples.  In fact, for as little as 25 samples 

out of a possible 3200, they both have almost 70% recognition accuracy.  Figure 18 shows some sample 

filters from the QCFCNN and the corresponding eigenvalue plots for each.  We can see that the number 

of eigenvalues used to support the target and background can vary from filter to filter.  Figure 19 shows 

the output of the QCFCNN for various levels of compression.  As can be seen, we can accurately locate 

and identify the target with as little as 25 measurements.  Figure 20 further demonstrates the invariance 

of the output of the quadratic correlation filter layer to the level of compression.  This figure shows the 

output of the QCF layer for varying levels of compression and very little difference is seen in the 

correlation output even though there is significant change in the spatial detail. 
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Figure 15 - Measurements vs. accuracy for QMLPNN network.  Three cases are considered: (1) compressed training 
set, uncompressed inputs, (2) compressed training set, compressed inputs and (3) uncompressed training set, 
compressed inputs.  In this chart, the accuracy is measured by the percentage of correctly labeled samples from the 
test set. 
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Figure 16 - Confusion matrices for QMLPNN with differing levels of compression : (a) 100, (b) 200, (c) 400 and (d) 
800 measurements out of a total of 3200.  We can see that as the number of measurements is decreased that similar 
classes (e.g. SUV and PKP) or classes that typically appear together in the training data (e.g. MTB and D20) are 
confused together.  Using the compressed QMLPNN, we can see that it is not necessary to use more than 800 
measurements to get accurate classification. 

(a) (b) 

(c) (d) 
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Figure 17 - Comparison of target recognition accuracy vs. compression level for methods presented.  We note that 
the MLPNN (blue) achieves only about 90% accuracy with the maximum number of measurements.  The QMLPNN 
(green) achieves close to 100% accuracy as the number of measurements is increased.  The CNN (red) and QCFCNN 
(magenta) both perform well for all levels of compression. 
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Figure 18 - Eigenvalue plot and mask plot for two different filters.  For this network, the masks are 5 × 5 and the 
weight matrix from the quadratic correlation filter layer is 25 ×  25 (containing 25 filters).  From the eigenvalue 
plots, we note that the number of values that support the target and background for each filter can vary. 
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Figure 19 - QCFCNN applied to compressed data.  Output label map and labeled decompressed image for (a)-(b) 25, (c)-(d) 50, (e)-(f) 100, (g)-(h) 200, (i)-(j) 400, 
and (k)-(l) 800 samples.  We note that even if the target is not visibly discernable, the label map correctly identifies and locates the target for the cases presented.  

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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Figure 20 – Correlation layer output for varying levels of compression.  Input image and correlation output for (a)-(b) uncompressed, (c)-(d) 400 samples, (e)-(f) 
200 samples, (g)-(h) 100 samples, (i)-(j) 50 samples and (k)-(l) 25 samples.  We note that the compression level does not significantly affect the output of the 
filter.

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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CHAPTER 5 – CONCLUSION 

High Resolution MWIR sensors are not cost-effective for most applications, but with compressive 

sensing, a high resolution MWIR sensor can be realized using a high resolution spatial light modulator, 

such as a digital micromirror device, and a small MWIR focal plane array.  For military applications, it is 

common to have automatic target recognition with these sensor systems.  In this work, we propose an 

ATR system that is integrated with a linear decompression algorithm to increase the overall efficiency of 

the system. 

5.1 Contributions 

In this work, we proposed a target recognition algorithm for an MWIR compressive imager.  While it is 

possible to perform decompression using non-linear decompression techniques with standard ATR 

algorithms, it may not fit into a constrained timeframe.  By integrating the ATR algorithm with the 

decompression step, we are able to significantly decrease the amount of time required to process each 

frame of data.  For instance, a 60 Hertz frame rate MWIR camera must process a frame of data every 16.7 

milliseconds.  Because of these hard constraints, it makes iterative non-linear approaches to 

decompression less desirable due to inaccuracy if it is terminated before convergence and uncertainty 

because of an unknown convergence time.  By using a linear decoder, we eliminate the need for an 

iterative algorithm.  Although there is a decrease in reconstruction accuracy, the goal is accurate target 

recognition and the loss of reconstruction accuracy is tolerable as long as ATR performance is not 

hindered. 

The training time for a convolutional neural network can be excessive.  However, inference can be very 

efficiently implemented when the weights are pre-determined.  If we require a non-linear decoder before 

applying the CNN, the time to complete the operation would then become indefinite, which is why our 
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work combines a linear decoder with the convolutional neural network to create a target recognition 

system for a fixed timeframe system. 

We proposed using the fast compressed target detection method in [18] to detect candidate areas for 

target recognition.  By adjusting the detection threshold, we can control the sensitivity of the target 

detection on the compressed MWIR sensor.  Without resampling, we take each candidate area and 

process it using our proposed quadratic correlation filter convolution neural network with a deconvolution 

layer added to process the compressed samples.  This allows the QCFCNN to identify the target within the 

candidate area. 

5.2 Conclusions 

From our experiments, we can see that the level of compression does affect the target detection or 

recognition accuracy.  However, there is a point where adding more measurements does not have a 

significant impact on accurate target detection or recognition and by using a linear decoder, we can 

provide a time deterministic solution so that the ATR algorithm can be run on a real-time system.  We 

have also seen how neural networks can compensate for the compression of data by adapting the weights 

for the compressed pattern.  This was seen in Figure 15 where the network accuracy was almost perfect 

for many different levels of compression given that the network was also trained with compressed 

samples.  As seen in Figure 19, the level of compression has little impact on the output of the neural 

network.  Given this, we believe the use of neural networks can have a significant impact on compressive 

sensor ATR systems. 
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Future Work 

In our experiments, we typically used the DCT as the basis for our compression.  This may not be 

optimal for sparse representation of the data.  There are many other options for the dictionary including 

trained dictionaries, wavelet dictionaries and Karhunen-Loève Transform (KLT) to name a few.  This 

suggests the exploration of how these other basis sets may impact target detection and recognition 

accuracy. 

Another area of potential research is in the sensor design itself.  By choosing an optimal basis set for 

the intended signals, there may also be an optimal SLM block to detector size that maximizes compression 

and target recognition accuracy. 

A typical ATR system includes symbology on a cockpit display.  One area of future work would be to 

find a method, which possibly uses the given compressed samples, to generate a spatial domain cockpit 

display so that the symbology can be overlayed.  The closed-form reconstruction methods presented in 

this work may not suffice in this scenario where accuracy in the decompressed image is key. 

We have tested our methods on a MWIR ATR Algorithm Development Image Database.  But, there are 

many types of ATR sensor types that include short-wave infrared, long-wave infrared, SAR, LADAR and 

many others.  Another area of further research would be to see how these methods could be applied to 

these other sensor types. 

Our target recognition algorithms were primarily spatial.  It might be useful to add temporal processing 

to the neural networks and see if the temporal characteristics of targets can assist in target recognition 

and localization. 
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The softmax cross entropy objective function is equal to 

  𝐸𝑛(𝐇, 𝐛) = −∑[𝑑𝑛 = 𝑐]log(
exp (〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝑏𝑐
(𝐿)

)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)

〉 + 𝑏𝑗
(𝐿)

)𝑗𝜖𝒞

)

𝑐∈𝒞

, (B.1) 

where the softmax is equal to 

  P [𝑑𝑛 = 𝑐 | 𝐳𝑛
(𝐿)

;𝐇(𝐿), 𝐛(𝐿)] =
exp (〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)
〉 + 𝑏𝑐

(𝐿)
)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)

〉 + 𝑏𝑗
(𝐿)

)𝑗𝜖𝒞

. (B.2) 

To find the derivative of the cross entropy function, we evaluate 

  
∂𝐸𝑛(𝐇, 𝐛)

∂𝐡𝑐
(𝐿)

= 
∂

∂𝐡𝑐
(𝐿)

[−∑[𝑑𝑛 = 𝑐]log(
exp (〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝑏𝑐
(𝐿)

)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)〉 + 𝑏𝑗

(𝐿)
)𝑗𝜖𝒞

)

𝑐∈𝒞

], (B.3) 

where 

  [𝑑𝑛 = 𝑐] =  {
0 𝑑𝑛 ≠ 𝑐
1 𝑑𝑛 = 𝑐

 , (B.4) 

which gives 

  
∂𝐸𝑛(𝐇, 𝐛)

∂𝐡𝑐
(𝐿)

= −
∂

∂𝐡𝑐
(𝐿)

[log(
exp (〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)
〉 + 𝐛𝑐

(𝐿)
)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)

〉 + 𝐛𝑗
(𝐿)

)𝑗𝜖𝒞

) , ]. (B.5) 

Since 
𝑑

𝑑𝑥
log(𝑢) =

1

𝑢

𝑑𝑢

𝑑𝑥
 , we have 

 = −
∑ exp (〈𝐡𝑗

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝐛𝑗
(𝐿)

)𝑗𝜖𝒞

exp (〈𝐡𝑐
(𝐿)

, 𝐳𝑛
(𝐿)〉 + 𝐛𝑐

(𝐿)
)

∂

∂𝐡𝑐
(𝐿)

[
exp (〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝐛𝑐
(𝐿)

)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)〉 + 𝐛𝑗

(𝐿)
)𝑗𝜖𝒞

]. (B.6) 

Looking at the second part of this, we can see that this is just the derivative of a quotient which is 
𝑑

𝑑𝑥

𝑢

𝑣
=

𝑣
𝑑𝑢

𝑑𝑥
−𝑢

𝑑𝑣

𝑑𝑥

𝑣2  and given 
d

dx
exp(𝑢) = exp(𝑢)

𝑑𝑢

𝑑𝑥
 and letting 𝑣 = exp (∑ exp (〈𝐡𝑗

(𝐿)
, 𝐳𝑛

(𝐿)〉 + 𝐛𝑗
(𝐿)

)𝑗𝜖𝒞 ) and  𝑢 =

exp (〈𝐡𝑐
(𝐿)

, 𝐳𝑛
(𝐿)〉 + 𝐛𝑐

(𝐿)
) we have 
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∂

∂𝐡𝑐
(𝐿)

[
𝑢

𝑣
] =

𝑣𝑢𝐳𝑛
(𝐿)

− 𝑢2𝐳𝑛
(𝐿)

𝑣2
 (B.7) 

which gives 

 
∂𝐸𝑛(𝐇, 𝐛)

∂𝐡𝑐
(𝐿)

= −
𝑣

𝑢
[
𝑣𝑢𝐳𝑛

(𝐿)
− 𝑢2𝐳𝑛

(𝐿)

𝑣2 ]. (B.8) 

This can further be reduced to  

 
∂𝐸𝑛(𝐇, 𝐛)

∂𝐡𝑐
(𝐿)

= −𝐳𝑛
(𝐿)

[1 − 
𝑢

𝑣
] = −𝐳𝑛

(𝐿)
[1 − P [𝑑𝑛 = 𝑐 | 𝐳𝑛

(𝐿)
; 𝐇(𝐿), 𝐛(𝐿)]] (B.9) 

where 

 P [𝑑𝑛 = 𝑐 | 𝐳𝑛
(𝐿)

;𝐇(𝐿), 𝐛(𝐿)] =
exp (〈𝐡𝑐

(𝐿)
, 𝐳𝑛

(𝐿)
〉 + 𝑏𝑐

(𝐿)
)

∑ exp (〈𝐡𝑗
(𝐿)

, 𝐳𝑛
(𝐿)

〉 + 𝑏𝑗
(𝐿)

)𝑗𝜖𝒞

 (B.10) 

is the softmax function.  However, (B.9) is true only if 𝑗 = 𝑐, otherwise we have  

 
∂

∂𝐡𝑗
(𝐿)

[
𝑢

𝑣
] =

−𝑢2𝐳𝑛
(𝐿)

𝑣2
, (B.11) 

for 𝑗 ≠ 𝑐 giving the partial derivative of the cross entropy function 

 
∂𝐸𝑛(𝐇, 𝐛)

∂𝐡𝑗
(𝐿)

= −𝐳𝑛
(𝐿)

[− 
𝑢

𝑣
] = 𝐳𝑛

(𝐿)
P [𝑑𝑛 = 𝑐 | 𝐳𝑛

(𝐿)
;𝐇(𝐿), 𝐛(𝐿)]. (B.12) 

 Or, we can write this compactly as  

∂𝐸𝑛(𝐇, 𝐛)

∂𝐡𝑗
(𝐿)

= −𝐳𝑛
(𝐿)

[[𝑦𝑛 = 𝑐] −  P [𝑑𝑛 = 𝑐 | 𝐳𝑛
(𝐿)

;𝐇(𝐿), 𝐛(𝐿)]]. (B.13) 
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