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ABSTRACT 

Huntington disease (HD) is an inherited neurodegenerative disease caused by a 

trinucleotide repeat expansion in the huntingtin (HTT) gene. Metabolic dysfunction is a feature 

of HD that is recapitulated in HD mouse models. Our lab has shown that circadian feeding 

rhythms are disrupted in humanized HD mice and restored by suppression of brain HTT. 

Furthermore, when circadian feeding rhythm is artificially restored, in addition to normalization 

of metabolic function, liver and striatal HTT is temporarily reduced, demonstrating that HTT is 

involved in gut-brain feedback. The gut microbiome, which can regulate gut-brain feedback, has 

been implicated in the pathogenesis of other central nervous system disorders and we 

hypothesize it also plays a role in HD. The objective of this study is to investigate alterations in 

relative abundance of HD gut microbiota using existing plasma metabolomics data to identify 

candidate bacteria. If distinct microbiota profiles are demonstrated, this would provide the basis 

for future unbiased studies to investigate the complete HD microbiome. 
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CHAPTER ONE: INTRODUCTION 

Huntington disease (HD) is a progressive neurodegenerative disease caused by a 

trinucleotide repeat expansion of CAG within exon 1 of the huntingtin (HTT) gene on the short 

arm of chromosome 41. Patients with 36 – 39 CAG repeats display reduced penetrance—either 

developing HD late in life or never becoming symptomatic. However, in patients with 40 or 

more repeats, the disease is fully penetrant, and they will develop HD at some point in their lives. 

Although symptom onset may begin at any age, it usually occurs between 30 and 50 years of age 

and is inversely correlated with the number of CAG repeats2-4. Patients who develop HD 

symptoms before the age of 20 have juvenile HD, which is usually caused by 60 or more CAG 

repeats2-4. Although HD is known as an inherited autosomal dominant disease, approximately 

10% of HD cases are caused by new mutations5. 

HD is characterized by progressive motor, cognitive, and behavioral decline. Symptom 

development varies and may not be the same in every patient. Typically a patient is formally 

diagnosed with HD when overt motor deficits begin to manifest, but cognitive and psychiatric 

symptoms may develop during the premanifest stage years prior6. These early cognitive and 

psychiatric symptoms are usually subtle and may come in the form of difficulty multitasking or 

planning and disinhibition or anxiety, respectively7. At any time throughout progression, a 

number of psychiatric disorders may emerge, including depression, apathy, or obsessive and 

compulsive behavior6. The psychiatric symptoms of HD are often the most distressing for 

patients and their caregivers6. Personality changes, irritability, and aggression may occur and 

vary on a day-to-day basis6. Early cognitive decline usually affects executive functioning and 

short-term memory, while sparing long-term memory, but may ultimately lead to advanced 
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dementia6. Motor decline usually begins as minor, suppressible fidgeting that may go unnoticed 

by the patient8. Bradykinesia is another common symptom, causing slowed muscle movements, 

including reduced eye movement and facial expressions8. Loss of postural reflexes and 

developing an ataxic gait may immobilize patients, reducing their independence8. Motor decline 

may eventually culminate in involuntary, excessive movements known as chorea, the hallmark 

symptom of HD, but is not developed by all patients7. HD progression typically lasts 15 – 20 

years after diagnosis before resulting in death8. 

Two of the most common non-neurological symptoms of HD are progressive weight loss9 

and metabolic dysfunction10. However, anecdotal evidence suggests a small proportion of HD 

patients are pathologically overweight, despite having the same CAG repeat lengths as normal 

weight and pathologically underweight patients. Furthermore, patients with a higher body mass 

index (BMI) at disease onset have a slower rate of HD progression11. Although HD patients have 

increased sedentary energy expenditure despite adequate feeding12, a mechanism of action has 

yet to be characterized that explains this spectrum of weight abnormalities. 

Pathological weight loss is recapitulated in HD model mice expressing fragments of 

human HTT, either transgenically13,14 or knocked-in to exon 1 of the mouse HD homolog (Hdh) 

gene15. Conversely, pathological weight gain is recapitulated in transgenic HD model mice 

expressing full-length human HTT, either along with the full complement of Hdh16,17 or in Hdh-

null backgrounds, which are referred to as humanized mice18,19. 

While studying metabolic dysfunction of the pathologically overweight humanized HD 

model mice18, our lab discovered that circadian feeding is disrupted, despite maintenance of 

naturally nocturnal circadian activity (Figure 1). Interestingly, circadian feeding patterns are 

restored by suppression of brain HTT (Figure 2), suggesting that circadian feeding may be 
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regulated by HTT in the brain. Furthermore, when circadian feeding patterns are artificially 

restored with scheduled feeding, body weight (Figure 3) and metabolic markers (Figure 4) are 

normalized, while liver and striatal HTT is temporarily suppressed (Figure 5). This demonstrates 

that HTT is involved in gut-brain feedback. Since HTT suppression during scheduled feeding is 

only temporary, while metabolic effects are lasting, we suspect that HTT is not the master 

regulator of this feedback loop. Instead, we hypothesize that the gut microbiome may influence 

this pathway, possibly contributing to HD pathogenesis. 

 

Figure 1. Circadian feeding is disrupted but circadian activity is maintained in humanized HD mice. (A) 

Measurement of food intake over time for FVB (wild-type (WT) mice), Hu18/18 (homozygous for WT HTT 

(wtHTT)), and Hu97/18 mice (heterozygous for WT and mutant HTT (muHTT)). FVB mice display typical 

nocturnal feeding patterns with increased food consumption during the dark phase, while Hu18/18 and Hu97/18 

mice display disrupted circadian feeding patterns. (B) Hu18/18 and Hu97/18 mice display similar circadian activity 

to FVB mice with increased locomotor activity during the dark phase. 
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Figure 2. Circadian feeding patterns are restored by suppression of brain HTT. (A) Overview of experimental 

design: mice undergo baseline metabolic phenotyping, receive an intracerebroventricular (ICV) injection of HTT 

antisense oligonucleotide (ASO), and undergo follow up metabolic phenotyping after a 1-week recovery period. 

muHTT and wtHTT suppression in brain is then verified via Western blotting. (B) Hu18/18 and Hu97/18 mice 

display disrupted circadian feeding patterns at baseline. (C) Hu18/18 and Hu97/18 mice display typical circadian 

feeding patterns after brain HTT suppression. 

 

Figure 3. Body weight normalizes with scheduled feeding. SF was initiated pre- or post-pathological weight gain 

and mice were weighed weekly. When initiated pre-symptomatically, SF prevents pathological weight gain. When 

initiated post-symptomatically, SF induces normalization of humanized HD mouse body weight within 

approximately 4 weeks. 
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Figure 4. Metabolic markers normalize with scheduled feeding. Compared to FVB controls, humanized HD 

mice display elevated circulating glucose, insulin, insulin-like growth factor 1 (IGF-1), and leptin. SF rapidly 

normalizes glucose and insulin levels during the acute weight loss phase and eventually normalizes IGF-1 and leptin 

levels by the plateau phase. * = different from AL fed for the same genotype. # = different from FVB for the same 

feeding paradigm. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

 

Figure 5. Striatal and liver HTT is temporarily suppressed by scheduled feeding. (A) Experimental design: 

Scheduled feeding (SF) i.e. food access during only the first 6 hours of the dark phase, was initiated at 5.5 months of 

age, a time point when humanized HD model mice have already undergone significant pathological weight gain. 

Acute: tissues are collected during the acute weight loss phase. Plateau: tissues are collected in the plateau phase 

after body weight has normalized. (B,C) SF induces reduction of (B) liver and (C) striatal HTT protein during the 

acute weight loss phase. Once the plateau phase is reached, HTT returns to basal levels. * = different from ad 

libitum (AL) at p < 0.05. 
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A microbiome is the collective genome of all microorganisms found within a specific 

microbial community. The microorganisms within a microbiome, commonly referred to as 

microbiota, can consist of viral, unicellular, and multicellular microbes. However, the most 

abundant and studied microbiota is bacteria20, which will be the focus of this study. The gut 

microbiome is the most clinically relevant microbiome because it houses the greatest number of 

bacteria within the host21. Bacteria have co-evolved a mutualistic relationship with their host. 

The host provide bacteria with vital nutrients necessary for growth, while the bacteria develop 

the host’s immune system and synthesize beneficial metabolites22. 

Bacteria inhabiting the gut are involved in many host metabolic pathways, and changes in 

bacterial composition can result in metabolic dysregulation and disorders22, including 

neurological disorders23. For instance, the presence of gram-negative bacteria or 

lipopolysaccharide accelerates cerebral cavernous malformation (CCM) by over-activating 

endothelial toll-like receptor 4. Meanwhile, germ-free mice are protected from CCM and even a 

single course of antibiotics permanently reduces CCM susceptibility24. Another study found that 

probiotic treatments with Bacteroides fragilis improves gastrointestinal abnormalities and 

behavioral deficits in autism model mice. Additionally, these probiotic treatments altered gut 

microbiota composition and levels of several serum metabolites25. 

It is well studied that microbiota-derived metabolites produced in the gut are absorbed in 

the intestines, where they cross the intestinal epithelium. Metabolites then enter systemic 

circulation after passing through the liver, where they can reach or exceed typical drug dose 

concentrations26. For instance, gut bacteria that overexpress the protein α-synuclein promote 

Parkinson disease-related motor deficits in mice, while antibiotic treatments decrease these 

symptoms27, demonstrating that microbiota-derived metabolites can influence host physiology. 
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Hoping to develop a noninvasive way of identifying active processes behind HD 

pathogenesis, a plasma metabolomics study previously identified metabolite alterations within 

several pathways of HD patients28. The tryptophan, tyrosine, purine, and antioxidant pathways 

were specifically targeted for investigation because they have been previously implicated as 

relevant to HD neurodegeneration29-31. The plasma metabolomic profile of 52 premanifest HD, 

102 early symptomatic HD, and 140 healthy controls were quantified using liquid 

chromatography. Of the 29 known metabolites within the analyzed pathways, 21 had significant 

concentration alterations (Table 1). Dysregulation of any of these metabolites could have wide-

ranging effects on the host. 

Table 1. Metabolites significantly altered in HD plasma. 

Pathway Metabolite NC vs PHD NC vs HD PHD vs HD 

Tryptophan Serotonin ↓ ↓  
 N-acetylserotonin ↑ ↑  
 5-hydroxytryptophan   ↓ 
 5-hydroxyindoleacetate ↓  ↑ 
 Kynurenine  ↓  
 3-hydroxyanthranilic acid  ↓ ↓ 
 Indole-3-lactic acid ↓   
 N-methyltryptamine ↓   
 Indole-3-propionic acid ↓ ↓  
     
Tyrosine Tyrosine ↑   
 Homovanillic acid  ↑ ↑ 
 Homogentisic acid ↑   
 2-hydroxyphenylacetate  ↓ ↓ 
 3-hydroxyphenylacetate  ↑ ↑ 
 4-hydroxyphenyllactic acid  ↓ ↓ 
     
Purine Xanthine ↓ ↓  
 Xanthosine  ↓  
 Urate   ↓ 
     
Antioxidant Gamma tocopherol  ↑ ↑ 
 Alpha tocopherol ↑ ↑  
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Methionine Methionine ↑  ↓ 
     

NC: normal control, PHD: premanifest HD, HD: early symptomatic HD. Arrows indicate increase or decrease in 

concentration. Adapted from28. 

Gut microbiota concentration is measured by quantifying the microbial DNA present in 

stool or cecal samples32. Quantification of stool bacteria is more representative of the large 

intestine’s microbiota profile, while the cecum gives a more accurate representation of the small 

intestine’s microbiota profile33. By targeting the variable regions of the 16S ribosomal RNA 

(rRNA) gene with specific primers pairs, all bacterial genomes within a sample can be amplified 

via polymerase chain reaction (PCR). If a fluorescent probe or dye is used, fluorescence can be 

measured in real-time during amplification via quantitative PCR (qPCR), allowing quantification 

of the amplicon. 16S rRNA gene amplification is a non-targeted approach to quantify bacteria, 

while quantification of specific target bacteria can be performed via qPCR using a genus- or 

species-specific primer pair. By comparing quantification between multiple samples and a 

reference gene, the relative abundance of each sample can be obtained34. 

This study aims to investigate the gut microbiome of an HD model mouse through 

analysis of stool and cecal samples. Q175FDN mice, which have human HTT exon 1 with ~190 

CAG repeats knocked-in to Hdh, display the most robust HD-like phenotypes of any knock-in or 

full-length HD mouse model and recapitulate pathological weight loss15. 

The host-microbe relationship between a mouse and its gut microbiome have co-evolved 

differently than that of humans, and will therefore never fully recapitulate the human gut 

microbiome. However, a comparison of murine and human gut microbial diversity has shown 

90% and 89% similarity between bacterial phyla and genera, respectively35. These strong 

similarities justify the use of mice as a human experimental model. In addition, studies have 
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shown that the biggest contributors to microbiota diversity are genetics and diet. Since facility-

housed mice are inbred and receive the same food, microbiota diversity should be minimal 

within each cohort, increasing validity. 

If distinct microbiota profiles are demonstrated between WT and HD mice, future studies 

to investigate the gut microbiome in HD patients would be warranted. Finding a relationship 

between the gut microbiome and HD could identify novel, noninvasive biomarkers for disease 

onset and progression, as well as potential therapeutic targets. 
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CHAPTER TWO: RESULTS 

Aim 1: To Identify Bacterial Candidates of Exclusively Microbiota-derived Metabolites 

By identifying bacterial producers of exclusively microbiota-derived metabolites, we can 

identify candidate microbes that may be altered in the HD gut microbiome. Metabolites that are 

produced by both humans and microbiota were not pursued because it would not be possible to 

determine which source contributed to each metabolic alteration. Using an online metabolic 

pathway database36, potential exclusively microbiota-derived metabolites were identified. 

Further searching through NCBI’s gene database and relevant literature review revealed that out 

of the 21 metabolites from Table 1, only four are produced exclusively by microorganisms 

(Table 2). 

Table 2. Microbiota-derived metabolites significantly altered in HD plasma 

Pathway Metabolite NC vs PHD NC vs HD PHD vs HD 

Tryptophan Indole-3-lactic acid ↓   
 Indole-3-propionic acid ↓ ↓  
     
Antioxidant Gamma tocopherol  ↑ ↑ 
 Alpha tocopherol ↑ ↑  
     

NC: normal control, PHD: premanifest HD, HD: early symptomatic HD. Arrows indicate increase or decrease in 

concentration. Derived from Table 1. 

Gamma and alpha tocopherol are antioxidants within the vitamin E biosynthesis pathway, 

which is only found in plants and photosynthetic microorganisms37. Synechocystis sp. PCC 6803 

is a freshwater cyanobacterium and is the only bacterium currently known to produce gamma 

and alpha tocopherol38. These metabolites were shown to be increased in HD plasma28 (Table 1, 

2). Although cyanobacterial infections are known to occur in humans39, our literature review did 

not find evidence that cyanobacteria are normally present in the human gut microbiome. 

However, non-photosynthetic relatives of cyanobacteria have been found in the gut40. Although 
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these cyanobacterial relatives have been found to synthesize vitamins B and K40, there is 

currently no evidence that they are capable of also synthesizing vitamin E. There are also no 

studies showing Synechocystis sp. PCC 6803 presence in the human gut. Thus, any observed 

alterations in tocopherol concentration are most likely not the result of bacterial production, but 

instead the result of dietary or physiological changes. 

Both indole-3-lactic acid (ILA) and indole-3-propionic acid (IPA) are products of 

reductive tryptophan catabolism. Since ILA production has been observed within multiple 

phyla41, ILA may be produced from several unique pathways, none of which are well-elucidated. 

Additionally, since significant ILA alteration was only found when comparing premanifest HD 

patients to controls and was not found when comparing manifest HD patients to premanifest HD 

patients or controls28 (Table 1, 2), this change may not be highly relevant to HD pathogenesis. 

On the other hand, IPA is significantly altered within both premanifest and manifest HD 

patients when compared to controls28 (Table 1, 2). IPA has a well-characterized pathway. It’s 

produced by phenyllactate dehydratase, which is encoded by the fldC gene42. IPA has shown 

potent antioxidant activity in vitro and in vivo within rat brains43. IPA even protected primary 

neurons and neuroblastoma cells from the oxidative stress caused by amyloid beta, the primary 

pathology of Alzheimer disease44. Oxidative stress plays a role in HD-related neurodegeneration, 

although it’s still unclear whether oxidative stress is causal or a downstream result45. Antioxidant 

trials in HD patients have been generally unsuccessful46-50, so development of novel ways to 

reduce oxidative stress would be beneficial. 

Furthermore, a recent study has shown that in the absence of IPA, mice have increased 

activation of immune cells42. Similarly, HD patients have increased activation of the innate 

immune system, both centrally and peripherally51. Monocytes in HD patients display a 
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hyperactive response to stimulation, as well as macrophages and microglia in HD model mice51. 

An increase in circulating interleukin 6 levels has also been observed in HD patients an average 

of sixteen years before the onset of clinical symptoms51. Additionally, IPA has been shown to 

fortify the intestinal barrier52, and its absence, increases intestinal permeability42. With these 

documented effects, alteration of IPA concentration presents a viable candidate for contributing 

to HD-related metabolic dysfunction and potentially, neurodegeneration. For these reasons, we 

prioritized quantification of IPA-producing bacteria. An in silico bacterial target search identified 

two genera with four species each that have been shown to produce IPA (Table 3). 

Table 3. Known bacterial producers of the exclusively microbiota-derived metabolite IPA 

Indole-3-propionic acid Clostridium botulinum53 
Clostridium cadaveris42 
Clostridium paraputrificum54 
Clostridium sporogenes42,53,55 
Peptostreptococcus anaerobius42,56 
Peptostreptococcus asaccharolyticus54 
Peptostreptococcus russellii56 
Peptostreptococcus stomatis56 

  

Aim 2: To Develop Bacterial Candidate Qualitative and Quantitative Assays 

DNA was extracted from five gram negative and three gram positive bacterial cultures 

(Gram negative: E. coli, P. aeruginosa, A. faecalis, E. aerogenes, and S. marcescens; Gram 

positive: C. sporogenes, C. difficile, and S. aureus) for use as positive and negative controls 

during PCR assay development. DNA concentration and purity was measured via spectrometry 

and is summarized in Table 4. A DNA concentration of >10 ng/µL was preferred to ensure 

enough DNA for PCR. Absorbance 260/280 and 260/230 ratios of approximately 1.8 – 2.0 and 

1.8 – 2.2, respectively, were preferred to ensure an adequately pure DNA sample. Gram positive 
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bacteria are more difficult to lyse due to their thicker peptidoglycan layer. This most likely 

explains why two of the gram positive bacterial cultures showed the greatest deviations from the 

preferred DNA values. However, these deviations did not seem to affect downstream 

applications. 

Table 4. Spectrophotometry of positive and negative control bacterial DNA samples 

Bacteria Concentration (ng/µL) 260/280 260/230 

Escherichia coli ATCC 8739 507.40 2.01 1.80 

Pseudomonas aeruginosa ATCC 27853 761.97 2.02 2.12 

Alcaligenes faecalis ATCC 8750 907.73 2.06 2.09 

Enterobacter aerogenes ATCC 13048 408.80 2.01 1.88 

Serratia marcescens ATCC 14756 381.80 2.00 2.07 

Clostridium sporogenes ATCC 3584 14.20 1.64 0.94 

Clostridium difficile ATCC 9689 94.23 1.90 2.69 

Staphylococcus aureus ATCC 25923 30.03 2.31 0.68 

    
Positive and negative control DNA samples were validated using the 16S rRNA gene-

specific primer pair 27F – 1492R57 (Figure 6). All eight bacterial samples displayed the expected 

amplicon length at approximately 1,500 bp, confirming that bacterial DNA was present in each 

sample. 

 

Figure 6. Positive and negative control DNA samples contain bacterial DNA. Total DNA extracted from 

positive and negative control bacterial cultures show a DNA band at approximately 1,500 bp. Expected amplicon 

length for 16S rRNA gene primer pair: approximately 1,500 bp. Lane 1: C. sporogenes. Lane 2: E. coli. Lane 3: P. 
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aeruginosa. Lane 4: A. faecalis. Lane 5: E. aerogenes. Lane 6: S. aureus. Lane 7: S. marcescens. Lane 8: Negative 

control. Lane 9: C. difficile. Lane *: GeneRuler 1 kb DNA Ladder. 

The specificity of the fldC primer pair was validated using the same eight bacterial DNA 

samples (Figure 7). As expected, C. sporogenes was the only bacterial DNA sample that 

displayed the expected amplicon length at 600 bp. Although C. difficile is closely related to C. 

sporogenes, it does not produce IPA, and thus, should not display a DNA band. This control was 

important to ensure that the fldC primer pair is specific to fldC-producing bacteria and does not 

target closely related species. 

 

Figure 7. Positive control DNA samples contain the fldC gene. Positive control displays a DNA band at 600 bp, 

while negative controls do not display amplification. Expected amplicon length for fldC primer pair: 600 bp. Lane 1: 

C. sporogenes. Lane 2: E. coli. Lane 3: P. aeruginosa. Lane 4: A. faecalis. Lane 5: E. aerogenes. Lane 6: S. aureus. 

Lane 7: S. marcescens. Lane 8: Negative control. Lane 9: C. difficile. Lane *: GeneRuler 1 kb DNA Ladder. 

To determine the lower limit of detection for the fldC primer pair within a mixed 

microbiota DNA sample, 50 ng of WT mouse stool DNA was spiked with decreasing amounts of 

C. sporogenes DNA, ranging from 2.84 ng (10-9 grams) to 2.33 ag (10-18 grams) (Figure 8). FldC 

PCR was performed with 30 cycles, which displayed bands as low as the 1/125 dilution (Figure 

8A). FldC PCR was repeated, this time with 40 cycles, which displayed bands in all lanes, 

including the lowest dilution of 1/15,625 (Figure 8B). Non-specific binding also increased. Each 

subsequent lane displays a reduction in band intensity, suggesting the serial dilution was 

performed correctly. 
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Figure 8. Determining the lower limit of detection of the fldC primer pair. 50 ng of mouse stool DNA was 

spiked with a 5x dilution series of C. sporogenes DNA. (A) 30 cycle PCR. Lane *: GeneRuler 1 kb DNA Ladder. 

Lane 1: 1/5 (~2.84 ng). Lane 2: 1/25 (~568.13 pg). Lane 3: 1/125 (~113.63 pg). Lane 4: 1/625 (~22.73 pg). Lane 5: 

1/3,125 (~4.55 pg). (B) 40 cycle PCR. The exposure in lanes 5 and 6 was increased to better visualize the bands. 

Lanes * – 5 are the same as (A). Lane 6: 1/15,625 (~909.01 fg). 

To increase assay sensitivity and specificity, a second, nested PCR reaction was 

performed using a primer pair targeting a region within the first 600 bp PCR product. Two 

nested primer pairs were developed, with expected amplicon lengths of 81 bp and 480 bp, 

respectively. Using nested PCR reduces non-specific binding and increases amplicon yield, so 
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performing nested PCR should increase the amplification of fldC if it is within the DNA sample, 

even if it is present at very low abundance. 

The two nested PCR reactions using PCR product from Figure 8B displayed the expected 

DNA bands at 81 bp (Figure 9A) and 480 bp (Figure 9B), respectively. The lowest DNA dilution 

evaluated was approximately 909 fg (× 10-15) of C. sporogenes DNA spiked into 50 ng of WT 

stool DNA, which represents approximately 0.00182% of the total DNA within the sample. We 

chose to continue using the 480 bp nested primer pair in subsequent assays because it appears to 

have greater specificity than the 81 bp nested primer pair. 
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Figure 9. Nested PCR increases fldC amplification. Second nested PCR reactions using the 600 bp fldC amplicon 

as DNA template. Lane 1: 1/5 (~2.84 ng). Lane 2: 1/25 (~568.13 pg). Lane 3: 1/125 (~113.63 pg). Lane 4: 1/625 
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(~22.73 pg). Lane 5: 1/3,125 (~4.55 pg). Lane 6: 1/15,625 (~909.01 fg). Lane *: GeneRuler 1 kb DNA Ladder. (A) 

Expected amplicon length: 81 bp. (B) Expected amplicon length: 480 bp. 

Subsequent attempts to examine smaller C. sporogenes dilutions were varied (Figure 10). 

For the first nested PCR reaction, the DNA bands are no longer detectable below the 1/625 

dilution, despite the gel in Figure 8B showing bands two dilutions below this. Also, the gel’s 

highest intensity band appears in the 1/78,125 dilution. For the second nested PCR reaction, high 

intensity bands are seen in the first seven dilutions, where it begins to fade in the 1/1,953,125 

dilution, only to appear again in the two lowest dilutions. The variability in band detection may 

be caused by the increased difficulty of pipetting small amounts of DNA as the dilutions 

decreased. For this reason, a conservative estimate of the nested PCR’s limit of detection is 

approximately 1.45 fg of C. sporogenes in 50 ng of WT stool DNA, representing approximately 

2.91 × 10-6% of the total DNA in the sample. These results demonstrate that this nested PCR 

assay increases the fldC primer pair limit of detection considerably. Thus, we are encouraged that 

the nested PCR reaction worked as expected to amplify PCR signal. 

We have determined that nested PCR is unnecessary for amplification of the 16S rRNA 

gene due to the large proportion of 16S DNA found within each stool DNA sample. 
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Figure 10. Nested PCR serial dilution. Both reactions of the nested PCR assay using a 5x serial dilution of C. 

sporogenes DNA spiked into WT stool DNA. Lane 1: Negative control. Lane 2: 1/125 (~113.63 pg). Lane 3: 1/625 

(~22.73 pg). Lane 4: 1/3,125 (~4.55 pg). Lane 5: 1/15,625 (~909.01 fg). Lane 6: 1/78,125 (~181.80 fg). Lane 7: 

1/390,625 (~36.36 fg). Lane 8: 1/1,953,125 (~7.27 fg). Lane 9: 1/9,765,625 (~1.45 fg). Lane 10: 1/48,828,125 

(~290.88 ag). Lane 11: 1/244,140,625 (~58.18 ag). Lane 12: 1/1,220,703,125 (~11.64 ag). Lane 13: 1/6,103,515,625 

(~2.33 ag). Lane *: GeneRuler 1 kb DNA Ladder. (A) Nested PCR reaction 1. Expected amplicon length: 600 bp. 

(B) Nested PCR reaction 2. Expected amplicon length: 480 bp. 

Since DNA from the eight bacterial culture controls was extracted using a DNeasy Blood 

& Tissue Kit, while DNA from the stool and cecal samples was extracted using a QIAamp Fast 

DNA Stool Mini Kit, variations in the DNA extraction processes may affect results. To address 

this, DNA from pure C. sporogenes bacteria or a WT mouse stool sample spiked with pure C. 

sporogenes bacteria were extracted using the stool kit. Both of these samples displayed the 

expected 600 bp DNA band when using the fldC primer pair (Figure 11), confirming that the 

QIAamp Fast DNA Stool Mini Kit can extract DNA from gram positive bacteria outside of and 

within a mixed microbiota sample. 
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Figure 11. The QIAamp Fast DNA Stool Mini Kit can extract C. sporogenes DNA from stool. DNA extracted 

from stool spiked with C. sporogenes bacteria using a QIAamp Fast DNA Stool Mini Kit displays the expected 

DNA band at 600 bp when using the fldC primer pair. Lane 1: C. sporogenes + WT stool extracted using a QIAamp 

Fast DNA Stool Mini Kit. Lane 2: C. sporogenes extracted using a QIAamp Fast DNA Stool Mini Kit. Lane 3: C. 

sporogenes extracted using a DNeasy Blood & Tissue Kit. Lane 4: WT mouse stool DNA without spiked C. 

sporogenes. Lane 5: fldC primer pair negative control. Lane *: GeneRuler 1 kb DNA Ladder. 

We next sought to develop a qPCR assay using a genus-specific Clostridium spp. primer 

pair58, a genus-specific Lactobacillus spp. primer pair59, a Leuconostoc mesenteroides primer 

pair60, and an actin-specific primer pair as a reference gene (Table 8). Actin was chosen because 

the primer set and reaction has been previously optimized in our lab for use as a reference gene 

in mouse tissue qPCR. Cecal DNA samples from 3 WT mice were pooled to provide a DNA 

template with a concentration of 785 ng/µL. Each reaction was run in triplicate and four different 

template DNA dilutions (1, 1/4, 1/16, and 1/64) were used with each primer pair to determine if 

template concentration affects amplification in a dose-dependent manner. 

The qPCR Ct results displayed no amplification for the Clostridium spp. and Leuconostoc 

mesenteroides primer pairs (Table 5). Both the actin and Lactobacillus spp. primer pairs 

displayed no or inconsistent amplification in the pre-diluted triplicate samples, suggesting too 

much template DNA was present. As the DNA template became more diluted, less variation 
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between the Ct values was observed. The 1/64 dilution had the least amount of variation between 

Ct values, suggesting a DNA template concentration of approximately 10 ng/µL would be ideal 

for this qPCR assay. The 1/64 dilution Ct values for actin and Lactobacillus spp. were used to 

calculate the ΔCt and normalize amplification (Table 6). Now that this assay has been validated 

using a single DNA template, it can be used with samples from WT and HD mice to determine 

the relative abundance of Lactobacillus spp. in the gut using the ΔΔCt method. 

Table 5. qPCR assay development Ct results 

Dilution Actin 
Clostridium 

spp. 
Lactobacillus 

spp. 
Leuconostoc 

mesenteroides 

1 N/A 27.14 25.34 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

1/4 24.36 28.15 23.48 N/A N/A N/A 29.98 31.48 31.46 N/A N/A N/A 

1/16 26.11 25.41 25.04 N/A N/A N/A 27.31 27.72 26.70 N/A N/A N/A 

1/64 27.28 26.98 26.87 N/A N/A N/A 27.94 28.03 27.60 N/A N/A N/A 

             
Table 6. qPCR assay development ΔCt calculations 

 Ct Average Ct ΔCt 

Actin 27.28 

27.04 
 

  26.98  
  26.87  
    0.82 

Lactobacillus spp. 27.94 

27.86 
 

  28.03  
  27.60  
    

Aim 3: To Identify and Quantify Bacterial Candidates in Mouse Stool and Cecal Samples 

With a PCR and qPCR assay developed, bacterial targets can be identified and quantified 

in mouse stool and cecum samples. The nested PCR assay was run on stool samples from an N 

of 4 WT and HD mice at time point 1 (Figure 12). Each HD stool sample displays a DNA band 

in the second nested PCR reaction’s gel, demonstrating the presence of fldC-containing bacteria 
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in these samples, while each WT stool sample appears empty. DNA bands are absent in the first 

gel, but present in the second gel, suggesting that our bacterial targets are low in quantity, 

requiring the use of the second nested PCR reaction to visualize them. 

 

Figure 12. Nested PCR results for time point 1 stool samples. Both reactions of the nested PCR assay using WT 

and HD mouse stool DNA from time point 1. Lanes 1 – 4: WT mice. Lanes 5 – 8: HD mice. Lane 9: Negative 

control. Lane *: GeneRuler 1 kb DNA Ladder. (A) Nested PCR reaction one. Expected amplicon: 600 bp. (B) 

Nested PCR reaction two. Expected amplicon: 480 bp. 

The nested PCR assay was also performed on seven healthy human stool samples (Figure 

13) to validate its use in human stool. Two of the seven samples tested positive for fldC-

containing bacteria. Again, the first PCR reaction did not produce visible product, suggesting 

that our bacterial targets are also present in low quantity within humans. 
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Figure 13. Nested PCR results for human stool samples. Both reactions of the nested PCR assay using human 

stool DNA. Lane 1: Negative control. Lanes 2 – 8: Healthy human stool. Lane *: GeneRuler 1 kb DNA Ladder. (A) 

Nested PCR reaction one. Expected amplicon: 600 bp. (B) Nested PCR reaction two. Expected amplicon: 480 bp. 
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CHAPTER THREE: DISCUSSION 

Our lab has previously shown that HTT plays a role in gut-brain feedback. We 

hypothesize that the gut microbiome may regulate this feedback loop, and thus play a role in HD 

pathogenesis. We sought to investigate this by identifying exclusively microbiota-derived 

metabolites previously shown to be altered in HD plasma28. By identifying and quantifying 

bacterial producers of said metabolites, we aimed to measure genotype-associated alterations of 

microbial concentration within the gut of an HD model mouse. 

In an effort to do this, we collected stool and cecal samples from WT and HD mice either 

before or after the onset of HD-like signs and neurodegeneration. Identification and quantitative 

assays were developed and validated to target the known bacterial producers of the exclusively 

microbiota-derived metabolite, IPA. Our literature review uncovered eight currently known 

bacterial producers of IPA, all from the Clostridium and Peptostreptococcus genera, both 

commonly found in the human gut microbiome21. 

With these two genera being so highly represented in the gut, we expected fldC-

containing bacteria to be within a greater number of stool samples. The limit of detection for the 

fldC nested PCR assay was conservatively determined to be as low as 1.45 fg. It has been shown 

that approximately 8.4 fg of DNA is present within each bacterial cell in soil samples61. In 

addition, if we use C. sporogenes as an example, which has a genome of approximately 4.1 

Mb62, we can estimate that the C. sporogenes genome weighs approximately 4.47 fg, based on an 

average base pair weighing 650 daltons. Assuming our bacterial targets in stool and cecum have 

a similar amount of DNA, then the nested PCR assay developed here could be expected to detect 

as little as one bacterial cell. 
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Furthermore, the fldC gene is 1,125 bp, making it 0.027% (1.21 ag) of the C. sporogenes 

genome. Despite variable results, a DNA band in the ~2.33 ag serial dilution was observed. If 

this amount is accepted as the limit of detection for the fldC nested PCR assay, then it might be 

possible to detect as little as one copy of the fldC gene within a sample. With that being said, any 

samples showing a negative result are most likely due to lack of fldC-containing bacteria in the 

sample and not because of a detection failure of the assay. 

We were able to detect fldC in mouse stool and can now work toward quantitative 

studies. The developed qPCR assay will be performed on the currently identified samples, as 

well as samples collected at additional time points and from a greater number of animals to 

quantify any relative abundance alterations across genotype and age. Cecum samples will also be 

analyzed to determine the effect of microbiota source on bacterial target composition, though this 

approach will not be able to be employed in humans due to the invasiveness of cecal sample 

collection. 

A targeted approach to identify and quantify bacteria was selected for this study, but a 

non-targeted approach via 16S rRNA gene sequencing could also be used to determine the 

relative abundance of all bacterial phyla or genera within each sample. Targeted studies are 

beneficial when specific genus- or species-level specificity is desired, but this approach is low 

throughput and requires prior target microbe identification. A non-targeted approach mass 

sequences the entire gut microbiome, however that comes at the cost of specificity. Usually only 

phylum-level alterations in abundance can be assessed. 

In this study, potential target metabolites were chosen from a previous HD plasma 

metabolomics paper28, and was therefore limited by the number of significantly altered 

metabolites found within HD plasma. Our HD model mouse may not perfectly recapitulate the 
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HD metabolome or gut microbiome. In future studies, the Q175FDN HD model mouse plasma 

metabolome can be explored to determine if HD-like metabolite alterations are present. 

Future research could also investigate the role of the gut microbiome in HD pathogenesis 

by comparing the disease progression of HD model mice with normal gut microbiomes versus 

germ-free or antibiotic-treated HD model mice. Any change in the rate of HD progression among 

the microbiota-depleted HD model mice could be attributed to the gut microbiome. The effects 

of fecal transplants on HD progression could also be investigated. For instance, comparing the 

onset and progression rate of HD-related phenotypes in HD model mice that receive a fecal 

transplant from an HD patient to mice that receive fecal transplants from a healthy controls. 

It is too early to draw conclusions from the preliminary results gathered here, but the 

assays developed show promise in investigating IPA-producing bacteria in the gut. In future 

studies we will use these and other methods to further investigate the role of the gut microbiome 

in HD pathogenesis. 
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CHAPTER FOUR: METHODOLOGY 

In Silico Bacterial Target Search 

Metabolites within a pathway can be very similar and nomenclature may vary, so each 

metabolite from Table 1 was verified using PubChem63, a chemical database, and HMDB64, a 

human metabolite database. Once the exact metabolite was confirmed, each compound was 

found within MetaCyc36, a metabolic pathway database. Selecting a reaction known to produce 

the target metabolite displays known organisms that possess that pathway, as well as suspected 

genes expressing key pathway enzymes. This provides a starting point to find relevant literature 

related to these pathways and organisms using PubMed. Potential genes found through literature 

review were verified using NCBI’s gene database, which yields more relevant literature. Studies 

on each candidate gene, pathway, organism, and metabolite were searched to verify their absence 

in humans. All candidate bacterial targets must have a primary study validating its ability to 

produce the target metabolite. 

Bacterial Culture Growth 

The following bacterial cultures were grown: Clostridium sporogenes (ATCC 3584), 

Clostridium difficile (ATCC 9689), Escherichia coli (ATCC 8739), Pseudomonas aeruginosa 

(ATCC 27853), Alcaligenes faecalis (ATCC 8750), Enterobacter aerogenes (ATCC 13048), 

Staphylococcus aureus (ATCC 25923), and Serratia marcescens (ATCC 14756). 

C. sporogenes and C. difficile were inoculated in tryptic soy broth (BD Biosciences) 

within an anaerobic chamber and grown at 37°C with approximately 80% N2, 10% CO2, and 

10% H2 for 48 hours. The broth was centrifuged at 10,000 × g for 10 min. The supernatant was 

discarded, and the pellet was reabsorbed in at least 5 volumes of RNAlater (Invitrogen). E. coli 
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was grown on endo agar at 37°C for 48 hours. P. aeruginosa, A. faecalis, E. aerogenes, S. 

aureus, and S. marcescens were grown on brain heart infusion agar at 37°C for 48 hours. 

Bacterial colonies grown on agar were collected and placed in at least 5 volumes of RNAlater. 

Bacterial samples were stored at 4°C overnight to allow full penetration of the RNAlater before 

being moved to -80°C for long-term storage. 

Total DNA was extracted from bacterial cells using the DNeasy Blood & Tissue Kit 

(Qiagen), following the manufacturer’s instructions. Extracted DNA was stored at -20°C until 

analysis. DNA concentration and purity were measured via spectrophotometry using a NanoDrop 

8000 (Thermo Scientific). DNA concentrations of >10 ng/µL and absorbance 260/280 and 

260/230 ratios of ~1.8 – 2.2 were preferred, but due to the scarcity of samples, only largely 

abnormal samples were discarded. 

Mouse Stool and Cecal Collection 

All animals were handled in accordance with the University of Central Florida 

Institutional Animal Care and Use Committee guidelines under an approved animal use protocol. 

Mice were fed ad libitum and group-housed in a specific-pathogen-free facility with a 12 hour 

light 12 hour dark light cycle. 

Stool and cecal samples were collected from an N of 8 HD or WT mice aged to < 3 

months (pre-symptomatic) and > 9 months (post-symptomatic). To collect stool, mice were 

temporarily isolated in a sterilized cage until they defecated. Stool was collected and 

immediately placed in at least 5 volumes of RNAlater to preserve DNA integrity. To collect 

cecal contents, a laparotomy was-performed. The cecum was surgically removed and the cecal 

contents squeezed into a 2.0 mL microcentrifuge tube containing at least 5 volumes of RNAlater. 



 

29 

 

Samples were stored at 4°C overnight to allow complete RNAlater penetration of samples before 

long-term storage at -80°C. Total genomic DNA was extracted from all stool and cecal samples 

using the QIAamp Fast DNA Stool Mini Kit (Qiagen), following the manufacturer’s instructions. 

Extracted DNA was stored at -20°C until analysis. DNA concentration and purity were measured 

via spectrophotometry using a NanoDrop 8000 with the same DNA concentration and purity 

criteria as the bacterial culture DNA. 

PCR 

PCR reactions were performed in a total volume of 25 µL using a SimpliAmp Thermal 

Cycler (Applied Biosystems) and GoTaq G2 Green Master Mix (Promega). Reactions contained 

a final concentration of 1.25 U of Taq DNA polymerase, 200 µM of each deoxynucleoside 

triphosphate (G, A, T, and C), 1.5 mM magnesium chloride, 0.4 µM of each primer, and 

approximately 50 ng of DNA template. Amplification consisted of an initial denaturation step at 

94°C for 5 min, followed by 40 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 1 

min for the 16S rRNA gene primer pair or 60°C for the fldC primer pair, and extension at 72°C 

for 90 sec. Cycling included a final extension step at 72°C for 10 min, followed by cooling to 

4°C. PCR products were separated via agarose gel electrophoresis at 5 V/cm for 20 minutes. 

Gels contained 0.5 µg/mL of ethidium bromide in 1.5% (w/v) agarose/1X TBE buffer (100 mM 

tris, 100 mM boric acid, and 20 mM EDTA). DNA bands were visualized under UV light using a 

Gel Doc XR+ Imager (Bio-Rad). Expected amplicon lengths for the fldC and 16S primer pairs of 

600 bp and ~1,500 bp, respectively, were assessed using the GeneRuler 1 kb DNA Ladder 

(Thermo Scientific). All primer pairs used are summarized in Table 8. 
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To enhance detection of fldC even if present at low abundance, a second, nested PCR 

reaction was performed using 0.5 µL of the first round PCR product as the DNA template and a 

55°C annealing temperature. Two nested primer pairs were developed with expected amplicon 

lengths of 81 bp and 480 bp, respectively. All other reagents, cycling conditions, and 

visualization procedures remained the same. 

C. sporogenes Serial Dilution 

A 5x dilution series of C. sporogenes DNA was generated beginning with 14.2 ng spiked 

into 50 ng of WT mouse stool DNA. Dilutions from 1/5 (~2.84 ng) to 1/6,103,515,625 (~2.33 

ag) were used. Both nested PCR reactions were performed as stated above. 

Gram Positive DNA Extraction Verification 

Using a 10 µL stem-loop, pure C. sporogenes culture was spiked into a WT HD model 

mouse stool sample. DNA was extracted from this spiked stool sample using a QIAamp Fast 

DNA Stool Mini Kit, following the manufacturer’s instructions. DNA from a pure C. sporogenes 

culture sample was also extracted as a positive control. DNA concentration and purity were 

measured via spectrophotometry. Only the first nested PCR reaction was required to visualize 

amplification. 

qPCR Assay Development 

A qPCR assay was developed using a genus-specific Clostridium spp. primer pair58, a 

genus-specific Lactobacillus spp. primer pair59, a Leuconostoc mesenteroides primer pair60, and 

an actin-specific primer pair previously optimized and validated by our lab as a reference gene 
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(Table 8). Three separate cecal DNA samples from WT mice were pooled together to create a 

DNA template with a concentration of 785 ng/µL. Each reaction was run in triplicate and four 

different dilutions (1, 1/4, 1/16, and 1/64) were used with each primer pair. The amplification 

cycle consisted of an initial denaturation step at 95°C for 10 min, followed by 40 cycles of 

denaturation at 95°C for 15 sec and a combined annealing/elongation step at 60°C for 1 min. Ct 

values were determined using SDS Software v2.4 for 7900HT Fast. 

Table 7. Primers used throughout study 

Primer Target Sequence (5’ – 3’) Amplicon 

16S rRNA gene57 F: AGA GTT TGA TCM* TGG CTC AG ~1,500 bp 

 R: CGG TTA CCT TGT TAC GAC TT  

   
fldC gene42 F: TGG GGA ATA TGA TAT GTT GTC TGG CAT GAT G 600 bp 

 R: TGT TCA GCT AAT CTA TCC ATT GGT GTA TTC GC  

   
fldC amplicon F: ACC AGT AAC AGT TCC ACA AAA CAG 480 bp 

 R: TCC ATT GGT GTA TTC GCA TCT G  

   
fldC amplicon F: TGG GAC AAA ATT TTA AAC TAA CCG T 81 bp 

 R: CAG CTT CCA TTT TTC TGT TTT GTG G  

   

Actin# F: GGA GAC GGG GTC ACC CAC AC 450 bp 

 R: AGC CTC AGG GCA TCG GAA CC  

   

Clostridium spp.58# F: AAA GGA AGA TTA ATA CCG CAT AA 536 bp 

 R: TTC TTC CTA ATC TCT ACG CA  

   
Lactobacillus spp.59# F: CTC AAA ACT AAA CAA AGT TTC 209 bp 

 R: CTT GTA CAC ACC GCC CGT CA  

   
Leuconostoc mesenteroides60# F: AAC TTA GTG TCG CAT GAC 1,152 bp 

 R: AGT CGA GTT GCA GAC TAC AA  
   

* M denotes either an A or C. 

# Primer only used for assay validation. 
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ΔΔCt analysis 

Comparing the amplification of the 16S rRNA reference gene to the gene of interest will 

normalize the quantification of fldC to all bacteria within a sample. The amplification of the 16S 

rRNA gene and fldC via qPCR will produce a sigmoidal graph. The cycle number where the 

fluorescence of the amplified target DNA is higher than the background noise is known as the 

cycle threshold (Ct). Since each sample is run in triplicate, there will be three Ct values for each 

gene of each sample, which will be averaged together and excluding any outliers. Calculating the 

difference between the average Ct of the gene of interest and the average Ct of the reference gene 

(ΔCt) will normalize the gene of interest. This is performed for both HD and WT samples. Then 

the difference between the HD ΔCt and the WT ΔCt is calculated, creating the ΔΔCt. Finally, 

calculating 2^-(ΔΔCt) will provide the relative quantification of the IPA-producing bacteria 

present within the samples. 

Relative quantifications will be group analyzed as the dependent variable, alongside age 

and genotype as the independent variables. Two-way ANOVA will be performed, followed by 

Bonferroni post-hoc analysis. 
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