
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

Spring 1982

Study of Virtual Memory Study of Virtual Memory

Shridhar S. Dixit
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Dixit, Shridhar S., "Study of Virtual Memory" (1982). Retrospective Theses and Dissertations. 619.
https://stars.library.ucf.edu/rtd/619

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/619?utm_source=stars.library.ucf.edu%2Frtd%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

STUDY OF VIRTUAL MEMORY

BY

SHRIDHAR S. DIXIT
B.S., V. J. Technical Institute, 1978

RESEARCH REPORT

Submitted in partial fulfillment of the requirements
for the Degree of Master of Science

in the Graduate Studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

Spring Term
1982

ABSTRACT

This research report gives a general description of virtual

memory systems. The mechanisms and policies and their effect on

the operation and efficiency of virtual memory are explained.

A virtual memory using a real time virtual address decoder,

to decode 32 bits of virtual address for the secondary memory to

obtain the primary address location is discussed. The decoder is

developed with the use of associative or content-addressable

memories.

Replacement algorithms, used for selecting the pages of the

main memory to be replaced, are described. The hardware implementa­

tion of the least recently used and least often used replacement

policies using associative memories is presented.

TABLE OF CONTENTS

Page

GLOSSARY •••. ••••••.••...••••••••••••.•••••.••.••••••••••••••• iv

CHAPTERS

I. INTRODUCTION•......•...•.•••.••••••.••••..•.

II. VIRTUAL MEMORY CHARACTERISTICS........... 6
Implementation of Virtual Memory 8

I I I . MAP P I NG FUN CT I 0 NS • • • • • • . • • • • • . • . • • . • . • . • . . • . • . 2 0
Fully Associative Mapping 23
Direct Mapping 25
Set Associative Mapping 25

IV. ASSOCIATIVE AND CACHE MEMORIES ..•....•••.•••.••••..• 29
As soc i at 1 v e Memory • . • • • • . . . • . . • • • 2 9
Cache Memory 31

V. REAL TIME VIRTUAL MEMORY •.••.....•.•.......•...•••.. 33

VI. REPLACEMENT ALGORITHMS 43

VII. VIRTUAL MEMORY FOR MICROCOMPUTERS 48

VIII. CONCLUSION 54

REFERENCES •.•.•.•.••••••••••••••••••••••••••••.••••. 58

BIBLIOGRAPHY•..•......•.••••.. .•••••••••••• 59

ii;

GLOSSARY

Address mapping: Calculating the real physical memory address of

address of operands or data from the logical address.

Associative memory: This is a type of random access memory in

which any stored word can be accessed directly by using all or

part of that word as a key.

Auxiliary memory· This is a much larger memory and also much

slower in comparison with the main memory. It is used to store

the system programs and large data files not required continually

by the CPU.. Information in the auxiliary memory is usuallly

indirectly addressed by the CPU via the main memory.

Block: Unit consisting of a group of words.

Cache: A high speed memory interposed betW'een main memory and the

CPU to improve the effective memory transfer rates and accordingly

raise processor speeds.

CPU or central processing unit: It is defined as a general purpose

instruction set processor with overall responsibility of program

interpretation and execution.

Demand paging or demand swapping: Transfer of information only

when it is not present in the main memory and a request is

generated for such a transfer.

iv

Dirty regions: Regions of main memory that have been modified

since being loaded from the secondary.

Dynamic allocation: The ability to allocate storage and also

alter {in case of multiprogramming) it during execution.

Fragmentation: Problems arising in either paged or nonpaged

systems causing loss of useful storage space.

Hit ratio: The ratio of address references to the main memory to

the total address reference made.

Logical address: The address used by a programmer in a program.

Main memory: It is a relativel'y fast memory used for program and

data storage during computer operation. The locations in this

memory are directly addressable by the CPU.

Operating system: Master control program exercising overall

control, supervising allocation of system resources and

scheduling operations and also preventing interference between

d"fferent programs.

Page: Fixed size region of the memory.

Physical address: Addre1ss used by memory or those used to address

actual physical locations.

Repllacement al 1gorithms: Virtual memory policies which decide

which data must be expelled from the main memory and where the

new data should be placed.

Segment: Variable size blocks of contiguous words in the memory.

Static allocation: Organizing the physical address space of the

program so that it remains fixed during program e,xecution_

v

Swapping: Exchanging information between mass storage and main

memory.

vi

CHAPTER I

INTRODUCTION

Virtual memory describes an hierarchical storage of at least

two levels, which is managed by an operating system to appear to

thie user like a single large directly addressable main memory. A

simple block diagram representing such an hierarchy is shown in

Figure 1.

MAIN AUX.

CPU ~
......_ MEMORY - -- MEM. - - - -

I I

Figure 1. Memory hierarchy

Most virtual memory systems utilize a two level hierarchy shown

in Figure l~ comprised of a high speed main memory of relatively

smaller capacity and a higher level secondary memory which is much

larger but has larger access time.

2

A virtual memory frees users from the storage allocation

problem. It permits efficient sharing of memory among different

users and achieves high access rates and low cost per bit possible

with memory hierarchy. It gives the programmer an illusion that

he has a very large main memory at his disposal, even though the

computer actually has relatively small main memory.

To reference data in the main memory the programmer has to

use certain addresses (i.e., pointers to memory locations where

the data is resident) In the operation of a virtual memory two

such addresses need be differentiated. They are logical or virtual

address and physical or memory address. An address used by the

programmer is called the virtual address and the set of such

addresses is called the logical address space (N), the addresses

used by memory or those used to address physical storage locations

are called physical addresses. The set of such locations is called

memory space (M). The translation of the logical addresses to

corresponding physical addresses is required. This necessitates

the use of an address translation function to perform this work.

Address translation is represented at each instant of time by a

mapping f: N-+M, such that f(x) gives the physical address of the

virtual address x if x has been allocated space in M, otherwise

f(x) is undefined. The physical interpretation of f is that a

device called an address translation mechanism is interposed

between the processor and memory as shown in Figure 2 (1),

PR
OC

Es
so

c

1
.
-
-
-
-
-
-
-
-
-
-
-
-

-
1

AD
DR

ES
S

TR
AN

SL
AT

IO
N

-
-

I
I

M
EC

HA
NI

SM

I
I

f
I

I
n

I
I

I
I

I
I

x
I I I I

.....
._ -VI

RT
UA

L
AD

DR
ES

S
I

I
MA

P
TA

BL
E

I

0
HY

SIC
AL

I

AD
DR

ES
S

.. (
 x

)
I I I I I I I I

L
 _

_
_

_
_

_
_

_
_

_
_

 _

-
_

_
_

 J

M
AI

N

...
ME

MO
RY

-

MO
VE

 C
OM

MA
ND

Fi
gu

re
 2

.
Im

pl
em

en
ta

tio
n

of
 a

dd
re

ss
 m

ap

AU
X.

-ME

MO
RY

..

w

4

Whenever the processor generates a reference to an x for which

f(x) is defined, the mechanism presents address f(x) to the memory

and allows the reference to proceed. If f(x) is undefined the

mechanism generates an fault. Now the piece of information has to

be located in the auxiliary memory and transferred to the main

memory and the map table f is updated to show the new changes. In

getting the information, some other information in the main memory

may have to be moved out to make room.

For an efficient operation of the virtual memory, it is

desired that the data required by the CPU be present in the main

memory or if it is resident in the auxiliary memory it should be

transferred to the main memory fast so the CPU may not be idle,

because the CPU can reference data only if it resides in the main

memory. Since the capacity of the main memory is restricted by its

size not all information needed will be present in it.

The storage alloc,ation policy determines, at each moment of

time, how information should be allocated between the main memory

and the secondary memory. Two approaches are associated with the

storage allocation policy. One called the static approach assumes

that the availability of memory resources and sequences of

references to the information are both known. The dynamic approach

assumes that availa,bility of memory resources cannot be predicted

prior to the time the program is run and sequences of references to

the information can be determined only during programs execution.

5

The static approach was superseeded by the dynamic approach because

of the unpredictable availability of memory and unpredictability of

the programs and also the ability to relocate the program in any

available part of the available main memory.

It is desired that only data with a high probability of being

referenced next be resident in the main memory because of its

limited capacity. To acheive this, replacement algorithms exist

that decide which information needs to exist in the main memory

and which should be replaced.

This report gives the general description of virtual memory

and its characteristics. The Least-Recently-Used replacement

algorithm and its hardware implementation is also discussed along

with the real time virtual address decoder used in the virtual

memory system implemented via use of associative memories.

CHAPTER II

VIRTUAL MEMORY CHARACTERISTICS

All processors generate a string of logical1 memory addresses.

These addresses are always distributed among different levels of

hierarchy in some fashion. But the data for a particular referenced

address need always exist in the primary memory if the CPU is to

utilize it. If referenced information is not found in the main

memory, a process called swapping takes place, transferring informa­

tion from auxiliary memory to main memory which may idle the CPU,

an undesirable factor. Some amount of estimation is required so

that the desired information can be transferred to the main memory

before it is referenced.

Such estimations are based upon certain characteristics of

programs ca 11 led 1oca1 i ty of reference. By this property, the

addresses generated by any program tend to cluster or be confined

to small regions in the logical address space. Figure 3 shows

that even though the reference frequency to data may vary, the

references tend to cluster in small groups

This also explains that references to physical locations do

not occur in a random fashion (2). The measure of loGality

defined as the working set, is the smallest set of virtual

addresses that may be assigned to memory locations to have the

6

7

-

-

>-u
z
w -=>
0
LLJ
0:::
LL.

w .___
u
z
w
0:::: -
LLJ
LL.
UJ
0:::-

LOGICAL ADDRESS SPACE

Figure 3. Locality of reference property

8

progr,am operating efficiently. Locality of reference gives rise

to a very important concept in implementation of virtual memory,

namely, paging.

Implementation of Virtual Memory

Virtual memory would be very impractical if references made

to any particular piece of information fetches only that piece.

A large amount of swapping will be required if the data requested

is not present in the main memory. The locality of reference

gives an important clue that, if information were arranged in

blocks, a reference to some address would not just fetch that data

but would also fetch contiguous data with a high probability of

being called soon, for each block contains a set of contiguous

addresses in the address space. The locality of reference property

gives rise to the concepts of paging, segmentation and the combina­

tion of these

Segmentation is a technique which allocates main memory

by segments. A segment is a variable length block of contiguous

words. A word in the segment can be referenced by specifying the

segment address and relative address or displacement within the

segment. When a reference is made to some information and the

particu ar segment containing it does not happen to reside in the

main memory, the whole segment is swapped from the auxiliary memory.

Physical addresses assigned to the segments are maintained in a

segment table, which can be another segment itself. The segment

9

table also contains a presence bit to show whether the segment is

present in the main memory. It may have the block size informa.tion

and also information as to which segment is to be repl,aced.

Paging is a technique which allocates main memory by pages.

Page is a fixed length block and is assigned to the physical memory

page location. Again information is ref,erenc 1ed by specifying the

logical page address and the word address within the page.

The swapping process is greatly simplified in the paging

system as any page can be assigned to any memory location, unlike

segmentation~ where the memory needs to be scanned to fit the

segment into a properly sized location. Segmentation and paging

may have a problem of fragmentation. Fragmentation happens since

segments have arbitrary size, resulting in a proliferation of

holes or empty spaces of various sizes in the main memory giving

it an appearance of being checkerboarded. Such fragmentation is

called external fragmentation. No external fragmentation occurs

in paging because of the uniformity of the page size and because

any page can reside in any available page location. But there is

every likelyhood of some pages not being filled to capacity,

resulting in internal fragmentation. Another type of fragmentation

which can occur in either paged or nonpaged systems is called table

fragmentation. Table fragmentation occurs because certain systems

tables or regions of memory must remain fixed, for instance the

virtual address mapping tables would need to remain fixed for fast

10

address translation (1).

The goal for the design of virtual memory system is to

achieve performance close to the fastest memory but cost per bit

should tend towards that of the auxiliary memory (Figure 1) or

the device which is at the higher level in the hierarchy. Design

factors such as access time of each level, storage capacity, size

of information blocks to be transferred and allocation algorithms

react with each other in a very complex manner and are very

difficult to analyse. A very important quantity, which gives the

performance of virtual memory, is the hit ratio. Defined as the

probability that a logical address generated by the CPU refers to

the information stored in the main memory. The hit ratio is a

useful concept in determining size of pages. Hit ratio can be

represented as:

H _ address references to the main memory
- total address references made

Miss ratio is defined as l-H. A graph showing the relationship

between primary storage capacity and miss ratio for a few page

sizes is shown in Figure 4. The other quantities which play an

important role i 'n evaluating virtual memory systems are the cost

per bit and access time.

The cost per bit depends on the cost of technologies used for

the different levels and also their storage capacities. In general

the cost per bit of memory is given by:

Cl)

N ·.---
1(/) (/)

l.J...J
Cl) 1-
C"l >­
~co

o_ __..

12

10

~8

0
..........

~6
ex::
(/)

V>
~4
:E:::

2

11

256

QL-~~'--~~..__~_.J._~~-'-~--'--=::::::::......:::===-"*-~~~-

2 4 8 16 32 64 128 256

PRIMARY STORAGE CAPACITY (KILOBYTES)

Figure 4~ Relationship between primary
storage capacity and Miss ratio

12

where c1, c2 and s1, s2 refer to the cost per bit and storage

capacities of the different hierarchical levels of the virtual

memory respectively (2).

Access time refers to the average time for the CPU to access

a word in the memory and is given by

where tAl and tA2 are the access times for the different levels

of the hierarchy (2). Access efficiency is defined as the ratio

of access time of the main memory to average time required by the

C~U to access a word in the memory. This is represented by 'e'.

From the above equation 'e' can be represented as

1 e = r + (1-r)H
where

tA2 I tAl = r

Just as virtual memory is implemented by different mechanisms

like paging and segmentation, there exist different policies which

are used to determine how information is to be allocated or moved

in the memory. These policies can be classified as follows:

1. Fetch policies determine the time when the information

should be loaded into the main memory.

2 Replacement polices determine which information is to be

removed from the main memory.

3. Allocation policies determines the regions in the main

memory where the incoming data should be assigned.

13

The fetch policies can be executed in two ways. One mode is

called demand swapping and other is termed anticipatory swapping.

In the first type, information is transferred to main memory only

when it does not reside in the main memory and a request is

generated for such a transfer. In the anticipatory type, as the

name suggests, some amount of anticipation is utilized to transfer

a block of information which may be required by the CPU. Such type

of swapping is rather difficult to imp l ement for long range

estimates (i.e., estimating which information will be required

over a long period of time).

The allocation process uses information stored in the main

memory which is maintained by the operating system as a map. The

map has an available space list specifying the regions which are

available, to which new data can be transferred. The map may also

keep information like an occupied space list which specifies the

regions which are occupied and pages or segments which occupy it.

The allocation policies can be executed in either a static

or dynamic way. The static way assumes that different blocks of

information are bound to fixed regions in the main memory and

cannot be changed during the program execution. The dynamic

allocation policy is executed by first noting the way in which the

memory is already occupied by different blocks. The dynamic

al location policy uses two methods~ preemptive and nonpreemptive,

for its application and is used mostly in the case of segmentation.

1.4

1. Preemptive allocation: In this strategy the incoming

information can be assigned to space used by a currently running

program. This necessitates shifting the currently running segment

to some other region or expelling it totally from the primary memory.

The segments in the memory are relocated such as to make a hole

large enough to make space for a fresh segment. Expelling requires

removal of segments which may be clean or dirty. Dirty blocks being

ones which have been modified since it was loaded into the primary

memory. Removal of dirty blocks involves rewriting them into

auxilliary memory, unl1ike cl1ean blocks which already have a an un­

changed copy in the auxiliary memory. A technique called compaction

can be used for relocation of segments existing in the main memory.

In this technique all the holes present in the memory are combined

into a single large hole to accomodate the incoming information.

Compaction can be used every time a segment is swapped out of the

memory but is rather time consuming process .. Figure 5 depicts the

compaction process.

2. Non-preemptive allocation: In this strategy a new segment

of information can only be placed in a region which is unoccupied and

large engough to accomodate it. This strategy can attain a high

hit ratio with a good allocation algorithm. But in the wrost case

this could lead to an excessive amount of swapping. This phenomenon

ir s ca 11 ed thrashing. This strategy does not pose much problems

since fixed size pages can be accomodated in any available page

15

Figure 5. Compaction

16

location. But segments, being of varying size, need some policy

to fit each in the best available space. Two policies exist called

the best fit and the first fit, in case of nonassociative tables.

First Fit: In this, an incoming segment of information is

placed in the first available memory space as obtained from the map.

Best Fit: This method scans the entire empty space map and

places the incoming segment into an hole such that the minimum

amount of space is wasted.

The first algorithm exhibits better efficiency because of the

time saved in scanning the entire map. A diagram illustrating

these algorithms is shown in Figure 6. ,
Figure 6 shows the first fit algorithm allocates incoming

segment B4 to space between B1 and B2 leaving a small hole but the

best fit algorithm allocates B4 to space between B2 and B3 thus

minimizing any hole formation .

An useful parameter which optimizes the efficiency of a

virtual memory system is the page size. The factors governing the

page size are fragmentation and swapping operations. If the

page size is large the information required next has a high

probability of being present on a page in the main memory. This

would thus reduce the swapping rate. The probability of int,ernal

fragmentation increases with increase in the page size as the last

page will remain unfilled. Further, the page table increases if

the page size is reduced; thus a compromise between a smaller page

size and a large page size must be made to obtain an optimum page

Initial State
of Block

17

First Fit Best Fit

Figure 6. Blocks depicting the first fit and best fit
algorithm

l8

size. The optimum page size can be obtained as shown.

Let Ss be the average length of an active program part in

words (Figure 3) and S the page size. An estimate of the optimum p

page size, s0 Pt, is one which maximizes the space utilization, R,

defined as the ratio of the memory space occupied by the active

parts of user program, S , to total memory space available, S+S . s s

Space utilization is gi'ven as R=S
5

I (S + S
5

)where S is the memory

space overhead associated with each segment).

s = s /2 + s s
p s p

If S >>S then s p

where S
5
/Sp is the size of the page table associated with each

segment and Sp/2 is the average number of words assigned to the

last page of the segment. (2). Then the estimate of the optimum

page size is one which minimizes S or maximizes the space

utilization R. Thus by differentiating Sor R with respect to Sp

and equating it to zero we see that the value of s0 Pt obtained is

the same in both cases and given by

sopt = fil
s

One can show that the allocation and replacement algorithms for

segmented memories are more complex than the algorithms for paged

memories. The problems of fragmentation exists in both paged and

nonpaged systems. The fragmentation present in a paged system is

internal and can be controlled by selecting a proper page size.

In the nonpaged system external fragmentation exists and can be

controlled by proper placement policies or by compaction. Thus

19

the paged system divides the memory uniformly and also eases the

transfer of pages from secondary memory to primary memory. This

comparison between paged and nonpaged or segmented memories exposes

the superiority of paging.

CHAPTER III

MAPPING FUNCTIONS

In a virtual memory system, the secondary memory contains a

larger number of pages than the primary memory. To compress these

secondary pages to primary memory a mapping function is used. Any

page location in the primary memory storage must hold many

different virtual pages~ at different times. The actual number of

virtual pages that a logical page location can accomodate varies

with the mapping function. The minimum number is the total page

capacity of secondary divided by the total page capacity of the

primary memory and the maximum number is the total page capacity

of the secondary storage itself. These two form the extreme cases

representating the direct and associative mapping respectively.

Between these two extreme cases there can exist any number of

possibilities, which gives rise to set associative mapping.

The three different mapping functions are achieved by

initially considering the following (3). The primary

memory is divided into a fixed number of sets called frames and

each frame consists of a fixed number of pages. All the virtual

pages must be accomodated in these primary pages. Consider the

secondary memory divided into groups of pages, each group being

20

Frame
l

Frame
2

Frame
Q

Primary

Page l

Page 2

Page 3

21

Mapped
as

Group 11

Secondary
Page 1

Figure 7~ General mapping

Frame l

Frame 3 Group l

Frame Q

rame 2Q

Group
2

22

equal to the length of the primary memory. Each group contains

the frames and pages corresponding to the primary memory. Each

frame in the primary memory must be, shared by certain fixed frames

in the secondary storage; for example, Figure 7 indicates frame 1

of the primary memory must be shared by frames l, l+Q, 1+2Q, etc.,

from the secondary memory. Pages within a frame of the secondary

are associatively mapped into any of the pages within the frame of

primary. All the virtual pages are thus assigned to one and only

one logical frame and can be located in any one of the pages within

that frame Frames from different groups can be intermixed within

the primary memory; hence not all frames from one given group need

be simultaneously present in the pnmary memory.

If the number of pages per frame is small or the number of

frames is large, then locating a page becomes easier because of the

fewer log1ca places a page can reside in. Si mi larly, if the number

of frames is small and the number of pages per frame is large, the

number of places in which a virtual page can reside is larger, thus

making it difficult to locate a page. The choice of mapping

function is also dependent on the contention problem. It is

required that the virtual pages from frames l, l+Q etc., in the

secondary reside in frame l of the primary memory. Suppose a frame

has 10 pages, and if it required that 6 pages from frame 1 and 5

pages from frame l+Q of the secondary be present in frame l of the

primary at one time, then the capacity of the primary frame wi1 l

23

be exceeded and there will be two virtual pages competing for a

single page in the primary frame giving rise to contention problem.

This contention problem can be reduced if the data is organized

properly in the secondary memory, i.e., if certain pages from the

secondary are required to be present in the primary at one time,

then these pages should be allocated in the secondary frames, such

that these frames will not be required to share the same primary

frame. But it is difficult to estimate how the data will be used,

hence organizing data could present problems. Three types of

mapping functions and their impact on the contention problem are

discussed.

Fu lly Associative Mapping

In fully associative mapping, illustrated in Figure 8, the main

consideration is to maximize the number of pages in a frame.

Maximizing the number of pages in a frame results in a frame

containing pages equal to the total primary capacity, and this would

reduce the number of frames to one; thus, any virtual page can be

mapped logically into any primary page. The contention problem

for this type of mapping is minimum because two virtual pages can

contend for a s·ngle primary page only when the total number of

pages required simultaneously exceeds the primary memory capacity

and this, in general, is unlikely; thus, the hit ratio provided is

high. Since an associative type of compare is required in the

address translation, this mapping is difficult to implement (3).

Primary

Page Slot 1

Page Slot 2

24

Any
Virtual
Page to

Any Pa,ge
Slot

Secondary
Page l
Page 2

Figure 8. Fully associative mapping

25

Direct Mapping

The main aim in this type of mapping is to minimize the number

of pages in a frame. This results in a frame having only one page

and thus the number of frames equal the total primary memory

capacity. Figure 9 illustrates that any page in the secondary

memory can reside only in a specific page in the primary, i.e., page

1 in the primary must be shared by virtual pages 1, l+Q, 1+2Q etc.

In this case, if more than one virtual page, say 1, l+Q etc., is

required to be present in the primary page 1 at one time, then

serious contention problems could occur as a result of more than

one virtual page competing for a single page in the primary. This

type of a mapping can result in a low hit ratio.

Set Associative Mapping

Set associative mapping is a compromise between the complex

address translation problem in the fully associative memory and the

serious contention problem faced in the direct mapping. The number

of pages in a frame, in this case, is fixed to certain value say

2n. A virtual page from certain fixed frames in the secondary can

r 1eside in any of the 2n logical pages of the primary memory frame.

For example, if the number of pages per frame is 2, then a virtual

page can reside in either of the two logical pages in the primary

memory, as shown in Figure 10. Contention problems caused because

of two or more virtual pages competing for a single page in the

primary can be reduced by selecting a higher number of pages per

26

frame as this would allow more primary pages per frame in which

the virtual pages can fit.

27

Secondary

Page 1

Page 2

Primary
Set Page Slot l + Q

Set 2 Page Slot 2 2 + Q

Figure 9. Direct mapping

Set
Slot 1

2

Set I
Slot Q

Primar

28

Secondary

Set l

Set 2

Set Q

Set 2nd Q

Figure 10. Set associate mapping

CHAPTER IV

ASSOCIATIVE AND CACHE MEMORIES

Associative Memory

Associative memory is a type of random access memory in which

any stored word can be accessed directly by using all or a part of

that word as a key. Thus, all the words that match the key are

specifically identified as available and can be addressed in the

subsequent memory cycles. Such memories are also called content

addressable memories.

Figure 11 shows the structure of a word organized associative

memory (2). The main blocks of the structure are the mask

register, the select circuit and the storage array where the words

are stored. The masked register is used to specify the desired

key. The select circuit enables the data fields to be accessed.

Each unit of stored information is a fixed length word. The

operation of the memory is as fol1ows. The hit word is in the

input register. The mask register identifies which fields of the

hit word are to be compared to all corresponding fields in the

storage cell array. The masked hit-word is ca 11 ed the key. Those

words which match the key emit a match signal which enters the

select circuit. The select circuit enables the data fields to be

accessed. If several entries have the same key, then the select

29

30

INPUT
'O

INPUT REGISTER
I

n

MASK REGISTER

~, KEY

STORAGE CELL MATCH SELECT
ARRAY - CIRCUIT

~
SELECT

.,

OUTPUT REGISTER

~,OUTPUT

Figure 11. Structure of word-organized
associative memory

31

circuit decides which data field is to be read out, maybe in

some predetermined order. Each word must have its own match

circuit since each word's key must be compared with the input key.

Cache lVlemory

A cache is ,a sma 11 fast memory p 1 aced between the CPU and

the main memory to bridge the speed-gap. It acts like a buffer

for the main memory and forms a two level hierarchy with it; this

time the cache acting like a primary memory and the main memory

being the secondary. Figure 12 illustrates a three-level hierarchy

with the cache included~

CPU ~ CACHE_ MAIN ..._ AUXILIARY
- -- MEMORY .. MEMORY ___ , - -

~ ~ --

Figure 12. Three level hierarchy

I

32

The cache should satisfy most of the memory references so that

its hit ratio should approach 1. The cache-main memory configura­

tion is similar to the main-secondary hierarchy. The access time

of cache-main memory is very much less than main-secondary memory,

the page size is also much sma11er in case of the cache. The

cache-memory address translation is normally implemented by

hardware. Another important difference is that the processor has

direct access to both cache and main memory. The architecture of

igure 13 illustrates that when the information is not found in the

cache, the CPU can directly access the main memory. The cache hit

ratio can thus be increased.

I

CPU

~

MAIN ~

CACHE -- MEMORY ..-

a.
,,

--

Figure 13. Cache used in Hierarchical
memory

I

CHAPTER V

REAL TIME VIRTUAL MEMORY

In this section an effort is made to design a nearly real time

system that can decode 32 bits of virtual address from the secondary

memory to obtain the primary memory address locations. We define

real time as a virtual memory address translation time of 300 nsec

but which may range between 100 nsec to 900 nsec The primary

memory size is 16 megabyte and is organized in 16K pages, each

consisting of 1024 bytes. The 10 least significant bits of the

32 bit virtual address give the page address. A block diagram

for the system is shown in Figure 14.

The solution technique for this problem is as follows:

We use an associative memory which can potentially solve the problem.

A modified organization of this is sho 1n in Figure 15.

X is a 22 bi t word of associative memory which identifies
l

a page of 1024 words of virtual memory (i.e., on the disk) which

has been transferred to the primary memory page address Y. y. ; s
l

a loaded page in the primary memory. This page of 1024 bytes

corresponds to s·econdary 1 ocat ion X. Each word of memory Y

contains a primary memory page's address.

33

32 22

34

REAL TIME VIRTUAL
ADDRESS DECODER

10

Figure 14. The real time virtual address decoder

Page
No.

Page
Address

35

x. Y.
1

14

22

22
Virtual E

Address N MEMORY Y
(Disk ASSOCIATIVE A

Location) MEMORY B
L
E

Any Hit

Figure 15. Structure of virtual address decoder

36

~Je need to put the associative memory X and memory Y on one

IC. If the present memory is 2K * 8 to BK * 8 and if the exclusive

OR gates require equal or less area compared to a memory cell, then

we assume that one IC can hold about Bk bits of memory plus the

exclusive OR gates to establ1 ish the associative memory. The size

of the associative memory X and memory Y would be about

8 x 1024 = 228
36

where 36 = 22 + 14 = memory bits per map location.

So we assume 256 locations of virtual address can be obtained

on one IC (i.e., the value of n in Figure 15 is equal to 256).

Figure 16 gives the structure of a virtual address decoder

IC. In Figure 17, the virtual address is compared with the addresses

in the associative memory simultaneously and if a match occurs, a

hit has occurred and the primary memory register gives the address

of the data in the primary. Buffering is required to store the

virtual address so that it can be simultaneously compared with the

addresses in the associative memory.

37

2 Power

IC

22

Other

Figure 16. Virtual address decoder IC

v I R

T
 u A

l A

D

D

R

l
E

 s s

AS
SO

CI
AT

IV
E

ME
MO

RY

xl

a
i

-
-

-
21

X2
56

0
1

-
-

-
21

B
in

/B
ou

t

TO

14

PR
IM

AR
Y

ME
MO

RY

yl

RE
GI

ST
ER

 1
4

BI
TS

TR
I S

TA
TE

S

Y2
56

Fi
gu

re
 1

7.

A
ss

oc
ia

ti
ve

 m
em

or
y

fu
nc

ti
on

 o
f

vi
rt

ua
l

ad
dr

es
s

de
co

de
r

OU
TP

UT

BU
S

w

0
0

39

Figure 18 illustrates a possible pin designation for the vir­

tual address decoder. One can define the pin functions as follows:

R/W = 0 Read

R/W = l Write

Bin/Bout = 0 Output bus B disabled

Bin/Bout = 1 Enable B bus

The functions of pins Mode/ Hit and VJ[can be compounded and put

1n a table form.

Mode/Hit = 0 Mode/Hit = 1
V/ = No Hit Virtual Address .

l Hit

V/ = 0 Write B to y Write B to x - Register Register L

The bus B is bidirectional because it is used to either read out

data or 1t can also be used to write into the IC. The Mode/Hit

bus is also bidirectional because if V/[= 1 the bus reads out

from the IC and if V/[= 0, Mode/Hit is an input line. The method

to read and write from or to the IC is given below.

First the method to read from the Virtual Address Decoder is

given:

1. Set ~/W=O and read the virtual address on A.

2. Decode A for an hit. If §in/Bout = 0, then the output

bus B is disabled.

40

i-----
2_,__ ___ POWER

22 A IC B - 14

l v /-
L 1

-Bin/Bout
MODE/HIT R/W

1 l

Figure 18. Pin designation for the 1.C .

41

3. If Hit= 1, then the IC decodes the virtual address to

the physical location.

4. Set Bin/Bout equal to 1 to allow the decoded physical

address to appear on the B bus.

To write into the Virtual Address Decoder the following

steps are used.

1. Set V/L ; 0 thus Mode/Hit is an input line and we can

write to the Virtual Address Decoder.

2. Set Bin/Bout = 0 which would disable the B bus output

drivers.
-

3. Set R/W = 0 thus we are ready to read in information

to be put on the B bus.

4. ow set the Y register address on the B bus and allow

set up time The address on 8 bus is now read into the IC.

5. Set Mode/Hit = 0 which chooses Y register to be addressed

by thie B bus.

6 Set v register data on the A bus.

7 . Set R/W=l which W'ri tes A bus data in the Y register.

8. Set R/W=O so that the address and/or data can change

without effecting data stored in the device.

9. Now set Mode/Hit=l which chooses the X register to be

addressed by the B bus.

10. We now have to write data in the X register at the address

specified on the B bus. The B bus address should not change

between these writes since (X,Y) form an associative pair.

42

111. Set R/W=O and remove data input to B bus.

12. ~in/Bout=l enable the B bus.

13. Set V/[=l which means that we are in the virtual mode.

CHAPTER VI

REPLACEMENT ALGORITHMS

A virtual memory system is a combination of hardware and

software techniques. The memory management software system handles

all software operations for efficient utilization of memory space.

It must decide (1) which page in the primary ought to be removed

to make room for new one, (2) when the new page is to be transferred

from the s 1econdary memory to the primary memory, and (3) where the

page is to be placed in thre primary memory. The criteria for

choosing a page of information to be replaced is called the replace­

ment algorithm or policy. The main objective behind selecting a

replacement algorithm is to maximize the hit ratio and hence to

ensure that a page which is to be referenced is present in the

primary memory.

The hit ratio can be maximized if the time interval between

successive page faults can be increased. One strategy, called the

optimal replacement strategy, or also known as OPT, achieves this

by ~stimating at a time, say t
1

, the time t 2 when a particular

page will be referenced again. A page to be thus replaced is one

for which t
2
-t

1
is maximum. This means that the page targeted for

replacement has less chance of being referenced soon compared to

43

44

other pages. This policy is implemented in two runs. First is a

simulation run to determine the sequences of the addresses

generated by a program and noting the times when the different

blocks are referenced.. The second run executes this policy by

replacing appropriate blocks. This is not a very practical strategy

because of the time spent on simulation runs, and also the block

sequences may be long, making the simulation expensive (2).

In another policy, called the FIFO or first-in-first-out (2),

the block selected to be replaced is one which has been loaded the

first. Each block has associated with it a loading sequence

number in the occupied space list which is updated each time a block

is transferred to or from the main memory. The block to be replaced

can be easily determined by inspection of these numbers. This

policy is easy to implement but has some defects. A block with

high probability of being referenced may be displaced because it

happens to be the oldest block.

Least-Often-Used and Least-Recently-Used (2) are two other

replacement algorithms which select a block to be replaced that

has been referenced the minimum number of times. These superseded

the FIFO algorithm in a way that a block with higt1 probability of

being referenced will not be replaced. These algorithms are rather

difficult to implement compared to the FIFO because special hardware

is required to maintain a record of the use of the pages so that

the ones referenced least can be selected to be replaced (2).

45

In the least often used policy the pages are arranged in a

descending order of use count, such that the table moves the pages

used most to the top and the ones used least to the bottom. This

policy uses counters to maintain the age of the pages. The size

of a counter must be large compared to the length of a page.

Figure 19 depicts the implementation of this policy. Whenever a

page is referenced, the counter associated with it is incremented,

and this count is placed above one with a lower count. This

shifting of counts, such as to place them in a descending order of

magnitude, is achieved by using a temporary register (TEMP).

The least recently used policy is implemented by means of

constantly updating the table (i.e ., a page which has been

referenced most recently bubbles to the top of the associative

memory). Figure 19 illustrates the implementation of this policy.

Whenever a page is re,ferenced, it first goes to a temporary register

where it is stored until the remaining pages are pushed down; then

the page in the temporary register is inserted at the top of the

table to indicate that it is the most recently used page.

Then the virtual pages at the bottom of the least used tables are

the ones which can be replaced. The operation of the LRU hardware

can be explained in the following steps.

1. The primary memory page address enters A.

2. One of the registers contains a matching page address so

a hit is activated at register i.

A

4
II

\.
'

US
E

CO
UN

T

RE
G.

0

U
.C

.O

TE
MP

 R
EG

.
CL

EA

TE
MP

.
RE

G.

-1
1

u.
c "

ll

RE
G.

2

Fi
gu

re
 1

9.

Ha
rd

wa
~e

im

pl
em

en
ta

tio
n

of
 L

RU
 a

nd

le
as

t
of

te
n

us
ed

 a
lg

or
ith

m

~
 °'

47

3. The contents of register i are loaded in the Temp

register.

4. Then the register set from 0 through i are shifted as

follows:

(Reg.+Reg. 1+Reg. 2+ ... +Reg0+Temp Reg)
1 1- 1-

(i.e., perfonn the shift on the left first and end with the shift

on the right from Temp register to Reg0).

5. Registers i+l to n remain unchanged.

In this way most recently used address move to the top of

the associative memory and least recently used primary addresses

move down.

CHAPTER VII

VIRTUAL MEMORY FOR MICROPROCESSORS

This chapter is a reference to the work of Judith A. Anderson

and G. J. Lipovski, (4). The availability of efficient and in­

expensive microprocessors has changed the computer outlook

drastically. The cost of input/output devices are relatively high

compared to the microprocessors, so I/0 devices must be shared

among different microprocessors. The cost of required memory also

outruns the cost of the microprocessor. Thus the size of local

memory should be reduced but should not be too small because the cost

of software then increases. A small virtual memory for each micro­

computer provides a good outlet for these prob1ems.

A virtual memory physical page block diagram is shown in

Figure 20 and some 'mplications behind its development are

considered. A page of virtual memory with associated logic is

shown in Figure 20.

A few things must be considered before deciding what functions

of a virtual memory should be divided between hardware and software.

One is that the system should be extensible i.e., addition of new

pages should involve minimum change in hardware and software.

Execution time or storage overhead should be minimum and operating

system requirements should be minimum. Much of the system should be

independent of the processor type.

48

49

PAGE FAULT RAIL OUT

PAGE REG.
ENABLE

MEM. RESET
GYC COUNTER

CYCLE
MEMORY

STATUS PAGE

R/W R/W

D{LOW BITS) DATA
SELECTOR

DECODER DATA

CONTROL

Figure 20. A virtual memory physical page

50

The address translation for the primary memory and the page

fault detection should be, done by hardware because software

involves large execution time as well as storage overhead. It is

better for each page of the memory to have associated with it

the hardware required for the above functions, because even though

the cost may be a little more, the system can be extensible. This

strategy would allow the address translation logic to be incorporated

directly on a memory chip containiing this page., This gives some

idea of the construction of the virtual memory in Figure 20. There

is a page register which gives the virtual page number. This is

compared with higher order bits sent by the microcomputer. If a

match occurs the memory is enabled and the word, selected by the

lower order bits of address, can be read or written. If no match

occurs a page fault takes place which can be handled by the

interrupt facility. If a page fault occurs some page must be

expelled to make place for a new incoming page. The page to be

replaced can either be dirty or clean depending on whether the

page has been modified or not since being loaded from the secondary

to the primary If a page is dirty then it needs to have a copy

in the secondary. Hardware can be used to distinguish a clean

or a dirty page because only one bit is required to do this

comparison. The bit can be set if the page is dirty., If software

is used to distinguish a clean or dirty page, additional subroutine

is required which may involve a relatively long execution time.

:51

The Least-Re,cently-Used algorithm can be implemented either by

using the associative queue method or by the use of counters.

ciative queue involved pushing the referenced page to the top.

Asso­

Thi s

forces the least recently used page to the bottom, which can thus

be displaced. The use of counters involve associating a counter

with every pa,ge. When a page is accessed, the counter associated

with it is reset and counters of all other pages are incremented.

When a page is required the contents of the counters associated

with every page is read and the maximum found. The maximum value

of the counter corresponds to the least recently used page. Over­

flow of counters should be avoided, but this could present some

problems. If the overflow 1s avoided by holding the counter which

has reached it maximum count constant, then choosing the least

recently used page would be difficult as there could be more than

one counters which may have reached their maximum value. Thus

even though a page with maximum count will be displaced, this page

may not be one which was least recently used. But the counter

method provides more flexibility than the associative queue method

and is preferred.

The instruction which was being executed when the page fault

occured should be re-executed, because either the memory data being

requested was not available or the instructi~ did not reside in

the primary memory. Thus the address of the instructi~ and the

page number of the missing data should be saved. The virtual page

52

number being requested during page fault can be determined by

loading only one register which is enabled by the page fault.

Reading the register would require only one command. When a page

fault occurs~ a page fault interrupt must be enabled because the

program may continue with invalid results.

The use of virtual memory in microcomputers can be obstructed

because of the amount of space taken up by the operating system in

the real memory. A solution for this could be that the operating

system that services the interrupts and errors for input/output

devices can be resident in the controller while the actual service

routines for the keyboard and display in the terminal need not be

resident but could be paged in when required. These are a few

of the things to be taken into account for a virtual memory.

The virtual memory described in this chapter uses a method

wherein every page of the main memory has associated with it a page

comparator and counter. The address translation and page fault

detection hardware is cellular, i.e., each page of the memory has

an associated cell for address translation and page fault detection.

This can help to incorporate the entire logic on the memory chip

containing that page and thus also make the system extensible. But

the number of comparisons required in this system are very many.

The system described in Chapter V {Figure 17) uses an associative

memory to carry on the address trans1 ,ation function. The

comparisons carried on are associative and the same number of

53

separate comparisons are required for each page as a system based

on Figure 20. The Least-Recently-Used replacement algorithm used

is implemented in Chapter V by the use of an associative queue

method as compared to the counter method adopted here.

CHAPTER VIII

CONCLUSION

A virtual memory system is a very efficient and economical

system for storing information. Virtual memory offers advantages

of low cost of bit storage and high access rates which are possible

because of the hierarchical use of different memory techno1ogies.

The concept of address space removes much of the restrictions posed

by a nonvirtual memory system in which the user is limited in

addressing to the actual size of the main memory. Also, the auto­

matic storage allocation whi1 ch is achieved by the operating system

relieves the user of any storage allocation problems. Virtual

memory is very efficient and useful where time-shared systems are

used. But even with these advantages certain problems exist which

are of interest.

Since the virtual memory gives an illusion to the programmer

as being one single large directly addressable main memory, the pro­

grammer may tend not to restrict the size of the program as he would

have in a non virtual memory system. This i11usion may generate

unnecessary overhead in the automatic storage allocation mechanism

and reduce efficiency of multiprogramming operation. Another

problem which exists is of fr ,agmentation. The type of fragmentation

54

55

prevalent in paged and nonpaged systems are different, but both

basically cause the loss of useful storage space. Many time­

sharing systems tend to use demand paging policy which tends to

increase the cost of operation (1). It is desired that the hit

ratio should be high for efficient operation; if this happens to

be 1ow~ an excessive amount of swapping takes place leading to the

phenomenon called thrashing.

Virtual memory is implemented by different mechanisms and

pohcies which are used to determine how the information is to be

a 11 ocated or moved in the memory. Paging and segrnentat ion are two

mechanisms. Paging divides the memory into fixed size regions and

offers a uniform treatment of the memory, but it suffers from

internal fragmentation and thrashing problems under multiprogramming.

Segmentation uses variable length blocks or segments and these are

susceptible to external fragmentation. Paging is preferred to

segmentation because of the ease it offers in memory management

and transfer of pages.

In a virtual memory operation, it is required that the

information be present in the main memory when it is to be

referenced, otherwise the information needs to be transferred from

the auxiliary memory which will be very time consuming. The

1 oca l i ty of reference property,, according to which data normally

clusters in groups, is very useful and gives rise to the important

concept of implementation of virtual memory, namely paging.

56

Memory, being a limited resource, must be shared among

different programs. Dynamic allocation allocates and also alters

(i .,e., in case of multiprogramming) the storage space during program

execution. The allocation techniques discussed were the preemptive

and nonpreemptive. The preemptive technique applies for both paged

and segmented systems. In this technique, the incoming information

could be assigned space by expelling or rearranging (i.e., case

of segments} the existing pages or segments. In the nonpreemptive

method) used only in the case of segmentation, the segment could be

placed in a region if the region was unoccupied and large enough

to accomodate the segment. The best and the first fit were the two

ways of achieving the nonpreemptive technique.

In the preemptive allocation strategy the pages or segments

could be expelled or pr 1eempted by using certain replacement

policies. The three different policies discussed were FIFO, least

recently used and least often used. FIFO even though easy to

implement, was not practical, as it expelled blocks independent

of use and only on the order of access. The other two policies

work by expelling pages which have not been referenced often.

Least often expelled by using counters and least recently used

te,chnique by which the addresses referenced most re,cently were

always found at the top of the list leaving the lower addresses to

be preempted. Either the least recently used or least often used

policy is preferred to FIFO.

S7

Use of cache and associative memories have great influence

on the system performance. A cache is a sma 11 fast memory used

mainly to bridge the CPU and main memory speed gap. The cost of

this element restricts its size, but because of the fast access

time and also because of the concept of locality of reference

property, the cache hit ratio can be made high. Associative memo­

ries offer an advantage of time saving by comparing pages for

matches in one memory eye.le ,. The real time virtual address

decoder discussed uses an associative memory for performing the

address translation function.

REFERENCES

1. Denning, Pe,ter J. ''Virtual Memory. 11 Computing Surveys 2
(September 1970): 155-187.

2. Hayes~ John P. Computer Architecture and Organization.
New York: McGraw-Hill, 1978.

3. Matick, Richard E. Computer Storage Systems and Technology.
New York: John Wiley & Sons, 1977.

4. Anderson, Judith A., and Lipovski, G. J. 11 A Virtual Memory
For Microprocessors." IEEE 2nd Symposium On Computer
Architecture, pp. 80-90. Long Beach, California:
IEEE Computer Society Publications Office, 1975.

58

BIBLIOGRAPHY

Ander,son, ,Judi th A. , and Li povsk i , G .. J. "A Vi rtua 1 Memory
For Microprocessors. 11 I£_EE 2nd Symposium On Computer
Architecture, pp. 80-90. long Beach, California:
IEEE Computer Soc~ety Publications Office, 1975.

Crofut, W. A., and Sottile, M .. R.. "Design Tec-niques of a Delay
Line Contient Addressed Memory. 111 IEEE Tran sac ti ons On
Electric Computers. EC-15(4) (August 1966): 529-534.

Denning, Peter J. 11 Virtual Memory. 111 Computing Surveys 2
(September 1970): 155-187.

Digby, David W. 11 A Search Memory For Many-To-Many Comparison."'
IEEE Transaction On Computers. C-22(8) (August 1973):
768-77 ,2.

Hayes, John P. Computer Architecture and Org.anization. Ne'W York:
McGraw-Hill, 1978.

Hill, F. J., and Peterson, G. R. Digital Systems: Hardware
Organization And Design. New Yo'rk: John Wiley & Sons,, 1978.

Johnson, Co 11 in R. "M icrosystems Ex pl oi t Mainframe Methods. 11

Electronics (August 1981): 119-127.

Knuth, D. E .. The Art Of Computer Programming, Vol. 2. Reading,
Massachussetts: Addison-Wesley, 1968.

Lipovski, Jack G.. "On Virtual Memory And Micronetworks. 111

IEEE 4th Annual Symposium On Computer Architectur,e, pp. 125-
134. Long Beach, California: IEEE Computer Society
Publications Office, 1977.

Matick, Richard E. Computer Storage Systems and Technology.
New York. John Wiley & Sons ,I 1977.

Miller, Richard E. Computer Storage Systems And Technology.
New York: John Wiley & Sons, 1. 977 ..

Strecker, William D ... Cache Memories For PDP-11: Family Computers."
IEEE 3rd Annual Symposium On Computer Arcihitecture,
pp. 155-158.. Long Beach, California: IEEE Computer Society
Publications Office, 1976.

Vogt, Peter D. 111 Virtual Memory Extension For An Existing
Mi ni:computer. 111 Computer Design.. (July 1981) : 151-156 ·

59

	Study of Virtual Memory
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii

	GLOSSARY
	iv
	v
	vi

	CHAPTER I. INTRODUCTION
	01
	02
	03
	04
	05

	CHAPTER II. VIRTUAL MEMORY CHARACTERISTICS
	06
	07
	Implementation of Virtual Memory
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	CHAPTER III. MAPPING FUNCTIONS
	20
	21
	22
	Fully Associative Mapping
	23
	24

	Direct Mapping
	Set Associative Mapping
	25
	26
	27
	28

	CHAPTER IV. ASSOCIATIVE AND CACHE MEMORIES
	Associative Memory
	29
	30

	Cache Memory
	31
	32

	CHAPTER V. REAL TIME VIRTUAL MEMORY
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42

	CHAPTER VI. REPLACEMENT ALGORITHMS
	43
	44
	45
	46
	47

	CHAPTER VII. VIRTUAL MEMORY FOR MICROPROCESSORS
	48
	49
	50
	51
	52
	53

	CHAPTER VIII. CONCLUSION
	54
	55
	56
	57

	REFERENCES
	58

	BIBLIOGRAPHY
	59

