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ABSTRACT 

Multimode optical fibers have recently reemerged as a viable platform for addressing a 

number of long-standing issues associated with information bandwidth requirements and power-

handling capabilities. The complex nature of heavily multimoded systems can be effectively 

exploited to observe altogether novel physical effects arising from spatiotemporal and intermodal 

linear and nonlinear processes. Here, we have studied nonlinear dynamics in multimode optical 

fibers (MMFs) in both the normal and anomalous dispersion regimes. In the anomalous dispersion 

regime, the nonlinearity leads to a formation of spatiotemporal 3-D solitons. Unlike in single-mode 

fibers, these solitons are not unique and their properties can be modified through the additional 

degrees of freedom offered by these multimoded settings. In addition, soliton related processes 

such as soliton fission and dispersive wave generation will be also drastically altered in such 

multimode systems. Our theoretical work unravels some of the complexities of the underlying 

dynamics and helps us better understand these effects. The nonlinear dynamics in such multimode 

systems can be accelerated through a judicious fiber design. A cancelation of Raman self-

frequency shifts and Blue-shifting multimode solitons were observed in such settings as a result 

of an acceleration of intermodal oscillations. Spatiotemporal instabilities in parabolic-index 

multimode fibers will also be discussed. In the normal dispersion regime, this effect can be 

exploited to generate an ultrabroad and uniform supercontinuum that extends more than 2.5 

octaves. To do so, the unstable spectral regions are pushed away from the pump, thus sweeping 

the entire spectrum. Multimode parabolic pulses were also predicted and observed in passive 

normally dispersive tapered MMFs. These setting can obviate the harsh bandwidth limitation 

present in single-mode system imposed by gain medium and be effectively used for realizing high 

power multimode fiber lasers. Finally, an instant and efficient second-harmonic generation was 
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observed in the multimode optical fibers. Through a modification of initial conditions, the 

efficiency of this process could be enhanced to a record high of %6.5.
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CHAPTER 1: INTRODUCTION 

The past three decades have witnessed a number of remarkable advancements in the general field 

of fiber optics. These breakthroughs have not only enabled a widespread proliferation of the 

internet, but have also radically transformed industrial manufacturing, laser surgery, optical 

microscopy, and sensing, to mention a few. Undoubtedly, one of the greatest innovations in this 

area was the development of photonic crystal fibers (PCFs) that in turn led to unprecedented 

opportunities in terms of controlling their nonlinear response via dispersion engineering and 

structural design  [1,2]. In this regard, PCFs are nowadays commercially used in implementing 

spatially coherent ultra-bright supercontinuum sources, spanning the wavelength range from ultra-

violet to the mid-infrared  [3–7]. Fiber lasers represent yet another field that has experienced 

striking growth during this same period  [8–11]. What made this class of lasers so successful is 

their notable power scalability, spectral and temporal versatility, high efficiency and their ability 

to be integrated into robust and modular systems. As such, fiber lasers with MW peak power levels, 

capable of producing CW radiation or ultrashort pulses are now readily available. As with most 

technologies that experienced a sudden progress in capabilities, it will not be long before physical 

constraints appear on the horizon to dampen future progress. Indeed, nonlinear limits and damage 

thresholds of existing small-core area fibers are now being approached, imposing restrictions on 

the maximum pulse energies/power one could expect from current fiber lasers and supercontinuum 

sources  [7–9,12]. 

Equally important to this discussion is the fact that most of the new developments in fiber light 

sources have thus far relied almost exclusively on single mode (or quasi-single mode) fiber 

technologies  [4–6,8,13–16]. Clearly, a straightforward and obvious approach to overcome some 

of the aforementioned limitations is to use large area multimode fibers. Multimode optical fibers 
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(MMFs) are common, and even predate single-mode fibers (SMFs). However, the high bandwidth 

and structural simplicity of SMFs caused interest in multimode systems to wane by the early 1980s. 

Today, MMFs are enjoying a renaissance because of their promise for even higher bandwidths 

based on space-division multiplexing that has emerged as a new paradigm in fiber optics 

communications  [17,18]. The ensued flurry of activities not only led to new classes of MMF 

components (for amplification, switching, multimode signal processing, etc.)  [19–21] but it has 

also prompted a critical rethinking as to how nonlinear processes unfold in multimode 

environments - an aspect that has so far remained largely unexplored. This is because historically 

nonlinear effects (self- and cross-phase modulation, Raman, four-wave mixing, etc.) have been 

traditionally investigated in SMFs  [22], as opposed to more involved MMF systems that can in 

principle support thousands of modes.  

Quite recently, the nonlinear properties of multimode fibers have been reconsidered in a number 

of studies  [23].  In these experiments  [24–30], nonlinear wave propagation in graded-index 

MMFs was found to lead to a series of unexpected results that are otherwise impossible in single-

mode settings. These include for example the first observation of the so-called geometric 

parametric instability  [25,27,29], modal condensation, formation of multimode soliton 

“molecules”  [24,26], and uniform supercontinuum generation  [27] - rivaling that expected from 

dispersion engineered PCFs operating close to their zero-dispersion point  [6]. What makes this 

possible is the immense spatiotemporal complexity associated with these nonlinear wave-mixing 

processes in the presence of a large number of modes  [25]. This added spatial degree of freedom 

can now open up new opportunities at both the scientific and technological level that were 

previously overlooked and remained unattainable because of technological barriers. 
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The objective of this dissertation is to study and exploit the physics and complexity of nonlinear 

dynamics in highly multimode fiber structures. In this regard, these nonlinear dynamics are studied 

in two regimes: the normal dispersion and the anomalous dispersion regime. First, a general theory 

is developed to better understand multimode soliton fission and dispersive generation process. This 

theory accurately explains the underlying reason behind the ultrabroad Cherenkov generation 

observed in MMFs. Built on this theory, we will study the effect of the initial modal composition 

on the resulting output spectrum and MM-soliton behavior. It turns out that, unlike in single-mode 

fibers, the properties of the fundamental multimode solitons such as temporal width, peak power, 

velocity and etc. cannot be easily determined only from the input pulse energy. But the modal 

composition of the input beam also plays a crucial role in this respect. It will also be shown that 

the output spectrum can be tailored by initially exciting the proper modal groups. Then later, the 

effect of perturbing MM-solitons through an acceleration of intermodal oscillations in a tapered 

graded-index MMFs is studied. We demonstrate that this spatiotemporal acceleration can have a 

prominent effect on the ensuing temporal and spectral behavior in both dispersion regimes. This 

mechanism leads to a peculiar class of relatively blue-shifted multimode solitons and introduces a 

new process for establishing blue-drifting dispersive wave combs through speeding up the 

collision dynamics among the constituent modes of multimode solitons. Under normal dispersive 

conditions, in the presence of an acceleration of intermodal oscillations, we observe a generation 

of accelerating frequency bands that dynamically sweep the entire spectrum. This, in turn, can be 

utilized to produce a notably flat and uniform supercontinuum, extending over 2.5 octaves.  

Under the normally dispersive condition, nonlinear Schrödinger equation supports a self-similar 

parabolic pulse solution in the presence of a gain term [31–34]. Observation of these similaritons 

came as a solution to compensate for high optical nonlinear effects, resulting from the small core 
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and high field intensity of single mode fibers. However, limited gain bandwidth and small chirp 

available from cavity parameters set a severe limitation on the maximum achievable pulse energy 

and duration. We will that through a judicial design of a multimode fiber taper, one can overcome 

these limitations and realize highly chirped high bandwidth similaritons. In the last section, we 

experimentally demonstrate that high SHG conversion efficiencies of up to ~6.5% are accessible 

in heavily multimode parabolic-index germanium-doped optical fibers. This conversion occurred 

without first preparing the fiber via any of the known schemes. More importantly, the SHG was 

found to reach a maximum in an almost instantaneous manner.  

Multicore optical fibers are also another avenue to address the rising need for higher information 

bandwidth. We present a general methodology to compute the supermodes and their corresponding 

propagation eigenvalues in a multicore system of arbitrary size and number of elements. To use 

multicore systems for high-bandwidth communication, one needs to overcome the modal walk-off 

between the supermodes. To this end, we suggest a new design in which all the eigenvalues lie on 

a ladder, equidistant from each other. By doing this, one can couple modes together through a 

simple grating structure and minimize the effect of differential group delays. 
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CHAPTER 2: UNIVERSAL THEORY OF CHERENKOV RADIATION 

BY FUSED MULTIMODE SOLITONS 

The most significant feature of wave propagation in the anomalous dispersion regime is soliton 

formation. In this regime, the input packets of high energy, equivalent to higher-order solitons, 

experience a soliton fission and disintegrate into their constituent solitons. This process is 

accompanied by a transfer of energy from solitons to dispersive waves (DWs). These low 

amplitude dispersive waves play an important role in the spectral content generation in the shorter 

wavelength side of the spectrum (near blue and UV). Although these processes are extensively 

studied in the context of single-mode fibers, they are very poorly understood in the multimode 

settings. So far there has been no theoretical work that can explain the underlying dynamics of 

multimode solitons fission and their respective broadband DW generation. In this chapter, we 

present a general theory that explains this rather involved process and helps us predict and control 

the output spectral features of a multimode system. Before getting into the analysis we need to first 

know what multimode solitons are and how they are different from their single-mode counterparts. 

2.1 Multimode Optical Solitons 

A multimode soliton is a composite structure in which several modes travel together. To form a 

multimode soliton, the input field should compensate for intermodal dispersion as well as 

chromatic dispersion. Our analysis will be similar to what presented by Crosignani et al [35]. In 

this analysis, we only consider the effect of the electronic processes and ignore non-instantaneous 

effects such as Raman effect. In this case, the nonlinear polarization 𝑃𝑁𝐿 takes the form below 

𝑃𝑁𝐿(𝑡) = (
𝜎

2
)𝑬(𝑡). 𝑬(𝑡)𝑬(𝑡)  ( 1 ) 
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This nonlinear electric polarizability modifies the index by 𝜖2|�̂�𝑥|
2
. We suppose that the electric 

field 𝑬 has a single polarization like �̂�𝑥 which is orthogonal to the propagation direction. In this 

analysis, the fiber is considered to be weakly guiding so as it allows for neglecting longitudinal 

component with respect to the transverse ones. The field component �̂�𝑥 that modifies the refractive 

index of the environment is actually a superposition of many spatial modes centered at different 

frequencies 

�̂�𝑥(𝒓, 𝑧, 𝑡) = ∑ 𝐸𝜈(𝒓) exp(𝑖𝛽𝜈(𝜔𝜈)𝑧 − 𝑖𝜔𝜈𝑡)𝜈 Φ̂𝜈(𝑧, 𝑡) ( 2 ) 

 

Here 𝒓 = (𝑥, 𝑦) represents the transverse coordinates, the terms 𝐸𝜈(𝒓)’s are the spatial mode 

configurations. Various modes are considered to be centered around different central wavelengths 

𝜔𝜈. The term 𝛽𝜈(𝜔𝜈) is the propagation constant of the 𝜈th mode. Φ̂𝜈(𝑧, 𝑡)’s are the slowly varying 

mode amplitudes for different modes. The total dielectric constant varies with the total electric 

field as below: 

𝜖(𝒓, 𝑧, 𝜔) = 𝜖1(𝒓,𝜔) + 𝜖2|�̂�𝑥(𝒓, 𝑧, 𝑡)|
2
 ( 3 ) 

where 𝜖1(𝒓,𝜔) is the fiber linear dielectric constant. The second term is responsible for a deviation 

from the linear index distribution that leads to a modal deformation and hence intermodal coupling. 

According to the modal amplitudes should satisfy the following nonlinear Schrödinger equation. 

In the following equation, four-wave mixing terms are ignored [5]. 

𝑖
𝜕Φ̂𝜈

𝜕𝑧
+

𝑖

𝑉𝜈

𝜕Φ̂𝜈

𝜕𝑡
+

1

2𝐴𝜈

𝜕2Φ̂𝜈

𝜕𝑡2 + [∑ 2𝑅𝜇𝜈|Φ̂𝜇|
2
+ 𝑅𝜈𝜈|Φ̂𝜈|

2
𝜇≠𝜈 ] Φ̂𝜈 ( 4 ) 

𝜈 = 1,2, … 

𝑅𝜇𝜈 = [
𝜔0(

𝜖2
𝜖0

)

2𝑛1𝑐
]

∬ 𝐸𝜇
2(𝒓)

+∞
−∞ 𝐸𝜈

2(𝒓)𝑑𝑥𝑑𝑦

∬ 𝐸𝜈
2(𝒓)𝑑𝑥𝑑𝑦

+∞
−∞

. 
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𝑅𝜇𝜈 calculates the modal overlap between different modes and calculates simply the nonlinear 

cross-section when 𝜇 = 𝜈. In this relation 𝑛1 in the average value of the fiber linear refractive 

index. The parameter 𝑉𝜈
−1 = (

𝑑𝛽𝜈

𝑑𝜔
)
𝜔=𝜔𝜈

 shows the group velocity of mode 𝜈 at the central 

frequency 𝜔𝜈 and 𝐴𝜈
−1 = (

𝑑2𝛽𝜈

𝑑𝜔2 )
𝜔=𝜔𝜈

is the dispersion of each mode at the central frequency 𝜔𝜈. 

The term 𝐴𝜈
−1 is different for each mode which stems from the fact that each mode has a different 

dispersion profile. 

The essential condition for a formation of a multimode soliton is that all the modes involved need 

to travel together. 

𝑉𝜈
−1 = 𝑉−1 = (

𝑑𝛽1

𝑑𝜔
)
𝜔=𝜔1

= (
𝑑𝛽2

𝑑𝜔
)
𝜔=𝜔2

= (
𝑑𝛽3

𝑑𝜔
)
𝜔=𝜔3

= ⋯ ( 5 ) 

It can be shown that the bright-soliton solution of the kind below can satisfy the multimode 

nonlinear Schrödinger equation. 

Φ̂𝜈(𝑧, 𝑡) = Φ̂0𝜈 exp (
𝑖𝑧

2𝐴𝜈𝜏2) sech [
(𝑡−

𝑧

𝑉
)

𝜏
] , 𝜈 = 1,2, … ( 6 ) 

This shows there is a bright soliton with a 𝑠𝑒𝑐ℎ(𝑡) time-dependency for each mode. The nonlinear 

phase that each individual mode accumulates is different but all will have the same duration and 

the same group velocity. The above-mentioned solitons exist provided that the modal components 

satisfy the relation below 

−
1

𝐴𝜈𝜏2
= 2 ∑ 𝑅𝜇𝜈|�̂�0𝜇|

2
+ 𝑅𝑣𝜈|�̂�0𝜈|

2
𝜇 , 𝜈 = 1,2, … ( 7 ) 

Form the relation above, one can say that given the input pulse energy, there is no unique 

distribution for a multimode soliton and hence there can be many solitons all satisfying the above 

equation and having different modal distributions. 
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The lower limit for the field intensity required for mode trapping is given as 

(𝑉𝜇−𝑉)
2

𝑉2 ≪ −(
𝑉2

𝐴𝜈
) [

𝜔0(
𝜖2
𝜖0

)

𝑛1𝑐
] × ∑ 𝛼𝜇𝜈|Φ̂𝜇|

2
,𝜇   𝜈 = 1,2, … ( 8 ) 

That shows the intensity of a multimode soliton in step-index fibers is higher than that for graded-

index fibers due to a larger modal walk-off.  

2.2 Dispersive Wave Generation in Multimode Systems  

Equation (6) tells us that each mode possesses a nonlinear phase in the form of exp (
𝑖𝑧

𝐴𝜈𝜏2). 

Reconsidering the gauge transformations, the dispersion relation associated with each of the 

constituent modes of a multimode soliton is given as below 

𝛽𝑝𝑞(𝜔) = 𝛽𝑝𝑞 (𝜔𝑠𝑝𝑞
) +

1

𝑉
(𝜔 − 𝜔𝑠𝑝𝑞

) +
1

𝐴𝑝𝑞𝜏2 ( 9 ) 

In this relation, we relied on the fact that a soliton does not disperse during propagation and hence 

does not have higher order dispersion terms. The indices 𝑝 and 𝑞 refer to the spatial mode (𝑝, 𝑞). 

The clear dependence of the last term on the input power levels is represented in the relation below 

𝛽𝑝𝑞(𝜔) = 𝛽𝑝𝑞 (𝜔𝑠𝑝𝑞
) +

1

𝑉
(𝜔 − 𝜔𝑠𝑝𝑞

) + [𝑅𝑝𝑞,𝑝𝑞|�̂�0,𝑝𝑞|
2
− 2∑ 𝑅𝑝′𝑞′,𝑝𝑞|�̂�0𝑝′𝑞′|

2
𝑝′,𝑞′ ] ( 10 ) 

In cases that we are dealing with a single-mode system, the cross-phase terms are absent and the 

first term turns simply into 𝛾|𝐸|2 that accounts only for the self-phase modulation effect. Here, we 

use the simpler variation  
1

𝐴𝜈𝜏2 in our formulation. Knowing the temporal pulse-width of the soliton 

and the dispersion relation of each of the mode at their central frequencies, one can calculate the 

nonlinear phases. Practically, since the dispersion of the modes is very similar to each other, one 

legitimate approximation is considering all the dispersion terms to be equal for all the modes. 
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Cherenkov radiation is defined as linear waves of the form 𝐴 = 𝑒𝑖(𝑘𝑧−𝜔𝑡) that are generated 

through a phase-matching condition with solitons for a short period of time during the soliton 

fission process. The dispersive wave components lie mainly in the visible wavelengths and satisfy 

the nonlinear Schrödinger equation. 

𝑖𝜕𝑧𝐴 − (
1

2!
𝛽2𝜕𝑡

2 +
𝑖

3!
𝛽3𝜕𝑡

3 + ⋯)𝐴 = −𝛾|𝐴|2𝐴 − 𝑇𝛾𝐴𝜕𝑡|𝐴|2 ( 11 ) 

As it was mentioned before, resonant Cherenkov radiation primarily depends on the phase-

matching conditions and is therefore narrowband. However, recent numerical and experimental 

results prove otherwise  [36,37]. The generated dispersive waves (DWs) in these works extend to 

hundreds of nanometers. Although some of the aspects of this process are previously 

explained [36], however, one cannot still explain the ultrabroad DW generation in heavily 

multimoded step-index fibers when excited in the anomalous dispersion regime. Our studies 

reveal, for the first time, a universal system to understand the process for any multimode system. 

The radiation frequency 𝜔𝑅 is found through a phase-matching between the soliton and the low 

amplitude linear waves;  

𝛽𝑠(𝜔𝑅) = 𝛽(𝜔𝑅) ( 12 ) 

Where 𝛽𝑆 is the soliton wavenumber and 𝛽(𝜔) is the fiber’s linear dispersion relation. Efficient 

dispersive wave generation occurs over a short propagation distance before the emergence of the 

distinct fundamental solitons. For the special case of parabolic-index multimode fibers, the 

dispersion relation is given as below:  

𝛽𝑚𝑛 = 𝑘0𝑛(𝜔) [1 −
2(𝑚+𝑛+1)

𝑘0𝑛(𝜔)
√

2Δ

𝑎2
]

1/2

 ( 13 ) 
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As it was previously pointed out, the essential condition for the formation of multimode solitons 

is mode fusion. 

𝑣𝑔𝑚,𝑛
−1 =

𝑑𝛽𝑚𝑛

𝑑𝜔
= 𝑉−1. 

From Eq. (13) the modal group velocity in graded-index MMFs can be calculated as below: 

𝑣𝑔𝑚,𝑛
−1 =

1

𝑐
(𝑛(𝜔)+𝜔 𝑑𝑛/𝑑𝜔)

√1−
2(𝑚+𝑛+1)√

2Δ

𝑎2
𝜔
𝑐

 𝑛(𝜔)

 [1 −
(𝑚+𝑛+1)√

2Δ

𝑎2

𝜔

𝑐
 𝑛(𝜔)

] ( 14) 

where (𝑚, 𝑛) denotes the spatial mode profile indices. For different modes (𝑚, 𝑛) the central 

frequency 𝜔𝑚,𝑛 should be tuned so as all the modes move together. Knowing the escape velocity 

of a soliton, all the frequencies can be found.  To account for the modal dispersion relations in 

graded-index multimode fibers, since the second term under the square root is much smaller than 

1, one can use the following approximate relation 

𝛽𝑚𝑛 = 𝑘0𝑛(𝜔) − (𝑚 + 𝑛 + 1)√
2Δ

𝑎2 ( 15) 

The MM-soliton dispersion relation can now be written as 

𝛽𝑠𝑝𝑞
(𝜔) =

𝜔𝑠𝑝𝑞

𝑐
𝑛 (𝜔𝑠𝑝𝑞

) − (𝑝 + 𝑞 + 1)√
2Δ

𝑎2
 +

1

𝑉
(𝜔 − 𝜔𝑠𝑝𝑞

) +
1

𝐴𝑝𝑞𝜏2
 ( 16 ) 

The phase-matching condition is met for dispersive waves at frequency 𝜔𝑅. If DW content is 

generated in the modal component (𝑚, 𝑛),  we represent the phase-matched frequency by 𝜔𝑅𝑚𝑛
 

𝜔𝑠𝑝𝑞

𝑐
𝑛 (𝜔𝑠𝑝𝑞

) − (𝑝 + 𝑞 + 1)√
2Δ

𝑎2  +
1

𝑉
(𝜔𝑅𝑚𝑛

− 𝜔𝑠𝑝𝑞
) +

1

𝐴𝑝𝑞𝜏2 =

𝜔𝑅𝑚𝑛

𝑐
𝑛(𝜔𝑅𝑚𝑛

) − (𝑚 + 𝑛 + 1)√
2Δ

𝑎2 ( 17 ) 
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𝜔𝑅𝑚𝑛

𝑐
𝑛(𝜔𝑅𝑚𝑛

) −
1

𝑉
𝜔𝑅𝑚𝑛

= (𝑚 + 𝑛 − 𝑝 − 𝑞)√
2Δ

𝑎2
+

𝜔𝑠𝑝𝑞

𝑐
𝑛 (𝜔𝑠𝑝𝑞

) −
1

𝑉
𝜔𝑠𝑝𝑞

+
1

𝐴𝑝𝑞𝜏2
 

by applying further simplifications, we arrive at the following equation 

𝜔𝑅𝑚𝑛
(
𝑛(𝜔𝑅𝑚𝑛)

𝑐
−

1

𝑉
) = (𝑚 + 𝑛 − 𝑝 − 𝑞)√

2Δ

𝑎2
+

𝜔𝑠𝑝𝑞

𝑐
𝑛 (𝜔𝑠𝑝𝑞

) −
1

𝑉
𝜔𝑠𝑝𝑞

+
1

𝐴𝑝𝑞𝜏2
 ( 18 ) 

For typical values Δ = 3 × 10−3 and 𝑎 = 25 𝜇𝑚, √
2Δ

𝑎2
≈ 5.65 × 103. At the soliton fission point, 

the pulsed beam significantly squeezes in time and space. Its compression in space is equivalent 

to a population of many higher-order spatial modes. The fundamental component of the first 

soliton is denoted by 𝑝 + 𝑞 = 1. It can in principle couple to different spatial modes in DWs and 

occupy the spatial mode (𝑚, 𝑛). Assuming that all modal components contributing to the formation 

of a multimode soliton are lying close to each other and from the Eq. (15) one can expect a 

grouping of DW lines and formation of a discrete DW radiation pattern. 

Table 2-1 The approximate order (location) of DW combs based on the modal make-ups 

𝒏,𝒎 0 1 2 3 4 5 6 

0  1 2 3 4 5 6 

1 1 2 3 4 5 6 . 

2 2 3 4 5 6 . . 

3 3 4 5 6 . . . 

4 4 5 6 . . . . 

5 5 6 . . . . . 

6 6 . . . . . . 
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Table 2-1 indicates that the energy present in a particular soliton mode (𝑝1, 𝑞1) can be coupled to 

the all the DW modes with the same 𝑚 + 𝑛 indices sit in the same location. This leads to a grouping 

of spectral DWs lines and formation of DW-combs. 

To corroborate our theory, we performed a series of numerical studies with the help of a gUPPE 

simulator. In these simulations, a graded-index MMF of 31.25 µm core radius was excited with an 

on-axis pulsed beam having 400-fs pulse-width and centered at 1550 nm. The spectrum pertaining 

to this simulation is shown in Figure 2-1. 

 

Figure 2-1 The spectral evolution of a 400-fs pulse centered at 1550 nm when propagates for 20 

cm in a graded-index MMF, obtained from a gUPPE simulation. 

The temporal evolution of the same simulation is shown in Figure 2-2 and Figure 2-3.  
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Figure 2-2 The temporal pulse evolution corresponding to Figure 2-1 

 

Figure 2-3 A closer look at multiple pulse compression occasions of the first soliton shown in 

Figure 2-1, right after the major soliton fission.  
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The first emitted soliton which also has the highest intensity is responsible for the significant red-

shifting observed in the spectrum in Figure 2-4. 

 

Figure 2-4 A closer look at the spectral features of the first red-shifted soliton. 

The group velocity of the strongest soliton is calculated from simulations to be 2.0465 × 108 𝑚/𝑠 

proportional to a soliton lying around 161.2 THz (1.8598 µm). The central frequency for each 

mode contributing to the multimode soliton is calculated from this velocity. Our theory predicts 

the DW lines to be at values given in Table 2-2. The values match very well with our numerical 

results obtained from gUPPE simulation (Figure 2-5) 
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Table 2-2 The predicted DW line locations calculated from the velocity of the first emitted soliton 

N 𝒇𝑫𝑾 (𝑻𝑯𝒛) 

0 445.1 

1 475.3 

2 498.7 

3 518.4 

4 535.7 

5 551.1 

6 565.1 

 

 

Figure 2-5 The perfect matching of the DW lines and the theoretical predictions (black lines) 

Now, we check the DWs generated by the soliton before it experiences a significant redshifting. 

Shortly after the soliton fission, the strongest soliton which lies around 1.597 µm (187.7THz) and 
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has a velocity of 2.049 × 108 𝑚/𝑠 give rise to a series of DWs. Based on our theory, the phase-

matching condition is met for the frequencies given in Table 2-3. 

Table 2-3 The predicted DW line location computed from the velocity of the soliton 

N 𝒇𝑫𝑾 (𝑻𝑯𝒛) 

0 368.9 

1 419.3 

2 450.8 

3 475.3 

4 495.9 

5 513.7 

6 529.6 

7 544.1 

8 557.7 

9 570.1 

10 581.8 

 

Since in this example, only the 𝐿𝑃0𝑚 modes are excited, only DW lines with a multiplication of 

two (𝑁 = 0,2,4, …) are expected to show up. The perfect matching between these peaks and our 

prediction is evident in Figure 2-6 
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Figure 2-6 Comparing the predicted locations of the DW lines with the actual spectrum obtained 

right after the first major soliton fission. 

Relying on this theory, one can also explain the spectral peak lying on the higher wavelength edge. 

As it can be seen in Figure 2-7, the phase-matching condition can be met at higher wavelengths 

edge (~2-3 μm). This explains the curious line in the NIR that always shows up after a multimode 

soliton fission. Therefore, in such multimode systems, the DW resonance frequency does not 

necessarily lie in the visible wavelengths. But it can be also found in the higher-wavelength edge, 

according to the phase-matching conditions. 
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Figure 2-7 The phase-matching condition explains the DW line generated in the 2-3 µm frequency 

region. 

To predict the location of the DW-combs using this technique, one should know the central 

wavelengths of solitons (or equivalently their escape velocity). This is very difficult without 

performing a simulation or having the spectrum evolution. However, a very good approximation 

can be made based on the fact that right after the soliton fission, all the solitons lie at 1550 nm. 

This is later when under the action of intrapulse Raman scattering, they experience a red-shifting 

(deceleration). However, the first and strongest DW-comb is produced right after the soliton fission 

and before Raman-induced frequency shift come into play. The experiment was performed on a 

multimode fiber with a core radius of 35 µm and Δn = 0.03. The locations of DWs, assuming that 

the generated MM-solitons lies approximately at the pump wavelength, the phase-matching 

condition predicts DW wavelengths. Figure 2-8 demonstrates the perfect phase-matching present 

between our theoretical predictions and the experimental results. 
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Figure 2-8 A comparison between predicted DW lines and the spectrum for experimentally 

measured DWs recorded in the output of a 10 m long parabolic-index MMF with a core radius of 

35 μm. 

As it can be seen in Figure 2-8 there is an excellent agreement between our predicted locations of 

the DW-comb lines and the experimental results. Again, due to a symmetric excitement of the 

fiber, only even orders are excited and the rest are not present in this figure. 
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Table 2-4 The predicted DW line locations, for the experimental results shown in Figure 2-8. 

𝒌 − (𝒎 + 𝒏) DW location 

0 1689.0 

1 734.6 

2 675.3 

3 636.9 

4 608.2 

5 585.3 

6 566.3 

7 550.4 

8 536.5 

9 524.2 

10 513.0 

11 503.5 

12 494.3 

 

It is worth mentioning that since the soliton energy is predominantly in the fundamental mode, for 

the sidebands lying in the larger frequencies, the population will be in favor of higher-order modes, 

which is in agreement with [36], however, all the DWs will be multimoded because of numerous 

pathways between many modes of the soliton and DW. This is also in agreement with  the results 

presented in [37], where by deliberately populating higher-order modes, the energy content in the 

DW-combs and their modal distributions could be greatly modified. 
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Despite the fact that the efficiency of coupling drops for frequencies farther from zero-dispersion 

wavelength, the presence of many more modes for farther DW lines causes the existing energy no 

to drop radically and hence the spectrum can in principle extend to very short wavelengths (<500 

nm).  

Given this theory, in dealing with fibers that do not have an equidistant distribution of eigenvalues, 

one expects a drift of grouped sidebands away from each other and formation of a continuous 

hump of energy. The theoretical and experimental results for a step-index fiber are in agreement 

with this theory. As it can be seen in Figure 2-9, the soliton fission has resulted into an ultra-broad 

dispersive wave that extends from 1000 nm to below 500 nm. The simulation results, obtained 

from a gUPPE simulation, also confirm this broadband phase-matching condition leading to the 

development of such energy lump in the visible window. 

 

Figure 2-9 A comparison between the DWs generated from a step-index MMF and a parabolic-

index MMF. The extent of DWs generated in both cases is approximately the same. However, the 

DWs generated from a step-index MMF do not have the comb-like features, observed in GIMMFs. 
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Figure 2-10 Numerical simulations computed from a gUPPE simulator also show a generation of 

a wideband DWs as a result of soliton fission. 

Equation (17) shows that there is a nonlinear phase term in the phase-matching condition between 

DWs and the solitons. This nonlinear phase term predicts a shift in the DWs with a significant 

change in the input power levels. Figure 2-11 and Figure 2-12 represent the behavior of generated 

DWs, measured at the end of a graded-index multimode fiber and step-index multimode fiber, 

respectively, for different power levels. 
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Figure 2-11 Experimentally measured blue-drifting of DWs as a result of an increase in the input 

power levels. The blue drifting of DW comes as a result of the nonlinear phase term. 

 

Figure 2-12 Experimentally measured blue-drifting of DWs when the input power grows – as a 

result of the nonlinear phase term. 

As it can be clearly seen in these figures, by increasing the input power, DWs drift toward shorter 

wavelengths which is in agreement with our theoretical predictions. However, since lower order 

modes have a larger nonlinear coefficient, their spectral shift is expected to be more significant.  
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The analysis given above was only for the first emitted soliton, while in principle for energies large 

enough there can be multiple solitons. The first soliton is the strongest and slowest soliton. Since 

the other generated solitons have a larger group velocity the DW lines are expected to lie farther. 

Figure 2-13 represents numerical results when the pulse breaks into a number of solitons. 

 

Figure 2-13 Numerically computed soliton evolution in space-time and its corresponding 

generated DWs. Different solitons are coupled to a shifted version of DW-comb. 

According to our numerical simulations, the solitons are generated on a course of a few centimeters 

and each has a radically different group velocity. The corresponding DWs are also generated 

discretely and over a few centimeters, each one slightly shifted toward blue, which is a result of 

faster emitted solitons. 

Given this analysis, to generate a very broad and homogenous DW spectrum, one should use a 

waveguide with a randomly distributed series of eigenvalues (such as Hénon-Heiles potential 

Figure 2-14). To this end, we considered an optical fiber with a chaotically distributed index. The 

generated DW from such an index is represented in Figure 2-15. 

(b)(a)
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Figure 2-14 The refractive index distribution of a Hénon-Heiles chaotic potential 

 

Figure 2-15 The DW form a fiber with a chaotic refractive index – obtained from a gUPPE 

simulator. 

The output spectrum measured in the output of a chaotic fiber shows that this strategy can be 

exploited for an efficient generation of spectral content on the visible side of the spectrum. 

. 
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CHAPTER 3: TAILORING NONLINEAR PROCESSES THROUGH 

CONTROLING INITIAL CONDITIONS IN GRADED-INDEX 

MULTIMODE FIBERS 

The results presented in this section have been published and can be found at : M. A. Eftekhar, L. 

G. Wright, M. S. Mills, M. Kolesik, R. Amezcua Correa, F. W. Wise, and D. N. Christodoulides, 

"Versatile supercontinuum generation in parabolic multimode optical fibers," Opt. Express 25, 

9078-9087 (2017) [37] 

3.1 Introduction 

Quite recently, the nonlinear “virtues” of nonlinear MMFs have been reconsidered in both the 

normal and anomalous dispersion regimes  [23]. In this vein, the observation of multimode optical 

solitons in parabolic MMFs has been reported  [24,38] – thus confirming earlier 

predictions  [39,40]. Supercontinuum generation has also been successfully demonstrated in 

graded-index MMFs by launching ultra-short pulses in the anomalous dispersion region (1550 

nm)  [28,41]. In these experiments, discrete spectral components were observed in the visible 

domain – features that were subsequently explained through the interplay between spatiotemporal 

soliton oscillations and dispersive waves that are only possible in parabolic fibers  [28]. In addition, 

efficient supercontinuum generation from the visible to near-infrared (when pumped in the normal 

dispersion regime, 1064 nm) was reported in low DGD parabolic MMFs  [42] by making use of a 

newly observed mechanism – better known as geometric parametric instability  [29,43]. Such 

MMF supercontinuum sources could potentially display spectral densities that are orders of 

magnitudes higher than those currently obtained in single-mode fiber systems  [42]. Beam clean-

up was also observed for the first time during SC generation  [42,44]– an effect that is yet not fully 

understood. These latter studies all indicate that MMFs can provide a rich setting where nonlinear 
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effects can be potentially molded by exploiting the sheer complexity offered by a multitude of 

wave-mixing paths. Of importance will be to assess to what extent one can shape the output of 

such experiments through new degrees of freedom.  

Here, we show that the input beam modal composition can provide two additional degrees of 

freedom in tailoring the output spectral content resulting from nonlinear interactions in graded-

index multimode fibers. These two parameters directly stem from the indices (𝑙,𝑚) of the 

supported mode group 𝐿𝑃𝑙𝑚. Our study suggests that soliton fission and emission effects as well 

as dispersive wave generation, known to play an important role during SC, critically depend on 

the way the modes of this fiber are initially excited. Unlike single-mode fibers, initial beam 

conditions tend to affect multimode soliton velocities and their energy content. Numerical 

simulations based on a gUPPE approach [45,46] are in good agreement with previously reported 

experimental observations, carried out at 1550 nm  [41].  

3.2 Theory and Method 

To demonstrate the effect initial spatial conditions, have on the generated SC spectra in heavily 

multimoded fibers, we first perform a series of numerical studies.  The silica fiber under 

investigation is assumed to have a core diameter of 2a = 62.5 µm and a parabolic index profile (so 

as to minimize modal walk-off) with a maximum numerical aperture 𝑁𝐴 = 0.275. This MMF is 

excited at 1550 nm where the dispersion is anomalous and at which wavelength this structure is 

expected to support ~ 300 modes. Given that the number of propagating modes scales as 1/𝜆2, one 

would expect thousands of modes especially in the visible range. Clearly, simulating in full this 

complex environment on a mode-by-mode basis becomes quickly impractical, if not impossible. 

Each mode requires a pre-computed dispersion curve, and each nonlinear interaction is described 

by a pre-calculated tensor requiring billions or trillions of non-zero multi-dimensional integrals.  



28 

 

Even if these could be computed, coupled-mode models cannot accurately describe the full 

wavelength-dependence of modes and nonlinear interactions, especially near cut-off as occurs for 

many modes involved in our broadband spectra. In addition, a mode-by-mode methodology will 

fail to capture the ensued dynamics in such a broad parabolic index profile, even at moderate power 

levels where weak self-focusing effects are expected to present themselves. Hence, while such 

models can provide insight, for highly-multimode propagation especially, a full theoretical 

understanding absolutely requires rigorous full-field simulations based on the gUPPE  [45,46]. 

This unidirectional pulse propagator (UPPE) allows one to model supercontinuum generation in 

highly multimode MMFs in a global manner, accounting for all possible nonlinear effects.   In this 

respect, the evolution of the vectorial electric field is comprehensively described by 

𝜕𝑧�⃗� (𝑘⊥, 𝜔, 𝑧) = 𝑖𝑘𝑧�⃗� (𝑘⊥, 𝜔, 𝑧) +
𝑖𝜔2

2𝜖0𝑐2𝑘𝑧
�⃗� (𝑘⊥, 𝜔, 𝑧) −

𝜔

2𝜖0𝑐2𝑘𝑧
𝐽 (𝑘⊥, 𝜔, 𝑧) ( 19 ) 

where 𝑘𝑧(𝑘⊥, 𝜔) = √𝜔2 휀(𝜔)/𝑐2  − 𝑘𝑥
2 − 𝑘𝑦

2 and 휀(𝜔) is the frequency dependent permittivity 

of the medium with c representing the speed of light. The waveguide is represented as a static 

contribution to polarization �⃗�  and is implemented as an additional module for the simulator. 

Equation (1) implicitly considers diffraction/waveguiding processes as well as dispersion and 

mode walk-off effects. Moreover, all the nonlinear interactions are included in the polarization and 

current terms, represented by �⃗� (𝑘⊥, 𝜔, 𝑧) and 𝐽 (𝑘⊥, 𝜔, 𝑧) in (1), respectively.  For the task at hand, 

the UPPE core is primed to account for all nonlinear phenomena such as self-phase and cross-

phase modulation, four-wave mixing, third harmonic generation, shock-effects, Raman, etc. The 

nonlinear Kerr coefficient is 𝑛2 = 2.9 × 10−20𝑚2/𝑊 and its Raman fraction is taken here to be f 

= 0.18 in the standard two-parameter response model  [47].  The wavelength dependence of the 

refractive index is provided through an appropriate Sellmeier series. In our studies, the current 

term (accounting for possible plasma and filamentation effects) in Eq. (1) played a negligible role. 
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3.3 Numerical and Experimental Results  

In all our simulations, we assume that the input pulse energy is 𝐸𝑖𝑛 ≈ 150 𝑛𝐽. The temporal pulse 

width is 𝜏 ≈ 500 𝑓𝑠 (FWHM) and the minimum waist spot-size (where the intensity drops by 𝑒−2) 

of the input circular Gaussian beam is 𝑤 = 15 𝜇𝑚. Evidently, different modal groups 𝐿𝑃𝑙𝑚 will 

be excited depending on the position of the input Gaussian beam.  In this case, the modal content 

can be directly obtained by projecting the input field profile on the orthogonal Gauss-Laguerre 

base functions. For example, if the beam launched is centered, only modes from the 𝐿𝑃0𝑚 group 

will be excited, i.e. having zero orbital angular momentum. To some extent, this modal population 

is akin to that associated with a vacuum squeezed or coherent state. For the parabolic fiber under 

consideration, the modal composition corresponding to an on-axis Gaussian beam excitation is 

shown in Figure 3-1(a). Meanwhile, if this same Gaussian beam is shifted by 10 𝜇𝑚 with respect 

to the fiber center, the modal composition is significantly altered, as depicted in Figure 3-1(b). In 

this latter scenario, most of the energy no longer resides in the fundamental mode. Instead, the 

mode content does not monotonically decrease with m and in addition, modes with angular 

momenta are now involved (with 𝐿𝑃1𝑚 contributing the most).  
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Figure 3-1 (a) Energy distribution among the LPlm modes of a parabolic fiber when excited on-

axis. In this case, only the LP0m modes are populated with the fundamental mode taking most of 

the energy. (b) Modal population when the system is excited off-axis. For this input, considerable 

energy resides in the LP1m set. 

Under the aforementioned initial conditions, the evolution of the SC spectrum, as obtained from 

gUPPE simulations is shown in Figure 3-2. The supercontinuum features in Figure 3-2(a) result 

from an on-axis excitation, (corresponding to Figure 3-1(a)) while those in Figure 3-2(b) from an 

off-axis input (Figure 3-1(b)). Overall, these two figures show there is a significant difference in 

the way SC develops in this MMF, depending on the modal groups initially excited.  If the fiber is 

excited on-axis with a spot-size different than that of the fundamental mode, the beam experiences 

periodic contractions and expansions. Meanwhile, if the Gaussian wavefront is launched off-axis, 

in addition to the aforementioned effects, the beam tends to oscillate around the fiber center  [48].   

As Figure 3-2 indicates, in both cases, the spectrum rapidly broadens with propagation distance. 

Three stages of spectral evolution are clear in this figure. During the first stage, the spectrum 

gradually expands and the temporal and spatial profiles of the pulsed beam continuously contract. 

In addition, the periodic compression/expansion of light that results from modal interference, an 

innate property of parabolic-index optical fibers, leads to a geometric parametric instability (GPI) 

which manifests itself as narrow line sidebands symmetrically located around the pump frequency 
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𝜔𝑝  [29,42,43]. The angular frequency of the generated mth sideband can be obtained from 𝜔𝑆𝐵𝑚
≃

𝜔𝑝 ± √𝑚 𝜔𝐺, where 𝜔𝐺
2 = 2𝛿/|𝑘0

′′|. Here 𝛿 = 𝑎−1√2Δ represents the spacing between the 

propagation constant eigenvalues, |𝑘0
′′|is the fiber dispersion at the pump wavelength, and Δ =

(𝑛𝑐𝑜𝑟𝑒 − 𝑛𝑐𝑙𝑎𝑑)/𝑛𝑐𝑜𝑟𝑒 . In our experiments, Δ = 0.0165, and |𝑘0
′′| = 2.8 × 10−26𝑚−1𝑠2. For 

these parameters, the first three visible sidebands are expected to appear at 296, 338, and 371 THz 

while the first NIR sideband at 91.2 THz. These sidebands are easily discernable in Figure 3-2(b). 

Interestingly, however, this is not the case in Figure 3-2(a). This can be understood by keeping in 

mind that the GPI process is a direct byproduct of modal interference. In the first case, when the 

system is excited on-axis with a spot size close to that of a fundamental mode (most of the energy 

resides in 𝐿𝑃01), the ensued GPI is weak and hence little energy is transferred to the sidebands. On 

the other hand, when the MMF is excited off-axis, the compression/expansion cycles are more 

severe and the GPI gain is, therefore, higher, as indicated in Figure 3-2(b).  

 

Figure 3-2 Evolution of the supercontinuum spectrum in a 20 cm long parabolic MMF when the 

pulse energy is 150 nJ for (a) an on-axis excitation (b) off-axis input (offset by 10 µm). In all cases, 

three stages are apparent: (i) initial spectral broadening, (ii) soliton fission, and (iii) soliton and 

dispersive wave propagation. The respective distances where soliton fission occurs are also shown. 

In (b) the circles denote the onset of the first three GPI sidebands. The pump wavelength is 1550 

nm. 
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During the second stage, the input pulse, having enough energy to support multiple solitons, breaks 

into a series of distinct fundamental multimode soliton components.  Each soliton, generated in 

this soliton fission stage (in the anomalous dispersion regime) has different properties or modal 

composition. Each produces linear dispersive waves in the normal dispersive region with 

correspondingly different characteristics. The distance at which this process occurs, not only 

depends on the input energy and dispersion, but also on the initial spatial conditions. In fact, since 

each spatial mode satisfies a different dispersion relation, the way the input energy is distributed 

among modes determines the effective dispersion and thus directly affects the fission distance.  As 

it can be seen in Figure 3-2(a), for on-axis excitation, the pulse undergoes fission after 76 mm of 

propagation, while for the off-axis case it takes place at 99 mm (Figure 3-2(b)).  

During the third stage, the co-propagation of solitons and dispersive waves in the MMF is 

responsible for supercontinuum generation, through the interplay of all the aforementioned 

processes. The spectra developed after 20 cm of propagation, corresponding to the on-axis and off-

axis initial conditions of Figure 3-1, are depicted in Figure 3-3. Both Figure 3-2 and Figure 3-3 

reveal significant differences in the resulting spectral features, suggesting that initial conditions 

indeed matter in supercontinuum generation. Launching the pulse on-axis leads to more intense 

multimode solitons, capable of experiencing stronger Raman self-frequency shifts in the infrared 

region. The gradual redshifting of solitons is accompanied by a gradual drift of their dispersive 

waves toward shorter wavelengths. This redshifting effect along with the ensuing FWM 

mechanism results into a rather flat spectrum. On the other hand, exciting the fiber off-axis 

produces distinct dispersive wave components in the visible (Figure 3-3, red curve) that do not 

drift toward higher frequencies since the generated solitons are less susceptible to redshifting.  
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Figure 3-3 Comparison of the supercontinuum spectra features produced in an anomalously 

dispersive parabolic MMF for on-axis (blue) versus off-axis (red) excitation conditions. The 

propagation distance is 20 cm and the pulse width is 500 fs. All other parameters are the same as 

Figure 3-2. 

This sensitivity of the emergent spectral features to the initial modal composition or spatial 

launching conditions can only be understood by taking a closer look at the temporal and spatial 

behavior of the elements involved in this process (Figure 3-4 (a)-(f)). Figure 3-4 (b) and (d) show 

the temporal evolution of the input pulse (500 fs, 150 nJ) in our parabolic MMF during the first 20 

cm of propagation distance, under on-axis and off-axis excitation conditions, respectively. As can 

be inferred from the slopes of the traces, which are representatives of wavepacket velocities with 

respect to the moving frame, the fission generated solitons from an on-axis input propagate much 

slower than those resulting from an off-axis excitation.  For these two scenarios, the spatial 

intensity distribution associated with the slowest and more pronounced solitons is depicted by the 

insets in Figure 3-4 (e) and Figure 3-4 (f). For clarity, these same figures also provide x-cross-

sections of these intensity profiles (red curves). Moreover, the modal composition of these primary 
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solitons has been numerically estimated by projecting their spatial fields on the constituent 𝐿𝑃𝑙𝑚 

modes of the MMF at that particular wavelength (energy distributions in Figure 3-4 (e) and Figure 

3-4 (f)). These results demonstrate that the solitons generated from on-axis excitation reside mostly 

in the fundamental mode while higher order modes like 𝐿𝑃02, 𝐿𝑃11, etc. jointly share only 10 

percent of its energy. However, for off-axis excitation conditions, the resulting solitons are heavily 

multimoded, with more than 40 percent of their energy distributed among higher-order spatial 

modes. Since the fundamental mode in the former case, dominates in terms of energy, the Raman 

self-frequency shift is expected to be more pronounced. As indicated in previous studies  [49], this 

is because the 𝐿𝑃01 mode typically enjoys a higher Raman gain – a direct by-product of the overlap 

integrals. This explains why the generated solitons under off-axis conditions experience less 

Raman deceleration and hence move faster. In addition, the modes involved, as initially dictated 

by launching conditions, dynamically exchange energy during propagation as a result of wave-

mixing and Raman processes. Figure 3-4 (a) and (c) show the temporal features at the output of 

the fiber. In both cases, the solitons have a pulse-width of 18-20 fs. However, the energy each 

soliton carries depends again on initial conditions. In fact, for an on-axis input, the first generated 

soliton contains almost 40% of the total energy. 
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Figure 3-4 Resulting temporal features after 20 cm in a parabolic MMF when excited on axis. (b) 

Temporal evolution of the initial 500 fs pulse (150 nJ) corresponding to (a). The emergence of 

slow solitons is apparent. (c) and (d) Same as in (a) and (b), respectively, for off-axis excitation. 

(e) The spatial intensity profile and its x-cross section corresponding to the slowest dominant 

soliton at the end of the fiber, when illuminated with an on-axis Gaussian beam. (f) Same as in (e) 

for off-axis launching conditions, where the soliton-beam experiences transverse oscillations 

during propagation. 

The simulations show good agreement with experiments  [41]. In our experiments, an amplified 

fiber laser operating at 1550 nm and emitting pulses with a ~ 500 fs pulse-width, was coupled into 

~ 1 m long fibers with the same parameters used in our numerical studies. By translating the fiber 

with respect to the optical lens, the initial conditions were varied. The Gaussian mode field 

diameter at the input was about 30 μm.  Figure 3-5 (a) and (b) show, respectively, the NIR and 

visible portions of the output spectra resulting from an on-axis excitation. Figure 3-5 (c) and (d), 
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on the other hand, depict the spectra for the off-axis case (~10-15 µm displacement). The near-

field beam profile, integrated over all wavelengths, corresponding to each of these measurements 

is shown on the right of each figure. In agreement with our numerical results, we observe that most 

of the energy resides in the fundamental mode, thus causing significant redshifting towards NIR 

from the generated solitons (Figure 3-5 (a)). Meanwhile, by moving the input beam away from the 

center, the frequency generation in the NIR region is considerably subdued (Figure 3-5 (c)). As 

also predicted by our simulations, the visible component of the spectrum, depicted in Figure 3-5 

(b) for on-axis, exhibits appreciable frequency generation over a broad range while the output 

spectrum resulting from an off-axis excitation displays instead a series of distinct peaks (Figure 

3-5 (d)). 

 

Figure 3-5 Experimentally measured (a) NIR and (b) visible supercontinuum spectrum for on-axis 

excitation together with generated transverse output intensity profiles after 1 m of propagation. (c) 

and (d), Same as in (a) and (b) for an off-axis excitation. In all cases, each division represents a 10 

dB variation. The scale bars in the insets represent 20 µm. 

Our results clearly indicate that changing the initial spatial conditions can have a significant effect 

on the spatial and temporal evolution of the multimoded field which accordingly alters the 

frequency generation process. Thus far, we have mostly studied the effect of 𝐿𝑃0𝑚 (with the 

fundamental mode dominating) and 𝐿𝑃1𝑚 modes on the output spectrum. Yet, a plethora of other 

initial conditions can in principle be synthesized, with each one leaving a different imprint on the 

output. As an example, we here theoretically investigate two other possibilities. In the first case, 
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the fiber is illuminated with a ring pattern having a radius of 25 μm and a FWHM of 4.5 μm. Under 

these conditions, 80% of the total energy is distributed among the 𝐿𝑃06, 𝐿𝑃07, and 𝐿𝑃08 group of 

modes, with the 𝐿𝑃07 possessing most of the energy. The share of the first five 𝐿𝑃0𝑚 modes, 

including the fundamental, remains below 5%. The peak intensity and energy of the pulses used 

are the same as in Figs. 3-2 – 3-5. Figure 3-6 (a) and (b) show the NIR and visible portions of the 

output spectrum after 20 cm of propagation.  As it can be inferred from Figure 3-6 (a), the self-

frequency shift of the generated multimoded solitons is rather small. This can be attributed to the 

fact that higher 𝐿𝑃0𝑚 modes tend to experience lower Raman gains. Interestingly, however, this 

same modal composition leads to a considerable enhancement of supercontinuum in the visible 

portion of the spectrum (400-600 THz), as shown in Figure 3-6 (b). This enhancement is closely 

related to a more efficient generation of dispersive waves via Raman solitons. Meanwhile, the 

component between 300-400 THz – arising from dispersive waves emitted at the pump wavelength 

(PDWs) – is suppressed.  

 

Figure 3-6 Generated (a) NIR and (b) visible portion of the spectrum when the fiber is excited by 

a ring beam. Same as in (c) and (d) when using a two-spot excitation. Each division in (a) and (c) 

represents a 20 dB differential while in (b) and (d) a 10 dB variation. 
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As a second example, we consider the case of symmetrically exciting the fiber with two spots in 

phase, akin to a quantum cat-state |𝜓⟩ + | − 𝜓⟩. This state results in the elimination of all 𝐿𝑃2𝑘−1,𝑚 

modes where 𝑘 is a positive integer. In our simulations, the fiber is excited with two Gaussian 

beams, separated by 20 μm. Each of these two displaced Gaussian beams is identical in size with 

those used in Figs. 3-2 – 3-4 and carries half of the total energy (75 nJ). In this arrangement, the 

energy is distributed among the 𝐿𝑃0𝑚 and 𝐿𝑃2𝑚 group of modes, with the fundamental mode 

having the largest share. Figure 3-6 (c) shows the resulting NIR supercontinuum spectrum. As 

expected, the Raman process is now more pronounced given that a larger portion of the energy is 

injected in the fundamental mode. On the other hand, the visible section of the spectrum, shown 

in Figure 3-6 (d), indicates that this symmetric excitation leads to a notable enhancement in the 

300-400 THz band (arising from PDWs) while the higher frequencies are subdued.  

Figure 3-7 shows experimental results corresponding to four different initial spatial conditions. In 

all cases, the generated supercontinuum spectrum is highly sensitive to the modal groups initially 

excited. The integrated output beam profiles in the visible and NIR are also depicted. While in 

Figure 3-7 (b) the spectral features are comb-like, in (d) they are more broad and flat, similar to 

observations in our simulations (Figure 3-6 (b) and (d)). Similar conclusions also hold for the 

experimental observations of Figure 3-7 (a) and (c).  

 

Figure 3-7 Experimentally measured NIR and visible supercontinuum spectra for four different 

initial spatial conditions together with generated transverse output intensity profiles after 1m of 
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propagation. In all cases, the pulse energy is 150 nJ. In all cases, each division represents a 10 dB 

variation. The scale bars in the insets represent 20 µm. 

3.4 Conclusion 

In conclusion, we have shown that parabolic multimode fibers can provide a versatile platform for 

tailoring supercontinuum generation. Experiments and simulations carried out in the anomalous 

dispersive region indicate that the modal composition (energy distribution and phase relationship 

among eigenmodes) of the input beam plays an important role in altering the output spectrum. This 

is accomplished through the interplay of soliton fission processes, Raman, dispersive wave 

generation and four-wave mixing.  Our results could pave the way for new classes of optical 

sources with pre-engineered spectra and unprecedented high spectral densities.   
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CHAPTER 4: NONLINEAR DYNAMICS IN THE PRESENCE OF 

ACCELERATED NONLINEAR PROCESSES 

4.1 Abstract 

Multimode optical fibers have recently reemerged as a viable platform for addressing a number of 

long-standing issues associated with information bandwidth requirements and power-handling 

capabilities. As shown in recent studies, the complex nature of such heavily multimoded systems 

can be effectively exploited to observe altogether novel physical effects arising from 

spatiotemporal and intermodal linear and nonlinear processes. As such, multimode optical solitons, 

spatial beam self-cleaning, geometric parametric instabilities, and spatiotemporal mode-locking 

have been lately reported in multimode waveguide settings. In this work, we study for the first 

time, accelerated nonlinear intermodal interactions in core-diameter decreasing multimode fibers. 

We demonstrate that this spatiotemporal acceleration can have a prominent effect on the ensued 

temporal and spectral behavior in both dispersion regimes. Under normal dispersive conditions, 

we observe a generation of accelerating frequency bands that dynamically sweep the entire 

spectrum. This, in turn, can be utilized to produce a notably flat and uniform supercontinuum, 

extending over 2.5 octaves. On the other hand, in the anomalous dispersion regime, this same 

mechanism leads to a peculiar class of relatively blue-shifted multimode solitons and introduces a 

new process for establishing blue-drifting dispersive wave combs through speeding up the 

collision dynamics among the constituent modes of multimode solitons. 

4.2 Introduction 

Multimode fiber systems offer a promising avenue for overcoming some of the physical limitations 

associated with single mode structures. The ever-increasing demand for higher data-carrying 

capacities has incited a flurry of activities [18,50–52] that not only led to new classes of active and 
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passive multimode fiber components [20,21] but it has also prompted a critical rethinking as to 

how linear/nonlinear processes can be exploited in multimode environments [20,21,53–

65,25,66,29,42] – an aspect that has so far remained largely unexplored. In this respect, the added 

spatial degrees of freedom provide further opportunities at both the scientific and technological 

level that were previously overlooked and remained unattainable because of technological barriers. 

From a more fundamental perspective, such hyperdimensional multimode systems provide an ideal 

testbed for investigating complex linear and nonlinear modal interactions [25,29,59–66] – akin to 

those taking place in many-body molecular dynamics [67]. In recent experiments, nonlinear wave 

propagation in graded-index multimode fibers (MMFs) was found to lead to a series of unexpected 

results that are otherwise impossible in single-mode waveguides [25,28,29,42,65,66,68]. These 

include, for example, the first observation of the so-called geometric parametric instability [29,42], 

modal condensation [42,68,69], formation of multimode soliton “molecules” [25,65], efficient and 

instant second-harmonic generation [70], and visible supercontinuum generation [42,71] that 

rivals that obtained from dispersion engineered photonic crystal fibers  [6,72]. What makes this 

possible is the immense spatiotemporal complexity associated with these nonlinear wave-mixing 

mechanisms in the presence of a large number of modes [25].  

Geometric parametric instabilities naturally arise in parabolic MMFs because of periodic beam 

compression/expansion, resulting from the equidistant distribution of the propagation eigenvalues 

in such 2-D harmonic potentials [43]. This, in turn, causes a longitudinal modulation of the optical 

intensity and hence forces all the modes to nonlinearly interact or collide periodically with each 

other, thus giving rise to new spectral sidebands, as lately observed in a number of studies, 

especially in conjunction with supercontinuum generation in the visible region [42,71]. Another 

intriguing process that is unique to nonlinear multimode systems is that of spatial beam self-
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cleaning. This self-organized effect is induced by the Kerr nonlinear energy exchange between the 

many modes involved and always occurs irrespective of initial conditions [42,68,69]. Unlike, 

Raman beam clean-up, this modal energy transfer tends to thermodynamically populate lower-

order modes in an effort to maximize the system’s entropy [73]. The aforementioned aspects could 

be of importance in realizing high power optical sources based on MMF technologies. Indeed, the 

prospect of simultaneously locking multiple spatial and longitudinal modes in multimode fiber 

lasers was successfully demonstrated in a recent work [74].  

Here, we explore for the first time accelerated spatiotemporal nonlinear dynamics in long-tapered 

parabolic-index multimode fibers. As opposed to single-mode fiber tapers, where the axially 

varying dispersion plays a key role during nonlinear evolution [14], the dispersion in our tapered 

multimode system remains invariant and the resulting nonlinear interactions are now predominated 

and drastically altered by the induced accelerated intermodal dynamics – irrespective of the 

dispersion regime. The ensued nonlinear modal collisions in this “many-body” system (Figure 

4-1(a)) leads to a host of unexpected results. Under normal dispersive conditions, we observe the 

formation of upshifted and downshifted gain spectral bands that progressively drift away from the 

pump wavelength as the intermodal oscillations speed up. In turn, this mechanism leads to the 

generation of a markedly flat and uniform spectrum that extends over several octaves with large 

spectral power densities. Meanwhile, in the anomalous dispersion regime, this acceleration process 

results in a pronounced change of soliton behavior: the emerging multimode solitons (MM-

solitons) go through a series of self-adjusting phases that destabilize their spatial distribution along 

propagation. At the same time, some of these solitons experience an unexpected temporal 

slowdown in their Raman-induced deceleration, because of a cross-phase modulation interaction 

between the MM-solitons and slow, broadband dispersive waves – a process never observed 



43 

 

before. Finally, we observe a dispersive wave (DW) comb in the spectrum that continuously blue-

drifts, not because of soliton trapping, but as a result of accelerated MM-soliton intermodal 

collisions in the tapered MMF system.  

4.3 Accelerated Spatiotemporal Dynamics in Anomalously Dispersive MMF Tapers 

Solitons are ubiquitous entities that appear in many and diverse physical settings, ranging from 

fluids, plasmas, nonlinear optics, and solid-state physics, to mention a few [75–78]. In single-mode 

optical fibers (SMF), temporal solitons represent nonlinear ‘modes’ or stationary states of the 

underlying (1+1) D nonlinear Schrödinger equation – a process enabled by balancing self-phase 

modulation (SPM) and dispersive effects [22,76,79]. While in three-dimensional bulk 

environments, optical solitons happen to be inherently unstable, their stability can be reestablished 

in multimoded waveguides. Unlike solitons in SMFs that have been intensely investigated over 

the years, their counterparts in MMFs still remain largely unexplored. Quite recently, multimode 

solitons have been successfully observed [65] for the first time in anomalously dispersive parabolic 

fibers, thus corroborating earlier theoretical results [39]. What makes multimode solitons so 

complex and rich in dynamics is not only their modal composition but also their intricate 

intermodal space-time interactions. As opposed to solitons in single mode fiber systems that can 

be uniquely determined by their energy content, for multimode solitons the situation is 

considerably more convoluted. This is because the MM-soliton ‘molecules’ can, in principle, take 

several different forms depending on their modal make-up [25,80]. These composite soliton 

structures are formed when the constituent modes nonlinearly coalesce after appropriately shifting 

their frequencies in order to overcome intermodal group-velocity walk-offs. Hence, the soliton 

fission process, as well as the ensued MM-solitons and corresponding DWs, can be modified by 

judiciously engineering the modal structure of the input beam [80]. In parabolic-index MMFs, the 
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self-imaging behavior associated with multimode solitons leads to a periodic nonlinear interaction 

of the modal elements. This, in turn, gives rise to a broadband sequence of DWs, which in principle 

can extend into the UV [28]. Here, we investigate for the first time how accelerated interactions 

can affect the soliton fission mechanism and the subsequently generated multimode solitons along 

with their Cherenkov radiation.  

To understand these effects, we must first consider the speeding up of the beam 

expansion/compression cycles in a tapered MMF. In our experiments, the core radius, 𝑎(𝑧), of the 

parabolic MMF was approximately exponentially tapered along the propagation direction, i.e. 

𝑎(𝑧) = 𝑎0 𝑒𝑥𝑝 (−𝛾𝑧/2), where 𝑎0 is the initial core radius and γ is the tapering rate. Therefore, 

the core-index potential of this system can be described by 𝑛2 = 𝑛0
2 (1 − 2𝛥(𝑟/𝑎0)

2𝑒𝛾𝑧 ) where 

𝛥 represents the relative index change between core and cladding. In seeking Gaussian beam 

solutions in this parabolic-index arrangement, we use the following ansatz for the spatial part of 

the optical electric field envelope: 𝐸(𝑟, 𝑧) =  𝐴(𝑧)𝑒𝑥𝑝 (−
𝑟2

2𝑤2(𝑧)
) 𝑒𝑖[𝜃(𝑧)+𝑟2𝐹(𝑧)]. The accelerated 

evolution of the beam spot-size during propagation in the tapered MMF is given in the below 

section. 

The refractive index profile of a non-uniform optical fiber can be represented as below: 

𝑛 = 𝑛0 (1 − Δ (
𝑟

𝑎0
)
2

𝑓(𝑧)) ( 20 ) 

By replacing the above index profile in the Helmholtz equation (∇2𝐸 + 𝑘0
2𝑛2𝐸 = 0), we acquire 

the field evolution equation in a fiber profile with z-dependent core radius. Next, we employ the 

slowly varying envelope approximation (SVEA) 𝐸(𝑥, 𝑦, 𝑧) = Φ(𝑥, 𝑦, 𝑧)𝑒𝑖𝑘0𝑛0𝑧. By decomposing 

the operator ∇2 to longitudinal and transverse components ( ∇2= 𝜕𝑧𝑧 + ∇⊥
2 ) we will have: 
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∇2𝐸 + 𝑘0
2𝑛2𝐸 = (𝜕𝑧𝑧 + ∇⊥

2 )𝐸 + 𝑘0
2𝑛2𝐸 

Φ𝑧𝑧 + 2𝑖𝑘0𝑛0Φ𝑧 − 𝑘0
2𝑛0

2Φ + ∇⊥
2Φ + 𝑘0

2𝑛2Φ = 0 ( 21 ) 

By replacing the index profile 𝑛(𝑧) we get: 

Φ𝑧𝑧 + 2𝑖𝑘0𝑛0Φ𝑧 − 𝑘0
2𝑛0

2Φ + ∇⊥
2Φ + 𝑘0

2𝑛0
2Φ − 2Δ (

𝑟

𝑎0
)
2

𝑓(𝑧)𝑘0
2𝑛0

2Φ = 0 

𝑖Φ𝑧 +
1

2k0𝑛0
∇⊥

2Φ − Δ(
𝑟

𝑎0
)
2

𝑓(𝑧)𝑘0𝑛0Φ = 0 ( 22 ) 

One way to solve this differential equation is through a separation of variables: 

Φ = 𝐹(𝑥, 𝑧)𝐺(𝑦, 𝑧) 

Which gives 

𝑖𝐹𝑧

𝐹
+

𝑖𝐺𝑧

G
+

1/F

2k0𝑛0
∇⊥

2F +
1/G

2k0𝑛0
∇⊥

2G − Δ [(
𝑥

𝑎0
)
2

+ (
𝑦

𝑎0
)
2

]   𝑓(𝑧)𝑘0𝑛0 = 0 ( 23 ) 

Separating the terms independent of x and y gives: 

𝑖𝐹𝑧 +
1

2k0𝑛0
𝐹𝑥𝑥  − Δ (

𝑥

𝑎0
)
2

𝑓(𝑧)𝑘0𝑛0𝐹 = 0 

                                                 𝑖𝐺𝑧 +
1

2k0𝑛0
𝐺𝑦𝑦 − Δ(

𝑦

𝑎0
)
2

𝑓(𝑧)𝑘0𝑛0𝐺 = 0 ( 24 ) 

Since both the equations are essentially identical, one needs to solve only one of them. The 

evolution equation under consideration is as below: 

                                                   𝑖𝑢𝑧 +
1

2k0𝑛0
𝑢𝑥𝑥  − Δ (

𝑥

𝑎0
)
2

𝑓(𝑧)𝑘0𝑛0𝑢 = 0 ( 25 ) 

The above equation is normalized through applying the following normalization parameters. 

                                                            𝜉 =
𝑧

𝑎0
√2Δ, 𝑠 =

𝑥

𝑥0
, 𝑥0

2 =
𝑎0

√2Δ

1

𝑘0𝑛0
 ( 26 ) 

Where 𝑥0 is the spot-size of the fundamental mode. By applying the normalization parameters one 

gets: 
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                                                             𝑖
𝜕𝑢

𝜕𝜉
+

1

2

𝜕2𝑢

𝜕𝑠2
−

𝑠2

2
𝑓(𝜉)𝑢 = 0 ( 27 ) 

We assume a Gaussian-type solution for the evolution equation as below 

𝑢(𝑠, 𝜉) = 𝐴(𝜉)  𝑒
−

𝑠2

2𝑤2(𝜉)  𝑒𝑖[𝜃(𝜉)+𝑠2𝐹(𝜉)] ( 28 ) 

where 𝑤(𝜉) is the beam waist 

                           𝑢𝜉 = [𝐴′ + 𝐴 (𝑖𝜃′ + 𝑖𝑠2𝐹′ +
𝑠2

𝑤3 𝑤′)] 𝑒
−

𝑠2

2𝑤2(𝜉) 𝑒𝑖[𝜃(𝜉)+𝑠2𝐹(𝜉)] ( 29 ) 

                      𝑢𝑠𝑠 = 𝐴 (
𝑆2

𝑤4 −
𝑖4𝑠2𝐹

𝑤2 − 4𝑠2𝐹2 + 2𝑖𝐹 −
1

𝑤2) 𝑒
−

𝑠2

2𝑤2(𝜉) 𝑒𝑖[𝜃(𝜉)+𝑠2𝐹(𝜉)] ( 30 ) 

𝑖𝐴′ − 𝐴𝜃′ − 𝐴𝑠2𝐹′ + 𝑖
𝑠2

𝑤3 𝐴𝑤′ +
𝐴𝑠2

2𝑤4 −
𝑖2𝑠2𝐹𝐴

𝑤2 − 2𝑠2𝐹2𝐴 + 𝑖𝐹𝐴 −
𝐴

2𝑤2 −
𝑠2

2
𝑓(𝜉)𝐴 = 0  ( 31 ) 

By separating real and imaginary parts as well as terms with different powers of 𝑠: 

                                                                     2𝐹′ =
1

𝑤4 − 4𝐹2 − 𝑓(𝜉) ( 32 ) 

                                                                               𝜃′ +
1

2𝑤2
= 0 ( 33 ) 

                                                                                 
𝑤′

𝑤3 −
2𝐹

𝑤2 = 0 ( 34 ) 

                                                                                 𝐴′ + 𝐹𝐴 = 0 ( 35 ) 

From the relation (34): 

                                                                               𝑤′ − 2𝐹𝑤 = 0,  

𝐹 = 𝑤′/2𝑤 

Replacing 𝐹 in the equation (35) gives: 

𝐴′ + 𝑤′/2𝑤𝐴 = 0 

2𝐴′𝐴𝑤 + 𝑤′𝐴2 = 0 

(𝐴2𝑤)′ = 0 
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                                                                          𝐴2𝑤 = 𝐶𝑜𝑛𝑠𝑡. ( 36 ) 

Equation (36) is a manifestation of conservation of energy. By replacing 𝐹 and 𝐹′ in Eq. (32) one 

arrives to the following equations: 

4𝐹2 =
𝑤′2

𝑤2
  

2𝐹′ =
𝑤"

𝑤
−

𝑤′2

𝑤2
    

2𝐹′ =
1

𝑤4
− 4𝐹2 − 𝑓(𝜉) 

𝑤"

𝑤
−

𝑤′2

𝑤2
=

1

𝑤4
−

𝑤′2

𝑤2
− 𝑓(𝜉) 

𝑤" + 𝑓(𝜉)𝑤 =
1

𝑤3
 

                                                               
𝑑2𝑤(𝜉)

𝑑𝜉2 + 𝑓(𝜉)𝑤(𝜉) =
1

𝑤(𝜉)3
 ( 37 ) 

Equation (378) is called Ermakov (Yermakov) equation 

To solve the Ermakov equation, one needs to first solve the homogenous second order linear 

equation. 

𝑦𝑥𝑥
" + 𝑓(𝑥)𝑦 = 0 

Assuming a solution 𝑄(𝑥) to this homogenous equation 

𝑄𝑥𝑥
" + 𝑓(𝑥)𝑄(𝑥) = 0 

Then by applying the transformation below it simplifies the equation. 

휁 = ∫
𝑑𝑥

𝑄2(𝑥)
,  𝑧 =

𝑦

𝑄(𝑥)
 

Which gives 
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𝑧𝜁𝜁
′′ = 𝑎𝑧−3 

The exact solution to the equation above is given from 

                                                        𝐶1𝑦
2 = 𝑎𝑄2 + 𝑄2 (𝐶2 + 𝐶1 ∫

𝑑𝑥

𝑄2(𝑥)
)
2

  ( 38 ) 

To solve the above equation we need to first define the function 𝑓(𝜉). From Eq. (1), we know that: 

𝑛2 = 𝑛0
2 (1 − 2Δ (

𝑟

𝑎0
)
2

𝑓(𝑧)) 

𝑎(𝑧) = 𝑎0𝑒
−𝛼𝑧 

                                                                               𝑓(𝑧) = 𝑒2𝛼𝑧 ( 39 ) 

As an example, if the fiber is gradually changing in radius from 30 𝜇𝑚 to 10 𝜇𝑚 over a course of 

25 𝑚: 

𝛼(0) = 𝑎0 = 30 𝜇𝑚 

𝑎(25) = 𝑎0𝑒
−25𝛼 = 10 𝜇𝑚 

𝑒−25𝛼 =
1

3
 

𝛼 =
ln(3)

25
= 0.0439445 

 

                                                                                𝜉 =
𝑧

𝑎0
√2Δ  ( 40 ) 

𝑧 =
𝜉𝑎0

√2Δ
 

𝑓(𝜉) = 𝑒
2𝛼

𝑎0

√2Δ
 𝜉

 

To see the evolution of the beam waist during propagation, the following equation must be first 

solved:  
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𝑑2𝑤(𝜉)

𝑑𝜉2
+ 𝑒

2𝛼
𝑎0

√2Δ
 𝜉
𝑤(𝜉) =

1

𝑤(𝜉)3
 ( 41 ) 

For simplicity, we apply the change of variable 𝛽 = 𝛼
𝑎0

√2Δ
. 

The homogeneous equation is as below: 

                                                                      
𝑑2𝑄(𝜉)

𝑑𝜉2
+ 𝑒2𝛽𝜉𝑄(𝜉) = 0 ( 42 ) 

We know that for the following equation 

                                                                     𝑦𝑥𝑥
′′ + 𝑎𝑒𝜆𝑥𝑦 = 0,    𝜆 ≠ 0 ( 43 ) 

The solution is as 

                                                          𝑦 = 𝐶1𝐽0(𝑧) + 𝐶2𝑌0(𝑧),      𝑧 =
2

𝜆
√𝑎𝑒𝜆𝑥/2  ( 44 ) 

Thus, the solution to this equation will be 

                                                                   𝑄(𝜉) = 𝐴𝐽0 (
𝑒𝛽𝜉

𝛽
) + 𝐵𝑌0 (

𝑒𝛽𝜉

𝛽
) ( 45 ) 

Having 𝑄(𝜉) we know that the complete solution will be  

𝐶1𝑤
2 = 𝑄2 + 𝑄2 (𝐶2 + 𝐶1 ∫

𝑑𝜉

𝑄2(𝜉)
)
2

 

Taking the integral of the inverse square of 𝑄(𝜉) is very difficult nay impossible. The question is 

if there is any other way to simplify this integral. We should first check the typical values for 𝛽. 

For our current fiber 

𝛽 = 0.0439445 × 30 ×
10−6

√2 × 0.010174
= 9.242 × 10−6 

1

𝛽
= 1.08 × 105 

Given that Bessel arguments are scaled with 1/𝛽, we can use asymptotic forms. 
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𝐽
𝜈
(𝑧)~ (

2

𝜋𝑧
)

1/2

[cos (𝑧 −
1

2
𝜋𝜈 −

1

4
𝜋)∑

(−1)𝑚(𝜈,2𝑚)

(2𝑚)2𝑚

∞
𝑚=0 − sin (𝑧 −

1

2
𝜋𝜈 −

1

4
𝜋)∑

(−1)𝑚(𝜈,2𝑚+1)

(2𝑧)2𝑚+1

∞
𝑚=0 ] ( 46 ) 

𝑌𝜈(𝑧)~ (
2

𝜋𝑧
)

1/2

[sin (𝑧 −
1

2
𝜋𝜈 −

1

4
𝜋)∑

(−1)𝑚(𝜈,2𝑚)

(2𝑚)2𝑚

∞
𝑚=0 + cos (𝑧 −

1

2
𝜋𝜈 −

1

4
𝜋) ∑

(−1)𝑚(𝜈,2𝑚+1)

(2𝑧)2𝑚+1

∞
𝑚=0 ] ( 47 ) 

 

where  

                                                                     (𝜈,𝑚) =
Γ(𝜈+𝑚+

1

2
)

𝑚!Γ(𝜈−𝑚+
1

2
)
 ( 48 ) 

Since we are dealing with 𝐽0 and 𝑌0 so 𝜈 = 0. In this case  

∑
(−1)𝑚(𝜈,2𝑚)

(2𝑚)2𝑚
∞
𝑚=0  for 𝑚 = 0 becomes 1 and for 𝑚 > 1 is 0 

∑
(−1)𝑚(𝜈,2𝑚+1)

(2𝑧)2𝑚+1
∞
𝑚=0  is 0 for all 𝑚 as long as 𝜈 = 0 

So we use the following approximations 

                                                                 𝐽𝜈(𝑧)~(
2

𝜋𝑧
)
1/2

cos (𝑧 −
1

4
𝜋) ( 49 ) 

                                                                 𝑌𝜈(𝑧)~(
2

𝜋𝑧
)
1/2

sin (𝑧 −
1

4
𝜋) ( 50) 

And asymptotically we arrive to the following equation: 

                                                 𝑄(휁) = (
2

𝜋휁
)

1/2

[𝐴 cos (휁 −
1

4
𝜋) + 𝐵 sin (휁 −

1

4
𝜋)] ( 51 ) 

We can further simplify the above equations 

𝑄(휁) = (
2

𝜋휁
)
1/2

[𝐴 cos (휁 −
1

4
𝜋) + 𝐵 sin (휁 −

1

4
𝜋)] 

𝑄(휁) = (
2

𝜋휁
)
1/2

√𝐴2 + 𝐵2 [
𝐴

√𝐴2 + 𝐵2
cos (휁 −

1

4
𝜋) +

𝐵

√𝐴2 + 𝐵2
sin (휁 −

1

4
𝜋)] 

given 
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cos(𝛼 − 𝛽) = cos(𝛼) cos(𝛽) + sin(𝛼) sin(𝛽) 

cos(𝛽) =
𝐴

√𝐴2 + 𝐵2
, sin(𝛽) =

𝐵

√𝐴2 + 𝐵2
, tan(𝛽) =

𝐵

𝐴
, 𝛽 = atan (

𝐵

𝐴
) 

Which gives 

𝑄(휁) =
𝐶𝑄

√휁
[cos(휁 − 𝜙)] 

where 𝐶𝑄 = √
2

𝜋
√𝐴2 + 𝐵2, 𝜙 =

𝜋

4
+ atan (

𝐵

𝐴
) and 휁 =

𝑒𝛽𝜉

𝛽
 

The following integral should be calculated 

∫
𝑑𝜉

𝑄2(𝜉)
 

since 𝑑𝜉 =
𝑑𝜁

𝛽𝜁
. So the integral we need to solve is 

∫
𝑑휁

𝑄2(휁)
= ∫

휁
𝑑휁
𝛽휁

𝐶𝑄
2 cos2(휁 − 𝜙)

= 

                                                   
1

𝐶𝑄
2𝛽

∫
𝑑𝜁

cos2(휁−𝜙)
=

1

𝐶𝑄
2𝛽

tan (휁 − 𝜙) + 𝑐𝑜𝑛𝑠𝑡  ( 52 ) 

By replacing 휁 with 𝜉 we get 

                                                    ∫
𝑑𝜉

𝑄2(𝜉)
=

1

𝐶𝑄
2𝛽

tan (
𝑒𝛽𝜉

𝛽
− 𝜙) + 𝑐𝑜𝑛𝑠𝑡  ( 53 ) 

We are now left with computing the coefficients from the initial conditions. We consider a special 

case of 𝐶2 = 0 

                                                       𝐶1𝑤
2 = 𝑄2 (1 + 𝐶1

2  [∫
𝑑𝜉

𝑄2(𝜉)

𝜉

0
]
2

) ( 54 ) 

𝑎𝑡 𝑧 = 0 (𝜉 = 0),  𝑤(0) = 𝑤0 

𝐶1𝑤
2 = 𝑄2 
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𝑄(𝜉) = 𝐴𝐽0 (
𝑒𝛽𝜉

𝛽
) + 𝐵𝑌0 (

𝑒𝛽𝜉

𝛽
) 

                                                                      𝐶1 =
[𝐴𝐽0(

1

𝛽
)+𝐵𝑌0(

1

𝛽
)]

2

𝑤0
2  ( 55 ) 

Our second assumption is that the incoming wave is incident on the fiber at its minimum waist 

𝑤′ = 0. 

2𝐶1𝑤 𝑤′ = 2𝑄 𝑄′ (1 + 𝐶1
2  [∫

𝑑𝜉

𝑄2(𝜉)

𝜉

0

]

2

) + 2𝑄2𝐶1
2 [∫

𝑑𝜉

𝑄2(𝜉)

𝜉

0

]
1

𝑄2
  

At 𝜉 = 0 the ∫
𝑑𝜉

𝑄2(𝜉)

𝜉

0
= 0 so: 

2𝐶1𝑤 𝑤′ = 2𝑄 𝑄′  

So 

𝑄′ = 0 

                                                      
𝑑𝑄(𝜉)

𝑑𝜉
= 𝑒𝛽𝜉 [𝐴𝐽0

′ (
𝑒𝛽𝜉

𝛽
) + 𝐵𝑌0

′ (
𝑒𝛽𝜉

𝛽
)] ( 56 ) 

Evaluating the above expression at 𝜉 = 0 gives 

                                                      
𝑑𝑄(𝜉)

𝑑𝜉
|𝜉=0  = 𝐴𝐽0

′ (
1

𝛽
) + 𝐵𝑌0

′ (
1

𝛽
) = 0 ( 57 ) 

We can always normalize the coefficients and consider 𝐶1 = 1 then 

                                                                             𝑄(0) = 𝑤0 ( 58 ) 

Which gives 

                                                            𝐴𝐽0 (
1

𝛽
) + 𝐵𝑌0 (

1

𝛽
) = 𝑤0 ( 59 ) 

                                                            𝐴𝐽0
′ (

1

𝛽
) + 𝐵𝑌0

′ (
1

𝛽
) = 0 ( 60 ) 

Given the above equations A and B are easily calculated as below: 



53 

 

                                                                   𝐴 =
𝑤0𝑌0

′(
1

𝛽
)

𝐽0(
1

𝛽
)𝑌0

′(
1

𝛽
)−𝐽0

′(
1

𝛽
)𝑌0(

1

𝛽
)
 ( 61 ) 

                                                                  𝐵 =
−𝑤0𝐽0

′(
1

𝛽
)

𝐽0(
1

𝛽
)𝑌0

′(
1

𝛽
)−𝐽0

′(
1

𝛽
)𝑌0(

1

𝛽
)
 ( 62 ) 

According to Wronskian relation  

                                                              𝐽𝛼(𝑥)𝑌𝛼
′(𝑥) − 𝐽′

𝛼
(𝑥)𝑌𝛼(𝑥) =

2

𝜋𝑥
 ( 63 ) 

then in our case we simply have: 

                                                              𝐽0 (
1

𝛽
) 𝑌0

′ (
1

𝛽
) − 𝐽0

′ (
1

𝛽
) 𝑌0 (

1

𝛽
) =

2𝛽

𝜋
 ( 64 ) 

finally, the coefficients are found as below 

                                                                               𝐴 =
𝜋𝑤0

2𝛽
𝑌0

′
(
1

𝛽
) = − 𝜋𝑤0

2𝛽
𝑌1 (

1

𝛽
) ( 65 ) 

                                                                               𝐵 = −
𝜋𝑤0

2𝛽
𝐽0
′
(
1

𝛽
) = + 𝜋𝑤0

2𝛽
𝐽1 (

1

𝛽
) ( 66 ) 

As we saw By solving this Ermakov problem, one finds:  

                       𝑤2 = 𝑤0
2  [𝐴𝐽0  (

𝑒𝛽𝜉

𝛽
) + 𝐵𝑌0 (

𝑒𝛽𝜉

𝛽
)]

2

  (1 +
1

𝐶4𝛽2
(tan (

𝑒𝛽𝜉

𝛽
− 𝜙) − tan (

1

𝛽
− 𝜙))

2

)                     

In the above expression, 𝑤0 is the input beam waist, 𝜉 = 𝑧
√2𝛥

𝑎0
 represents a normalized propagation 

distance, and the quantities 𝛽,𝐶 and 𝜙 are given by 𝛽 = 𝛾𝑎0/2√2𝛥, 𝐶 = √
2(𝐴2+𝐵2 )

𝜋
, 𝜙 = 𝜋/4 +

tan−1(𝐵/𝐴)  , where the coefficients 𝐴 and 𝐵 in these relations are obtained from the input initial 

conditions. In the case, the input beam is incident upon the fiber at its minimum waist, the 

parameters 𝐴 and 𝐵 can be obtained from = −
𝜋𝑤0

2𝛽𝑥0
 𝑌1 (

1

𝛽
), 𝐵 =

𝜋𝑤0

2𝛽𝑥0
 𝐽1 (

1

𝛽
), where 𝑥0

2 =
𝑎0

√2Δ 𝑘0𝑛0
, 

with 𝑥0 being the spot-size of the fundamental mode. In addition, 𝐽1 (𝑥) and 𝑌1 (𝑥) represent first-

order Bessel functions of the first and second kind, respectively. Figure 4-1 (b) depicts the spot-
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size evolution 𝑤(𝜉) as a function of propagation distance. In this example, the input spot-size 𝑤0 

was chosen to be 1.5 times larger than that of the fundamental mode 𝑥0. For illustration purposes, 

we considered a relatively short tapered parabolic-index MMF, where its core radius decreases 

from 40 to 10 μm within 4 cm.  

 

Figure 4-1 Acceleration of intermodal collisions in a tapered multimode fiber. (a) Schematic of a 

core-decreasing parabolic multimode fiber. As the fiber core is reduced in size, the spacing 

between the propagation eigenvalues increases, leading to an acceleration in intermodal collisions 

and energy exchange. (b) Evolution of the spot-size as a function of the propagation distance in a 

4-cm tapered fiber when its core decreases from 40 to 10 µm. In this example, the input spot-size 

was chosen to be 1.5 times larger than that of the fundamental mode. As shown in (b), the 

oscillations in the optical beam diameter experience an acceleration along the propagation 

direction. 

This figure clearly shows that as the fiber narrows down, the beam waist decreases while the 

intermodal beam oscillation rate experiences an acceleration along the propagation direction. In 

the presence of nonlinearity, this power density compression implies that the interaction forces 

among modes are also progressively accelerating and enhanced. As we will see, this acceleration 

of intermodal oscillations can alter the soliton fission process and drastically change the behavior 

of the generated DWs and Raman-shifted solitons as well as the soliton modal content.  

To experimentally study this tapered MMF system under anomalously dispersive conditions, we 

use 100 fs pulses (up to 170 nJ in energy) at 1550 nm from a mode-locked Ti:Sapphire laser. In 
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these experiments, the input beam waist is 15 µm, thus exciting tens of modes. The parabolic fiber 

under consideration is comprised of two sections: a 10 m uniform section having a core radius of 

40 μm followed by a 4-m tapered segment where the core radius exponentially decreases from 40 

to 10 μm.  

 

Figure 4-2 Experimentally observed spectral evolution in a tapered multimode fiber (a) The 

spectrum recorded at the output of the tapered multimode fiber when a 100 fs, 1550 nm pulse is 

used at the input with a peak power of 750 kW. The NIR frequency components are formed 

because of multimode solitons while the visible part arises from dispersive waves. (b) Spectral 

evolution in the visible section as measured using a cutback method. The tapered segment of the 

MMF is 4 m long (its core radius is reduced from 40 to 10 µm) and is preceded by a 10 m uniform 

fiber. As the pulses enter the tapered section, DWs experience a continuous blue-drifting of more 

than 45 nm, indicating a speedup in the intermodal oscillations. (c), The spectrum in (b) is depicted 

for comparison, before and after the tapered section where blue-shifting of the DW-comb is 

evident. 

By employing cutback methods, this particular arrangement allows one to monitor and compare 

the generated nonlinear interactions and spectra in these two different environments. The entire 
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spectrum (750 kW) obtained after the taper is shown in Figure 4-2 (a). The experimentally 

observed visible side of the spectrum (produced by DWs) is plotted in Figure 4-2 (b). This figure 

shows, that, in the uniform section, the spectrum finally evolves into a broadband DW comb-like 

structure, characterized by a series of distinct lines, formed at the soliton fission point.  

 

Figure 4-3 The beam profiles corresponding to DWs before and after the tapered section. (a-d), the 

beam profiles at four wavelengths 800, 750, 700 and 650 nm before the tapered section and after 

10 m of propagation through the uniform fiber. The beam profiles are clean with most of the energy 

in the fundamental mode. (e-h), the beam profiles after the tapering section at the same four 

wavelengths. The dispersive waves that are generated as a result of an acceleration of solitons are 

still clean, mostly residing in the fundamental mode 

Emission of such broadband DWs in graded-index MMFs have been observed and reported in a 

number of studies before [25,28,80]. Unlike in single mode fibers where the soliton fission process 

is accompanied by the generation of a phase-matched narrowband DW line [22,81], in graded-

index MMFs, the resulting DWs are broadband and comb-like, a behavior attributed to the periodic 

compression/expansion of propagating MM-solitons in graded-index MMFs.  As clearly shown in 

Figure 4-2 (b), the spectrum remains almost invariant as long as the MMF is axially uniform. On 

the other hand, in the last 4-m tapered stage, as the solitons experience a speedup in their 
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intermodal oscillations, a significant accelerated drift of the DW-combs (black arrows) towards 

shorter wavelengths is observed. Figure 4-2 (c) compares the output spectra, before and after the 

tapering section where a blue-drifting of more than 45 nm is observed.  

 

Figure 4-4 Spectral evolution in a tapered multimode fiber as obtained from a gUPPE simulation. 

A 400-fs, 1550 nm pulse with a peak power of ~ 500 kW is injected in a 40 cm long tapered 

multimode fiber, whose core radius decreases from 40 to 10 µm. After only a few centimeters of 

propagation, the input pulse undergoes a soliton fission and a sequence of DWs emerges in the 

visible. Upon further propagation, the generated MM-solitons experience fission-like processes 

(red horizontal lines) that almost immediately expand the spectrum and generate new blue-drifted 

DW lines. 

The spatial intensity profiles corresponding to the aforementioned combs, before and after the 

taper section, for four different wavelengths are depicted Figure 4-3 (e-h). The beam profiles 

before the tapering section are clean and Gaussian-like. This can be a result of the spatial beam 
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self-cleaning happening in MMFs. The beam distribution of the DWs stays clean and mostly 

confined in the fundamental mode even after it goes through an acceleration of oscillations.  

To better understand this DW behavior, we conduct a series of numerical studies and simulations 

that implicitly take into account modal walk-offs, SPM, cross-phase modulation, four-wave 

mixing (FWM), Raman and shock effects, etc. Because of the computational complexity of this 

problem, we model these processes in much shorter taper spans by utilizing gUPPE 

methods [45,82]. The spectrum, as obtained from these simulations, is depicted in Figure 4-4. This 

figure demonstrates that as the soliton breaks up into its multimode soliton constituents, a series 

of Cherenkov lines (from 500 to 710 nm) is formed as a result of a broadband FWM phase-

matching between these multimode solitons and DWs. As the core radius decreases along the fiber, 

the solitons tend to adjust to local fiber conditions, thus producing minor fission-like processes 

that lead to new DW spectral lines. The newly produced DWs are blue-drifted because of faster 

intermodal oscillations of multimode solitons. A cascade of these effects along the fiber taper leads 

to a continuous blue-shifting of the emerging DW-combs. It is worth noting that blue-drifting of 

DWs has been previously reported in the context of single-mode fibers. This observation has been 

explained through a trapping of DWs behind the decelerating solitons where the DWs have to shift 

their central wavelength in order to adjust for their now slower propagation velocities [83]. 

However, this is not the case in our study since the generated DWs are now lying well within the 

visible portion of the spectrum (500-650 nm) where the group velocities are much slower than that 

of MM-solitons and hence they cannot be trapped. 

We next investigate the impact of these accelerating oscillations on multimode optical solitons. 

The theoretically anticipated temporal evolution of the input pulse, corresponding to Figure 4-4, 

is depicted in Figure 4-5. In this case, after the soliton fission point, the pulse disintegrates into a 
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number of multimode solitons. Interestingly, as the core radius decreases, the generated solitons 

behave very differently with respect to each other.  After a brief period of deceleration, the first 

emitted soliton starts to eventually accelerate – an indication of soliton blue-shifting. The second 

soliton travels at a constant velocity and the subsequent solitons experience deceleration.  

 

Figure 4-5 Temporal evolution of a 400-fs at 1550 nm pulse in a tapered multimode fiber as 

obtained from a gUPPE simulation. (a) Generation and propagation of MM-solitons are displayed 

in a co-moving temporal window. The parameters used are identical to those in Figure 4-4. The 

MM-solitons exhibit radically different behaviors as they propagate through the tapered section. 

The trajectory of the slowest soliton has a positive curvature, signifying a speedup during 

propagation. The second soliton has a zero temporal curvature (and thus no acceleration) while all 

the subsequent solitons are decelerating. (b) A closer look at the trajectory of the first emitted 

soliton reveals an emission of DWs as these solitons are continuously perturbed in the tapering 

section. Because of these DWs, the first soliton experiences a slight bend toward earlier times and 

hence travels faster. 

This behavior is unexpected since the Raman induced self-frequency shift (SSFS) tends to slow 

down solitons by redshifting their central wavelengths [84]. As previously mentioned, MM-

solitons are periodically perturbed in an accelerated fashion (via expansions/compressions) and 

hence continuously shed Cherenkov DWs as they go through the tapered fiber section. Since these 
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DWs have slower group velocities, they lag behind the generated MM-solitons – thus forcing them 

to interact with all the other solitons previously generated. In recent theoretical studies, it has been 

conjectured that this XPM interplay between DWs and solitons can lead to a cancelation of SSFS 

and hence blue-shifting of the ensued solitons  [85,86]. Figure 4-5 (b) reveals as the first soliton 

sheds its DWs, it experiences a slight drift toward shorter delay times.  

 

Figure 4-6 Experimentally observed spectra associated with MM-solitons along the tapered MMF. 

The NIR spectrum measured along the taper (right) when excited at 1550 nm. The parameters used 

are the same as those in Figure 4-2. In the lowest panel, recorded right before the start of the 

tapered section, the MM-soliton spectrum resides in the long wavelength edge – around 2000 nm. 

However, after 0.5 m of propagation, the energy is transferred towards shorter wavelengths. After 

2 m of propagation, most of the energy is found to be below 1600 nm. Finally, at the end of the 

taper, the soliton energy is uniformly distributed over a wide spectral window extending from 1500 

to 2300 nm. The height of each panel is scaled at 20 dB. 
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This indicates a temporal acceleration of this soliton which is also accompanied by a blue-shifting 

in the spectral domain. Another interesting aspect associated with this process is a monotonic 

growth in the average energy residing in the second soliton during propagation. This is in 

agreement with recent predictions, suggesting that under appropriate conditions a soliton can also 

absorb energy from DWs and hence grow in intensity [85]. Experimental observations corroborate 

this behavior. In this respect, Figure 4-6 shows the evolution of the experimentally observed 

spectrum in the NIR, for five different distances along the MMF taper. While before the tapering 

section, a significant amount of the total soliton energy happens to reside in the longer wavelength 

edge (2000 nm) as a result of intrapulse Raman scattering, after 2 m in the taper, the spectrum 

shifts towards shorter wavelengths. This represents the first experimental observation of intrapulse 

Raman scattering cancelation and soliton blue-shifting through a DW interaction – as theoretically 

predicted in Refs. [85,86]. Figure 4-6 shows that, finally, after 3 m of propagation, the spectral 

energy is uniformly distributed across the NIR window.  

 

Figure 4-7 The beam profile of the Raman-shifted solitons at three sample wavelengths. All the 

beam profiles are captured right before the tapered section. In all cases, the beam distributions are 

Gaussian-like, clean and stable. 

As previously reported in several studies, one expects considerable beam self-cleaning in MMFs 

because of FWM. The spatial beam profile associated with the DW wavelengths, before and after 

the taper, is relatively speckle-free and Gaussian-like, with most of its energy residing in the 

fundamental mode (see Figure 4-7). However, this is not the case for multimode solitons 
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occupying the spectral regions between 1.55 – 2 µm. The spatial beam profiles corresponding to 

the various MM-solitons was measured at different positions along the MMF taper. While, the 

soliton beam profiles happen to be quasi-Gaussian in the uniform fiber section, as the solitons enter 

the tapered section, their modal distribution becomes destabilized and the energy flows towards 

higher-order modes. Figure 4-8 depicts this effect at different positions within the taper.  

 

Figure 4-8 The beam profiles of the Raman-shifted solitons measured after the tapering section. 

These beam profiles are measured at a sample distance of 2 m after the onset of the tapered section. 

The beam profiles are recorded at 1600 nm for 8 different instants. The beam is very unstable and 

the energy continuously jumps among different modes. A ring pattern and the beam profile mode 

of LP11 are evident in this figure. 
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Figure 4-9 An experimental comparison of soliton red-shifting in a tapered and a uniform MMF. 

(a) The output spectrum after a 3-m tapered MMF with a core radius decreasing from 30 to 10 

µm. As the input power level increases, the soliton experiences a significant redshifting that 

extends up to 2300 nm. (b) The recorded output spectrum from a 3-m uniform graded-index 

MMF having a core radius of 25 µm. In this regime, the solitons experience a subdued red-

shifting up to 1900 nm. (c) The transmission efficiency curve as obtained by comparing the fiber 

output power before and after the tapered segment. As the input power level increases, the 

efficiency drops. In all cases, 100-fs pulses at 1550 nm are used. 

The power loss associated with this tapered MMF is measured as a function of the input power 

and is depicted in Figure 4-9 (c). To estimate the power transmission, the total energy is measured 

before and after the tapering section. Figure 4-9 (c) indicates that at relatively low input powers 

(<70 kW) the transmission through the taper is almost 100%. This high transmission is here 

attributed to the beam self-cleaning effect that promotes propagation in the lower-order modes. 

However, as the input power is increased to 640 kW, the efficiency significantly drops to ~30%, 

eventually stabilizing around this value. To understand this behavior, we compared the NIR 

spectral response of a uniform 3-m long MMF (25 µm core radius) with that of a tapered fiber (3 

m in length, and a core radius decreasing from 30 to 10 µm) as a function of input peak power. 

These results, depicted in Figure 4-9 (a) and (b), interestingly show, that in the tapered case, there 
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is an enhancement in the soliton self-frequency shift, as the input power levels increase. This, in 

turn, pushes the generated soliton wavelengths into the long-wavelength edge (above 2 µm) where 

the fiber linear loss happens to be significantly larger. Therefore, the overall loss in the system is 

expected to increase at higher power levels. 

4.4 Spatiotemporal Dynamics in Normally Dispersive MMF Tapers. 

For this set of experiments, we used in-house fabricated germanium-doped graded-index silica 

MMFs having different lengths and tapering ratios. In all cases, the fiber index profile remains 

self-similarly parabolic along the entire length, having a maximum numerical aperture of NA= 

0.21. The fibers were excited with a microchip laser pump at 1064 nm where silica is normally 

dispersive. This laser delivers 400 ps pulses with a maximum energy of 95 μJ (maximum peak 

power of 240 kW) at a 500 Hz repetition rate. Laser radiation is coupled into the fibers through a 

50 mm focal length lens. The input beam is centered at the fiber front facet, exciting hundreds of 

modes. Figure 4-10 (a) shows the resulting supercontinuum spectrum as obtained at the output of 

a 15-m long MMF taper when its core radius decreases exponentially from 40 to 10 μm.  
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Figure 4-10 Experimentally obtained supercontinuum spectra from a tapered parabolic-index 

MMF. (a) The output supercontinuum spectrum after a 15-m long graded-index MMF when its 

core radius is reduced from 40 to 10 µm. The fiber is excited at 1064 nm (red dashed line) in the 

normal dispersion regime with an input pulse of 400 ps and a peak power of 180 kW. The spectrum 

happens to be relatively flat, extending from 450 to 2400 nm (more than 2.5 octaves). The pump 

beam profile is shown as an inset in (a). (b) A photograph image of the visible component of the 

dispersed output spectrum. (c) The beam profiles recorded at different wavelengths of the output 

supercontinuum. All the beam profiles appear clean and speckle-free, with a significant amount of 

power residing in the fundamental mode. Every scale division in (a) corresponds to 10 dB. 

At the pump wavelength, the taper initially supports ~ 600 modes while at the end of the fiber this 

number is reduced to ~ 40. Our experimental results indicate an exceptionally flat and uniform 

supercontinuum (SC) spectrum, spanning more than 2.5 octaves (from 450 nm to 2400 nm), with 

a relative variation of less than 10 dB across the entire bandwidth. Such a flat, far-extended 

spectrum has never been observed before in any other single-mode or multimode fiber setting. The 

beam profiles corresponding to different SC wavelengths are also shown in Figure 4-10. In all 

cases, the experimentally observed beam patterns are quasi-Gaussian and speckle-free. These 

results suggest that most of the energy at these wavelengths is funneled towards lower order modes. 
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Figure 4-11 Theoretical stability diagram for a locally uniform MMF. (a) Change in the stability 

diagram when the fiber radius is reduced from 40 to 10 µm. A reduction in the radius of the MMF 

shifts the unstable gain regions, thus leading to new spectral lines. (b) and (c), Stability diagrams 

corresponding to parabolic MMFs with core radii of 40 and 10 µm, respectively. In all cases, the 

input spot-size was chosen to be 1.5 times that of the fundamental mode and the input peak power 

was assumed to be 180 kW. The parameters 𝛼 and 𝛽 are defined as =
𝑎2

2Δ
𝛽𝑒

2 ,𝛿 =
𝑎2

2Δ
𝛽𝑒𝑘0𝑛2𝐸0

2𝜔𝑖
2. 

In order to unravel the origin of this flat supercontinuum generation, it is imperative to first 

understand how FWM processes or geometric parametric instabilities  [29,43] unfold in a uniform 

graded-index nonlinear MMF. This analysis is pertinent to CW (or in our case broad pulses) 

excitations in the normal dispersive region. As is well-known, if the input beam is Gaussian, then 

the CW component undergoes periodic compressions/expansions – resulting from the self-imaging 

property of parabolic MMFs. This, in turn, has a profound effect on the spectral perturbations 

𝐴(𝑧, 𝛺), located at the sidebands 𝜔0 ± 𝛺 around the carrier frequency 𝜔0. Under these conditions, 

these perturbations obey the following Hill’s equation: 
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𝑑2𝐴

𝑑𝜉2 +
𝑎0

2

2Δ
[𝛽𝑒

2 + (𝛽𝑒𝑘0𝑛2𝐸0
2𝑤0

2)𝑓(𝜉)]𝐴 = 0    ( 67.) 

where 𝛽𝑒 = (𝛽(𝜔0 + 𝛺) + 𝛽(𝜔0 − 𝛺))/2 − 𝛽(𝜔0) involves all the even terms of the Taylor series 

expansion of the dispersion profile 𝛽(𝜔). In the above equation, 𝜉 = √2𝛥  (𝑧/𝑎0) represents a 

normalized propagation distance, 𝑛2 accounts for the Kerr nonlinear index coefficient, and 𝑘0 =

2𝜋/𝜆0, with 𝜆0 being the pump wavelength. The parameters 𝐸0 and 𝑤0 are fully determined from 

the initial conditions with the former denoting the initial electric field amplitude and the latter 

representing the input beam spot-size. The function 𝑓(𝑧) = 1/𝑤2 (𝑧) corresponds to the beating 

behavior of light during propagation, where 𝑤(𝑧) denotes the local beam spot-size. The associated 

stability diagram (Figure 4-11 (a)) and the corresponding gain regions can then be obtained using 

Floquet theory. 

Starting from noise, any frequency component lying in the unstable regions experiences an 

amplification, leading to a flow of energy from the pump to a particular set of spectral lines. 

Interestingly, this instability occurs even in the normal dispersion region. The gain experienced by 

the spectral lines depends on a number of factors including the depth of the nonlinear modulation. 

Figure 4-11 (b) and (c) depict the stability diagrams corresponding to the entrance and exit regions 

of a tapered MMF. The parameters used to obtain these diagrams are identical to those involved 

in our experiment at a peak power level of 180 kW. As it is evident from Figure 4-11, as the core 

radius decreases from 40 to 10 µm, the unstable (gain) frequency regions start to drift in a 

substantial way, thus sweeping the entire spectrum. This explains the flat supercontinuum 

generation observed in our experiment. In essence, this accelerated drift of the unstable regions 

allows the FWM to equally populate the SC. 
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Figure 4-12 A gUPPE simulation of the spectral evolution in a tapered MMF when excited in the 

normal dispersion regime. A 0.5 m long MMF taper is excited with a 300 kW, 400 fs pulse, at 

1064 nm. After only a few centimeters of propagation (~ 5 cm), a series of sidebands emerge. As 

the input pulse traverses the tapering section, an acceleration of intermodal collisions occurs. As 

a result, the newly generated sidebands drift away from the pump (dotted arrows), thus sweeping 

the entire spectrum. This leads to a flat and uniform SC. The inset compares the spectrum of the 

input pulse (black) with the output SC (blue). 

To simulate these effects, we use gUPPE methods. The parameters employed in our simulations 

correspond to those in our experiment, only this time the length of the taper is assumed to be 0.5 

m (to reduce computational complexity). The evolution of the spectrum during propagation is 

depicted in Figure 4-12. After a few centimeters of propagation, a series of sidebands emerge – as 

expected from geometric parametric instability. For longer propagation distances, where the beam 

oscillations speed up, all the generated sidebands start to drift away from the pump in an 

accelerated fashion (dotted arrows in Figure 4-12). These accelerated sidebands subsequently 

merge and form a uniform spectrum. The inset in Figure 4-12 shows the spectrum at the input and 
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the output of the fiber, as obtained from gUPPE. In addition, as the spectrum extends into the 

anomalous dispersion regime, formation of solitons is imminent. This process leads to a relatively 

uniform spectrum in the NIR – as it was previously shown in Figure 4-10. This can explain the 

extent of the spectrum in the NIR (Figure 4-10). Note, that this sideband generation occurs despite 

the fact that the modal oscillations are no longer periodic. Nevertheless, this instability can only 

be encouraged as long as the tapering takes place in an adiabatic manner – thus allowing the 

sidebands to efficiently grow. Adiabaticity of the tapered fiber has an impact on the spectral 

evolution.  

As it was mentioned before, the periodic compression/expansion of a propagating beam in a 

parabolic-index multimode fiber leads to a sideband generation process. The efficiency of this 

process depends upon many factors including the perfect periodic oscillations. As the oscillation 

deviates from perfect periodicity, efficiency drops as a result. In tapered MMFs, the tapering rate 

determines the efficiency of the process. In Figure 4-13, a 1-m long tapered fiber with a core radius 

changing rapidly from 25 to 10 µm has been illuminated with different power levels of the input 

beam. In all cases, the sideband generation is suppressed due to a fast tapering rate. Figure 4-14 

and Figure 4-15 show the output spectra of two fiber tapers of 3 and 5 m. These results show that 

as the tapering rate gets smaller and the taper length increases, the output spectrum becomes richer 

in spectral content and also more uniform. In addition, to push the short wavelength edge of the 

spectrum towards the blue and UV wavelengths, one needs to use a tapered fiber with smaller 

terminal radius. 
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Figure 4-13 The output spectrum for a 1-m MMF taper. The spectra are measured at the end of a 

1-m tapered MMF with the core radius changing from 25 to 10 µm. The power has raised from 

tens of kW to 180 kW, however, there is no sign of any sideband generation process. 

 

 

Figure 4-14 The output spectrum for a 3-m fiber taper.  The spectrum is measured at the output of 

a 3-m long MMF taper with a core radius changing from 40 to 20 µm. The sideband generation 

process has pushed the spectrum edge down to 750 nm. 
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Figure 4-15 The output spectrum for a 5-m fiber taper.  The spectrum is measured at the output of 

a 5-m long MMF taper with a core radius changing from 40 to 10 µm. The sideband generation 

has pushed the spectrum edge to 600 nm and has filled the gap between 600 and 750 nm (Figure 

4-14) 

In conclusion, we have investigated for the first time, accelerated nonlinear intermodal interactions 

in core decreasing multimode fibers. We have demonstrated that this spatiotemporal acceleration 

can have a significant effect on the temporal and spectral behavior in both dispersion regimes. In 

the anomalously dispersive region, this acceleration leads to blue-drifting dispersive wave combs 

while under normal dispersive conditions, we observe a generation of accelerating frequency bands 

that dynamically and uniformly sweep the entire spectrum. This, in turn, can be utilized to produce 

a notably flat and uniform supercontinuum, extending over 2.5 octaves. Our results could pave the 

way towards a new class of optical sources based on the aforementioned nonlinear acceleration 

dynamics. 

4.5 Discussion 

Historically, the field of nonlinear fiber optics has revolved mainly around single-mode optical 

fibers. Taking a fresh look at multimode fibers could provide new opportunities at both the 

scientific and technological levels. The additional spatial degrees of freedom offered by MMFs 

can indeed lead to a host of new phenomena. These include, for example, the emergence of 
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geometric parametric instabilities, MM-soliton formation, and beam self-cleaning. As indicated in 

our study, judiciously designed tapered multimode fibers can lead to accelerated nonlinear 

interactions, capable of generating new spectral lines, anywhere between the deep blue and IR 

wavelengths. In this respect, a gradual acceleration of these intermodal oscillations can be 

employed to induce an ultrabroad and uniform supercontinuum. In principle, because of larger 

core sizes, the SC produced in MMFs can have orders of magnitude higher spectral densities – as 

required in many applications. This same scheme can be used in fibers based on other material 

systems, such as chalcogenides that are considerably more transparent in IR. In the anomalous 

dispersive region, DW generation from accelerated soliton oscillations can lead to a significant 

blue-shift. This mechanism could be exploited in hollow-core photonic crystal fiber structures 

having minimal loss in the blue and near UV regions. 

Another fundamental aspect considered in our study is associated with the complex dynamics of 

multimode spatiotemporal solitons in multimode fiber tapers. Interestingly, the nonlinear 

interaction between multimode solitons and slow propagating dispersive waves can mitigate or 

reverse the Raman-induced soliton self-frequency shift and the subsequent deceleration of solitons. 

In this same tapered environments, the spatially clean multimode solitons were found to 

destabilize, thus promoting energy transfer to higher-order modes. These observations indicate 

that multimode solitons are inherently complex entities requiring with potentially useful 

characteristics. 

4.6 Methods 

Simulations. The simulations were conducted using generalized unidirectional pulse propagation 

equations (gUPPE). The primary fiber parameters used in the simulations were the same (except 

for the length) as the tapered parabolic-index MMFs used in our experiments. In this respect, the 
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relative index change was assumed to be Δ ≈ 1.6 × 10−3 and the silica Kerr coefficient was taken 

to be 𝑛2 = 2.9 × 10−20 𝑚2𝑊−1
. In all cases, the core radius was reduced from 40 to 10 µm, as in 

the experiments. In addition, all nonlinear and linear processes such as modal walk-offs, self-

focusing, self-phase modulation, cross-phase modulation, FWM, Raman and shock effects were 

accounted for in the simulations. The input pulse in the anomalous regime was centered around 

1550 nm (0.193 PHz) and had a peak power of 500 kW. On the other hand, in the case of normal 

dispersion, the pulses were centered around 1064 nm (0.282 PHz), having a peak power of ~ 300 

kW. In all our simulation, the pulse-widths (Figure 4-4, Figure 4-5 and Figure 4-12) were assumed 

to be 400 fs. The longitudinal step size was set at Δ𝑧 ≈ 1 𝜇𝑚. For undertaking such 

computationally demanding simulations, we used parallel computing, provided by the XSEDE 

supercomputer facility. 

Experiments.  The tapers used in both experiments utilized in-house fabricated germanium-doped 

graded-index silica multimode optical fibers having a range of fiber lengths and tapering ratios. 

The pulses were coupled to the fiber with up to 140 nJ (1.4 MW peak power) from a Ti:Sapphire 

laser source (1.55 µm) and with up to 72 µJ (180 kW peak power) form a microchip laser pump 

(1.064 µm). A three-axis translation stage and a 5 cm focal length lens were used to couple laser 

beams into the fibers. In all cases, the fibers had a NA=0.21. The ensued spectrum was measured 

with visible and IR spectrometers. Beam profiles at the output of the fibers were captured using 

visible and IR cameras. Several spectral filters were used to obtain the spatial distribution of the 

output beams at different wavelengths. For the cutback experiment, all measurements were 

recorded under the same initial conditions. 
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CHAPTER 5: GENERATION OF SELF-SIMILARITONS AND 

PARABOLIC PULSES IN PASSIVE GRADED-INDEX MULTIMODE 

FIBERS 

Fiber lasers emerged as a rival to the well-established solid-state lasers. This platform offers some 

unique advantages that are very much desired in any practical laser systems. These include, for 

example, economic cost, high beam quality, compact design and good thermal management. 

However, utilizing small-core cross-section single-mode fibers for this purpose introduces new 

limitations. One such effect is accumulated nonlinear phase that reduces the pulse quality and 

compressibility [87–90]. Among the methods used to mitigate the nonlinear effects in fiber lasers, 

one popular approach is exploiting the unique properties of parabolic pulses. In the presence of a 

gain term, nonlinearity, and normal dispersion, there is an asymptotic solution with a temporal 

parabolic shape to the governing nonlinear Schrödinger equations. Such parabolic pulse solutions 

were first experimentally observed by Fermann et al [31,32,34]. Along these lines, the tolerances 

of these pulses to perturbations were also studied [91,92]. Due to their scalability and robustness 

to wave-breaking, these pulses were soon considered as candidates for making fiber amplifiers. 

The other unique feature of these attractor solutions that makes them ideal candidates for 

generating high energy short pulses is their linear chirp. The accumulated phase is turned into a 

linear chirp that can be easily compensated by a pair of gratings.  

Performance of parabolic pulses is limited by gain bandwidth, higher-order dispersions, shock 

effect and stimulated Raman scattering. Among these factors, gain bandwidth sets the strictest 

limits. The bandwidth of a parabolic pulse cannot exceed the bandwidth of the gain medium and 

as the bandwidth of the parabolic pulse gets close to the gain bandwidth the linearity of the chirp 

is distorted and hence the pulse quality drops. The other major limitation comes from the fact that 

the amount of chirp a parabolic pulse can accumulate in a laser cavity is fully determined from the 
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cavity parameters and typically this value is not large enough. Accessing large chirp values 

significantly broadens the pulse and thus gives way to higher amplification levels. 

One way to get around this problem is using tapered multimode optical fibers. The optical field 

inside a tapered MMF experiences an enhancement as a result of core-decreasing. Since, the energy 

confined to the spatiotemporal pulse is conserved, as the beam contracts in space the pulse intensity 

experiences an amplification. This artificial gain can lead to the formation of a parabolic pulse as 

it will be shown in the next section. The parabolic pulse generated through this process does not 

have any bandwidth limitation and the amount of chirp it accumulates is huge compared to that 

observed in single-mode fibers.  

5.1 Parabolic Pulse Formation: Analysis 

In the presence of a core-decreasing fiber, the nonlinearity monotonically increases – as a result of 

a reduction in the fiber core area. Assuming an exponential increase in the nonlinearity coefficient 

the governing nonlinear Schrödinger equation can be represented as below: 

𝑖𝑈𝑧 −
𝛽2

2
𝑈𝑇𝑇 + 𝛾|𝑈|2𝑒𝑔𝑧𝑈 = 0  ( 68 ) 

By applying the change of variable 𝑈 = 𝑒−
𝑔

2
𝑧𝜓 one reaches to the following equation: 

𝑖𝜓𝑧 −
𝛽2

2
𝜓𝑇𝑇 + 𝛾|𝜓|2𝜓 −

𝑖𝑔

2
𝜓 = 0  ( 69 ) 

where 𝑧 is the normalized propagation distance, 𝑇 represents the normalized time scale and 𝛾 is 

the nonlinear factor. In this equation, 𝜓 is the electric field amplitude and 𝑔 represents the gain 

term. By applying the change of variables 𝜓 = 𝐴𝑒𝑖ϕ one gets 

𝑖𝐴𝑧𝑒
𝑖𝜙 − 𝐴𝜙𝑧𝑒

𝑖𝜙 −
𝛽2

2
[𝐴𝑇𝑒𝑖𝜙 + 𝑖𝜙𝑇𝐴𝑒𝑖𝜙]

𝑇
+ 𝛾𝐴3𝑒𝑖𝜙 −

𝑖𝑔

2
𝐴𝑒𝑖𝜙 = 0  ( 70 ) 

𝑖𝐴𝑧 − 𝐴𝜙𝑧 −
𝛽2

2
[𝐴𝑇𝑇 + 2𝑖𝜙𝑇𝐴𝑇 + 𝑖𝜙𝑇𝑇𝐴 − 𝐴𝜙𝑇

2] + 𝛾𝐴3 −
𝑖𝑔

2
𝐴 = 0  ( 71 ) 
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By separating the real and imaginary parts, we arrive at two equations as below: 

𝐴𝑧 = 𝛽2𝜙𝑇𝐴𝑇 +
𝛽2

2
𝐴𝜙𝑇𝑇 +

𝑔

2
𝐴  ( 72 ) 

𝐴 [−𝜙𝑧 +
𝛽2

2
𝜙𝑇

2] =
𝛽2

2
𝐴𝑇𝑇 − 𝛾𝐴3  ( 73 ) 

Since we are looking for a self-similar solution, we assume a solution of the form below: 

𝐴(𝑧, 𝑇) = 𝑓(𝑧)𝐹[𝑓2(𝑧)𝑒−𝑔𝑧𝑇] = 𝑓𝐹(𝜃) 

𝜙(𝑧, 𝑇) = 𝜙(𝑧) + 𝐶(𝑧)𝑇2 

𝜃 = 𝑓2𝑒−𝑔𝑧𝑇 

( 74 ) 

Applying the above change of variables gives 

𝑑𝑓

𝑑𝑧
𝐹 + 𝑓𝐹′(𝜃) 𝑇[2𝑓𝑓′ − 𝑔𝑓2]𝑒−𝑔𝑧 = 𝛽2𝑓

3𝑒−𝑔𝑧𝐹′(𝜃)2𝐶𝑇 +
𝛽2

2
𝑓𝐹2𝐶 +

𝑔

2
𝑓𝐹  ( 75 ) 

Separating the terms with 𝑇0 and 𝑇′ yields two equations as below: 

𝑇0:  

𝑑𝑓

𝑑𝑧
= 𝐶𝑓𝛽2 +

𝑔

2
𝑓 

2
𝑑𝑓

𝑑𝑧
= (𝑔 + 2𝐶𝛽2)𝑓 

( 76 ) 

𝑇′:  

𝑓2𝐹′(𝜃)[2𝑓′ − 𝑔𝑓]𝑒−𝑔𝑧 = 2𝐶𝛽2𝑓
3𝑒−𝑔𝑧𝐹′(𝜃) 

2
𝑑𝑓

𝑑𝑧
= (𝑔 + 2𝐶𝛽2)𝑓 

( 77 ) 

Which is the same as the first equation (𝑇0) and shows the self-consistency. From the second 

equation we get: 
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𝑓𝐹 [
𝛽2

2
4𝐶2𝑇2 −

𝑑𝜙

𝑑𝑧
−

𝑑𝐶

𝑑𝑧
𝑇2] = −𝛾𝑓3𝐹3 +

𝛽2

2
𝑓3[𝐹′(𝜃)]𝑇 𝑒−𝑔𝑧 

𝑓𝐹 [2𝛽2𝐶
2𝑇2 −

𝑑𝜙

𝑎𝑧
−

𝑑𝐶

𝑑𝑧
𝑇2 ] = −𝛾𝑓3𝐹3 +

𝛽2

2
𝑓5𝑒−2𝑔𝑧 𝑑2𝐹

𝑑𝜃2
  ( 78 ) 

[2𝛽2𝐶
2 −

𝑑𝐶

𝑑𝑧
] 𝑓

𝐹𝜃2

𝑓4
𝑒2𝑔𝑧 − 𝑓𝐹

𝑑𝜙

𝑑𝑧
= −𝛾𝑓3𝐹3 +

𝛽2

2
 𝑓5𝑒−2𝑔𝑧

𝑑2𝐹

𝑑𝜃2
 

[2𝛽2𝐶
2 −

𝑑𝐶

𝑑𝑧
]

𝜃2

𝑓6 𝑒2𝑔𝑧 −
1

𝑓2

𝑑𝜙

𝑑𝑧
= −𝛾𝐹2 +

𝛽2

2
 𝑓2𝑒−2𝑔𝑧 𝐹′′

𝐹
  ( 79 ) 

Let 𝑓(0) = 𝐴0 and 𝐹(0) = 1. Assume 𝑓𝑒−𝑔𝑧 → 0 as 𝑧 → ∞. From this assumption, the term 
𝐹′′

𝐹
 

can be neglected which yields 

[2𝛽2𝐶
2 −

𝑑𝐶

𝑑𝑧
]

𝜃2

𝑓6 𝑒2𝑔𝑧 −
1

𝑓2

𝑑𝜙

𝑑𝑧
= −𝛾𝐹2 ( 80 ) 

Let 𝜃 = 0 where 𝐹(0) = 1 

1

𝑓2

𝑑𝜙

𝑑𝑧
= 𝛾  ( 81 ) 

By applying the above substitution one gets to the following equation 

[2𝛽2𝐶
2 −

𝑑𝐶

𝑑𝑧
]
𝜃2

𝑓6
𝑒2𝑔𝑧 − 𝛾 = −𝛾𝐹2 

[2𝛽2𝐶
2 −

𝑑𝐶

𝑑𝑧
]

𝜃2

𝑓6 𝑒2𝑔𝑧 = 𝛾(1 − 𝐹2)  ( 82 ) 

Let 𝑓 = 𝐴0𝑒
𝑔𝑧/3 

2𝑓′ = (𝑔 + 2𝐶𝛽2)𝑓 

2𝑔

3
𝑒𝑔𝑧/3 = (𝑔 + 2𝐶𝛽2)𝑒

𝑔𝑧/3 

𝐶 = −
𝑔

6𝛽2
  ( 83 ) 

Replacing 𝐶 in the above equation gives 
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(2𝛽2
𝑔2

36𝛽2
2)

𝜃2

𝐴0
6 = 𝛾(1 − 𝐹2) ( 84 ) 

In the normal dispersion regime 𝛽2 > 0  

 1 − 𝐹2 =
𝑔2𝜃2

18𝛾𝐴0
6𝛽2

 

𝐹2(𝜃) = 1 −
𝑔2𝜃2

18𝛾𝐴0
6𝛽2

  ( 85 ) 

𝐹(𝜃) = √1 −
𝑔2𝑒−2𝑔𝑧

18𝛾𝐴0
6𝛽2

𝐴0
4 𝑒

4𝑔𝑧

3 𝑇2  ( 86 ) 

𝐴(𝑧, 𝑇) = 𝐴0𝑒
𝑔𝑧

3 √1 −
𝑇2

𝑇𝑝
2(𝑧)

 ( 87 ) 

which is a parabolic pulse. With a pulse-width as below: 

𝑇𝑝 =
3√2𝛾𝛽2 𝐴0

𝑔
 𝑒𝑔𝑧/3  ( 88 ) 

The phase dependency of such a solution is computed from the relation below: 

𝑑𝜙

𝑑𝑧
= 𝛾𝑓2 = 𝛾𝐴0

2𝑒
2

3
𝑔𝑧

  ( 89 ) 

𝜙(𝑧) = 𝜙0 +
3𝛾𝐴0

2

2𝑔
 𝑒

2
3
𝑔𝑧

 

𝜙(𝑧, 𝑇) = 𝜙(𝑧) + 𝐶(𝑧)𝑇2 

𝜙(𝑧) = 𝜙0 +
3𝛾𝐴0

2

2𝑔
 𝑒

2

3
𝑔𝑧 −

𝑔

6𝛽2
𝑇2  ( 90 ) 

In multimode fibers, the gain term can be also a function of 𝑧. There are cases where the beam 

width and hence nonlinearity oscillates along propagation as a result of a presence of energy in the 

higher-order modes. In these cases, the equations are altered according to the following: 

𝑖𝜓𝑧 −
𝛽2

2
𝜓𝑇𝑇 +

𝛾

𝑞2(𝑧)
|𝜓|2𝜓 = 0 ( 91 ) 
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Here, the dispersion is considered to be normal (𝛽2 > 0). The following change of variables is 

applied: 

𝜓 = 𝑞(𝑧)𝑢 

𝑖𝑢𝑧𝑞 + 𝑖𝑢𝑞𝑧 −
𝛽2

2
𝜓𝑇𝑇𝑞 + 𝛾|𝑢|2𝑞𝑢 = 0  ( 92 ) 

Let  𝑔(𝑧)/2 = −𝑞𝑧/𝑞. Considering the gain to be of the following dependency 

𝑞 = 𝑒−
1

2
𝐺(𝑧)

  ( 93 ) 

𝑑𝑞

𝑞
= −

1

2
𝑔(𝑧)𝑑𝑧 

ln(𝑞) = −
1

2
𝐺(𝑧) 

𝑞 = 𝑒−
1
2
𝐺(𝑧)

 

𝐺(𝑧) = ∫𝑑𝑧′𝑔(𝑧′)  ( 94 ) 

The equation above can also be rewritten as below: 

𝑖𝑢𝑧 − 𝑖
𝑔(𝑧)

2
𝑢 −

𝛽2

2
𝑢𝑇𝑇 + 𝛾|𝑢|2𝑢 = 0 ( 95 ) 

By applying the change of variable 𝑢 = 𝐴𝑒𝑖𝜙 

𝐴𝑧 = 𝛽2𝜙𝑇𝐴𝑇 +
𝛽2

2
𝐴𝜙𝑇𝑇 +

𝑔(𝑧)

2
𝐴 ( 96 ) 

𝐴 [−𝜙𝑧 +
𝛽2

2
𝜙𝑇

2] =
𝛽2

2
𝐴𝑇𝑇 − 𝛾𝐴3 ( 97 ) 

Again, following the same formalism to find a self-similar solution, we assume: 

𝐴(𝑧, 𝑇) = 𝑓(𝑧)𝐹[𝑄(𝑧)𝑇] = 𝑓𝐹(𝜃);       𝜃 = 𝑄(𝑧)𝑇 ( 98 ) 

𝜙 = 𝜙(𝑧) + 𝐶(𝑧)𝑇2  ( 99 ) 

Assuming the above solutions, after the substitution, we get to the following equations: 
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𝑑𝑓

𝑑𝑧
𝐹 + 𝑓𝐹′(𝜃)𝑇𝑄′ = 𝛽22𝐶𝑇𝑓𝐹′(𝜃)𝑄 +

𝛽2

2
𝑓𝐹2𝐶 +

𝑔(𝑧)

2
𝑓𝐹  ( 100 ) 

Separating the terms with dependency to 𝑇0 and 𝑇′ we one arrives as two equations as below: 

𝑇0:  

𝑑𝑓

𝑑𝑧
=

𝛽2

2
2𝐶𝑓 +

𝑔(𝑧)

2
𝑓 

2
𝑑𝑓

𝑑𝑧
= [2𝛽2𝐶 + 𝑔(𝑧)]𝑓 

2
𝑑𝑓

𝑑𝑧
= [2𝛽2𝐶(𝑧) + 𝑔(𝑧)]𝑓 

( 101 ) 

𝑇′: 

𝑓𝑄′ = 2𝛽2𝐶𝑓𝑄  

𝑄′ = 2𝛽2𝐶𝑄  

𝐶(𝑧) =
𝑄′

2𝛽2𝑄
 

( 102 ) 

From 𝑇0: 

2
𝑑𝑓

𝑑𝑧
= [2𝛽2𝐶(𝑧) + 𝑔(𝑧)]𝑓 

2
𝑑𝑓

𝑓
= [2𝛽2𝐶(𝑧) + 𝑔(𝑧)]𝑑𝑧 

ln(𝑓2) = ln(𝑄) + ∫ 𝑔(𝑧′)𝑑𝑧′
𝑧

 

𝑓2 = 𝑄𝑒∫ 𝑔(𝑧′)𝑑𝑧′𝑧

 

𝑓2 = 𝑄𝑒𝐺(𝑧) 
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𝑄(𝑧) = 𝑓2(𝑧)𝑒−∫ 𝑔(𝑧′)𝑑𝑧′𝑧

 

𝑄(𝑧) = 𝑓2(𝑧)𝑒−𝐺(𝑧) ( 103 ) 

From the second equation  

𝑓𝐹(𝜃) [−
𝑑𝜙

𝑑𝑧
−

𝑑𝐶

𝑑𝑧
𝑇2 +

𝛽2

2
 4𝐶2𝑇2] = −𝛾𝑓3𝐹3 +

𝛽2

2
[𝑓𝐹′𝑄]𝑇 

𝑓𝐹(𝜃) [−
𝑑𝜙

𝑑𝑧
−

𝑑𝐶

𝑑𝑧
𝑇2 + 2𝛽2𝐶

2𝑇2] = −𝛾𝑓3𝐹3 +
𝛽2

2
𝑓𝑄2 𝑑2𝐹

𝑑𝜃2 = −𝛾𝑓3𝐹3 +
𝛽2

2
𝑓5𝑒−2𝐺(𝑧) 𝑑2𝐹

𝑑𝜃2

 ( 104 ) 

Again we assume 𝑓𝑒−𝐺(𝑧) → 0 as 𝑧 → ∞. From this assumption, the last term can be neglected 

(
𝛽2

2
𝑓5𝑒−2𝐺(𝑧) 𝑑2𝐹

𝑑𝜃2 ≈ 0) which yields 

−𝑓
𝑑𝜙

𝑑𝑧
−

𝑑𝐶

𝑑𝑧
𝑇2𝑓 + 2𝛽2𝐶

2𝑇2𝑓 = −𝛾𝑓3𝐹2 

−𝑓
𝑑𝜙

𝑑𝑧
+ [2𝛽2𝐶

2 −
𝑑𝐶

𝑑𝑧
] 𝑇2𝑓 = −𝛾𝑓3𝐹2 

[2𝛽2𝐶
2 −

𝑑𝐶

𝑑𝑧
]

1

𝑓2  𝑇
2 −

1

𝑓2

𝑑𝜙

𝑑𝑧
= −𝛾𝐹2 ( 105 ) 

By replacing 𝜃 = 𝑄(𝑧)𝑇 

[2𝛽2𝐶
2 −

𝑑𝐶

𝑑𝑧
]

1

𝑓2

𝜃2

𝑄2(𝑧)
−

1

𝑓2

𝑑𝜙

𝑑𝑧
= −𝛾𝐹2 ( 106 ) 

Again for 𝜃 = 0, 𝐹(0) = 1, 𝑓(0) = 𝐴0, 𝐺(0) = 0 

𝑑𝜙

𝑑𝑧

1

𝑓2
= 𝛾 ( 107 ) 

Let 

(2𝛽2𝐶
2 −

𝑑𝐶

𝑑𝑧
)

1

𝑄2𝑓2
= 𝛾𝑎2  ( 108 ) 

where 𝑎 is determined by the initial conditions 
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𝛾𝑎2𝜃2 − 𝛾 = −𝛾𝐹2    →   𝛾(𝐹2 − 1) = −𝛾𝑎2𝜃2 

𝐹2 = 1 − 𝑎2𝜃2 

𝐹 = √1 − 𝑎2𝜃2 

𝐹 = √1 − 𝑎2𝑄2𝑇2 = √1 −
𝑇2

𝑇𝑝
2(𝑧)

 ( 109 ) 

Which is again a parabolic pulse with 𝑇𝑝(𝑧) =
1

𝑎𝑄
. To find 𝑄(𝑧) one needs to solve the following 

equation: 

2𝛽2 −
𝑑𝐶

𝑑𝑧
= 𝛾𝑎2𝑄2𝑓2 = 𝛾𝑎2𝑄2𝑄𝑒𝐺(𝑧) ( 110 ) 

𝐶 =
𝑄′

2𝛽2𝑄
 

2𝛽2

4𝛽2
2

𝑄′2

𝑄2
−

1

2𝛽2

𝑄′′𝑄 − 𝑄′2

𝑄2
= 𝛾𝑎2𝑄3𝑒𝐺(𝑧) 

𝑄′2

𝑄2
−

(𝑄′′𝑄 − 𝑄′2)

𝑄2
= 2𝛽2𝛾𝑎2𝑄3𝑒𝐺(𝑧) 

2𝑄′2 − 𝑄𝑄′′ = 2𝛽2𝛾𝑎2𝑄5𝑒𝐺(𝑧) 

𝑄𝑄′′ − 2𝑄′2 + 𝑠(𝑧)𝑄5 = 0 ( 111 ) 

𝑠(𝑧) = 2𝛽2𝛾𝑎2𝑒𝐺(𝑧) ( 112 ) 

This equation can be solved analytically and also through a Runge-Kutta method. 

5.2 gUPPE and BPM Numerical Simulation Results  

In order to confirm the theoretical results, a number of numerical simulations have been conducted 

using a gUPPE simulation scheme. Figure 5-1 shows the temporal evolution of a 500-fs pulse with 

~63 nJ energy when it is launched in a tapered multimode fiber of 50 cm when its core radius is 

linearly decreasing from 40 to 10 μm. The pump’s central wavelength is considered to be at 1064 
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nm and hence experiences a normally dispersive condition. As it is clear in this figure as the input 

beam goes through the tapered fiber, it experiences an amplification. Figure 5-2 shows the 

temporal distribution of the output pulse and the chirp associated with this pulse. 

  

 

Figure 5-1 The temporal evolution of an input pulse of 500 ps pulse-width and ~63 nJ energy in 

a tapered MM fiber of 50 cm when the core diameter decreases from 80 to 20 μm 

 

Figure 5-2 The temporal pulse shape of the beam (left) after going through the taper section 

converges into a parabolic shape pulse. (right) The chirp associated with this pulse. 

As it can be seen from this figure, the pulse has developed into a parabolic shape pulse with a large 

linear chirp. The spectral evolution corresponding to the above-mentioned simulation is shown in 

Time [ps]
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Figure 5-3. The pulse in the output of the fiber has a large bandwidth. In principle, by increasing 

the input power level and utilizing shorter fibers with higher core decreasing ratio, one can access 

bandwidths much greater than 100 nm and at the same time suppress the pesky spontaneous Raman 

effects.  

 

Figure 5-3 The spectral evolution (left) and the terminal spectrum (right) corresponding to the 

parabolic pulse in  Figure 5-2. 

The second simulation used the same parameters as the first experiment except for the fiber taper 

that was considered to be twice the length (1m). The temporal evolution associated with this case 

is demonstrated in Figure 5-4. In this case, the pulse initially experiences the spectral and temporal 

broadening. In the later stages when the broadening effect diminishes and gain effects become 

more significant, the pulse starts to develop into a parabola. The shallow pedestal around the strong 

signal belongs to the energy present in higher-order modes that has dispersed along propagation. 

Figure 5-5 shows the temporal pulse in the output of the tapered multimode fiber. The chirp 

associated with this pulse is shown in the same figure. 
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Figure 5-4 The temporal evolution of an input pulse of 500 ps pulse-width and ~63 nJ energy in 

a tapered fiber of 1 m when the core diameter decreases from 80 to 20 μm 

 

Figure 5-5 The temporal pulse shape of the beam (left) after going through the taper section 

converges into a parabolic shape pulse. (right) The chirp associated with this pulse. 

As it can be seen in this figure, the residual energy from higher-order modes disperses and makes 

a pedestal around the main pulse. For longer propagations this effect becomes negligible. The main 

reason is that in the actual experiments much longer tapers of 10-30 m are exploited. In such cases, 

the energy very soon and under the action of beam self-cleaning effect couples to the fundamental 

mode. However, a small amount of energy stays in the higher-order modes which disperses and 

leaves minimal effects on the output pulse.  
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Figure 5-6 The spectral evolution (left) and the terminal spectrum (right) corresponding to the 

parabolic pulse in Figure 5-4 

The spectral evolution corresponding to the second simulation (Figure 5-6), shows that for longer 

fiber case, the ultimate bandwidth of the output pulse is narrower. This is because of the fact that 

in this case, the pulse peak power in the output of the fiber is smaller than the first example. Our 

BPM simulations also show that this parabolic pulse formation is indeed an attractor solution. 

Figure 5-7 shows the pulse evolution when the input pulse has a parabolic chirp. The input chirp 

is compensated upon propagation in the fiber and becomes linear. The pulse shape evolves into a 

parabolic pulse shape in time. For this example, the input pulse was considered to be centered on 

1030 nm with a peak power of 100 kW. The taper has a length of 30 m with the fiber core diameter 

reducing from 300 to 20 μm. In the next example, the same fiber and pulse parameters were used 

to excite the multimode fiber taper except for the pulse shape. The pulse shape was chosen to be 

arbitrary in this case (Figure 5-8). The pulse evolution, in this case, shows that the pulse evolves 

into the parabolic pulse shape independent of the input pulse properties. This shows that the 

parabolic pulse is indeed an attractor solution. 
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Figure 5-7 (a) The chirp of the input pulse. (b) The input pulse shape. (c) The evolution of the 

chirped input pulse in time and space shows that the pulse eventually evolves into a parabolic 

pulse. 

 

Figure 5-8 (a) The input pulse with an arbitrary pulse shape. (b) The output pulse with a 

parabolic pulse shape. (c) The evolution of the chirped input pulse in time and space shows that 

the pulse evolves into a parabolic pulse independent of the input pulse shape. 

(a)

(b)

(c)

(a)

(b)

(c)
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A series of experiments were conducted to verify the theoretical results. To this end, 300 fs pulses 

with peak powers ranging from 100s of kW to MW levels with a repetition rate of 1 MHz were 

launched into the fiber. The laser source used in this experiment was an Amplitude Satsuma fiber 

laser. To do this experiment, we used in-house multimode fiber tapers with a core radii decreasing 

from 300 to 20 μm over a course of 50 m. A custom-made FROG system was used to measure the 

output pulse. Figure 5-9 and Figure 5-10 show the spectrograph and the spectrum of the output 

pulse. The pulses used for this experiment had peak powers of 150 and 130 kW respectively. The 

output pulses have prohibitively large time-bandwidth product which makes it impossible to 

retrieve the pulse information from them. However, both spectrographs clearly have the diamond 

shape which is a signature of pulses with a linear chirp. In the next step in this project, we will 

employ compression gratings to compress these pulses before performing a FROG measurement. 

 

Figure 5-9 The spectrograph (left) and spectrum (right) measured at the end of a 50-m long fiber 

taper when its core diameter decrease from 300 to 20 μm. The input pulse has a pulse-width of 

300 fs with a peak power of 150 kW. The diamond shape of the spectrogram is an indicator of 

the pulse linear chirp. 
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Figure 5-10 The spectrograph (left) and spectrum (right) measured at the end of a 50 m long 

fiber taper when its core diameter decrease from 300 to 20 μm. The input pulse has a pulse width 

of 300 fs with a peak power of 130 kW. The diamond shape of the spectrogram is an indicator of 

the pulse linear chirp. 
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CHAPTER 6: EFFICIENT SECOND-HARMONIC GENERATION IN 

PARABOLIC-INDEX MULTIMODE FIBERS 

The results presented in this section have been published and can be found at : M. A. Eftekhar, Z. 

Sanjabi-Eznaveh, J. E. Antonio-Lopez, F. W. Wise, D. N. Christodoulides, and R. Amezcua-

Correa, "Instant and efficient second-harmonic generation and downconversion in unprepared 

graded-index multimode fibers," Opt. Lett. 42, 3478-3481 (2017) [70] 

 

Second harmonic generation (SHG) in silica single-mode optical fibers was first reported 

by  [93,94]. This was quite surprising given that amorphous systems like silica glass are not 

expected to exhibit a χ(2)  nonlinearity. This, in turn, incited considerable interest in the physics 

and applications of these effects, especially in single-mode fibers  [95–100]. In early experiments, 

SHG was observed only after preparing the fiber by exposing it to the pump wavelength for several 

hours. While this process still remains poorly understood, a number of schemes have proved 

effective in increasing its conversion efficiency and reducing the required preparation time. Such 

techniques include for example, seeding a fiber with a second-harmonic (SH) signal along with 

the pump light  [95], using polling techniques like thermal  [101,102] and corona poling  [103], 

and applying a transverse dc electric field in order to break the inversion symmetry of the material 

system  [97]. Electron implantation was also utilized along similar lines  [104]. It is important to 

note that, most of these experiments were conducted primarily in single-mode or few-mode fibers 

where only the fundamental mode was excited  [105]. 

Second-harmonic generation was also recently observed along with their GPI sidebands in 

optically polled graded-index multimode fibers  [106]. In this study, the fiber was first prepared 
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by exposing it for a few minutes, to a second-harmonic signal generated from a KTP crystal. 

Subsequently, SHG conversion up to 1% was reported, a few hours after the fiber was prepared. 

Here, we experimentally demonstrate high SHG conversion efficiencies ~6.5% in heavily 

multimode parabolic-index germanium-doped optical fibers. Unlike previous studies, this 

conversion occurred without first preparing the fiber via any of the schemes outlined before. Even 

more importantly, the SHG was found to reach a maximum in an almost instantaneous manner. In 

our experiments, this frequency-doubling was also accompanied by an efficient down-conversion 

process in the near-IR regime (2128 nm). The effect of input pump power on the efficiency of 

these processes was also investigated. Cutback measurements performed on our fiber revealed that 

SHG effectively unfolded along the first 4-5 meters. In all cases, the recorded output beam profiles 

(pump and SH) were found to exhibit a Gaussian-like shape and a speckle-free pattern. 

 

Figure 6-1 Schematic of the setup used for SHG and down-conversion in MMFs. Pulses from a Q-

switched microchip laser at 1064 nm are coupled into a MMF. PBSC: polarizing beam splitter 

cube, M1 and M2: Mirrors, OSA: Optical spectrum analyzer. 

A schematic representation of the experimental setup used is depicted in Figure 6-1. The optical 

source is an amplified Q-switched microchip laser, producing 400 ps pulses at a repetition rate of 

500 Hz and with peak powers up to 200 kW. Each pulse carries ~ 95 µJ of energy at 1064 nm. The 
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laser beam is coupled to the multimode fiber samples using a 50 mm focal length lens with 

efficiencies exceeding 80%. To control the input power, a half-wave plate and a polarizing beam 

splitter cube (PBSC) were employed. The fiber was fixed on a three-axis translation stage. The 

visible and NIR portions of the output spectra were collected by a multimode patch cord and were 

analyzed using two different optical spectrum analyzers (OSA) covering the wavelength range 

from 350 to 1750 nm (ANDO AQ 6315E) and 1200 to 2400 nm (Yokogawa AQ6375). To record 

the beam profile of the second-harmonic signal, a CCD camera was used along with a 532-nm 

filter having 10 nm FWHM. In our experiments, two different MMFs were utilized. The first one 

was a low differential modal group delay multimode graded-index fiber with a core diameter of 

50 µm and a refractive index contrast of 1.6 × 10−2.  The second MMF was of the step-index type 

having a numerical aperture of 0.22 and a core diameter of 105 µm. Both these fibers were 

germanium-doped and fabricated by Prysmian Group. At 1064 nm, the parabolic MMF used is 

expected to support ~250 modes while at 532 nm ~1000 modes. 

The output spectra, collected at the end of a 5-m long parabolic-index MMF are depicted in Figure 

6-2 for three different input power levels. Figure 6-2(a) shows the spectrum when the average 

input power is ~16 mW (Pp-p= 80 kW). In addition to pump and Raman sidebands, a distinct peak 

at 532 nm is clearly visible signifying the onset of SHG. This peak is accompanied by another 

rather strong line located at 560 nm, resulting from the frequency-doubling of the first Stokes 

Raman peak (R1) at 1.118 µm. As it can be seen in Figure 6-2(b), by increasing the input power, a 

few other peaks start to appear in the vicinity of the pump’s second-harmonic. In particular, the 

line at 587 nm corresponds to the frequency-doubling of the second Stokes Raman wave at 1.176 

µm. In addition, two other peaks can be prominently seen at 546 nm and 577 nm. The first one can 

be attributed to a sum-frequency generation of the pump and the first Stokes peak while the second 
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one to a sum-frequency generation resulting from the first and second Stokes Raman peaks. This 

clearly indicates that the 𝜒(2) response of the fiber is indeed at play. Other significant frequency 

peaks appearing around 720 nm correspond to sidebands generated from GPI, that takes place in 

parabolic multimode fibers as also demonstrated in previous studies  [29,42]. It should be noted 

that the distinct feature seen at 806 nm is the residual pump from our laser. By further raising the 

input power, a series of peaks starts to emerge between 420 and 490 nm, which can be ascribed to 

sum frequency generation between the pump or the Raman peaks and the first visible GPI sideband 

located at 720 nm (Figure 6-2 (c)).  

Figure 6-3 shows the NIR portion of the spectrum which also displays a series of peaks. The 

strongest line in this region is located at 2.128 µm, corresponding to the down-converted 

wavelength of the pump, generated along with the second-harmonic because of the 𝜒(2) 

nonlinearity. Our experiments revealed that any change in the power level of the produced SH was 

always accompanied by a similar change in the down-converted signal. Another significant feature 

in this figure is the spectral band around 2 µm. This line corresponds to the first NIR-GPI sideband. 

Some of the spectral components between 2.13 µm and 2.35 µm also match the down-conversion 

of the first Stokes Raman waves. As a next step, we repeated these experiments in the previously 

mentioned step-index MMF. Even in this case, the presence of the second-harmonic was evident 

in the spectrum. However, our measurements showed that the generated green light (SH) was 

always very weak, by almost two orders of magnitude below that observed in the parabolic fiber. 

Further increasing the input pump power or prolonging the exposure time of this step-index MMF 

to the pump did very little in enhancing the generated SH signal. The same is also true for the 

down-converted wavelength. One possible explanation behind this difference in performance can 

be attributed to the GPI process that is only possible in parabolic fibers.  
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Figure 6-2 (a) Output spectrum measured at the end of a 5-m long parabolic MMF when excited 

with 400 ps 80 kW peak power pulses. SHG from the pump is evident at 532 nm. The line at 560 

nm is due to the frequency-doubling of first Stokes Raman wave. (b) Increasing the input pump 

power to 110 kW results in the appearance of extra peaks in the vicinity of 532 nm (green cluster). 

(c) A further increase in the input pump power to 140 kW leads to other 𝜒(2) induced peaks in the 

420-490 nm (blue cluster) wavelength range. SB1 represents the first GPI sideband. 
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One of the direct byproducts of GPI is the generation of strong lines both in the visible as well as 

the UV part of the spectrum. As it has been shown before, exposing the fiber to green, blue or the 

UV wavelengths can enhance SHG up to 10 times  [107]. As a result, in our experiments, the GPI-

induced wavelengths in the red/blue, may act as enabling sources in “preparing” the fiber towards 

generating more efficiently the SH and down-converted signals. 

 

Figure 6-3 NIR portion of the spectrum collected at the end of a 5-m long parabolic MMF when 

pumped at 110 kW peak power. The prominent peak at 2128 nm corresponds to the pump down-

conversion. The peak at 2 µm results from the first NIR GPI-sideband. 
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Figure 6-4 Temporal evolution of the generated second-harmonic, measured at the output of a 5-

m long GI-MMF. The peak power used was 110 kW. The measurements were carried out for over 

4 hours. Once the oscillations settle down, the SH power level is restored to its initial value. 

A surprising result in our experiments was the fact that SHG occurred almost instantaneously in 

the parabolic MMF – even in the absence of any preparation. Figure 6-4 demonstrates the evolution 

of the generated SH in a 5 m long parabolic fiber as a function of time. A 532-nm bandpass filter 

was used to select the second-harmonic signal. The ensued SHG was monitored for 4 hours. The 

pump signal was initially blocked for a few minutes before initiating these measurements. As soon 

as the pump was unblocked, green light at 532 nm always emerged and was measured using a 

power meter. To make sure that this instant SHG does not result from any previous exposure of 

the fiber to the pump, we repeated this same experiment with totally unexposed fiber segments. In 

all cases, SHG took place almost immediately after the laser beam was coupled into the fiber. As 

it can be seen in Figure 6-4, the SH output power experiences fluctuations during the first few 

minutes. Our observations indicate that these oscillations become progressively less pronounced 

and as a result, the output SH slowly stabilizes around its initial value. It is worth mentioning that 

these fluctuations (±10%) are always present. This behavior can be explained by considering the 
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continuous formation and erasure of internal gratings induced by the co-propagating GPI-sideband 

colors. The reason behind this instant build-up of the 𝜒(2) process is still unclear to us. 

 

Figure 6-5 Output power conversion SH efficiency measured at the end of a 5-m long GI-MMF. 

The SHG monotonically increases with the pump power. The process saturates at 100 kW. 

In another set of experiments, we investigated the dependence of the conversion efficiency on the 

input pump power. These studies were conducted again in a 5 m long parabolic MMF. These 

results are shown in Figure 6-5. For each power level, the initial conditions were tuned to yield the 

highest attainable SHG efficiency. As demonstrated in this figure, the efficiency of this process 

tends to monotonically increase with pump power. However, once the average input powers 

exceed 20 mW (~Pp-p=100 kW) the SHG saturates and the hence the efficiency no longer changes. 

In this regime, the maximum achievable peak power conversion was found to be ~6.5%, which to 

the best of our knowledge, is among the highest observed in unprepared fibers. 
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Figure 6-6 Power conversion efficiency for different fiber lengths. The efficiency tends to increase 

with distance in the parabolic MMF. 

The effect of fiber length on the SHG process was previously investigated in single-mode fibers. 

In these studies, it was found that only the first few tens of centimeters are responsible for SHG []. 

Here, we probed the same behavior in parabolic MMFs having different lengths. These results are 

depicted in Figure 6-6. As opposed to single-mode fibers, in our case, we found that the SHG kept 

increasing with distance, way beyond the first 50 cm Figure 6-6 and it only seems to saturate after 

4.5 meters. 

The output beam profile distributions at the pump wavelength and SH (532 nm) are plotted in 

Figure 6-7 for different pump power levels. In accord with previous observations  [42,44], the 

beam at the pump wavelength was found to be clean and speckle-free. Similarly, the beam profile 

for the SH 532 nm line had a Gaussian-like shape and was again speckle-free, a surprising result 

given the low power levels at SH (532 nm). This may be due to the fact the pump clean-up, in turn, 

induces a similar effect in the SH, i.e. by populating lower-order modes. 
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Figure 6-7 Output beam profile at 1064 nm (a-c) and 532 nm (d-f) after a 5 m long parabolic MMF, 

as a function of input power. 

In conclusion, we have shown that germanium-doped parabolic multimode silica fibers can exhibit 

relatively high SHG conversion efficiencies and down-conversion. Unlike previous experiments, 

these 𝜒(2) related processes occurred immediately without any preparation. Of interest would be 

to consider the potential of the 𝜒(2) down-conversion process as a source for biphoton generation 

in quantum optics. Our results may pave the way towards alternative platforms for SHG and down- 

conversion. 
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CHAPTER 7: SUPERMODES IN MULTI-RING HONEYCOMB 

STRUCTURES 

The results presented in this section have been published and can be found at: C. Xia, M. A. 

Eftekhar, R. Amezcua-Correa, J. E. Antonio-Lopez, A. Schülzgen, D. N. Christodoulides, G. Li, 

"Supermodes in Coupled Multi-Core Waveguide Structures," in IEEE Journal of Selected Topics 

in Quantum Electronics, vol. 22, no. 2, pp. 196-207, March-April 2016 [108] 

7.1 Introduction 

Supermodes are eigenmodes of composite structures involving coupled constituent elements, each 

of which also supporting guided modes in isolation [1, 2]. As indicated in a number of studies, 

such multi-core systems can be effectively analyzed using coupled-mode theory (CMT) - which is 

particularly effective when the coupling between neighboring elements is relatively weak. Over 

the years, the properties of supermodes in either linear [3] or ring arrays of coupled waveguides 

have been analyzed using CMT methods [4-6].  Even in the simplest possible configuration of two 

coupled channels, supermodes play an important role given that their interference is the one 

responsible for the energy exchange behavior in a directional coupler. 

Quite recently, supermodes have received renewed interest within the context of mode-division 

multiplexing (MDM), a new transmission method aimed at overcoming the capacity limit of 

single-mode fiber communication systems. Since modes tend to couple during long-distance fiber 

transmission, unraveling mode crosstalk using multiple-input-multiple-output (MIMO) digital 

signal processing (DSP) is necessary for demultiplexing MDM channels [7]. In the presence of 

modal group dispersion, the computational load for MIMO DSP is proportional to the modal group 

delay [8]. Interestingly, coupled multi-core fibers can be designed to have reduced modal group 
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delays and/or larger effective areas in comparison with few-mode fibers (FMF) [9]. In a recent 

experiment, the modal delay was also found to depend sublinearly on transmission distance in the 

presence of strong supermode coupling [10].  It is thus imperative to study the properties of optical 

supermodes in a systematic manner. 

  

7.2 Supermodes in Multi-ring Honeycomb Structures  

Honeycomb waveguide arrangements have been intensely investigated over the years [12-19]. 

Their close-packed geometry makes them ideal for multi-core fiber application. In this section, we 

develop a general methodology capable of analyzing supermodes in multi-ring honeycomb 

waveguide lattices, consisting of any number of layers. In addition to hexagonal systems, this 

versatile technique can be used in other regular polygonal configurations. In brief, our approach is 

based on separately formulating an eigenvalue problem for in-phase supermodes and another for 

modes with orbital angular momentum. This can be achieved by appropriately grouping the 

constituent waveguide elements based on their topology. Here, this approach is explicitly 

demonstrated in honeycomb arrangements involving 7, 19, and 37 sites.  

We begin our analysis by assuming that in all cases, each waveguide element is assumed to be 

cylindrical (of radius 𝑎) and single-moded, i.e. it only supports the 𝐿𝑃01 mode, with a propagation 

constant 𝛽0. The coupling coefficient 𝜅 between waveguide channels can then be obtained using 

coupled-mode theory. If the distance between core centers, i.e., the core pitch is 𝐷, this coupling 

strength is given by [20, 21]:  
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Figure 7-1 (a) A 7-core hexagonal lattice. All single mode waveguide elements interact with their 

nearest neighbors with a coupling strength 𝜅. (b) Real part of the field distribution (~ cos(𝑄𝑛)) 

associated with the DS11 supermode. 

𝜅 =
√2Δ

𝑎

𝑈2

𝑉3

𝐾0(𝑊𝐷/𝑎)

𝐾1
2(𝑊)

 ( 113 ) 

where Δ = (𝑛𝑐 − 𝑛𝑠)/𝑛𝑐 is the waveguide index difference and 𝑛𝑐, 𝑛𝑠 are the core and cladding 

refractive indices, respectively. 𝑉 = 𝑘0𝑎𝑛𝑐√2𝛥 is the dimensionless 𝑉-number involved in the 

eigenvalue problem describing the fundamental mode 𝐿𝑃01 of the waveguide, e.g. 𝑈𝐽1(𝑈)/

𝐽0(𝑈) = 𝑊𝐾1(𝑊)/𝐾0(𝑊) In the last equation, 𝑈 = 𝑎(𝑘0
2𝑛𝑐

2 − 𝛽2)1/2, 𝑊 = 𝑎(𝛽2 − 𝑘0
2𝑛𝑠

2)1/2, 

where 𝐾1(𝑥) and 𝐽1(𝑥) are Bessel functions of order 𝑙. The propagation constant 𝛽 can be 

determined from the eigenvalue problem by keeping in mind that 𝑉2 = 𝑈2 + 𝑊2. 

In this section, we will exemplify our method in the case of a 7-, 19-, and 37-core hexagonal lattice. 

Even though both the 7- and 19-core systems have been previously analyzed using either direct 

schemes or linear algebraic methods [15, 18, 19], here we will still apply our methodology to these 

same geometries for demonstration purposes. 

A 7-core arrangement is shown in Figure 7-1(a). In this multi-core system, the modal fields evolve 

according to: 

file:///C:/Users/mo769537/OneDrive/Complete%20Thesis/Thesis_Final1.docx%23_ENREF_15
file:///C:/Users/mo769537/OneDrive/Complete%20Thesis/Thesis_Final1.docx%23_ENREF_18
file:///C:/Users/mo769537/OneDrive/Complete%20Thesis/Thesis_Final1.docx%23_ENREF_19


103 

 

𝑖
𝑑𝑈0

𝑑𝑧
+ 𝛽0𝑈0 + 𝜅 ∑ 𝑈𝑛

6
𝑛=1 = 0 ( 114 ) 

𝑖
𝑑𝑈𝑛

𝑑𝑧
+ 𝛽0𝑈𝑛 + 𝜅𝑈0 + 𝜅(𝑈𝑛+1 + 𝑈𝑛−1) = 0 ( 115 ) 

In Eq. (115), we only account for nearest neighbor interactions in this hexagonal system. By 

introducing a gauge transformation 𝑈𝑛 = 𝑢𝑛𝑒𝑥𝑝 (𝑖𝛽0𝑧) and by adopting a dimensionless 

coordinate 𝑍 = 𝜅𝑧 one arrives at  

𝑖
𝑑𝑢0

𝑑𝑍
+ ∑ 𝑢𝑛 = 06

𝑛=1  ( 116 ) 

𝑖
𝑑𝑢𝑛

𝑑𝑍
+ 𝑢0 + (𝑢𝑛+1 + 𝑢𝑛−1) = 0 ( 117 ) 

  

 

Figure 7-2 (a) A 19-core hexagonal lattice. The waveguide elements are grouped into 4 different 

families (𝑎, 𝑏, 𝑐, 𝑑) indicated with different colors. (b) By excluding the central core, the remaining 

elements of these families are in addition grouped in each hexagonal sector in order to obtain 

supermodes having angular momenta. 

In all cases, the modes can be re-expressed in terms of actual quantities and coordinates in a 

straightforward fashion. In solving this problem, we look for discrete supermodes, henceforth 

denoted as 𝑆𝑙𝑚  , where the discrete index 𝑙 represents an orbital angular momentum and 𝑚 is the 

root number of the corresponding eigenvalue equation.  To obtain the seven supermodes of the 
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structure depicted in Figure 7-2(a), we first seek in-phase modes of the type 𝐷𝑆0𝑚 that represent 

to some extent discrete analogues to the continuous 𝐿𝑃0𝑚 modes in standard cylindrical 

waveguides [21, 22]. Under this assumption and by exploiting the symmetry of this problem, one 

can identify two species, 𝑢𝑎 , 𝑢𝑏 where 𝑢𝑎 = 𝑢𝑏 and 𝑢𝑏 = 𝑢1 = 𝑢2 = ⋯ = 𝑢6. From Eqs. (116) 

and (117), we find that 𝑖𝑑𝑢𝑎/𝑑𝑍 + 6𝑢𝑏 = 0 and 𝑖𝑑𝑢𝑏/𝑑𝑍 + 2𝑢𝑏 + 𝑢𝑎 = 0. To obtain the 

dispersion relation of these in-phase modes we assume solutions of the type 𝑢𝑎 = 𝑢𝑎
0𝑒𝑖𝜆𝑧 and 𝑢𝑏 =

𝑢𝑏
0𝑒𝑖𝜆𝑧 that directly lead to an algebraic eigenvalue equation for the normalized propagation 

constant 𝜆, 𝜆2 − 2𝜆 − 6 = 0, with solutions 𝜆 = 1 ± √7 As we will see these two eigenvalues 

correspond to the two in-phase supermodes 𝐷𝑆01 and 𝐷𝑆02. From here, the eigenvectors [𝑢𝑎
0, 𝑢𝑏

0] 

can be readily deduced from the corresponding eigenvalue problem.  

 

Figure 7-3 Real part of the modal field distributions in a 19-core lattice, associated with (a) the 

DS01 (b) DS02 (c) DS03 (d) DS04 supermodes. 
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We next consider supermodes involving angular momentum. In this respect, the modal fields in 

the outer ring vary according to 𝑢𝑛 = 𝐵𝑒𝑖𝜆𝑍𝑒𝑖𝑄𝑛. In addition, we assume that the field in the central 

element is zero (𝑢0 = 0). In this case  

𝑖
𝑑𝑢𝑛

𝑑𝑍
+ 𝑢𝑛+1 + 𝑢𝑛−1 = 0 ( 118 ) 

Given that any solution of this latter equation must repeat itself after six elements, (e.g. 6𝑄 =

2/𝜋), then upon substitution of 𝑢𝑛 in Eq. (118) we deduce that  

𝜆 = 2cos (𝑄) ( 119 ) 

where 𝑄 = 𝑙𝜋/3 and the angular momentum index takes values from the set 𝑙 = 1,2, … ,5. This 

eigenvalue relation (Eq. (119)) can now provide the remaining five supermodes 𝐷𝑆𝑙1. Note that 

for the form assumed, ∑ 𝑢𝑛
6
𝑛=1 = 0 which is consistent with the assumption that the 𝐷𝑆𝑙𝑚 fields 

are zero at the center (𝑢0 = 0) when 𝑙 is finite. Figure 7-3(b) illustrate the field profile of the 𝐷𝑆11 

supermode.  

This same principle can now be applied to other honeycomb lattices having more rings. As a next 

example we consider a 19-element honeycomb double ring structure as shown in Figure 7-3(a). 

Given the topology of this configuration, the elements involved are now classified in four groups 

denoted as  𝑎. 𝑏, 𝑐, and 𝑑– illustrated with different colors. As in the previous section, because of 

the hexagonal geometry, all waveguides interact only with their nearest neighbors with a coupling 

strength 𝜅. Higher order interactions are here ignored since the coupling coefficient tends to 

exponentially decrease with distance. We now look for in-phase supermodes with 𝑙 = 0. In this 

situation, the corresponding evolution equations for the modal fields, for these four groups, read 

as follows: 
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𝑖
𝑑

𝑑𝑍
[

𝑢𝑎

𝑢𝑏

𝑢𝑐

𝑢𝑑

] + [

0 6 0 0
1 2 1 2
0 1 0 2
0 2 2 0

]   [

𝑢𝑎

𝑢𝑏

𝑢𝑐

𝑢𝑑

] = 0  ( 120 ) 

Again, the in-phase eigenvalue problem can be obtained using the eigenvectors 𝑢𝑎,𝑏,𝑐,𝑑 =

𝑢𝑎,𝑏,𝑐,𝑑
0 𝑒𝑖𝜆𝑍 from where we find that 𝜆4 − 15𝜆2 − 2𝜆3 + 24 = 0. The four roots of this algebraic 

equation are given by [𝜆1 = 4.8715, 𝜆2 = 1.2267, 𝜆3 = −1.6215, 𝜆4 = −2.4767] and 

correspond to the 𝐷𝑆01, 𝐷𝑆02, 𝐷𝑆03 and 𝐷𝑆04 in-phase supermodes. Having found the eigenvalues, 

the corresponding eigenvectors 𝑢𝑎
0, 𝑢𝑏

0, 𝑢𝑐
0, 𝑢𝑑

0  can be evaluated from the matrix of Eq. (120). 

Figure 7-3 depicts the real part of modal field profile of the 𝐷𝑆0𝑚 supermodes. The remaining 15 

modes are only possible if the angular momentum 𝑙 is finite. In this case, again the field in the 

central element is zero (𝑢𝑎 = 0). In view of the 𝑏, 𝑐, and 𝑑 groups assigned, Figure 7-2 (b) suggests 

that: 

𝑖�̇�𝑏𝑛
+ 𝑢𝑏𝑛+1

+ 𝑢𝑏𝑛−1
+ 𝑢𝑐𝑛

+ 𝑢𝑑𝑛
+ 𝑢𝑑𝑛−1

= 0 

𝑖�̇�𝑐𝑛
+ 𝑢𝑏𝑛

+ 𝑢𝑑𝑛
+ 𝑢𝑑𝑛−1

= 0 

𝑖�̇�𝑑𝑛
+ 𝑢𝑏𝑛

+ 𝑢𝑏𝑛+1
+ 𝑢𝑐𝑛

+ 𝑢𝑐𝑛+1
= 0 

( 121 ) 

where �̇�𝑏𝑛=𝑑𝑢𝑏𝑛/𝑑𝑍, etc. By employing the ansatz [𝑢𝑏𝑛
, 𝑢𝑐𝑛

, 𝑢𝑑𝑛
] = [𝑢𝑏𝑛

0 , 𝑢𝑐𝑛
0 , 𝑢𝑑𝑛

0 ]𝑒𝑖𝑄𝑛𝑒𝑖𝜆𝑧 in 

equation ( 121), we arrive at 𝜆3 − 2𝜆2 cos(𝑄) − 𝜆[4 cos(𝑄) + 5] − 4 sin2(𝑄) = 0. Again, 

periodicity demands that 𝑄 = 𝑙𝜋/3  where 𝑙  is 𝑙 = 1,2, … ,5. The three eigenvalues obtained from 

this cubic equation are tabulated in Table 7-1 for each angular momentum 𝑙. In this way the 

remaining 15 supermodes can be generated through the corresponding eigenvectors of the matrix 

of Eq.( 121) . As an example, the real part of field profiles of modes 𝐷𝑆11, 𝐷𝑆21, and 𝐷𝑆31 are 

shown in Figure 7-4 (a) (b) (c).  
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Table 7-1 The list of eigenvalues obtained from the cubic equation for the modes with angular 

momentum 

Q Eigenvalues 

1 𝜆 = 3.354, −0.476,−1.877 

2 𝜆 = √3, 1, −√3 

3 𝜆 = −1 + √2, 0, −1 − √2 

4 𝜆 =  √3, 1, −√3 

5 𝜆 = 3.354, −0.476,−1.877 

 

Other variations of these hexagonal lattices can also be investigated using this method. For 

example, let us consider again the 19-site configuration when this time the central waveguide is 

now completely removed. Using the same grouping outlined above, the in-phase modes satisfy  

𝑖
𝑑

𝑑𝑍
[

𝑢𝑏

𝑢𝑐

𝑢𝑑

] + [
2 1 2
1 0 2
2 2 0

] [

𝑢𝑏

𝑢𝑐

𝑢𝑑

] = 0 ( 122 ) 

and hence the eigenvalue equation is given by 𝜆3 − 2𝜆2 − 9𝜆 = 0, having three roots 𝜆 =

−2.1623, 0, 4.1623. 

 

 

Figure 7-4 Real part of the modal field distributions in a 19-core lattice, associated with 

supermodes having angular momenta (a) DS11 (b) DS21 and (c) DS31 mode. 
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One can show that the remaining 15 modes (𝐷𝑆𝑙𝑚) of this 18-site arrangement are identical to 

those obtained for the 19-site lattice when 𝑙 = 1,2, … ,5.   

As a final example, we investigate a 37 (three layer) hexagonal lattice consisting of single-mode 

waveguides as shown in Figure 7-5 (a). Because of their topology, the elements are now grouped 

in 7 families (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 and 𝑔) as illustrated with different colors in Figure 7-5 (a). Assuming 

in-phase modes, we find  

𝑖
𝑑

𝑑𝑍

[
 
 
 
 
 
 
𝑢𝑎

𝑢𝑏

𝑢𝑐

𝑢𝑑

𝑢𝑒

𝑢𝑓

𝑢𝑔]
 
 
 
 
 
 

+

[
 
 
 
 
 
 
0 6 0 0 0 0 0
1 2 1 2 0 0 0
0 1 0 2 1 1 1
0 2 2 0 0 1 1
0 0 1 0 0 1 1
0 0 1 1 1 0 1
0 0 1 1 1 1 0]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑢𝑎

𝑢𝑏

𝑢𝑐

𝑢𝑑

𝑢𝑒

𝑢𝑓

𝑢𝑔]
 
 
 
 
 
 

= 0 ( 123 ) 

Seven supermodes 𝐷𝑆0𝑚 can then be obtained from the resulting algebraic eigenvalue equation 

𝜆7 − 2𝜆6 − 23𝜆5 − 2𝜆4 + 124𝜆3 + 164𝜆2 + 46𝜆 − 12 = 0. The seven roots of this latter 

equation are given by 𝜆 = 5.3492, 2.9752, 0.1594,−0.9524,−1.0000,−1.8567, −2.6748. As 

before, the remaining 30 supermodes exhibit angular momentum. These can be determined from 

the field evolution equations. 

𝑖�̇�𝑏𝑛
+ 𝑢𝑏𝑛+1

+ 𝑢𝑏𝑛−1
+ 𝑢𝑐𝑛

+ 𝑢𝑑𝑛
+ 𝑢𝑑𝑛−1

= 0 

𝑖�̇�𝑐𝑛
+ 𝑢𝑏𝑛

+ 𝑢𝑑𝑛
+ 𝑢𝑑𝑛−1

+ 𝑢𝑒𝑛
+ 𝑢𝑓𝑛 + 𝑢𝑔𝑛−1

= 0 

𝑖�̇�𝑑𝑛
+ 𝑢𝑏𝑛

+ 𝑢𝑏𝑛+1
+ 𝑢𝑐𝑛

+ 𝑢𝑐𝑛+1
+ 𝑢𝑓𝑛 + 𝑢𝑔𝑛

= 0 

𝑖�̇�𝑒𝑛
+ 𝑢𝑐𝑛

+ 𝑢𝑓𝑛 + 𝑢𝑔𝑛−1
= 0 

𝑖�̇�𝑓𝑛 + 𝑢𝑐𝑛
+ 𝑢𝑑𝑛

+ 𝑢𝑒𝑛
+ 𝑢𝑔𝑛

= 0 

𝑖�̇�𝑔𝑛
+ 𝑢𝑐𝑛+1

+ 𝑢𝑑𝑛
+ 𝑢𝑓𝑛 + 𝑢𝑒𝑛+1

= 0 

( 124 ) 
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By employing the ansatz 𝑢𝑥𝑛
= 𝑢𝑥

0
𝑛
𝑒𝑖𝜆𝑍𝑒𝑖𝑄𝑛 we find  

𝜆6 − 2𝜆5 cos(𝑄) − 𝜆4(4 cos(𝑄) + 13) + 𝜆3(4 cos2(𝑄) + 8 cos(𝑄) − 14)

+ 𝜆2(16 cos2(𝑄) + 18 cos(𝑄) + 18) + 𝜆(6 cos(2𝑄)

+ 20 cos2(𝑄) + 8 cos(𝑄) + 22)

+ (8 cos(2𝑄) + 8 cos2(𝑄) + 4 cos(𝑄) − 4 cos(2𝑄) cos(𝑄)) = 0 

( 125 ) 

 

Figure 7-5 (a) 37-core hexagonal lattice. The waveguide elements are now grouped in 7 different 

families (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔) indicated with different colors. (b) By excluding the central core, the 

remaining elements of these families are grouped in each hexagonal sector in order to obtain all 

the supermodes with angular momenta. 

where 𝑄 = 𝑙𝜋/3 with 𝑙 = 1,2, … ,5. The 6 × 5 eigenvalues of these 𝐷𝑆𝑙𝑚 supermodes (carrying 

angular momentum) can be directly obtained from Eq. (125) along with their eigenvectors. The 

real part of modal field profiles of the 𝐷𝑆03, 𝐷𝑆04, 𝐷𝑆21, 𝐷𝑆23, 𝐷𝑆32 and 𝐷𝑆35 is depicted in 

Figure 7-6 Real part of the modal field distributions in a 37-core lattice, associated with 

supermodes (a Finally the  eigenvalue distributions and degeneracies of a 7-, 19-, 37-core lattice 

are provided for comparison in Figure 7-7 we would like to note that in all cases our results (based 
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on coupled-mode theory) are in excellent agreement with finite element simulations based on 

weakly guiding structures. The method described here can be used in a similar fashion to analyze 

any other multi-ring hexagonal lattice. For example, in the case of a 61-core hexagonal lattice 

(involving four layers), the grouping of the elements will lead to 11 in-phase 𝐷𝑆0𝑚 supermodes 

(whose eigenvalues are obtained from a 11th order polynomial) while 10 × 5 𝐷𝑆𝑙𝑚 supermodes 

with angular momentum can result from a 10th order polynomial involving 𝑄 = 𝑙𝜋/3 where 𝑙 =

1, 2, … ,5.  
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Figure 7-6 Real part of the modal field distributions in a 37-core lattice, associated with 

supermodes (a) DS03 (b) DS04 (c) DS21 (d) DS23 (e) DS32 (f) DS35. 
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Figure 7-7 Eigenvalue distribution diagrams for (a) a 7-core (b) 19-core and (c) 37-core hexagonal 

lattice. 
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CHAPTER 8: MULTI-CORE STRUCTURES WITH EQUI-SPACED 

EIGENVALUES 

8.1 Introduction 

As it was discussed in the previous chapter, multi-core fiber structures are of great importance to 

us due to their potential to go beyond the data carrying capacity of single-mode fiber systems. In 

multi-core settings, the data carrying channels are the system supermodes rather than waveguide 

modes. Each supermode has a specific propagation constant and group velocity. A rather large 

modal dispersion is inherent to these structures due to the difference between the group velocities 

of supermodes. This intermodal group velocity dispersion is one of the limiting factors that 

compromises the data bandwidth. An ideal system will have zero differential group delay (DGD) 

and hence maximum data bandwidth. Here, we put forward a practical strategy to alleviate high 

DGD problem in the multi-core structures.  

 

Figure 8-1 Three elements of a fiber array with their field amplitudes and inter-waveguide coupling 

coefficients. 

Shemirani in [23] shows that in the presence of adequate coupling among the modes of a 

multimode structure, the system DGD scales proportional to √𝐿 rather than 𝐿 where 𝐿 is the 

propagation distance. But in a multicore structure of arbitrary size, the eigenvalues are not 

distributed equidistantly from each other and therefore coupling all the modes to each other is not 

easily possible and by introducing a single perturbation one cannot couple all the modes to each 

other. Our aim here is to design a lattice of multi-core fibers similar with eigenvalues spaced 

file:///C:/Users/mo769537/OneDrive/Complete%20Thesis/Thesis_Final1.docx%23_ENREF_23
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equally from each other. The advantage that this system offers is that through introducing a single 

coupling, all the modes can be coupled. Multimode fibers with a parabolic index offer such 

characteristics, however, since the highest-order mode lies near the continuum, a coupling term 

results in a large loss.  

To design a one-dimensional linear multicore structure with equidistant eigenvalues, two strategies 

can be exploited. First considering the coupling or equivalently the spacing between elements as a 

variable. Second, considering the core to core spacings and coupling to be constant and consider 

the propagation constants (core radii) as the design variables.  

First, we consider a 1D structure with identical waveguides and the spacing between elements can 

be altered. In this case, the system is described through a coupled-mode theory as below: 

𝑖
𝑑𝐴𝑛

𝑑𝑧
+ 𝜅𝑛,𝑛+1𝐴𝑛+1 + 𝜅𝑛,𝑛−1𝐴𝑛−1 = 0 ( 126 ) 

𝐴𝑛 = 𝑎𝑛𝑒𝑖𝜆𝑧 ( 127 ) 

where 𝑎𝑛 is constant and accounts for the initial amplitude. 

−𝜆𝑎𝑛 + 𝜅𝑛,𝑛+1𝑎𝑛+1 + 𝜅𝑛,𝑛−1𝑎𝑛−1 = 0 ( 128 ) 

[𝑎𝑛] = [𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 …𝑎𝑁] 

[
 
 
 
 
 
−𝜆
𝜅0,1

0
0
0
0
0

𝜅1,0

−𝜆
𝜅1,2

0
0
0
0

0
𝜅2,1

−𝜆
𝜅2,3

0
0
0

0
0

𝜅3,2

−𝜆
𝜅3,4

0
0

0
0
0

𝜅4,3

−𝜆
𝜅4,5

0

⋮
⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
0
0

𝜅𝑁,𝑁−1

−𝜆 ]
 
 
 
 
 

[
 
 
 
 
 
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4

⋮
𝑎𝑁]

 
 
 
 
 

= 0 ( 129 ) 

From the physical symmetry 𝜅𝑛,𝑚 = 𝜅𝑚,𝑛 
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[
 
 
 
 
 
−𝜆
𝜅1,0

0
0
0
0
0

𝜅1,0

−𝜆
𝜅2,1

0
0
0
0

0
𝜅2,1

−𝜆
𝜅3,2

0
0
0

0
0

𝜅3,2

−𝜆
𝜅4,3

0
0

0
0
0

𝜅4,3

−𝜆
𝜅4,5

0

⋮
⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
0
0

𝜅𝑁,𝑁−1

−𝜆 ]
 
 
 
 
 

[
 
 
 
 
 
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4

⋮
𝑎𝑁]

 
 
 
 
 

= 0 ( 130 ) 

To have a non-trivial solution the determinant of the matrix above must be zero. This gives an 

equation of order N. Given the N desired eigenvalues, this equation needs to be solved to find the 

unknown coupling coefficients 𝜅𝑚,𝑛. 

𝜆𝑁 + ∑ 𝜆𝑛𝑓𝑛(𝜅1,0, 𝜅2,1, … , 𝜅𝑁,𝑁−1)
𝑁−1
𝑛=0 = 0 ( 131 ) 

To simplify the calculations, the equation can be normalized. 

𝑖
𝑑𝐴𝑛

𝑑𝑧
+ 𝜅𝑛,𝑛+1𝐴𝑛+1 + 𝜅𝑛,𝑛−1𝐴𝑛−1 = 0 ( 132 ) 

𝑧 = 𝜉/𝑍 , where Z is the normalization factor 

𝑖
𝑑𝐴𝑛

𝑑𝜉
+ 𝑐𝑛,𝑛+1𝐴𝑛+1 + 𝑐𝑛,𝑛−1𝐴𝑛−1 = 0 ( 133 ) 

𝑐𝑛,𝑛+1 =
𝜅𝑛,𝑛+1

𝑍
 ( 134 ) 

The second approach, as it was mentioned before is through using dissimilar waveguide elements. 

Again from the coupled-mode theory, one can represent the governing equations for such structure 

as below: 

𝑖
𝑑𝐴𝑛

𝑑𝑧
+ 𝜅(𝐴𝑛+1 + 𝐴𝑛−1) + 𝛿𝑛𝐴𝑛 = 0 ( 135 ) 

 Note that the coupling between waveguides is considered to be identical. Since the coupling is not 

critically dependent on the core radii of elements, this approximation is not expected to introduce 

significant error. 

𝐴𝑛 = 𝑎𝑛𝑒𝑖𝜆𝑧 ( 136 ) 
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where 𝑎𝑛 is constant and accounts for the initial amplitude 

−𝜆𝑎𝑛 + 𝜅(𝑎𝑛+1 + 𝑎𝑛−1) + 𝛿𝑛𝑎𝑛 = 0 ( 137 ) 

[𝑎𝑛] = [𝑎1 𝑎2 𝑎3 𝑎4 …𝑎𝑁] 

[
 
 
 
 
 
−𝜆 + 𝛿1

𝜅
0
0
0
0
0

𝜅
−𝜆 + 𝛿2

𝜅
0
0
0
0

0
𝜅

−𝜆 + 𝛿3
𝜅
0
0
0

0
0
𝜅

−𝜆 + 𝛿4
𝜅
0
0

0
0
0
𝜅

−𝜆 + 𝛿5
𝜅
0

⋮
⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
0
0
𝜅

−𝜆 + 𝛿𝑁]
 
 
 
 
 

[
 
 
 
 
𝑎1
𝑎2
𝑎3
𝑎4

⋮
𝑎𝑁]

 
 
 
 

= 0 ( 138 ) 

To have a non-trivial solution the determinant of the matrix above must be zero. Again, this gives 

an equation of order N. Given the N desired eigenvalues, this equation is solved to find the 

unknown core detuning 𝛿𝑚,𝑛. 

𝜆𝑁 + ∑ 𝜆𝑛𝑓𝑛(𝑘; 𝛿1, 𝛿2, … , 𝛿𝑁)𝑁−1
𝑛=0 = 0 ( 139 ) 

𝜅 in the equation above is considered to be known. This equation can be normalized to simplify 

the computations. 

𝑖
𝑑𝐴𝑛

𝑑𝑧
+ 𝜅(𝐴𝑛+1 + 𝐴𝑛−1) + 𝛿𝑛𝐴𝑛 = 0 ( 140 ) 

𝑧 = 𝜉/𝑍 , where Z is the normalization parameter 

𝑖
𝑑𝐴𝑛

𝑑𝜉
+ 𝑐(𝐴𝑛+1 + 𝐴𝑛−1) + Δ𝑛𝐴𝑛 = 0 ( 141 ) 

Δ𝑛 =
𝛿𝑛

𝑍
, 𝑐 =

𝜅

𝑍
 ( 142 ) 

To inversely design a lattice from the desired eigenvalues Hochstadt theorem can be utilized. 

8.2 Hochstadt Theorem: 

This theorem is used to build a matrix from its eigenvalues. To make the matrix, first N desired 

eigenvalues are chosen (𝜆𝑛). Then N-1 arbitrary auxiliary values 𝜇𝑛 are chosen such that value of 
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each auxiliary value 𝜇𝑛 lies between two eigenvalues; i.e. 𝜆1 < 𝜇1 < 𝜆2. Since these values are 

known, there will be two polynomials as below: 

𝑝𝑁(𝜆) = ∏ (𝜆𝑛 − 𝜆)𝑁
𝑛=1 , ( 143 ) 

𝑝𝑁−1(𝜆) = ∏ (𝜇𝑛 − 𝜆)𝑁−1
𝑛=1 , ( 144 ) 

By expanding the two above expressions, the following polynomials are obtained: 

𝑃𝑛 = 𝑥𝑛 + 𝛼𝑛−1𝑥
𝑛−1 + ⋯+ 𝛼0 ( 145 ) 

𝑃𝑛−1 = 𝑥𝑛−1 + 𝛽𝑛−2𝑥
𝑛−2 + ⋯+ 𝛽0  ( 146 ) 

All the 𝛼 and 𝛽 coefficients are known and from these values, all the unknown coefficients of the 

next polynomial can be easily found 

𝑃𝑛−2 = 𝑥𝑛−2 + 𝛾𝑛−3𝑥
𝑛−3 + ⋯+ 𝛾0 ( 147 ) 

 

𝑎 = 𝛼𝑛−1 − 𝛽𝑛−2 

𝑐 = 𝑎𝛽𝑛−2 + 𝛽𝑛−3 − 𝛼𝑛−2 

𝛾𝑖 =
𝑎𝛽𝑖 + 𝛽𝑖−1 − 𝛼𝑖

𝑐
 

𝑖 = 𝑛 − 3,… ,1 

𝛾0 =
𝑎𝛽0 − 𝛼0

𝑐
 

( 148 ) 

In the above relations, 𝑎 is directly related to 𝛿, the required propagation constants of each 

individual element, and 𝑐 is the inter-element coupling coefficient. By choosing 𝜇 to be at the 

midpoint of each interval, the detuning can be made zero and all the cores can be made to be the 

same size, i.e. 𝛿𝑛 = 0. The lattice with desired eigenvalues is designed by adjusting the inter-

element spacings.  
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As an example, this method above was exploited to design a linear structure containing five 

elements. 

8.3 A Linear Array with Equidistant Eigenvalue Distribution  

Here, the purpose is to design a lattice with a self-imaging characteristic. For such a system, 

eigenvalues must be equispaced. Based on the Hochstad theorem, if the second set of points which 

must interlace with the first set is chosen such that they lie exactly in the middle of the interval 

between two eigenvalues then all the detuning terms 𝛿s are going to be 0.  

The following arbitrarily equispaced eigenvalues were chosen to design an example system with 

five elements.  

𝜆 = [−2.8  − 1.4   0     1.4    2.8] 

𝜇 = [−2.1    − 0.7      0.7      2.1] 

From Hochstadt theorem, the four coupling coefficients among 5 elements are calculated to be as 

below: 

𝜅1 = 0.98995, κ2 = 1.30958, 𝜅3 = 1.48492, 𝜅4 = 2.21359 

Having the normalized coupling coefficients and given certain design specifications, one can find 

the actual inter-core coupling value. 

−Λ𝑎𝑛 + 𝑐𝑛,𝑛+1𝑎𝑛+1 + 𝑐𝑛,𝑛−1𝑎𝑛−1 = 0 ( 149 ) 

Choosing the normalization factor to be 𝑍 = 100, the couplings will be as below: 

𝑐1 = 98.9949, 𝑐2 = 130.9580, 𝑐3 = 148.4924, 𝑐4 = 221.3594 

The following parameters are considered for our considered design: 

Δ = 0.003  
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𝑛1 = 1.4489  

𝜆 = 1.5 × 10−6  

𝑎 = 4.0 𝜇𝑚  

 

Now, the spacing 𝑑𝑛 between every two waveguides should be adjusted such that it gives the 

aforementioned denormalized coupling values. 

Table 8-1 Four coupling terms between 5 elements of the 1-D linear lattice and the equivalent 

inter-waveguide spacings. 

𝒏 𝒄𝒏 𝒅 (𝝁𝒎) ERROR 

1 98.995 17.63 0.1605 
2 130.9375 16.75 0.02105 
3 148.4925 16.35 0.14425 
4 221.3595 15.10 0.05225 

 

An array of five waveguides was constructed according to the values given in Table 8-1 and was 

numerically studied. To this end, we used COMSOL Multiphysics software. The eigenvalues 

associated with the supermodes are plotted in Figure 8-2. In this figure, the black line is a straight 

line given as a reference for comparison. 

 

Figure 8-2 Distribution of eigenvalues corresponding to an array of identical waveguides and 

engineered inter-waveguide spacings (blue curve). The black line a straight line given as a 

reference. 
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Comparing this designed structure with a similar lattice but with uniform inter-component spacing 

(Figure 8-3) reveals a more linear distribution. 

 

Figure 8-3 Distribution of eigenvalues corresponding to an array of identical waveguides 

distributed uniformly (spacing d = 16 µm). 

In our designed structure, the difference in the propagation constants are computed as below 

Δ𝛽1 = 156.6607, Δ𝛽2 = 148.5638, Δ𝛽3 = 138.7872, Δ𝛽4 = 131.3772 

While for the equidistant case we had 

𝛥𝛽1 = 139.4281, Δ𝛽2 = 176.7711, Δ𝛽3 = 163.3921, Δ𝛽4 = 112.5193 

The alternative to this design is a five-core lattice designed using the second scheme, having 

different core radii but with equal spacings. For this design, the characteristic polynomial of the 

matrix, calculated from Hochstadt theorem, was used to solve for the modifications required in the 

core radii. The following values were obtained after some mathematical manipulations. 

Δ1 = 0, Δ2 = 0.0972, Δ3 = 0.4615, Δ4 = 1.9861, Δ5 = −2.545 

𝜅 = 1.05808848466682 
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To find the actual detuning values, given from our design specifications, we use a denormalization 

factor to scale the normalized coupling coefficients into physical values. The parameter Z 

(denormalization factor) is considered to be 156.9937 for a spacing of 16 𝜇𝑚. 

𝑍 = 156.993673333776 

𝑑 = 16 𝜇𝑚 

Considering this denormalization factor the detuning values will be as: 

𝛿1 = 0, 𝛿2 = 15.2679, 𝛿3 = 72.4471, 𝛿4 = 311.8137, 𝛿5 = −399.5287,  

Δ𝑛𝑒𝑓𝑓 =
𝜆0𝛿

2𝜋
 

Δ𝑛𝑒𝑓𝑓1
= 0, Δ𝑛𝑒𝑓𝑓2

= 3.6449𝑒 − 6, Δ𝑛𝑒𝑓𝑓3
= 1.7295𝑒 − 5, Δ𝑛𝑒𝑓𝑓4

= 7.4440𝑒 − 5, Δ𝑛𝑒𝑓𝑓5

= −9.5380𝑒 − 05 

Now, each detuning value is mapped into a change in the core diameters of individual elements. 

Table 8-2 the offset values in the propagation constants, the equivalent core radii and the error 

introduced to a limited precision in determining the core radii values for our engineered design. 

𝒏 𝜷 + 𝜹𝒏 𝒓 (𝝁𝒎) 𝑬𝒓𝒓𝒐𝒓 

𝟏 1.4461984848 4 0 

𝟐 1.4462021297 4.005 1.2878786993𝑒 − 07 

𝟑 1.4462157803 4.024 4.1792631000𝑒 − 07 

𝟒 1.4462729248 4.107 1.7560460996𝑒 − 07 

𝟓 1.4461031043 3.868 1.6276894987𝑒 − 07 
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Figure 8-4 The linear distribution of eigenvalues for our designed 5-element linear array (blue 

curve). The black cure is a straight line given as a reference. 

Comparing the two schemes reveals that the second scheme, which uses the detunings as the design 

parameters (instead of inter-core distance), is a much more robust method. The superiority of the 

second scheme comes from the fact that a multicore array structure has smaller sensitivities to 

changes in core radii in compare with the inter-waveguide element distance. A slight change in the 

spacing between the waveguide elements can significantly alter the coupling value. Therefore, due 

to this sensitivity, achieving the ideal design values and even fine tuning the distance between 

elements is very difficult. The difference among propagation eigenvalues obtained from the second 

scheme is given in the lines below: 

Δ𝜆12 = 5.006800𝑒 − 05, Δ𝜆23 = 5.667000𝑒 − 05, Δ𝜆34 = 5.213200𝑒 − 05, Δ𝜆45 = 5.108700𝑒 − 05 

Δ𝛽12 = 209.724348, Δ𝛽23 = 237.378741, Δ𝛽34 = 218.370011, Δ𝛽45 = 213.992725 

8.4 2-D Multicore Structures with Equidistant Eigenvalue Distribution 

Next, we intend to design a 2D rectangular lattice possessing a uniform distribution of eigenvalues. 

Designing a 2D lattice with arbitrary eigenvalues using the first scheme due to is impossible. The 

1 1.5 2 2.5 3 3.5 4 4.5 5
1.446

1.4461

1.4461

1.4462

1.4462

1.4463

1.4463

Mode Number

E
ff

ec
ti

v
e 

In
d

ex



123 

 

reason is that, in 2-D structures, each element is surrounded by other elements and this limits the 

degree of freedom required to adjust the inter-element spacing. Therefore, the second scheme is 

exploited for our purpose. The governing equation for a 2-D multicore structure with common 

coupling coefficient but different core radii values is represented as below 

𝑖
𝑑𝑎𝑚,𝑛

𝑑𝑧
+ 𝜅(𝑎𝑚+1,𝑛 + 𝑎𝑚−1,𝑛 + 𝑎𝑚,𝑛+1 + 𝑎𝑚,𝑛−1) + 𝛾𝑛,𝑚𝑎𝑛,𝑚 = 0 ( 150 ) 

If the core radii considered to be the same the couplings to be different then: 

𝑖
𝑑𝑎𝑚,𝑛

𝑑𝑧
+ (𝜅𝑚+1,𝑚;𝑛𝑎𝑚+1,𝑛 + 𝜅𝑚−1,𝑚;𝑛𝑎𝑚−1,𝑛 + 𝜅𝑚;𝑛,𝑛+1𝑎𝑚,𝑛+1 + 𝜅𝑚;𝑛,𝑛−1𝑎𝑚,𝑛−1) +

𝛾𝑛,𝑚𝑎𝑛,𝑚 = 0 ( 151 ) 

Assuming a separable solution of the form below and its substitution in Eq. (151) greatly simplifies 

our analysis. 

𝑎𝑚,𝑛 = 𝑈𝑛𝑉𝑚 

𝑖
𝑑𝑈𝑛𝑉𝑚

𝑑𝑧
+ (𝜅𝑚+1,𝑚;𝑛𝑈𝑛𝑉𝑚+1 + 𝜅𝑚−1,𝑚;𝑛𝑈𝑛𝑉𝑚−1 + 𝜅𝑚;𝑛,𝑛+1𝑈𝑛+1𝑉𝑚 +

𝜅𝑚;𝑛,𝑛−1𝑈𝑛−1𝑉𝑚) + 𝛾𝑛,𝑚𝑈𝑛𝑉𝑚 = 0 ( 152 ) 

𝑖𝑉𝑚
𝑑𝑈𝑛

𝑑𝑧
+ 𝑖𝑈𝑛

𝑑𝑉𝑚

𝑑𝑧
+ (𝜅𝑚+1,𝑚;𝑛𝑈𝑛𝑉𝑚+1 + 𝜅𝑚−1,𝑚;𝑛𝑈𝑛𝑉𝑚−1 + 𝜅𝑚;𝑛,𝑛+1𝑈𝑛+1𝑉𝑚 +

𝜅𝑚;𝑛,𝑛−1𝑈𝑛−1𝑉𝑚) + 𝛾𝑛,𝑚𝑈𝑛𝑉𝑚 = 0 ( 153 ) 

 

By dividing both sides by 𝑈𝑛𝑉𝑚 one gets: 
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Figure 8-5 A two dimensional lattice of waveguides. The effect of cross-coupling terms is ignored 

here. 

𝑖

𝑈𝑛

𝑑𝑈𝑛

𝑑𝑧
+

𝑖

𝑉𝑚

𝑑𝑉𝑚

𝑑𝑧
+ (𝜅𝑚+1,𝑚;𝑛

𝑉𝑚+1

𝑉𝑚
 + 𝜅𝑚−1,𝑚;𝑛

𝑉𝑚−1

𝑉𝑚
+ 𝜅𝑚;𝑛,𝑛+1

𝑈𝑛+1

𝑈𝑛
+ 𝜅𝑚;𝑛,𝑛−1

𝑈𝑛−1

𝑈𝑛
) + 𝛾𝑛,𝑚 = 0

 ( 154 ) 

That can be decomposed in to two similar equations (155) and (156) 

𝑖

𝑈𝑛

𝑑𝑈𝑛

𝑑𝑧
+ (𝜅𝑚;𝑛,𝑛+1

𝑈𝑛+1

𝑈𝑛
+ 𝜅𝑚;𝑛,𝑛−1

𝑈𝑛−1

𝑈𝑛
) + 𝛿𝑢;𝑚,𝑛 = 0 ( 155 ) 

𝑖

𝑉𝑚

𝑑𝑉𝑚

𝑑𝑧
+ (𝜅𝑚+1,𝑚;𝑛

𝑉𝑚+1

𝑉𝑚
 + 𝜅𝑚−1,𝑚;𝑛

𝑉𝑚−1

𝑉𝑚
) + 𝛿𝑣;𝑚,𝑛 = 0 ( 156 ) 

𝛿𝑢;𝑚,𝑛 + 𝛿𝑣;𝑚,𝑛 = 𝛾𝑚,𝑛 ( 157 ) 

Equations (155) and (156) can be reformulated as below 

𝑖
𝑑𝑈𝑛

𝑑𝑧
+ (𝜅𝑚;𝑛,𝑛+1𝑈𝑛+1 + 𝜅𝑚;𝑛,𝑛−1𝑈𝑛−1) + 𝛿𝑢;𝑚,𝑛𝑈𝑛 = 0 ( 158 ) 

𝑖
𝑑𝑉𝑚

𝑑𝑧
+ (𝜅𝑚+1,𝑚;𝑛𝑉𝑚+1 + 𝜅𝑚−1,𝑚;𝑛𝑉𝑚−1) + 𝛿𝑣;𝑚,𝑛𝑉𝑚 = 0 ( 159 ) 

𝛿𝑢;𝑚,𝑛 + 𝛿𝑣;𝑚,𝑛 = 𝛾𝑚,𝑛 ( 160 ) 
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𝑈𝑛 = 𝑢𝑛𝑒𝑖𝜆𝑢𝑧 ( 161 ) 

𝑉𝑚 = 𝑣𝑚𝑒𝑖𝜆𝑣𝑧 ( 162 ) 

where 𝑢𝑛 and 𝑣𝑛 are constant quantities. 

−𝜆𝑢𝑢𝑛 + (𝜅𝑚;𝑛,𝑛+1𝑢𝑛+1 + 𝜅𝑚;𝑛,𝑛−1𝑢𝑛−1) + 𝛿𝑢;𝑚,𝑛𝑢𝑛 = 0 ( 163 ) 

−𝜆𝑣𝑣𝑚 + (𝜅𝑚+1,𝑚;𝑛𝑣𝑚+1 + 𝜅𝑚−1,𝑚;𝑛𝑣𝑚−1) + 𝛿𝑣;𝑚,𝑛𝑣𝑚 = 0 ( 164 ) 

𝛿𝑢;𝑛,𝑚 + 𝛿𝑣;𝑛,𝑚 = 𝛾𝑚,𝑛 ( 165 ) 

[
 
 
 
 
 
 
−𝜆𝑢 + 𝛿𝑢;𝑚,1

𝜅𝑚;1,2

0
0
0
0
0

𝜅𝑚;1,2

−𝜆𝑢 + 𝛿𝑢;𝑚,2

𝜅𝑚;2,3

0
0
0
0

0
𝜅𝑚;2,3

−𝜆𝑢 + 𝛿𝑢;𝑚,3

𝜅𝑚;3,4

0
0
0

0
0

𝜅𝑚;3,4

−𝜆𝑢 + 𝛿𝑢;𝑚,4

𝜅𝑚;4,5

0
0

0
0
0

𝜅𝑚;4,5

−𝜆𝑢 + 𝛿𝑢;𝑚,5

𝜅𝑚;5,6

0

⋮
⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
0
0

𝜅𝑚;𝑁−1,𝑁

−𝜆𝑢 + 𝛿𝑢;𝑚,𝑁]
 
 
 
 
 
 

[
 
 
 
 
𝑢1
𝑢2
𝑢3
𝑢4

⋮
𝑢𝑁]

 
 
 
 

=

0 ( 166 ) 

[
 
 
 
 
 
 
−𝜆𝑣 + 𝛿𝑣;1,𝑛

𝜅1,2;𝑛

0
0
0
0
0

𝜅1,2;𝑛

−𝜆𝑣 + 𝛿𝑣;2,𝑛

𝜅2,3;𝑛

0
0
0
0

0
𝜅2,3;𝑛

−𝜆𝑣 + 𝛿𝑣;3,𝑛

𝜅3,4;𝑛

0
0
0

0
0

𝜅3,4;𝑛

−𝜆𝑣 + 𝛿𝑣;4,𝑛

𝜅4,5;𝑛

0
0

0
0
0

𝜅4,5;𝑛

−𝜆𝑣 + 𝛿𝑣;5,𝑛

𝜅5,6;𝑛

0

⋮
⋮
⋮
⋮
⋮
⋮
⋮

0
0
0
0
0

𝜅𝑀−1,𝑀;𝑛

−𝜆𝑣 + 𝛿𝑣;𝑀,𝑛]
 
 
 
 
 
 

[
 
 
 
 
𝑣1
𝑣2
𝑣3
𝑣4

⋮
𝑣𝑀]

 
 
 
 

=

0 ( 167 ) 

 considering all the coupling terms to be equal one simply arrives at the following equations. 

𝑖
𝑑𝑎𝑚,𝑛

𝑑𝑧
+ 𝜅(𝑎𝑚+1,𝑛 + 𝑎𝑚−1,𝑛 + 𝑎𝑚,𝑛+1 + 𝑎𝑚,𝑛−1) + 𝛾𝑛,𝑚𝑎𝑛,𝑚 = 0 ( 168 ) 

𝑎𝑚,𝑛 = 𝑈𝑛𝑉𝑚 ( 169 ) 

𝑈𝑛 = 𝑢𝑛𝑒𝑖𝜆𝑢𝑧 ( 170 ) 

𝑉𝑚 = 𝑣𝑚𝑒𝑖𝜆𝑣𝑧 ( 171 ) 

−𝜆𝑢𝑢𝑛 + 𝜅(𝑢𝑛+1 + 𝑢𝑛−1) + 𝛿𝑢;𝑚,𝑛𝑢𝑛 = 0 ( 172 ) 

−𝜆𝑣𝑣𝑚 + 𝜅(𝑣𝑚+1 + 𝑣𝑚−1) + 𝛿𝑣;𝑚,𝑛𝑣𝑚 = 0 ( 173 ) 
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𝛿𝑢;𝑛,𝑚 + 𝛿𝑣;𝑛,𝑚 = 𝛾𝑚,𝑛 ( 174 ) 

8.4.1 Example Design: A Five by Five Rectangular Lattice 

According to the design procedure described in the previous section, to design a two dimensional 

lattice of waveguides with uniformly distributed eigenvalues, the detuning terms should be 

appropriately chosen. For a sample design specification given before (𝛥 = 0.003, 𝑛1 = 1.4489,  

𝜆 = 1.5 × 10−6, 𝑎 = 4.0 𝜇𝑚) the design parameters are found as given in Table 8-3. 

Table 8-3 Each cell of this table shows propagation constant detuning from a reference value 

 𝟏 𝟐 𝟑 4 5 

𝟏 Δ1𝑥 + Δ1y Δ1𝑥 + Δ2y Δ1𝑥 + Δ3y Δ1𝑥 + Δ4y Δ1𝑥 + Δ5y 

𝟐 Δ2𝑥 + Δ1y Δ2𝑥 + Δ2y Δ2𝑥 + Δ3y Δ2𝑥 + Δ4y Δ2𝑥 + Δ5y 

𝟑 Δ3𝑥 + Δ1y Δ3𝑥 + Δ2y Δ3𝑥 + Δ3y Δ3𝑥 + Δ4y Δ3𝑥 + Δ5y 

𝟒 Δ4𝑥 + Δ1y Δ4𝑥 + Δ2y Δ4𝑥 + Δ3y Δ4𝑥 + Δ4y Δ4𝑥 + Δ5y 

𝟓 Δ5𝑥 + Δ1y Δ5𝑥 + Δ2y Δ5𝑥 + Δ3y Δ5𝑥 + Δ4y Δ5𝑥 + Δ5y 

 

Table 8-4 Given our design specification, the core radii values are computed. 

 𝟏 𝟐 𝟑 4 5 

𝟏 4 4.005 4.024 4.107 3.868 

𝟐 4.005 4.010 4.030 4.112 3.872 

𝟑 4.024 4.030 4.049 4.132 3.891 

𝟒 4.107 4.112 4.132 4.217 3.971 

𝟓 3.868 3.872 3.891 3.971 3.740 

 

Again, to corroborate our design, the system under consideration was simulated in COMSOL 

Multiphysics software and the associated propagation eigenvalues were found and plotted in 

Figure 8-6. 
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Figure 8-6 The linear distribution of eigenvalues for a designed two-dimensional system of 5 by 5 

elements. 

As it is clear from Figure 8-6, the eigenvalues are lying on a straight line and the intended linear 

behavior is achieved. The differences between eigenvalues corresponding to consecutive states are 

given below: 

Δ𝛽12 = 215.953079007682 

Δ𝛽23 = 237.889773309647 

Δ𝛽34 = 215.358270798683 

Δ𝛽45 = 230.622222304797 

Δ𝛽56 = 215.320571687441 

Δ𝛽67 = 224.933845206668 

Δ𝛽78 = 216.221161580648 

Δ𝛽89 = 212.413551284757 

We expected to see 25 distinct supermodes, but as it is clear, the system is full of degeneracies and 

there exist only 9 distinct eigenvalues. The number of degenerate states for each eigenmode is 

shown in Figure 8-7. 
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Figure 8-7 Distribution of 50 eigenvalues of an engineered 5 by 5 lattice. Evidently, there are many 

degeneracies in the system. 

8.5 Seven-Element Hexagonal Lattice with Equi-spaced Eigenvalues  

One of the most popular multicore structures is a 7-core hexagonal multicore setting. Its popularity 

mainly arises from the ease of fabrication this geometry offers. Here, we intend to design a 7-core 

hexagonal multicore structure with an equidistant distribution of eigenvalue. The coupling 

equations for such a lattice considering identical elements of the same core radius is given in Eq. 

(175):  

 

Figure 8-8 A 7-element hexagonal lattice. All seven elements are identical. 
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If all the elements are identical then 𝑐 = 𝜅. Then the normalized coupling equations are as blow: 

𝑖
𝑑𝑎

𝑑𝑧
+ 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5 + 𝑏6 = 0 

𝑖
𝑑𝑏1

𝑑𝑧
+ 𝑏2 + 𝑏6 + 𝑎 = 0 

𝑖
𝑑𝑏2

𝑑𝑧
+ 𝑏1 + 𝑏3 + 𝑎 = 0 

𝑖
𝑑𝑏3

𝑑𝑧
+ 𝑏2 + 𝑏4 + 𝑎 = 0 

𝑖
𝑑𝑏4

𝑑𝑧
+ 𝑏3 + 𝑏5 + 𝑎 = 0 

𝑖
𝑑𝑏5

𝑑𝑧
+ 𝑏4 + 𝑏6 + 𝑎 = 0 

( 175 ) 

The matrix representation of Eq. (175) is as below:  

[
 
 
 
 
 
−𝜆
1
1
1
1
1
1

1
−𝜆
1
0
0
0
1

1
1

−𝜆
1
0
0
0

1
0
1

−𝜆
1
0
0

1
0
0
1

−𝜆
1
0

1
0
0
0
1

−𝜆
1

1
1
0
0
0
1

−𝜆]
 
 
 
 
 

[
 
 
 
 
 
 
𝑎
𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6]
 
 
 
 
 
 

= 0 ( 176 ) 

To find the eigenvalues, one needs to solve the following equation. 

𝐴𝑣 = 𝜆𝑣 ( 177 ) 

 

𝐴 =

[
 
 
 
 
 
0
1
1
1
1
1
1

1
0
1
0
0
0
1

1
1
0
1
0
0
0

1
0
1
0
1
0
0

1
0
0
1
0
1
0

1
0
0
0
1
0
1

1
1
0
0
0
1
0]
 
 
 
 
 

 ( 178 ) 
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The eigenvalues of this configuration do not lie on a ladder. To achieve such a design, again we 

use the fiber core radii as the design variables. Considering detuning in the design, the coupling 

equations after normalization are as below: 

𝑖
𝑑𝑎

𝑑𝜉
+ 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5 + 𝑏6 + Δ1𝑎 = 0 

𝑖
𝑑𝑏1

𝑑𝜉
+ 𝑏2 + 𝑏6 + 𝑎 + Δ2𝑏1 = 0 

𝑖
𝑑𝑏2

𝑑𝜉
+ 𝑏1 + 𝑏3 + 𝑎 + Δ3𝑏2 = 0 

𝑖
𝑑𝑏3

𝑑𝜉
+ 𝑏2 + 𝑏4 + 𝑎 + Δ4𝑏3 = 0 

𝑖
𝑑𝑏4

𝑑𝜉
+ 𝑏3 + 𝑏5 + 𝑎 + Δ5𝑏4 = 0 

𝑖
𝑑𝑏5

𝑑𝜉
+ 𝑏4 + 𝑏6 + 𝑎 + Δ6𝑏5 = 0 

𝑖
𝑑𝑏6

𝑑𝜉
+ 𝑏5 + 𝑏1 + 𝑎 + Δ7𝑏6 = 0 

( 179 ) 

Where the following normalization parameters were used: 

𝛥𝑛 =
𝛿𝑛

𝜅
 ( 180 ) 

𝜉 = 𝜅𝑧 ( 181 ) 

 

𝐴 =

[
 
 
 
 
 
Δ1

1
1
1
1
1
1

1
Δ2

1
0
0
0
1

1
1
Δ3

1
0
0
0

1
0
1
Δ4

1
0
0

1
0
0
1
Δ5

1
0

1
0
0
0
1
Δ6

1

1
1
0
0
0
1
Δ7]

 
 
 
 
 

 ( 182 ) 
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From Hochstadt theorem and performing some matrix conversion techniques, the proper Δs are 

calculated and represented as below: 

Δ1 = −2.35811, Δ2 = 0.18432, Δ3 = −0.13201, Δ4 = 0.65139, Δ5 = 3.09043, Δ6 = −3.38838, Δ7

= 1.95237 

To realize a design based on these parameters, we need to choose a design specification to scale 

all the values and make them physically meaningful. The design is done base on the following 

specifications: 

 

𝜆 = 1.5 𝜇𝑚 

Δ = 0.003 

𝑛1 = 1.4489 

𝑛2 = 1.4446 

𝜌 = 𝑎 = 4.0 𝜇𝑚 

𝑉 = 1.88 

 

Figure 8-9 The components of a 7-element hexagonal lattice and their assigned numbers. 
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For a spacing distance of 12 𝜇𝑚 between the waveguides, the coupling will be calculated 

theoretically as below: 

𝑑 = 12 𝜇𝑚    𝑐𝑡ℎ𝑒𝑜𝑟𝑦 = 602.74739364553 

A satisfactory coupling constant scales the detuning 𝛿s to values that fall within our fabrication 

precision.  

𝛥𝑛 =
𝛿𝑛

𝜅
 

𝜅 = 602.74739364553 

Table 8-5 The computed radius size for elements of a hexagonal multicore structure, having a 

linear eigenvalue distribution 

𝒏 𝒓𝒏 𝑬𝒓𝒓𝒐𝒓 

𝟏 3.548  4.77831𝑒 − 08 
𝟐 4.038 1.97881𝑒 − 07 
𝟑 3.973 2.53315𝑒 − 07 

𝟒 4.135 2.04754𝑒 − 08 

𝟓 4.695 1.81088𝑒 − 07 
𝟔 3.364 3.90447𝑒 − 07 
𝟕 4.422 3.03942𝑒 − 07 

 

 

Figure 8-10 The eigenvalue distribution of the designed 7-element hexagonal structure 
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The field profile corresponding to the largest eigenvalue is shown in Figure 8-11. From this figure, 

one can see that by tweaking the fifth element (hosting most of the field energy in Figure 8-11) the 

eigenvalues distribution can be tuned to be more linear. A manual tuning reveals that by increasing 

the core radius of the fifth element to 4.8 𝜇𝑚 the largest eigenvalue can be pushed up resulting to 

a very linear distribution of eigenvalues, as can be seen in Figure 8-12). 

 

Figure 8-11 Field distribution of the mode with the largest eigenvalue. 

 

Figure 8-12 The linear eigenvalue distribution of the designed 7-element hexagonal structure after 

tweaking the fifth element 

For this optimized design, the differences between consecutive eigenvalues are given as below: 

Δ𝛽12 = 837.94235 , Δ𝛽23 = 818.81633, Δ𝛽34 = 906.05626, Δ𝛽45 = 832.08642, Δ𝛽56 = 827.55415, 

Δ𝛽67 = 867.10052 
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8.6 Six-Element Pentagonal Lattice with Equi-spaced Eigenvalues 

As it was mentioned before, by introducing an intermodal coupling, the intermodal group delay is 

greatly suppressed and the information bandwidth is enhanced. A grating coupler is usually used 

to couple modes to each other. Multicore fiber structures are usually contrasted with multimode 

fibers. Multimode fiber structures are economic options that can be used for information 

transmission. However, for all index distributions except parabolic-index profile, the eigenvalues 

do not lie uniformly away from each other. Using graded-index multimode fibers gives the 

advantage of having equidistant eigenvalues in addition to a minimal DGD. Thus the spatial modes 

of a graded-index MMF can be easily coupled by a single grating. However, due to the proximity 

of the higher-order modes to the cladding modes, a huge loss is introduced as a result of a flow of 

energy from bound modes to continuum. An alternative way is to do this DGD compensation 

process in certain periodically repeating stations outside an MMF where these problems are 

avoided. Photonic lanterns transform the modes of a multimode structure into supermodes of a 

multicore system and vice-versa. Here, we consider a multimode fiber with 6 modes (including 

degenerate modes and mode groups). 

The multimode fiber that is the main medium to transfer information after a certain distance is 

gradually tapered into an equidistant multicore fiber. Through this process, every mode of the 

structure is coupled losslessly to a supermode of the MCF structure. Now, by introducing a simple 

grating, one can easily couple all the modes within the multicore section, hence, minimizing the 

walk-off effects. In the next stage, the modes are again coupled back into the multimode fiber. 

This process is repeated periodically and through this DGD is greatly mitigated. 



135 

 

However, to realize such a structure, the first step is designing a 6-core MCF. To simplify the 

fabrication process, a pentagonal geometry is considered. Figure 8-13 demonstrates a schematic 

of such a design. 

 

 

Figure 8-13 The 6-core multimode fiber is tapered into an equidistant multicore fiber structures, 

where all the modes are strongly coupled to each other and thus DGD is mitigated. 

The first step is determining the design specifications including the core and cladding index, the 

starting point core-diameter, the spacing between cores that determines the coupling strength and 

also deviations from the starting core diameter design.  

The considerations for a good design are 

1- Variations of core diameters across the design should be as low as possible, to meet one of 

the fundamental assumptions: inter-core coupling is assumed to be independent of core-

diameter variations. 

2- The eigenvalues must be far from cladding to minimize any power leakage. 

3- The cores should be as close as possible to allow for maximum coupling and supermodal 

overlaps. 

4- While still meeting the conditions 1-3, the core-diameter variations should be large enough 

for an ease of fabrication. 
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It is clear from the above conditions that the design parameters should be carefully chosen to be 

practical.  

Silica has a refractive index of 𝑛𝑐 = 1.444  at telecom wavelength.  We consider the core to have 

a refractive index 𝑛𝑔 < 1.46 to stay single-mode for moderate core variations. The design is made 

around the central core radius of 4 𝜇𝑚. We do not expect the core radii size exceeded 4.5 𝜇𝑚 and 

we expect them to still stay single mode even for this core size. 

 For single mode performance, the V-number should be below 2.405.  

 We consider core to have a refractive index of 1.45 and the cladding to be 1.444 (Δ =

6 × 10−3) 

 The maximum radius size for single mode operation is 4.5 𝜇𝑚. 

8.6.1 Calculation of Coupling Coefficients 

In our design parameters, the fiber has a core radius of 4 𝜇𝑚, with a core index of 1.444 and the 

cladding index of 1.45. The structure as shown in Figure 8-14 is a pentagon.  

 

Figure 8-14 The 6-core pentagonal structure 
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It is very important to first determine the inter-core spacing first. Since for this specific geometry, 

the entire design is highly dependent on the spacing. The coupling factor is calculated from the 

relation below: 

𝑐 = √2Δ
𝑢2𝐾0(

𝑤𝐷

𝑎
)

𝐾1(𝑤)2𝑎 𝑉3 ( 183 ) 

𝐷1: Distance from central element to the circumferential cores 

𝐷2: Distance between circumferential cores. 

𝐷2 = 1.17557 × 𝐷1 

The propagation constant (based on COMSOL simulations) is: 

𝑛𝑒 = 1.44675066462022 

𝛽 = 𝑘0𝑛𝑒 

8.6.2 Pentagonal Lattice: The First Design  

We consider the spacing between the central core to the lateral elements to be 12 𝜇𝑚. And the 

fiber core radius to have a core radius of 𝑎 = 4 𝜇𝑚. We first calculate the coupling between the 

central element the peripheral ones. 

𝑛𝑒1 = 1.44573898965622 

𝑛𝑒2 = 1.44548981680895 

𝜅 =
𝛽2 − 𝛽1

2
=

𝑘0

2
(𝑛𝑒1 − 𝑛𝑒2) 

𝜅 = 505.0319912628847 

The coupling between the central core and the peripheral ones is: 

𝑛𝑒1 = 1.44568438808379 

𝑛𝑒2 = 1.44555659355294 
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𝜅 =
𝛽2 − 𝛽1

2
=

𝑘0

2
(𝑛𝑒1 − 𝑛𝑒2) 

𝜅 = 259.0183 

The ratio between two coupling values is an important design parameter. 

𝐶 = 
𝐶𝑙−𝑙

𝐶𝑐−𝑙
=  0.512875027315939 

The equations describing this structure are as below: 

𝑖𝜕𝑢1

𝜕𝑧
+ 𝑐1(𝑢2 + 𝑢3 + 𝑢4 + 𝑢5 + 𝑢6) + 𝛿1𝑢1 = 0 

𝑖𝜕𝑢2

𝜕𝑧
+ 𝑐1𝑢1 + 𝑐2(𝑢3 + 𝑢6) + 𝛿2𝑢2 = 0 

𝑖𝜕𝑢3

𝜕𝑧
+ 𝑐1𝑢1 + 𝑐2(𝑢2 + 𝑢4) + 𝛿3𝑢3 = 0 

𝑖𝜕𝑢4

𝜕𝑧
+ 𝑐1𝑢1 + 𝑐2(𝑢3 + 𝑢5) + 𝛿4𝑢4 = 0 

𝑖𝜕𝑢5

𝜕𝑧
+ 𝑐1𝑢1 + 𝑐2(𝑢4 + 𝑢6) + 𝛿5𝑢5 = 0 

𝜕𝑢6

𝜕𝑧
+ 𝑐1𝑢1 + 𝑐2(𝑢2 + 𝑢5) + 𝛿6𝑢6 = 0 

( 184 ) 

The above equations are obtained after applying the gauge transform 𝑈(𝑧) = 𝑢(𝑧) 𝑒−𝑖𝛽𝑧. 

𝑖𝜕𝑢1

𝜕𝑍
+ (𝑢2 + 𝑢3 + 𝑢4 + 𝑢5 + 𝑢6) + Δ1𝑢1 = 0 

𝑖𝜕𝑢2

𝜕𝑍
+ 𝑢1 + 𝐶(𝑢3 + 𝑢6) + Δ2𝑢2 = 0 

𝑖𝜕𝑢3

𝜕𝑍
+ 𝑢1 + 𝐶(𝑢2 + 𝑢4) + Δ3𝑢3 = 0 

𝑖𝜕𝑢4

𝜕𝑍
+ 𝑢1 + 𝐶(𝑢3 + 𝑢5) + Δ4𝑢4 = 0 
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𝑖𝜕𝑢5

𝜕𝑍
+ 𝑢1 + 𝐶(𝑢4 + 𝑢6) + Δ5𝑢5 = 0 

𝜕𝑢6

𝜕𝑍
+ 𝑢1 + 𝐶(𝑢2 + 𝑢5) + Δ6𝑢6 = 0 

𝑍 = 𝑐1𝑧, 𝐶 = 𝑐2/𝑐1 , Δ𝑛 = 𝛿𝑛/𝑐1 

 

𝐴 =

[
 
 
 
 
Δ1

1
1
1
1
1

1
Δ2

𝐶
0
0
𝐶

1
𝐶
Δ3

𝐶
0
0

1
0
𝐶
Δ4

𝐶
0

1
0
0
𝐶
Δ5

𝐶

1
𝐶
0
0
𝐶
Δ6]

 
 
 
 

 ( 185 ) 

 

As it was previously calculated  𝐶 =  0.563698041. Now, we need to find Δ𝑠 for an equidistance 

eigenvalue distribution. To do this we use the following a simple Python code that can be found 

in the Appendix I. Using the code given in Appendix I, we find the Δ vector to be as below: 

Δ = [ 9.19766331  2.12727189 − 9.75904369 − 5.86620808 − 1.90776241  6.2078824] 

The eigenvalues of such a matrix are: 

𝐸𝑖𝑔 = [ −9.88469887 − 5.93104506 − 1.97691166  1.97699594  5.9309001   9.88456535] 

Which are well equispaced. The difference between each two consecutive eigenvalues is as below: 

𝐷𝑖𝑓𝑓(𝐸𝑖𝑔)

=    [3.953653810000000   3.954133400000000   3.953907600000000   3.953904160000000 

3.953665250000001] 

 

Where the difference is in the 4th precision digit. Based on the previously mentioned design 

specifications, the design values are denormalized. We recall that all the parameters were 

normalized with respect to the coupling factor ratio between the core fiber and the peripheral ones. 
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𝑍 = 𝑐1𝑧, 𝐶 = 𝑐2/𝑐1 , Δ𝑛 = 𝛿𝑛/𝑐1 

𝑧 =
𝑍

𝑐1
 

𝑐2 = 𝑐1𝐶 

𝛿𝑛 = 𝑐1Δ𝑛 

And 𝑐1 = 505.0319912628847. The actual detuning values are calculated as below: 

𝛿𝑛 =   1000 ∗ [4.645114216414875   1.074340358564260  − 4.928629267582189  

− 2.962622747804824 − 0.963481048778780   3.135179209997816] 

Next, we find the core radius values, corresponding to these detuning values. The notation 𝛿𝑛 here 

is a difference of propagation constant from a reference value. In other words, 𝛽𝑛 − 𝛽0 = 𝛿𝑛, 

where 𝛽𝑛s are propagation constants of every isolated core. For a fiber with the following 

characteristics: 

𝑎 = 3 𝜇𝑚 

𝑛𝑐𝑜𝑟𝑒 = 1.45 

𝑛𝑐𝑙𝑎𝑑 = 1.444 

The propagation constant (from COMSOL simulations) is: 

𝑛𝑒 = 1.44562363576262 

𝛽0 = 𝑘0𝑛𝑒 

Below, 𝛽 = 𝛽0 + 𝛿𝑛 values are calculated. 

𝛽 = [ 5.850517833699154   5.854342010110604   5.858166153590339   5.861990792363823 

 5.865814226483982   5.869638238372545 ] 

𝑛𝑒𝑓𝑓 = [1.446769539740212   1.445888664959494   1.444407791411185   1.444892785877634 

   1.445385954466813   1.446397053629183] 
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The above 𝑛𝑒𝑓𝑓s are proportional to core values given in the lines below: 

𝑟1 = 4.02 

𝑟2 = 3.21 

𝑟3 = 2.046 

𝑟4 = 2.448 

𝑟5 = 2.818 

𝑟6 =  3.652 

The error values given below are calculated form the difference between ideal propagation 

constants and propagation constants proportional to the above mentioned design values (core radii) 

𝐸𝑟𝑟𝑜𝑟1 = −8.283090124905357𝑒 − 08 

𝐸𝑟𝑟𝑜𝑟2 = 4.210045174701804𝑒 − 07 

𝐸𝑟𝑟𝑜𝑟3 = −7.150309551118284𝑒 − 07 

𝐸𝑟𝑟𝑜𝑟4 = −8.319869093664778𝑒 − 07 

𝐸𝑟𝑟𝑜𝑟5 = 4.222431122524739𝑒 − 07 

𝐸𝑟𝑟𝑜𝑟6 = −1.043126112376669𝑒 − 06 

To obtain a perfect design, the core radii are manually tuned. These values are given in Table 8-6 

Table 8-6 The computed core radii of lattice elements for a pentagonal structure with an equidistant 

distribution of eigenvalue. 

𝒓𝟏 𝟒. 𝟎𝟖 𝝁𝒎 

𝒓𝟐 3.21 𝜇𝑚 

𝒓𝟑 2.07 𝜇𝑚 

𝒓𝟒 2.45 𝜇𝑚 

𝒓𝟓 2.82 𝜇𝑚 

𝒓𝟔 3.65 𝜇𝑚 

 



142 

 

Effective indices of six modes are also given in Table 8-7. 

Table 8-7 The effective indices corresponding to the design values given in Table 8-6 

1.444369816000000 

1.444875056000000 

1.445372428000000 

1.445869554000000 

1.446363699000000 

1.446871981000000 

 

The spacing between effective indices of consecutive modes is given below. The error is in the 4th 

decimal digit. The eigenvalues of our designed structure lie very well on a straight line (Figure 

8-15). 

1.0e-03 * 

0.505240000000073 

0.497371999999885 

0.497125999999959 

0.494145000000001 

0.508281999999971 
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Figure 8-15 The linear distribution of eigenvalues for a pentagonal structure given in Table 8-6 

8.6.3 Pentagonal Lattice: The Second Design 

We consider the spacing to be 12 𝜇𝑚 from the central core to the lateral elements. 

𝑎 = 12 𝜇𝑚 

The coupling between the central element and the peripheral ones is calculated as below: 

𝑛𝑒1 = 1.44573898965622 

𝑛𝑒2 = 1.44548981680895 

𝜅 =
𝛽2 − 𝛽1

2
=

𝑘0

2
(𝑛𝑒1 − 𝑛𝑒2) 

𝜅 = 505.0319912628847 

The coupling between two peripheral elements is found from below: 

𝑛𝑒1 = 1.44568438808379 

𝑛𝑒2 = 1.44555659355294 
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𝜅 =
𝛽2 − 𝛽1

2
=

𝑘0

2
(𝑛𝑒1 − 𝑛𝑒2) 

𝜅 = 259.0183 

𝐶 =  
𝐶𝑙−𝑙

𝐶𝑐−𝑙

=  0.512875027315939 

Through the same procedure we find the Δ vector to be as below: 

Δ = [ −5.80195284  1.19879854  6.38553905 − 1.37087941  3.73753476 − 4.1490221 ] 

The eigenvalues of such a matrix are: 

𝐸𝑖𝑔 = [−6.58943748 − 3.95356274 − 1.31758142  1.31808138  3.95385456  6.58866692] 

The differences between consecutive eigenvalues are as below: 

𝐷𝑖𝑓𝑓(𝐸𝑖𝑔)

=    [2.635874740000   2.635981320000   2.635662800000   2.63577318000   2.634812360000] 

 

Where the difference is again in the 4th precision digit. Now,  again denormalization is performed 

to the actual design specifications. 

𝑍 = 𝑐1𝑧, 𝐶 = 𝑐2/𝑐1 , Δ𝑛 = 𝛿𝑛/𝑐1 

𝑧 =
𝑍

𝑐1
 

𝑐2 = 𝑐1𝐶 

𝛿𝑛 = 𝑐1Δ𝑛 

For 𝑐1 = 505.0319912628847, the physical detuning values are calculated as below: 

𝛿𝑛 =   1000 ∗ [ −2.930171795998549   0.605431613779239   3.224901501708409  

− 0.692337958213588  1.887574622257048  − 2.095388892956715] 

Now, we should find core radii proportional to these changes in the propagation constants. For a 

fiber with the following characteristics: 

𝑎 = 3 𝜇𝑚 

𝑛𝑐𝑜𝑟𝑒 = 1.45 

𝑛𝑐𝑙𝑎𝑑 = 1.444 
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The propagation constant (from COMSOL simulations) is: 

𝑛𝑒 = 1.44562363576262, 𝛽
0

= 𝑘0𝑛𝑒 

The vector below represents 𝛽 = 𝛽0 + 𝛿𝑛 

𝛽 = [ 5.850517833699154   5.854342010110604   5.858166153590339   5.861990792363823 

 5.865814226483982   5.869638238372545 ] 

And the effective indices proportional to these propagation constants are as below: 

𝑛𝑒𝑓𝑓 = [1.446769539740212   1.445888664959494   1.444407791411185   1.444892785877634 

   1.445385954466813   1.446397053629183] 

These 𝑛𝑒𝑓𝑓s are proportional to particular core radius values of fibers that are calculated and given 

in the below: 

𝑟1 = 2.454 

𝑟2 = 3.118 

𝑟3 = 3.672 

𝑟4 = 2.87 

𝑟5 = 3.378 

𝑟6 = 2.608 

 

𝐸𝑟𝑟𝑜𝑟1 = −6.864806818551728𝑒 − 07 

𝐸𝑟𝑟𝑜𝑟2 = −8.968273186304998𝑒 − 07 

𝐸𝑟𝑟𝑜𝑟3 = −3.397280237127376𝑒 − 07 

𝐸𝑟𝑟𝑜𝑟4 = −1.363850628210983𝑒 − 06 

𝐸𝑟𝑟𝑜𝑟5 = −7.669702746238016𝑒 − 07 

𝐸𝑟𝑟𝑜𝑟6 = −1.540302957403483𝑒 − 06 

 

In the section below, we perform the manual tuning to minimize the errors. 
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8.6.4 Pentagonal Lattice: Manual Tuning 

After manually changing the core radii (with 10 nm precision) to reach the best performance at 

1.55 𝜇𝑚 we get the following values. For 𝑑 = 12 𝜇𝑚, where 𝑑 is the distance from the central 

core to the peripheral ones. 

Table 8-8 The optimized core radii values for an equidistant distribution of eigenvalues in a 

pentagonal multicore structure. 

𝒓𝟏 𝟐. 𝟓𝟎 𝝁𝒎 

𝒓𝟐 3.12 𝜇𝑚 

𝒓𝟑 3.69 𝜇𝑚 

𝒓𝟒 2.87 𝜇𝑚 

𝒓𝟓 3.39 𝜇𝑚 

𝒓𝟔 2.61 𝜇𝑚 

 

The location of each core is demonstrated in Figure 8-16. 

 

Figure 8-16 This figure shows the numbering convention that was used in the design procedure 

The eigenvalues of such a structure are given in Table 8-9. 
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Table 8-9 The effective indices for the second design 

1.444786257000000 

1.445120029000000 

1.445451588000000 

1.445781903000000 

1.446116304000000 

1.446448379000000 

 

The spacings between eigenvalues are given in Table 8-10  

Table 8-10 The spacing between eigenvalues for the second design after manual tuning. Each value 

is normalized to 10-3 . 

0.333771999999843 

0.331559000000148 

0.330315000000025 

0.334400999999929 

0.332074999999987 
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CONCLUSION AND REMARKS 

Multimode fiber systems offer a promising avenue for overcoming some of the physical limitations 

associated with single mode structures. The added spatial degrees of freedom provide further 

opportunities at both the scientific and technological level that were previously overlooked and 

remained unattainable because of technological barriers. From a more fundamental perspective, 

such multidimensional multimode systems provide an ideal testbed for investigating complex 

linear and nonlinear modal interactions. Many aspects of such convoluted system are yet to be 

understood. An example of such complex processes is soliton fission and dispersive wave 

generation. While this process is very well understood in single-mode fibers, the efforts to obtain 

a general theory to accurately describe these effects in multimode systems have been so far 

unsuccessful. Here, we present the first general theory in this regard. Relying on our theory, we 

could exactly describe the spectral and temporal features correspond to the pulse propagation in 

an anomalously dispersive MMF. It also enabled us to not only predict the system output but also 

to engineer it. We also showed that parabolic multimode fibers can provide a versatile platform 

for tailoring supercontinuum generation. Experiments and simulations carried out in the 

anomalous dispersive region indicate that the modal composition (energy distribution and phase 

relationship among eigenmodes) of the input beam plays an important role in altering the output 

spectrum.  

The propagating beam in a parabolic index multimode fiber experiences a self-imaging behavior. 

We investigated, for the first time, the effects of acceleration of nonlinear intermodal interactions 
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in multimode fibers. We demonstrated that this spatiotemporal acceleration can have a significant 

effect on the temporal and spectral behavior in both dispersion regimes. In the anomalously 

dispersive region, this acceleration leads to blue-drifting dispersive wave combs while under 

normal dispersive conditions, we observe a generation of accelerating frequency bands that 

dynamically and uniformly sweep the entire spectrum. This, in turn, can be utilized to produce a 

notably flat and uniform supercontinuum, extending over 2.5 octaves.  

The same multimode fiber taper platform can be used to generate parabolic pulses. Using this 

platform, one can avoid any limitation on the bandwidth of these pulses. Also, due to the large 

core area, the pulse can carry orders of magnitude higher energy level. In addition, due to an input 

peak power dependent transmission, these fiber tapers can be used at the same time as saturable 

absorbs for spatiotemporal mode-locking in STML lasers. 

An interesting observation that was made in multimode optical fibers was an efficient generation 

of a second-harmonic and down-converted signal. We showed that germanium-doped parabolic 

multimode silica fibers can exhibit relatively high SHG conversion efficiencies and down-

conversion. Unlike previous experiments, these 𝜒(2) related processes occurred immediately 

without any preparation. Of interest would be to consider the potential of the 𝜒(2) down-conversion 

process as a source for biphoton generation in quantum optics.  

In the last section, we analyzed multicore fiber systems, as another alternative platform for 

expanding communication bandwidths. We suggested a methodology to find the supermodes and 

their corresponding eigenvalues in a multicore optical system of any size and dimension. In the 

end, we suggested a novel scheme for designing multicore systems of equidistant eigenvalues. 

Such a system can be used to effectively compensate the intermodal group velocity dispersion 

present in any multimode systems. To do this, a single grating coupler can be utilized to couple all 
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the modes to each other and hence reduce DGD. It is worth mentioning that due to a large spacing 

between the modal eigenvalues and core/cladding indices, there is no radiation loss.  
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APPENDIX A: THE PYTHON CODE FOR DESIGNING A SIX-

ELEMENT PENTAGONAL STRUCTURE WITH EQUIDISTANT 

EIGENVALUE DISTRIBUTION 
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import tensorflow as tf 

import numpy as np 

 

eig_val = tf.placeholder(dtype=tf.float32, shape=[1, 6]) 

initial_val = tf.placeholder(dtype=tf.float32, shape=[1, 6]) 

 

delta = tf.Variable(initial_value=[[.2, .3, -.1, -.6, .7, 1.]]) 

 

initalize_delta = delta.assign(initial_val) 

 

c = 0.42 

 

A = tf.constant([ 

    [0., 1., 1., 1., 1., 1.], 

    [1., 0., c, 0., 0., c], 

    [1., c, 0., c, 0., 0.], 

    [1., 0., c, 0., c, 0.], 

    [1., 0., 0., c, 0., c], 

    [1., c, 0., 0., c, 0.] 

], dtype=tf.float32) 

 

matrix = A + tf.matmul(delta, tf.eye(6)) 

matrix = tf.reshape(matrix, shape=[1, 6, 6]) 

eig, _ = tf.self_adjoint_eig(matrix) 

 

loss = tf.losses.mean_squared_error(labels=eig_val, 

                                    predictions=tf.reshape(eig, 

shape=[1, 6])) 

 

optimizer = 

tf.train.GradientDescentOptimizer(learning_rate=.1).minimize(los

s) 

 

init = tf.global_variables_initializer() 

sess = tf.Session() 

sess.run(init) 

loss_val = 1. 

step = 0 

 

min_loss = 1. 

 

 

#eig_val_array = [[-1, 0, 0, 1, 1, 1]] 

temp = np.random.uniform(-4., 4., 3) 

eig_val_array = 

np.matrix([temp.item(0),temp.item(1),temp.item(2),temp.item(1),t

emp.item(2),temp.item(2)]) 
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while loss_val > 0.00001: 

    _, new_loss = sess.run([optimizer, loss], 

feed_dict={eig_val: eig_val_array}) 

    if abs(new_loss-loss_val) < 0.00000001: 

        if new_loss < min_loss: 

            print(step, loss_val) 

            print(eig_val_array) 

            print(sess.run(eig)) 

            print(sess.run(delta)) 

            min_loss = new_loss 

        step = 0 

        sess.run(initalize_delta, feed_dict={initial_val: 

[np.random.uniform(-4., 4., 6)]}) 

        #eig_val_array = eig_val_array 

        temp = np.random.uniform(-4., 4., 5) 

        eig_val_array = np.matrix([temp.item(0), temp.item(1), 

temp.item(2), temp.item(3), temp.item(4), temp.item(4)]) 

        loss_val = 1. 

    loss_val = new_loss 

    step += 1 

 

print(sess.run(delta)) 

print(sess.run(eig)) 
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