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ABSTRACT 

The objective and motivation for this project is to design a low-power, low-noise oven-

control circuit to optimize the stability of a MEMS oscillator. MEMS oscillators can be fabricated 

using conventional semiconductor manufacturing methods and can often be assembled in packages 

smaller than those of traditional crystal oscillators. However, one of their largest disadvantages 

currently is their high temperature coefficient of frequency (TCF), causing MEMS oscillators to 

be especially sensitive to temperature changes. Hence, this project focuses on designing a printed 

circuit board that will allow the user to manually tune a current passing through a resonator wire-

bonded to the board to elevate the resonator temperature. This will ensure that the device’s 

resonance frequency stays largely constant and that the oscillator provides a very stable signal. 
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CHAPTER 1: INTRODUCTION AND OBJECTIVE 

1.1 Introduction and Overview 

Microelectromechanical systems (MEMS) is an area of research in which much discovery 

and advancement has been made in the past six decades. MEMS are now used in countless 

applications, the variety of which is steadily increasing. One of these uses is for circuit timing. 

Crystal oscillators have long been the device of choice for this application because of their high 

quality factor and temperature stability; however, MEMS resonators have shown promise for being 

smaller and having CMOS compatible fabrication processes [1].  

MEMS resonators are fabricated on variety of mediums. However, this research will focus 

on those on a silicon substrate. Silicon has several properties, such as single crystal structure, low 

motional impedance, and high Q factor, that make it a viable option as a substrate [2].  

However, a disadvantage of this substrate is that it tends to have a relatively high 

temperature coefficient of frequency (TCF) [3]. The TCF of a material such as silicon is dependent 

on doping and other characteristics of the substrate. This high sensitivity to temperature causes 

undesirable variations in the resonance frequency. Thus, a method of stabilizing the resonance 

frequency is sought; an effective method is some form of oven-control. This work explores active 

temperature compensation as a method of oven-control.  

1.2 Objective and Motivation 

The objective of this work is to design and build a circuit that will allow for the user to 

manually stabilize the temperature of a silicon-based MEMS resonator wire-bonded to pads of the 

PCB at an elevated set point. Because of the characteristic TCF of a TPoS resonator, it is predicted 
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that parts per billion (ppb) frequency stability is achievable through such temperature stabilization. 

The purpose of this circuit is to explore the frequency stability of a TPoS MEMS oscillator at a 

stable temperature equal to the resonator’s turn-over temperature (the temperature at which the 

derivative of the TCF is equal to zero).  

A functional block diagram is shown below for an overview of how the circuit operates:  

 

Figure 1: Circuit block diagram 

This circuit will use Ohmic resistive heating (also known as Joule heating) to elevate the 

temperature of the resonator.  The principle of this type of heating is that electric current is used to 

produce heat. Because the resonator is made of doped silicon, passing a current through the 
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resonator will produce heat in the device. The amount of current needed to heat the resonator above 

the industrial operating range will be crucial for this project and must be obtained via testing data.  

The resistance of the resonator will also change with its temperature. Because the resonator 

was fabricated on silicon, which is a semiconductor material, the temperature coefficient of 

resistance will most likely be negative, indicating an inverse relationship between the temperature 

and the resistance of the resonator. Testing will be done to correlate a particular temperature and 

resistance of the resonator, and this information will be used to help calculate the temperature of 

the resonator for any arbitrary current.  

The controlled current will also be passed through a resistor with a very low temperature 

coefficient of resistance (TCR), which guarantees that the resistance of this resistor does not 

change much over a certain range of temperature. The voltage across this resistor will be measured 

using an instrumentation amplifier. Knowing the resistance and the voltage across it allows for the 

current through the resistor to be calculated. Since this resistor is in series with the resonator, the 

current through the two components will be equal. 

Using an instrumentation amplifier, the voltage across the resonator will also be measured. 

Since the current through the resonator can be calculated using the voltage across a low TCR 

resistor, the data needed to calculate the resistance of the resonator can be obtained. Then, the 

resistance of the resonator can be correlated using prior testing data. Each resistance value of the 

resonator will correspond to a particular temperature, and using this information, the resistance of 

the resonator can be used to determine the temperature.  
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Then, the circuit feedback will have to be tuned to set the temperature equal to the set point 

(which is the turnover temperature of the resonator). The current through the resonator will be 

controlled using a voltage controlled current source with the voltage manually controlled using a 

potentiometer. If a certain temperature value is desired, then the voltage input will have to be 

altered. Through calculation of the resonator resistance and temperature, the user can decide how 

to adjust the input voltage and thus the resonator current. This feedback loop could eventually be 

closed using a microcontroller.  

CHAPTER 2: BACKGROUND AND MOTIVATION 

2.1 Background 

Ovenization of MEMs resonator and oscillators is among the most effective active 

temperature control methods. The idea is to operate the oscillator at a constant elevated 

temperature to prevent fluctuation. This proposal details a design for an oven-control circuit for a 

thin-film piezoelectric-on-silicon (TPoS) MEMS resonator. The design will focus on using voltage 

and current measurements and manual control to keep the temperature of the oscillator above 85°C. 

The current will also be passed through a filter so that the signal that reaches the resonator will be 

low noise.  

2.2 MEMS Development 

 A Bell Labs researcher first created “air-isolated integrated circuits” in 1965 [4]. This laid 

the groundwork for MEMS research and development. In the 1970s, micro sensors and actuators 

were studied more extensively. Around this time, integrated circuit fabrication technology began 

to be applied to MEMS technology, specifically bulk micromachining (the usage of chemical 

etchants to selectively remove silicon to form different microstructures.)  
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In the 1980s, surface micromachining (where low pressure chemical vapor deposition is 

used to deposit layers on a substrate and then a sacrificial layer between the substrate and layers is 

removed) was applied to MEMS fabrication. IBM researchers developed a MEMS accelerometer, 

and then a vapor sensor was developed at University of California Berkeley (UC Berkeley) using 

surface micromachining. This opened a new host of possibilities for MEMS.  

Micro gears and micro motors were fabricated successfully, introducing potential for 

resonators and actuators. Researchers at UC Berkeley then developed a polysilicon resonator with 

electrostatic comb drive structures [4]. The next large focus became packaging, mainly to reduce 

resonator errors. However, other applications continued to expand as MEMS technology was used 

for neural interfacing, micro fluids, and other applications.  

2.3 Applications and Potential 

 Currently, piezoelectric devices have a wide variety of applications from transducers and 

mechanical actuation to microstructure sensing. Microelectromechanical systems (MEMS) have a 

large potential for new applications. Their ability to be manipulated by electric fields and their 

small size are very promising because they can easily be integrated into electronic devices [5].   

Although research on MEMS is still a developing field, they are prevalent in a number of 

modern applications. A Texas Instruments employee invented the digital micrometer devices 

(DMD) for usage in digital displays starting in the 1990s, while UC Berkeley researchers created 

RF MEMS for wireless communications applications. Bio-MEMS, for usage with biological and 

chemical devices and often used to deliver nanoliter drops of fluids, were first created in the 1990s 

as well. 
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In the 2000s, MEMS started being used as inertial sensors and gyroscopes with the advent 

of more sophisticated machining techniques [4]. Today, there are a number of other MEMS 

applications, including inkjet printers, DNA manipulation, scanning probe microscopes, optical 

fiber switches, and more [6]. This research will focus on MEMS resonators as a replacement for 

crystal oscillators.   

2.4 Crystal Oscillators 

Highly prevalent in circuits and integrated circuits (ICs), crystal oscillators are considered 

to be stable and have a high Q factor [7].  

The current larger size of crystal oscillators is more common because they are less 

expensive than smaller applications. However, smaller crystal oscillators are increasingly in higher 

demand because of the decrease in overall size of electronics.  

Crystal oscillators do have some disadvantages compared to MEMS resonators. For some 

applications, MEMS resonators may be a more suitable choice because they are often smaller in 

size and can usually be fabricated directly on an IC.  

2.5 Piezoelectricity 

 Piezoelectricity was first discovered by the Curie brothers. However, it was not until 1921 

that the piezoelectric properties of quartz allowed crystal resonators to be used as oscillators [5]. 

Currently, some common piezoelectric materials are aluminum nitride (AlN), lithium niobate 

(LiNbO3), quartz, lead zirconate titanate (PZT), and zinc oxide (ZnO) [8]. 
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 Largely dependent on crystal orientation, the direct piezoelectric effect occurs when charge 

is generated from external stress or strain. This external force alters the spacing between the 

positive and negative charges, causing a measurable open circuit voltage on the crystal surface [8].  

 

Figure 2.1: Piezoelectric effect 

Mathematically, the piezoelectric effect can be described by the following formula:  

D = dT + εE     ( 2.1) 

where D is the electrical polarization, d is the piezoelectric coefficient matrix, T is the applied 

mechanical stress, ε is the electrical permittivity matrix, and E is the electric field strength.  

 Through the inverse piezoelectric effect, a mechanical force can be caused by the 

application of an electric field. This creates a force between the positive and negative charges and 

causes elastic strain and stress.  

 

Figure 2.2: Inverse piezoelectric effect 

Mathematically, the inverse piezoelectric effect can be described by the following formula:  
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s = ST + dE     (2.2) 

where s is the strain vector, S is the compliance matrix, T is the applied mechanical stress, d is the 

piezoelectric coefficient matrix, and E is the electrical field strength.  

2.6 Fundamentals of Resonators 

A resonator is a device that exhibits resonance, such that it oscillates mechanically with 

greater amplitude at certain frequencies than at others [9]. Mechanical oscillation is the periodic 

repetition of mechanical vibrations. Many MEMS can be modeled using a single degree of freedom 

damped oscillator like the following:  

 

Figure 2.3: Single degree of freedom damped oscillator 

The equation for motion of such a system is:  

F(t) = mx’’(t) + bx’(t) + ku(t)   (2.3) 

where x is the displacement, m is the effective mass, b is the damping coefficient, k is the stiffness 

of the spring, and t is time. The undamped frequency of the system is:  
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ω0 = √
k

m
      (2.4) 

The damping ratio (ξ) is:  

ξ = √
b

4km
      (2.5) 

 If the system is considered to be underdamped, the complete response should be of the 

form: 

x(t) = e−ξ(ω0)t[C1 cos(wdt) + C2 sin(wdt)]  (2.6) 

 where ωd is:  

ωd = ω0 √1 − ξ2
     (2.7) 

2.7 Q-Factor 

 The quality factor (Q) is a way to measure of energy loss in a resonator [10]. Hence, the 

better the Q factor, the more suited an oscillator is to its application. The Q factor drives the 

sharpness of the peak in a plot of response versus frequency [9]. It can be represented as: 

Q = 
1

2ξ
=  

√km

b
      (2.8)  

 for a model of a single degree of freedom damped oscillator. A common Q factor definition 

for resonators is: 

Q = 2π 
Estored

Elost
      (2.9) 

 where Estored is considered the stored energy in the “spring”, and Elost is the energy lost 

per steady-state vibration [9]. 
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2.8 Temperature Compensation 

One of the most effective methods for controlling the resonant frequency of a MEMS 

resonator (and thus the temperature) is to create an oven-control circuit. Past works done by 

researchers have demonstrated stability of oven-controlled MEMS resonators. Operating at an 

elevated temperature, this method often uses current passed through the resonator to heat the 

resonator [3]. Minimizing the TCF of the resonator is key in increasing its stability. If f is 

frequency, and T is temperature, then TCF can be defined as follows:  

TCF =  
1

f
 

df

dT
     (2.10) 

There are two general approaches to compensating the frequency drift due to temperature 

fluctuation: active temperature compensation and passive temperature compensation. 

Degenerately doping the silicon layer in silicon-based MEMS resonators, adding a silicon dioxide 

over layer, and designing the body shape of the resonator to have a low TCF are examples of 

passive temperature compensation [11].  

Alternatively, active temperature compensation methods offer better temperature stability 

but often use more power. Active temperature compensation requires adjustments via external 

manipulation. Using active elements of a circuit for control, heating a resonator to an elevated 

temperature, and introducing mechanical or thermal stress are examples of active temperature 

compensation [11]. 

2.9 TPoS Resonators 

The resonator to be used in this circuit is a thin-film piezoelectric-on-substrate (TPoS) 

resonator. This is advantageous because TPoS resonators provide a low motional impedance at 
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relatively high frequencies and do not need bias voltage [12]. They use a thin layer of piezoelectric 

material to induce resonance in the substrate, which is typically silicon [13].  

2.10 Temperature Coefficient of Frequency 

The temperature coefficient of frequency (TCF) describes the change in frequency as the 

temperature changes. The TCF for lightly doped silicon is often around -30ppm/°C and is about  

-50ppm/°C for most MEMS oscillators. The TCF has a bell-curve shaped; thus, the change in the 

TCF is minimized at the turnover temperature (where the TCF switches polarity) of the bell-curve. 

Keeping the resonator operating at or around this temperature will help keep the performance of 

device stable since the TCF is at its minimum [14].  

2.11 Temperature Coefficient of Resistance 

The temperature coefficient of resistance (TCR) describes the change in resistance of a 

material or device when its temperature is changed. A positive TCR means that the resistance 

increases with an increase in temperature while a negative TCR means that the resistance decreases 

with an increase in temperature. For some semiconductor materials, the TCF may be negative 

because an increase in heat increases the charge-carrier ratio and increases conductivity, 

decreasing the resistance. 

2.12 Future Potential 

 MEMS are anticipated to be used in wider applications as research continues. From energy 

to security, MEMS have the potential to impact and improve sensing and electronic performance 

in countless applications. The unique properties of microdevices operating with mechanical 

attributes is what makes MEMS an increasing field of interest today. Some applications have, to 

some extent, limits on their performance that need to be reduced before MEMS can serve as a 
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replacement for the current industry standard counterparts. An example of this is the potential of 

MEMS oscillators to replace crystal oscillators, but the current TCF of the MEMS oscillators is 

high and needs to be minimized for it MEMS oscillators truly be a viable replace for crystal 

oscillators. Thus, to explore oven-control for MEMS oscillators, this project will focus on using 

active temperature control for a TPoS resonator.  
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CHAPTER 3: CIRCUIT DESIGN AND THEORY OF OPERATION 

This chapter explores the design of a circuit schematic that will be used to create a printed 

circuit board. The objective of the circuit is to measure the voltage and current through the resistor 

and be able to manually tune the input voltage so that the current passed through the resonator 

keeps the temperature stable.  

 Exact values of the circuit components rely on the resistance of the resonator and the 

amount of current needed to be passed through it to heat the resonator to the desired temperature. 

The specific type of resonator used in this circuit may change the range of the input voltage wanted; 

thus, exact values for resistors, capacitors, and voltage references will be avoided whenever 

possible.  

3.1 Theory of Operation  

The overall function of the circuit is to aid in the temperature stabilization of a TPoS MEMS 

resonator. This section describes the operation of the circuit and the general purpose of its 

components, and the following image depicts the overall circuit schematic. Subsequent sections 

will detail the optimization and operational equations of each portion of the circuit.  
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Figure 3.1: Schematic of circuit 

The voltage supply powers a voltage reference (Viref) that provides a stable input voltage for 

the circuit. Then, the potentiometer (Rp) is used to help manually tune the voltage inputted to the 

circuit. The resistors, Ra and Rb, are used to scale the range of the voltage input.  

A voltage to current converter is used at the input to set the current passing through the 

resonator. The current passed through the resonator is:  

Vset

Rset
≈  Ires     (3.1)  

The voltage drop across Rres and Rmea is driven by the input of a voltage reference source 

that provides a stable input for these components. Two instrumentation amplifiers (with first order 

filters to reduce noise) are used to measure the voltage across Rres and Rmea.  

The output (VresO) of the instrumentation amplifier measuring the voltage drop across the 

resonator should be equal to the voltage across the resonator, while the output (VmeaO) of the 
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instrumentation amplifier measuring the voltage drop across Rmea should be equal to the voltage 

across Rmea, which can result in a calculation of the current using Ohm’s Law:  

VmeaO

Rmea
= Imea = Ires    (3.2) 

 This, along with the measurement of VresO can then be used to find the resistantance of the 

resonator using the following equation:   

VresO

Imea
= Rres      (3.3) 

 The correlation between Rres and the temperature, previously determined by the user, can 

be used to ascertain the temperature of the resonator from this calculation.  

3.2 Voltage Reference for Input 

 A voltage reference was chosen for the input voltage since it can provide a precise input to 

the circuit. It is important that the chosen component has tight tolerances and provides a value that 

will supply the proper range of input voltage. The value for the reference resistor is chosen such 

that the following inequality is satisfied, where IqMin and IqMax are cathode current limits specified 

in the datasheet:  

IqMin < I𝑞 < IqMax      (3.4) 

The figure below shows how a voltage reference is typically connected and is provided 

here to show which currents and resistors correspond to which name designations.  
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Figure 3.2: Voltage reference for input 

The minimum current required at the cathode of the voltage reference for it to operate is 

listed in the datasheet of the voltage reference chosen, as is the maximum cathode current allowed. 

Sometimes, there is also a recommended value listed. The cathode current will be referred to as Iq 

in the following equations. Rs should be chosen to satisfy this requirement. For this configuration, 

the following equation must also be satisfied:  

Vs+−Viref

R𝑠
  =  IL  + Iq     (3.5) 

The desired value for Iq should be set to satisfy the above limits. IL is the current value 

passed through Rc, and Iq is the current at the cathode of the voltage reference. Then, the voltage 

divider is in place to allow for control of the voltage input to the op-amp. The value that appears 

on the V+ terminal is equal to the equation below, with Rp as a potentiometer for manual tuning of 

the input. Having the potentiometer located there also allows for total shutoff of the voltage if 

desired. The following equation describes the relationship between Viref and V+. 
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𝑉+ = (
R𝑝

R𝑝+R𝑐
) ∗ V𝑖𝑟𝑒𝑓     (3.6) 

Then, the voltage at the positive terminal will be amplified to give the desired voltage range 

for the current passed through the resonator. This is represented by the equation shown below:  

V𝑠𝑒𝑡 = (
R𝑎

R𝑏
+ 1) ∗ 𝑉+     (3.7) 

Thus, Vset is related to Viref by the following equation:  

V𝑠𝑒𝑡 = (
R𝑎

R𝑏
+ 1) ∗ (

R𝑝

R𝑝+R𝑐
) ∗ V𝑖𝑟𝑒𝑓   (3.8) 

3.3 Voltage to Current Converter 

 

Figure 3.3: Voltage to current converter 

 The above figure depicts a sample voltage to current conveter. The input voltage is routed 

to U1 on the positive terminal and is equal to the negative terminal. Thus, the current through Rset 

is:  

Vin

Rset
=  Iset      (3.9) 
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Then,   

(β + 1)Imea =  βIset =  (β + 1)I
𝑟𝑒𝑠

   (3.10) 

 If β is sufficiently large, then  

Ires ≈ Iset ≈ Imea     (3.11) 

 The maximum input voltage can be calculated as follows:  

V𝑖𝑀 =
Vref−Vt

(
R𝑎
R𝑏

+1)(
R𝑝

R𝑝+R𝑐
)
  (3.12) 

 An input voltage higher than ViM will cause the transistor to not be in forward active mode 

and will negatively impact circuit performance. Thus, the voltage input should not exceed ViM. 

3.4 Transistor 

The transistor used in this circuit is a NPN bipolar junction transistor (BJT). NPN was best 

suited for this circuit since it has a low turn-on voltage and a high current gain. The particular 

transistor chosen must have high gain (β). Using this value, the following equation can be true:  

Ires ≈ Iset ≈ Imea     (3.13) 

 

3.5 First Order Filter 

 A first order filter is designed to attenuate noise from the voltage signals. For this 

application, a first order low pass filter was added to both instrumentation amplifiers. The cutoff 

frequency for the filter is determined by the following equation, with R and C defined as shown in 

Figure 3.4. 

1

2π∗2RC
=  fcutoff     (3.14) 
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The following image depicts the arrangement of the first order filter used on the 

instrumentation amplifiers in the circuit.  

 

Figure 3.4: First order filter for op-amp input 

3.6 Instrumentation Amplifiers 

Both instrumentation amplifiers are chosen because of their low power, high precision 

performance. Although two devices are needed, the same component option can be used for both 

instrumentation amplifiers. The desired parts per billion (ppb) accuracy of the frequency of the 

circuit means that all of the circuit components must be very accurate. In addition to meeting 

performance criteria, the instrumentation amplifier must meet desired supply voltage 

requirements. One of the instrumentation amplifiers will be used to measure the voltage across the 

resonator, and the other will measure the voltage across a thermally invariant resistor to measure 

the current passing through the resonator. This resistor, labeled as Rmea in Figure 3.1, must have a 

very low TCR in order to be able to calculate the current through it and the resonator with high 

accuracy.  
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Figure 3.5: Instrumentation amplifier setup 

The gain for the op-amp is set per the manufacturer datasheet by the following equation, 

where RX is related to resistors inside the integrated circuit and has a predetermined value that can 

be found in the datasheet:  

1 +  
RX

RG
=  Gain     (3.15) 

 However, for this design, across the resonator and resistor used for current measurements, 

a gain of 1 will be sufficient. Adding a resistor for gain on the instrumentation amplifier would not 

provide much advantage and would increase the thermal noise of the circuit. Thus, RG should be 

left open to allow for a gain of 1.  

The reference terminal is grounded because the instrumentation amplifier is used in dual-

supply mode. However, if the instrumentation amplifiers were to be used in single-supply mode, 

the reference pin would need to have a low impedance voltage input equal to about half the supply 

voltage to shift the output and allow for driving of the single-supply ADC [15]. 
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 The equation of the output of each instrumentation amplifier, Vo, is described by the 

following equation, where G is the gain:  

Vo = (V+ − V−
) ∗ G + Vref    (3.16) 

3.7 Voltage Reference for Powering the Resonator 

 The voltage reference source serves here to provide a stable input for the voltage drop 

across the resonator and prevents improper loading of the instrumentation amplifier. The 

maximum reference voltage needed can be calculated according to the following equation that is 

based on the maximum voltage input and its effects.  Vt is the turnon voltage of the transistor, VsetM 

and VresM are the maximum voltage across Rset and the resonator (occurs when the current Iset is at 

its highest value, referred to here as IsetM, and is due to Vi being at its highest value).  

IsetM(Rset + Rmea)  + VsetM + Vt =  VrefM  (3.17) 

 The minimum value for the reference resistor is calculated such that the following 

inequality is satisfied, where IqMin and IqMax are cathode current limits specified in the datasheet:  

IqMin < I𝑞 < IqMax      (3.18) 

 

Figure 3.6: Voltage reference setup 
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For this configuration, the following equation must be satisfied:  

Vs+−Vref

R𝑠
  =  IresMax  +  Iq      (3.19) 

IresMax is the maximum current value passed through the resonator that the circuit is 

designed to handle, and Iq is the current at the cathode of the voltage reference. According to the 

datasheet, the inequality in Equation (3.20) must be satisfied in order to meet minimum operating 

voltage requirements while staying beneath the maximum reverse current. Thus, Rs must be chosen 

to satisfy this requirement. The voltage reference chosen must have a reference value which is 

satisfactory based on the desired Iset range [16] . 

3.8 Supply Voltages 

Choosing the value for the supply voltage depends on the range of the voltage drop across 

Rres. Unless the op-amp or instrumentation amplifier supports rail-to-rail operation, it is important 

to set the supply voltage such that the inputs V+ and V- do not exceed V+ - a and V- + b, where ‘a’ 

and ‘b’ are constants listed in the datasheet such that the device will meet common-mode voltage 

requirements [15]. Additionally, all datasheets should be checked to ensure that the chosen supply 

voltage is within the specified limits for that component since all will be using the same supply 

voltage. Furthermore, the supply voltage much be enough to activate the voltage reference.  

CHAPTER 4: PRINTED CIRCUIT BOARD DESIGN 

4.1 Schematic Design 

The process of the schematic design was started in Linear Technologies’ software LTSpice 

XVII, hereafter referred to as LTSpice, and then transferred to Autodesk EAGLE.  
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4.1.1 Schematic in LTSpice 

This program allows for modeling of the circuit from an ideal and functional standpoint 

before proceeding to printed circuit board design. LTSpice allows for virtual testing of the 

performance of the circuit to see how it would be expected to respond to external stimuli. By 

downloading components to the LTSpice component database, assessments of how the circuit 

would function could be made with precision. The following figure depicts the schematic built in 

LTSpice with sample component values: 

 

Figure 4.1: Schematic design in LTSpice with sample values 

The following table details some of the relevant outputs of the simulation. These values 

were simulated using the component values given in the above schematic.  
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Table 4.1: Sample Simulated and Expected Values 

Measurement Simulated Value Expected Value 

V1 8.2V 8.2V 

V2 2.1287V 2.2V 

V3 1.62276V 1.7V 

V+ 1.12554V 1.091V 

Vset 1.24936V 1.25V 

VresO 6.07129V 6V 

VmeaO 0.50594V 0.50V 

I(Rset) 49.9746mA 50mA 

I(Rmea) 50.5942mA 50mA 

I(Rres) 50.5942mA 50mA 

 

4.1.2 Schematic in EAGLE 

The schematic design in EAGLE was done manually but was directly based on the design 

from LTSpice. During this stage of the design, the power for the circuit and the connectors had to 

be added to the design. Wiring the nets and naming them properly is vital to the operation of the 

circuit. The following image depicts the schematic design in EAGLE. The inputs and outputs can 

be seen in the right-hand side of the design. There are variety of test points that have been laid out 

for testing the assembled PCB. These are to be used for design debugging to improve future 

improved iterations of the PCB.  
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Figure 4.2: Schematic design in EAGLE 

4.2 Design Considerations 

Building the schematic in LTSpice, which is a suitable way to test the ideal conditions of 

the circuit, was a necessary first step. However, translating that into a PCB design with functional 

inputs and outputs requires accounting for some realistic design constraints and physical 

connections. The methods by which inputs and outputs are routed to the circuit will be considered 

in this section.  

4.2.1 Voltage Input 

The voltage input to the circuit is designed to be supplied using a bench supply and JST 

connectors on the PCB. These signals will be referred to as Vs+ and Vs- throughout the following 
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figures. An adjustable voltage reference with a potentiometer is the input for the voltage to current 

converter. This provides a stable and precise input voltage.  

4.2.2 Voltage Output 

There will be two voltage outputs: one that is the voltage across the resonator and one that 

is the voltage across the 1Ω resistor. Each output will have an output to a terminal that can be 

plugged into a Data Acquisition Unit (DAQ) so that the voltages can be read by the user and used 

to calculate the resistance of the resonator using the following equation:  

𝑅𝑚𝑒𝑎𝑉𝑟𝑒𝑠

𝑉𝑚𝑒𝑎
= 𝑅𝑟𝑒𝑠    (4.1) 

 The usage of a DAQ will allow for the data to be read and calculated in real time using 

National Instruments’ LabView.   

4.2.3 Resonator Connections 

The resonator itself will be wire-bonded to two copper pads on the PCB. Thus, the PCB 

will be large enough that the die containing the resonator can be rested on the board to maximize 

bonding ease and efficiency. These copper pads will be connected directly to the circuit as shown 

in the schematic in Figure 4.1. In testing the circuit, a resistor can also be soldered across the 

terminals to examine how the circuit operates.  

4.3 PCB Design 

After the schematic was designed and simulated to meet specifications in LTSpice, the 

design was copied over to Autodesk EAGLE for design of the printed circuit board (PCB). EAGLE 

is a PCB design software that allows for schematic design, board layout, and routing. This software 

was chosen because it has a user-friendly interface and is readily available to students.  
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4.3.1 Ground Pours 

For this PCB, ground pours were added below the top and above the bottom layers of the 

board. Creating a common ground in this manner has advantages since the ground pour can act as 

a heatsink and can help increase shielding and decrease noise. It can also allow the components to 

be more easily grounded because rather than having nets and traces for grounding, a simple via 

can connect the layer containing the component to the ground pour. For these reasons, two ground 

pours were added to this PCB, one on the top layer and one on the bottom layer.  

4.3.2 Board Layout 

The layout of components throughout the design of the PCB was an iterative process. Each 

time the circuit was updated, the board layout had to be modified so that the components were in 

optimal positions for routing and testing. While the EAGLE software automatically arranges the 

components, the inputs and outputs were not always in an accessible position. The auto layout 

places all the components of each type together, but for the sake of testing each stage of the circuit, 

this needed to be modified. The components were rearranged using manual placements to allow 

for different portions of the circuit to be grouped closer together. Since the schematic design 

required much updating along the way, the layout process was repeated over and over. The final 

board layout as created in EAGLE can be seen below. The extra space along the top of the board 

is for placing the die with the resonators so they can be bonded to the copper pads.  
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Figure 4.3: Manufacturing board layout  

4.3.3 Routing 

The routing for the circuit was done using the auto router. This is an option within EAGLE 

to have the program iterate through the most complete and efficient routing options. It operates 

under the parameters set by the user and can be very useful for creating initial connections on the 

board. When the routing is complete, the design rule check, which are also parameters set by the 

user but are based on the PCB manufacturer’s specifications, must also be satisfied. The design 

rule check inspects parameters such as isolation between layers, trace clearance, distance between 

drill holes, pad dimensions, thermal isolation, roundness of components, mask dimensions, and 

more.  

The following figure depicts the routed PCB design. The red and blue layers are the ground 

pours on the top and bottom, respectively. The traces can be seen throughout the circuit, many of 

them routing to vias that connect the nets to the ground pours or to other nets.  
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Figure 4.4: Routed PCB layout 

CHAPTER 5: TEMPERATURE COMPENSATION RESULTS 

5.1 Sample Temperature and Resistance Characterization 

The following figure shows the process of a setup that can be used for characterizing the 

resistance and temperature correlation for the resonator.  
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Figure 5.1: Testing setup 
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5.1.1 Breadboard 

A small copper breadboard was used for this step. It was initially part of a larger board that 

was reduced in size for ease of testing.   

5.1.2 Connectors 

Two connector pins were soldered into the breadboard as shown in the above figure. This 

allowed for easier connectivity with the resonator since the pins were large enough to allow wires 

or clips to connect there for resistance measurements.  

5.1.3 Adhere Breadboard to Si 

The breadboard was then adhered to a small piece of silicon. While silicon conducts, using 

a layer of insulative glue for adhering this piece of silicon to another piece of silicon can prevent 

the two from passing unwanted current and voltage to the resonator.  

5.1.4 Adhere Sample 

The sample containing the resonator was adhered to a piece of silicon using thermal paste. 

This was chosen because the temperature of the chuck in the vacuum chamber should be close to 

that of the resonator. Thus, having a thermally conductive adhesive here is important.  

5.1.5 Adhere Si to Si 

The breadboard on silicon was then adhered to a piece of silicon near the side of the die 

containing the resonators. Epoxy is recommended for this adhesion since it can often withstand 

high temperatures. It also acts as an electrical insulator and prevents the breadboard connectors 

from conducting with the silicon below the resonator. Epoxy is also a strong adhesive; thus, it 

keeps the breadboard stable and allows for effective wire bonding.  



32 

 

5.1.6 Wire Bonding 

For the testing described here, an ultrasonic wire bonder was used. The bonder used was a 

West-Bond 7400A. Optimization of bond strength and ease of bonding focused on ensuring that 

the substrate was secured on the stage and that the second bond was exactly 90° north of the first 

bond. For this wedge bonder, the aluminum wire was fed into the back of the needle at a 45° angle. 

Ultrasonic energy was used to melt a small bit of the wire when the user places the tip of the needle 

on the substrate. This created the first bond, in this case on the copper breadboard. Then, with the 

wire still connected to the spool, a second bond was made on the rough silicon of the resonator. 

The machine then severed the wire [17]. 

 

Figure 5.2: Example of wedge bond process 

The time and energy of the ultrasonic pulse as well as the manual application force are 

what allow for user-control of the bonding process. In this case, the first bond was done at 240mJ 

for 300ms, and the second was done at 243mJ for 300ms.  

The following image depicts the physical testing setup for the sample. The breadboard and 

die are on a piece of silicon, and the wire bonder needle can be seen on the right side of the image. 
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Figure 3: Actual testing setup 

5.1.7 Vacuum Chamber Testing 

The entire wire bonded setup detailed above was then glued into a vacuum chamber using 

thermal paste. The wires already inside the chamber were soldered to the connector pins on the 

breadboard. Those wires connected to a set of connector pins outside of the chamber. These 

connector pins then had leads for a multimeter soldered to them to minimize impedances from 

poor connections.  

The sample sat on a chuck which could be heated to a certain temperature using controls 

outside of the chamber. Once the vacuum was activated, the pressure dropped down to 

approximately 1mTorr. Then, the resistance was measured at 20°C, 30°C, 40°C, and 50°C. 

However, when the chuck was set to 60°C, the wires bonded to the resonator would come undone.  

Initially, the adherence of the sample and breadboard to the silicon and silicon dioxide was 

done with hot glue; however, when the full setup was placed in the vacuum chamber and heat was 

applied to the silicon, the wires bonded to the resonator would break. It was hypothesized that the 
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hot glue would soften at or above temperatures of 60°C; thus, Loctite plastic epoxy was used 

instead because it had an operating range up to 150°C.  

This was a successful method of increasing bond strength, and the chuck could now be 

heated to 110°C without the bonds breaking.  
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CHAPTER 6: SUMMARY AND CONCLUSION 

This project focuses on designing a temperature control circuit for a TPoS MEMS 

oscillator. The unique characteristics of the TCF of this device demonstrates the potential of the 

oscillator to be operated at a stable resonance frequency with ppb accuracy. Thus, this printed 

circuit board has been designed to be low noise and produce a precise output.  

Currently, to be able to exercise ppb control, this project would need to have complete TCR 

data. Then, active current would need to be passed through the resonator to determine the range of 

current needed to heat the resonator to the temperature desired.  These measurements are essential 

for establishing a baseline for the resistor values and voltage input range. Then, based on these 

values, a PCB could be ordered and used to test the resonator at a stable temperature. A DAQ 

would need to be programmed to read the information from the circuit and calculate the resistance.  

MEMS oscillators have some beneficial characteristics compared to crystal oscillators. 

MEMS oscillators can be fabricated using traditional semiconductor methods and can have smaller 

packages. Thus, methods of minimizing their TCF, currently a disadvantage of MEMS oscillators, 

could be beneficial to exploring their usage.  

Further research for this project could focus on utilizing digital control for controlling the 

current across the resonator. This would eliminate the need for a DAQ and manual control; instead, 

a microcontroller could be used to adaptively calculate the necessary current input to keep 

resonator at a constant temperature.  
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APPENDIX 



 

 

 Table 6.1: Sample Component Values for the Circuit   

Name Value 

Vs+ 10V 

Vs- 10V 

Rs 1.8kΩ 

Viref LM4041B12 

Rc 1kΩ 

Rp Potentiometer 

Rb 1kΩ 

Ra 113Ω 

Rset 25Ω 

U1 OPA828 

Q1 BC846 

Rmea 1Ω 

R3 1.6kΩ 

R4 1.6kΩ 

C3 1µF 

U3 INA828 

Rres TPoS MEMS 

R1 1.6kΩ 

R2 1.6kΩ 

C2 1µF 

U2 INA828 

Vref LM4050 

Rref 30Ω 

C- 1µF 

C+ 1µF 
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