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ABSTRACT 

This research report gives a general description of virtual 

memory systems. The mechanisms and policies and their effect on 

the operation and efficiency of virtual memory are explained. 

A virtual memory using a real time virtual address decoder, 

to decode 32 bits of virtual address for the secondary memory to 

obtain the primary address location is discussed. The decoder is 

developed with the use of associative or content-addressable 

memories. 

Replacement algorithms, used for selecting the pages of the 

main memory to be replaced, are described. The hardware implementa­

tion of the least recently used and least often used replacement 

policies using associative memories is presented. 
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GLOSSARY 

Address mapping: Calculating the real physical memory address of 

address of operands or data from the logical address. 

Associative memory: This is a type of random access memory in 

which any stored word can be accessed directly by using all or 

part of that word as a key. 

Auxiliary memory· This is a much larger memory and also much 

slower in comparison with the main memory. It is used to store 

the system programs and large data files not required continually 

by the CPU.. Information in the auxiliary memory is usuallly 

indirectly addressed by the CPU via the main memory. 

Block: Unit consisting of a group of words. 

Cache: A high speed memory interposed betW'een main memory and the 

CPU to improve the effective memory transfer rates and accordingly 

raise processor speeds. 

CPU or central processing unit: It is defined as a general purpose 

instruction set processor with overall responsibility of program 

interpretation and execution. 

Demand paging or demand swapping: Transfer of information only 

when it is not present in the main memory and a request is 

generated for such a transfer. 

iv 



Dirty regions: Regions of main memory that have been modified 

since being loaded from the secondary. 

Dynamic allocation: The ability to allocate storage and also 

alter {in case of multiprogramming) it during execution. 

Fragmentation: Problems arising in either paged or nonpaged 

systems causing loss of useful storage space. 

Hit ratio: The ratio of address references to the main memory to 

the total address reference made. 

Logical address: The address used by a programmer in a program. 

Main memory: It is a relativel'y fast memory used for program and 

data storage during computer operation. The locations in this 

memory are directly addressable by the CPU. 

Operating system: Master control program exercising overall 

control, supervising allocation of system resources and 

scheduling operations and also preventing interference between 

d"fferent programs. 

Page: Fixed size region of the memory. 

Physical address: Addre1ss used by memory or those used to address 

actual physical locations. 

Repllacement al 1gorithms: Virtual memory policies which decide 

which data must be expelled from the main memory and where the 

new data should be placed. 

Segment: Variable size blocks of contiguous words in the memory. 

Static allocation: Organizing the physical address space of the 

program so that it remains fixed during program e,xecution_ 

v 



Swapping: Exchanging information between mass storage and main 

memory. 

vi 



CHAPTER I 

INTRODUCTION 

Virtual memory describes an hierarchical storage of at least 

two levels, which is managed by an operating system to appear to 

thie user like a single large directly addressable main memory. A 

simple block diagram representing such an hierarchy is shown in 

Figure 1. 

MAIN AUX. 

CPU ~ 
......_ MEMORY - -- MEM. - - - -

I I 

Figure 1. Memory hierarchy 

Most virtual memory systems utilize a two level hierarchy shown 

in Figure l~ comprised of a high speed main memory of relatively 

smaller capacity and a higher level secondary memory which is much 

larger but has larger access time. 
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A virtual memory frees users from the storage allocation 

problem. It permits efficient sharing of memory among different 

users and achieves high access rates and low cost per bit possible 

with memory hierarchy. It gives the programmer an illusion that 

he has a very large main memory at his disposal, even though the 

computer actually has relatively small main memory. 

To reference data in the main memory the programmer has to 

use certain addresses (i.e., pointers to memory locations where 

the data is resident) In the operation of a virtual memory two 

such addresses need be differentiated. They are logical or virtual 

address and physical or memory address. An address used by the 

programmer is called the virtual address and the set of such 

addresses is called the logical address space (N), the addresses 

used by memory or those used to address physical storage locations 

are called physical addresses. The set of such locations is called 

memory space (M). The translation of the logical addresses to 

corresponding physical addresses is required. This necessitates 

the use of an address translation function to perform this work. 

Address translation is represented at each instant of time by a 

mapping f: N-+M, such that f(x) gives the physical address of the 

virtual address x if x has been allocated space in M, otherwise 

f(x) is undefined. The physical interpretation of f is that a 

device called an address translation mechanism is interposed 

between the processor and memory as shown in Figure 2 (1), 
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Whenever the processor generates a reference to an x for which 

f(x) is defined, the mechanism presents address f(x) to the memory 

and allows the reference to proceed. If f(x) is undefined the 

mechanism generates an fault. Now the piece of information has to 

be located in the auxiliary memory and transferred to the main 

memory and the map table f is updated to show the new changes. In 

getting the information, some other information in the main memory 

may have to be moved out to make room. 

For an efficient operation of the virtual memory, it is 

desired that the data required by the CPU be present in the main 

memory or if it is resident in the auxiliary memory it should be 

transferred to the main memory fast so the CPU may not be idle, 

because the CPU can reference data only if it resides in the main 

memory. Since the capacity of the main memory is restricted by its 

size not all information needed will be present in it. 

The storage alloc,ation policy determines, at each moment of 

time, how information should be allocated between the main memory 

and the secondary memory. Two approaches are associated with the 

storage allocation policy. One called the static approach assumes 

that the availability of memory resources and sequences of 

references to the information are both known. The dynamic approach 

assumes that availa,bility of memory resources cannot be predicted 

prior to the time the program is run and sequences of references to 

the information can be determined only during programs execution. 
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The static approach was superseeded by the dynamic approach because 

of the unpredictable availability of memory and unpredictability of 

the programs and also the ability to relocate the program in any 

available part of the available main memory. 

It is desired that only data with a high probability of being 

referenced next be resident in the main memory because of its 

limited capacity. To acheive this, replacement algorithms exist 

that decide which information needs to exist in the main memory 

and which should be replaced. 

This report gives the general description of virtual memory 

and its characteristics. The Least-Recently-Used replacement 

algorithm and its hardware implementation is also discussed along 

with the real time virtual address decoder used in the virtual 

memory system implemented via use of associative memories. 



CHAPTER II 

VIRTUAL MEMORY CHARACTERISTICS 

All processors generate a string of logical1 memory addresses. 

These addresses are always distributed among different levels of 

hierarchy in some fashion. But the data for a particular referenced 

address need always exist in the primary memory if the CPU is to 

utilize it. If referenced information is not found in the main 

memory, a process called swapping takes place, transferring informa­

tion from auxiliary memory to main memory which may idle the CPU, 

an undesirable factor. Some amount of estimation is required so 

that the desired information can be transferred to the main memory 

before it is referenced. 

Such estimations are based upon certain characteristics of 

programs ca 11 led 1oca1 i ty of reference. By this property, the 

addresses generated by any program tend to cluster or be confined 

to small regions in the logical address space. Figure 3 shows 

that even though the reference frequency to data may vary, the 

references tend to cluster in small groups 

This also explains that references to physical locations do 

not occur in a random fashion (2). The measure of loGality 

defined as the working set, is the smallest set of virtual 

addresses that may be assigned to memory locations to have the 

6 
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progr,am operating efficiently. Locality of reference gives rise 

to a very important concept in implementation of virtual memory, 

namely, paging. 

Implementation of Virtual Memory 

Virtual memory would be very impractical if references made 

to any particular piece of information fetches only that piece. 

A large amount of swapping will be required if the data requested 

is not present in the main memory. The locality of reference 

gives an important clue that, if information were arranged in 

blocks, a reference to some address would not just fetch that data 

but would also fetch contiguous data with a high probability of 

being called soon, for each block contains a set of contiguous 

addresses in the address space. The locality of reference property 

gives rise to the concepts of paging, segmentation and the combina­

tion of these 

Segmentation is a technique which allocates main memory 

by segments. A segment is a variable length block of contiguous 

words. A word in the segment can be referenced by specifying the 

segment address and relative address or displacement within the 

segment. When a reference is made to some information and the 

particu ar segment containing it does not happen to reside in the 

main memory, the whole segment is swapped from the auxiliary memory. 

Physical addresses assigned to the segments are maintained in a 

segment table, which can be another segment itself. The segment 
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table also contains a presence bit to show whether the segment is 

present in the main memory. It may have the block size informa.tion 

and also information as to which segment is to be repl,aced. 

Paging is a technique which allocates main memory by pages. 

Page is a fixed length block and is assigned to the physical memory 

page location. Again information is ref,erenc 1ed by specifying the 

logical page address and the word address within the page. 

The swapping process is greatly simplified in the paging 

system as any page can be assigned to any memory location, unlike 

segmentation~ where the memory needs to be scanned to fit the 

segment into a properly sized location. Segmentation and paging 

may have a problem of fragmentation. Fragmentation happens since 

segments have arbitrary size, resulting in a proliferation of 

holes or empty spaces of various sizes in the main memory giving 

it an appearance of being checkerboarded. Such fragmentation is 

called external fragmentation. No external fragmentation occurs 

in paging because of the uniformity of the page size and because 

any page can reside in any available page location. But there is 

every likelyhood of some pages not being filled to capacity, 

resulting in internal fragmentation. Another type of fragmentation 

which can occur in either paged or nonpaged systems is called table 

fragmentation. Table fragmentation occurs because certain systems 

tables or regions of memory must remain fixed, for instance the 

virtual address mapping tables would need to remain fixed for fast 
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address translation (1). 

The goal for the design of virtual memory system is to 

achieve performance close to the fastest memory but cost per bit 

should tend towards that of the auxiliary memory (Figure 1) or 

the device which is at the higher level in the hierarchy. Design 

factors such as access time of each level, storage capacity, size 

of information blocks to be transferred and allocation algorithms 

react with each other in a very complex manner and are very 

difficult to analyse. A very important quantity, which gives the 

performance of virtual memory, is the hit ratio. Defined as the 

probability that a logical address generated by the CPU refers to 

the information stored in the main memory. The hit ratio is a 

useful concept in determining size of pages. Hit ratio can be 

represented as: 

H _ address references to the main memory 
- total address references made 

Miss ratio is defined as l-H. A graph showing the relationship 

between primary storage capacity and miss ratio for a few page 

sizes is shown in Figure 4. The other quantities which play an 

important role i 'n evaluating virtual memory systems are the cost 

per bit and access time. 

The cost per bit depends on the cost of technologies used for 

the different levels and also their storage capacities. In general 

the cost per bit of memory is given by: 
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where c1, c2 and s1, s2 refer to the cost per bit and storage 

capacities of the different hierarchical levels of the virtual 

memory respectively (2). 

Access time refers to the average time for the CPU to access 

a word in the memory and is given by 

where tAl and tA2 are the access times for the different levels 

of the hierarchy (2). Access efficiency is defined as the ratio 

of access time of the main memory to average time required by the 

C~U to access a word in the memory. This is represented by 'e'. 

From the above equation 'e' can be represented as 

1 e = r + (1-r)H 
where 

tA2 I tAl = r 

Just as virtual memory is implemented by different mechanisms 

like paging and segmentation, there exist different policies which 

are used to determine how information is to be allocated or moved 

in the memory. These policies can be classified as follows: 

1. Fetch policies determine the time when the information 

should be loaded into the main memory. 

2 Replacement polices determine which information is to be 

removed from the main memory. 

3. Allocation policies determines the regions in the main 

memory where the incoming data should be assigned. 
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The fetch policies can be executed in two ways. One mode is 

called demand swapping and other is termed anticipatory swapping. 

In the first type, information is transferred to main memory only 

when it does not reside in the main memory and a request is 

generated for such a transfer. In the anticipatory type, as the 

name suggests, some amount of anticipation is utilized to transfer 

a block of information which may be required by the CPU. Such type 

of swapping is rather difficult to imp l ement for long range 

estimates (i.e., estimating which information will be required 

over a long period of time). 

The allocation process uses information stored in the main 

memory which is maintained by the operating system as a map. The 

map has an available space list specifying the regions which are 

available, to which new data can be transferred. The map may also 

keep information like an occupied space list which specifies the 

regions which are occupied and pages or segments which occupy it. 

The allocation policies can be executed in either a static 

or dynamic way. The static way assumes that different blocks of 

information are bound to fixed regions in the main memory and 

cannot be changed during the program execution. The dynamic 

allocation policy is executed by first noting the way in which the 

memory is already occupied by different blocks. The dynamic 

al location policy uses two methods~ preemptive and nonpreemptive, 

for its application and is used mostly in the case of segmentation. 
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1. Preemptive allocation: In this strategy the incoming 

information can be assigned to space used by a currently running 

program. This necessitates shifting the currently running segment 

to some other region or expelling it totally from the primary memory. 

The segments in the memory are relocated such as to make a hole 

large enough to make space for a fresh segment. Expelling requires 

removal of segments which may be clean or dirty. Dirty blocks being 

ones which have been modified since it was loaded into the primary 

memory. Removal of dirty blocks involves rewriting them into 

auxilliary memory, unl1ike cl1ean blocks which already have a an un­

changed copy in the auxiliary memory. A technique called compaction 

can be used for relocation of segments existing in the main memory. 

In this technique all the holes present in the memory are combined 

into a single large hole to accomodate the incoming information. 

Compaction can be used every time a segment is swapped out of the 

memory but is rather time consuming process .. Figure 5 depicts the 

compaction process. 

2. Non-preemptive allocation: In this strategy a new segment 

of information can only be placed in a region which is unoccupied and 

large engough to accomodate it. This strategy can attain a high 

hit ratio with a good allocation algorithm. But in the wrost case 

this could lead to an excessive amount of swapping. This phenomenon 

ir s ca 11 ed thrashing. This strategy does not pose much problems 

since fixed size pages can be accomodated in any available page 
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Figure 5. Compaction 
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location. But segments, being of varying size, need some policy 

to fit each in the best available space. Two policies exist called 

the best fit and the first fit, in case of nonassociative tables. 

First Fit: In this, an incoming segment of information is 

placed in the first available memory space as obtained from the map. 

Best Fit: This method scans the entire empty space map and 

places the incoming segment into an hole such that the minimum 

amount of space is wasted. 

The first algorithm exhibits better efficiency because of the 

time saved in scanning the entire map. A diagram illustrating 

these algorithms is shown in Figure 6. , 
Figure 6 shows the first fit algorithm allocates incoming 

segment B4 to space between B1 and B2 leaving a small hole but the 

best fit algorithm allocates B4 to space between B2 and B3 thus 

minimizing any hole formation . 

An useful parameter which optimizes the efficiency of a 

virtual memory system is the page size. The factors governing the 

page size are fragmentation and swapping operations. If the 

page size is large the information required next has a high 

probability of being present on a page in the main memory. This 

would thus reduce the swapping rate. The probability of int,ernal 

fragmentation increases with increase in the page size as the last 

page will remain unfilled. Further, the page table increases if 

the page size is reduced; thus a compromise between a smaller page 

size and a large page size must be made to obtain an optimum page 
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First Fit Best Fit 

Figure 6. Blocks depicting the first fit and best fit 
algorithm 



l8 

size. The optimum page size can be obtained as shown. 

Let Ss be the average length of an active program part in 

words (Figure 3) and S the page size. An estimate of the optimum p 

page size, s0 Pt, is one which maximizes the space utilization, R, 

defined as the ratio of the memory space occupied by the active 

parts of user program, S , to total memory space available, S+S . s s 

Space utilization is gi'ven as R=S
5 

I (S + S
5 

)where S is the memory 

space overhead associated with each segment). 

s = s /2 + s s 
p s p 

If S >>S then s p 

where S
5
/Sp is the size of the page table associated with each 

segment and Sp/2 is the average number of words assigned to the 

last page of the segment. (2). Then the estimate of the optimum 

page size is one which minimizes S or maximizes the space 

utilization R. Thus by differentiating Sor R with respect to Sp 

and equating it to zero we see that the value of s0 Pt obtained is 

the same in both cases and given by 

sopt = fil 
s 

One can show that the allocation and replacement algorithms for 

segmented memories are more complex than the algorithms for paged 

memories. The problems of fragmentation exists in both paged and 

nonpaged systems. The fragmentation present in a paged system is 

internal and can be controlled by selecting a proper page size. 

In the nonpaged system external fragmentation exists and can be 

controlled by proper placement policies or by compaction. Thus 
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the paged system divides the memory uniformly and also eases the 

transfer of pages from secondary memory to primary memory. This 

comparison between paged and nonpaged or segmented memories exposes 

the superiority of paging. 



CHAPTER III 

MAPPING FUNCTIONS 

In a virtual memory system, the secondary memory contains a 

larger number of pages than the primary memory. To compress these 

secondary pages to primary memory a mapping function is used. Any 

page location in the primary memory storage must hold many 

different virtual pages~ at different times. The actual number of 

virtual pages that a logical page location can accomodate varies 

with the mapping function. The minimum number is the total page 

capacity of secondary divided by the total page capacity of the 

primary memory and the maximum number is the total page capacity 

of the secondary storage itself. These two form the extreme cases 

representating the direct and associative mapping respectively. 

Between these two extreme cases there can exist any number of 

possibilities, which gives rise to set associative mapping. 

The three different mapping functions are achieved by 

initially considering the following (3). The primary 

memory is divided into a fixed number of sets called frames and 

each frame consists of a fixed number of pages. All the virtual 

pages must be accomodated in these primary pages. Consider the 

secondary memory divided into groups of pages, each group being 

20 
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equal to the length of the primary memory. Each group contains 

the frames and pages corresponding to the primary memory. Each 

frame in the primary memory must be, shared by certain fixed frames 

in the secondary storage; for example, Figure 7 indicates frame 1 

of the primary memory must be shared by frames l, l+Q, 1+2Q, etc., 

from the secondary memory. Pages within a frame of the secondary 

are associatively mapped into any of the pages within the frame of 

primary. All the virtual pages are thus assigned to one and only 

one logical frame and can be located in any one of the pages within 

that frame Frames from different groups can be intermixed within 

the primary memory; hence not all frames from one given group need 

be simultaneously present in the pnmary memory. 

If the number of pages per frame is small or the number of 

frames is large, then locating a page becomes easier because of the 

fewer log1ca places a page can reside in. Si mi larly, if the number 

of frames is small and the number of pages per frame is large, the 

number of places in which a virtual page can reside is larger, thus 

making it difficult to locate a page. The choice of mapping 

function is also dependent on the contention problem. It is 

required that the virtual pages from frames l, l+Q etc., in the 

secondary reside in frame l of the primary memory. Suppose a frame 

has 10 pages, and if it required that 6 pages from frame 1 and 5 

pages from frame l+Q of the secondary be present in frame l of the 

primary at one time, then the capacity of the primary frame wi1 l 
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be exceeded and there will be two virtual pages competing for a 

single page in the primary frame giving rise to contention problem. 

This contention problem can be reduced if the data is organized 

properly in the secondary memory, i.e., if certain pages from the 

secondary are required to be present in the primary at one time, 

then these pages should be allocated in the secondary frames, such 

that these frames will not be required to share the same primary 

frame. But it is difficult to estimate how the data will be used, 

hence organizing data could present problems. Three types of 

mapping functions and their impact on the contention problem are 

discussed. 

Fu lly Associative Mapping 

In fully associative mapping, illustrated in Figure 8, the main 

consideration is to maximize the number of pages in a frame. 

Maximizing the number of pages in a frame results in a frame 

containing pages equal to the total primary capacity, and this would 

reduce the number of frames to one; thus, any virtual page can be 

mapped logically into any primary page. The contention problem 

for this type of mapping is minimum because two virtual pages can 

contend for a s·ngle primary page only when the total number of 

pages required simultaneously exceeds the primary memory capacity 

and this, in general, is unlikely; thus, the hit ratio provided is 

high. Since an associative type of compare is required in the 

address translation, this mapping is difficult to implement (3). 
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Direct Mapping 

The main aim in this type of mapping is to minimize the number 

of pages in a frame. This results in a frame having only one page 

and thus the number of frames equal the total primary memory 

capacity. Figure 9 illustrates that any page in the secondary 

memory can reside only in a specific page in the primary, i.e., page 

1 in the primary must be shared by virtual pages 1, l+Q, 1+2Q etc. 

In this case, if more than one virtual page, say 1, l+Q etc., is 

required to be present in the primary page 1 at one time, then 

serious contention problems could occur as a result of more than 

one virtual page competing for a single page in the primary. This 

type of a mapping can result in a low hit ratio. 

Set Associative Mapping 

Set associative mapping is a compromise between the complex 

address translation problem in the fully associative memory and the 

serious contention problem faced in the direct mapping. The number 

of pages in a frame, in this case, is fixed to certain value say 

2n. A virtual page from certain fixed frames in the secondary can 

r 1eside in any of the 2n logical pages of the primary memory frame. 

For example, if the number of pages per frame is 2, then a virtual 

page can reside in either of the two logical pages in the primary 

memory, as shown in Figure 10. Contention problems caused because 

of two or more virtual pages competing for a single page in the 

primary can be reduced by selecting a higher number of pages per 
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frame as this would allow more primary pages per frame in which 

the virtual pages can fit. 
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CHAPTER IV 

ASSOCIATIVE AND CACHE MEMORIES 

Associative Memory 

Associative memory is a type of random access memory in which 

any stored word can be accessed directly by using all or a part of 

that word as a key. Thus, all the words that match the key are 

specifically identified as available and can be addressed in the 

subsequent memory cycles. Such memories are also called content 

addressable memories. 

Figure 11 shows the structure of a word organized associative 

memory (2). The main blocks of the structure are the mask 

register, the select circuit and the storage array where the words 

are stored. The masked register is used to specify the desired 

key. The select circuit enables the data fields to be accessed. 

Each unit of stored information is a fixed length word. The 

operation of the memory is as fol1ows. The hit word is in the 

input register. The mask register identifies which fields of the 

hit word are to be compared to all corresponding fields in the 

storage cell array. The masked hit-word is ca 11 ed the key. Those 

words which match the key emit a match signal which enters the 

select circuit. The select circuit enables the data fields to be 

accessed. If several entries have the same key, then the select 

29 
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Figure 11. Structure of word-organized 
associative memory 



31 

circuit decides which data field is to be read out, maybe in 

some predetermined order. Each word must have its own match 

circuit since each word's key must be compared with the input key. 

Cache lVlemory 

A cache is ,a sma 11 fast memory p 1 aced between the CPU and 

the main memory to bridge the speed-gap. It acts like a buffer 

for the main memory and forms a two level hierarchy with it; this 

time the cache acting like a primary memory and the main memory 

being the secondary. Figure 12 illustrates a three-level hierarchy 

with the cache included~ 

CPU ~ CACHE ...._ MAIN ..._ AUXILIARY 
- -- MEMORY .. MEMORY ___ , - -

~ ~ --

Figure 12. Three level hierarchy 

I 
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The cache should satisfy most of the memory references so that 

its hit ratio should approach 1. The cache-main memory configura­

tion is similar to the main-secondary hierarchy. The access time 

of cache-main memory is very much less than main-secondary memory, 

the page size is also much sma11er in case of the cache. The 

cache-memory address translation is normally implemented by 

hardware. Another important difference is that the processor has 

direct access to both cache and main memory. The architecture of 

igure 13 illustrates that when the information is not found in the 

cache, the CPU can directly access the main memory. The cache hit 

ratio can thus be increased. 

I 

----
CPU 

~ 

MAIN ~ 

CACHE -- MEMORY ..-

a. 
,, 

--

Figure 13. Cache used in Hierarchical 
memory 

I 



CHAPTER V 

REAL TIME VIRTUAL MEMORY 

In this section an effort is made to design a nearly real time 

system that can decode 32 bits of virtual address from the secondary 

memory to obtain the primary memory address locations. We define 

real time as a virtual memory address translation time of 300 nsec 

but which may range between 100 nsec to 900 nsec The primary 

memory size is 16 megabyte and is organized in 16K pages, each 

consisting of 1024 bytes. The 10 least significant bits of the 

32 bit virtual address give the page address. A block diagram 

for the system is shown in Figure 14. 

The solution technique for this problem is as follows: 

We use an associative memory which can potentially solve the problem. 

A modified organization of this is sho 1n in Figure 15. 

X is a 22 bi t word of associative memory which identifies 
l 

a page of 1024 words of virtual memory (i.e., on the disk) which 

has been transferred to the primary memory page address Y. y. ; s 
l 

a loaded page in the primary memory. This page of 1024 bytes 

corresponds to s·econdary 1 ocat ion X. Each word of memory Y 

contains a primary memory page's address. 

33 
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Figure 14. The real time virtual address decoder 
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x. Y. 
1 

14 

22 

22 
Virtual E 

Address N MEMORY Y 
(Disk ASSOCIATIVE A 

Location) MEMORY B 
L 
E 

Any Hit 

Figure 15. Structure of virtual address decoder 
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~Je need to put the associative memory X and memory Y on one 

IC. If the present memory is 2K * 8 to BK * 8 and if the exclusive 

OR gates require equal or less area compared to a memory cell, then 

we assume that one IC can hold about Bk bits of memory plus the 

exclusive OR gates to establ1 ish the associative memory. The size 

of the associative memory X and memory Y would be about 

8 x 1024 = 228 
36 

where 36 = 22 + 14 = memory bits per map location. 

So we assume 256 locations of virtual address can be obtained 

on one IC (i.e., the value of n in Figure 15 is equal to 256). 

Figure 16 gives the structure of a virtual address decoder 

IC. In Figure 17, the virtual address is compared with the addresses 

in the associative memory simultaneously and if a match occurs, a 

hit has occurred and the primary memory register gives the address 

of the data in the primary. Buffering is required to store the 

virtual address so that it can be simultaneously compared with the 

addresses in the associative memory. 
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Figure 16. Virtual address decoder IC 
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Figure 18 illustrates a possible pin designation for the vir­

tual address decoder. One can define the pin functions as follows: 

R/W = 0 Read 

R/W = l Write 

Bin/Bout = 0 Output bus B disabled 

Bin/Bout = 1 Enable B bus 

The functions of pins Mode/ Hit and VJ[ can be compounded and put 

1n a table form. 

Mode/Hit = 0 Mode/Hit = 1 
V/ = No Hit Virtual Address . 

l Hit 

V/ = 0 Write B to y Write B to x - Register Register L 

The bus B is bidirectional because it is used to either read out 

data or 1t can also be used to write into the IC. The Mode/Hit 

bus is also bidirectional because if V/[ = 1 the bus reads out 

from the IC and if V/[ = 0, Mode/Hit is an input line. The method 

to read and write from or to the IC is given below. 

First the method to read from the Virtual Address Decoder is 

given: 

1. Set ~/W=O and read the virtual address on A. 

2. Decode A for an hit. If §in/Bout = 0, then the output 

bus B is disabled. 
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i-----
2_,__ ___ POWER 

22 A IC B - 14 

l v /-
L 1 

-Bin/Bout 
MODE/HIT R/W 

1 l 

Figure 18. Pin designation for the 1.C . 
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3. If Hit= 1, then the IC decodes the virtual address to 

the physical location. 

4. Set Bin/Bout equal to 1 to allow the decoded physical 

address to appear on the B bus. 

To write into the Virtual Address Decoder the following 

steps are used. 

1. Set V/L ; 0 thus Mode/Hit is an input line and we can 

write to the Virtual Address Decoder. 

2. Set Bin/Bout = 0 which would disable the B bus output 

drivers. 
-

3. Set R/W = 0 thus we are ready to read in information 

to be put on the B bus. 

4. ow set the Y register address on the B bus and allow 

set up time The address on 8 bus is now read into the IC. 

5. Set Mode/Hit = 0 which chooses Y register to be addressed 

by thie B bus. 

6 Set v register data on the A bus. 

7 . Set R/W=l which W'ri tes A bus data in the Y register. 

8. Set R/W=O so that the address and/or data can change 

without effecting data stored in the device. 

9. Now set Mode/Hit=l which chooses the X register to be 

addressed by the B bus. 

10. We now have to write data in the X register at the address 

specified on the B bus. The B bus address should not change 

between these writes since (X,Y) form an associative pair. 
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111. Set R/W=O and remove data input to B bus. 

12. ~in/Bout=l enable the B bus. 

13. Set V/[=l which means that we are in the virtual mode. 



CHAPTER VI 

REPLACEMENT ALGORITHMS 

A virtual memory system is a combination of hardware and 

software techniques. The memory management software system handles 

all software operations for efficient utilization of memory space. 

It must decide (1) which page in the primary ought to be removed 

to make room for new one, (2) when the new page is to be transferred 

from the s 1econdary memory to the primary memory, and ( 3) where the 

page is to be placed in thre primary memory. The criteria for 

choosing a page of information to be replaced is called the replace­

ment algorithm or policy. The main objective behind selecting a 

replacement algorithm is to maximize the hit ratio and hence to 

ensure that a page which is to be referenced is present in the 

primary memory. 

The hit ratio can be maximized if the time interval between 

successive page faults can be increased. One strategy, called the 

optimal replacement strategy, or also known as OPT, achieves this 

by ~stimating at a time, say t
1

, the time t 2 when a particular 

page will be referenced again. A page to be thus replaced is one 

for which t
2
-t

1 
is maximum. This means that the page targeted for 

replacement has less chance of being referenced soon compared to 

43 
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other pages. This policy is implemented in two runs. First is a 

simulation run to determine the sequences of the addresses 

generated by a program and noting the times when the different 

blocks are referenced.. The second run executes this policy by 

replacing appropriate blocks. This is not a very practical strategy 

because of the time spent on simulation runs, and also the block 

sequences may be long, making the simulation expensive (2). 

In another policy, called the FIFO or first-in-first-out (2), 

the block selected to be replaced is one which has been loaded the 

first. Each block has associated with it a loading sequence 

number in the occupied space list which is updated each time a block 

is transferred to or from the main memory. The block to be replaced 

can be easily determined by inspection of these numbers. This 

policy is easy to implement but has some defects. A block with 

high probability of being referenced may be displaced because it 

happens to be the oldest block. 

Least-Often-Used and Least-Recently-Used (2) are two other 

replacement algorithms which select a block to be replaced that 

has been referenced the minimum number of times. These superseded 

the FIFO algorithm in a way that a block with higt1 probability of 

being referenced will not be replaced. These algorithms are rather 

difficult to implement compared to the FIFO because special hardware 

is required to maintain a record of the use of the pages so that 

the ones referenced least can be selected to be replaced (2). 
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In the least often used policy the pages are arranged in a 

descending order of use count, such that the table moves the pages 

used most to the top and the ones used least to the bottom. This 

policy uses counters to maintain the age of the pages. The size 

of a counter must be large compared to the length of a page. 

Figure 19 depicts the implementation of this policy. Whenever a 

page is referenced, the counter associated with it is incremented, 

and this count is placed above one with a lower count. This 

shifting of counts, such as to place them in a descending order of 

magnitude, is achieved by using a temporary register (TEMP). 

The least recently used policy is implemented by means of 

constantly updating the table (i.e ., a page which has been 

referenced most recently bubbles to the top of the associative 

memory). Figure 19 illustrates the implementation of this policy. 

Whenever a page is re,ferenced, it first goes to a temporary register 

where it is stored until the remaining pages are pushed down; then 

the page in the temporary register is inserted at the top of the 

table to indicate that it is the most recently used page. 

Then the virtual pages at the bottom of the least used tables are 

the ones which can be replaced. The operation of the LRU hardware 

can be explained in the following steps. 

1. The primary memory page address enters A. 

2. One of the registers contains a matching page address so 

a hit is activated at register i. 
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3. The contents of register i are loaded in the Temp 

register. 

4. Then the register set from 0 through i are shifted as 

follows: 

(Reg.+Reg. 1+Reg. 2+ ... +Reg0+Temp Reg) 
1 1- 1-

(i.e., perfonn the shift on the left first and end with the shift 

on the right from Temp register to Reg0 ). 

5. Registers i+l to n remain unchanged. 

In this way most recently used address move to the top of 

the associative memory and least recently used primary addresses 

move down. 



CHAPTER VII 

VIRTUAL MEMORY FOR MICROPROCESSORS 

This chapter is a reference to the work of Judith A. Anderson 

and G. J. Lipovski, (4). The availability of efficient and in­

expensive microprocessors has changed the computer outlook 

drastically. The cost of input/output devices are relatively high 

compared to the microprocessors, so I/0 devices must be shared 

among different microprocessors. The cost of required memory also 

outruns the cost of the microprocessor. Thus the size of local 

memory should be reduced but should not be too small because the cost 

of software then increases. A small virtual memory for each micro­

computer provides a good outlet for these prob1ems. 

A virtual memory physical page block diagram is shown in 

Figure 20 and some 'mplications behind its development are 

considered. A page of virtual memory with associated logic is 

shown in Figure 20. 

A few things must be considered before deciding what functions 

of a virtual memory should be divided between hardware and software. 

One is that the system should be extensible i.e., addition of new 

pages should involve minimum change in hardware and software. 

Execution time or storage overhead should be minimum and operating 

system requirements should be minimum. Much of the system should be 

independent of the processor type. 
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PAGE FAULT RAIL OUT 

PAGE REG. 
ENABLE 

MEM. RESET 
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DECODER DATA 

CONTROL 

Figure 20. A virtual memory physical page 
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The address translation for the primary memory and the page 

fault detection should be, done by hardware because software 

involves large execution time as well as storage overhead. It is 

better for each page of the memory to have associated with it 

the hardware required for the above functions, because even though 

the cost may be a little more, the system can be extensible. This 

strategy would allow the address translation logic to be incorporated 

directly on a memory chip containiing this page., This gives some 

idea of the construction of the virtual memory in Figure 20. There 

is a page register which gives the virtual page number. This is 

compared with higher order bits sent by the microcomputer. If a 

match occurs the memory is enabled and the word, selected by the 

lower order bits of address, can be read or written. If no match 

occurs a page fault takes place which can be handled by the 

interrupt facility. If a page fault occurs some page must be 

expelled to make place for a new incoming page. The page to be 

replaced can either be dirty or clean depending on whether the 

page has been modified or not since being loaded from the secondary 

to the primary If a page is dirty then it needs to have a copy 

in the secondary. Hardware can be used to distinguish a clean 

or a dirty page because only one bit is required to do this 

comparison. The bit can be set if the page is dirty., If software 

is used to distinguish a clean or dirty page, additional subroutine 

is required which may involve a relatively long execution time. 
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The Least-Re,cently-Used algorithm can be implemented either by 

using the associative queue method or by the use of counters. 

ciative queue involved pushing the referenced page to the top. 

Asso­

Thi s 

forces the least recently used page to the bottom, which can thus 

be displaced. The use of counters involve associating a counter 

with every pa,ge. When a page is accessed, the counter associated 

with it is reset and counters of all other pages are incremented. 

When a page is required the contents of the counters associated 

with every page is read and the maximum found. The maximum value 

of the counter corresponds to the least recently used page. Over­

flow of counters should be avoided, but this could present some 

problems. If the overflow 1s avoided by holding the counter which 

has reached it maximum count constant, then choosing the least 

recently used page would be difficult as there could be more than 

one counters which may have reached their maximum value. Thus 

even though a page with maximum count will be displaced, this page 

may not be one which was least recently used. But the counter 

method provides more flexibility than the associative queue method 

and is preferred. 

The instruction which was being executed when the page fault 

occured should be re-executed, because either the memory data being 

requested was not available or the instructi~ did not reside in 

the primary memory. Thus the address of the instructi~ and the 

page number of the missing data should be saved. The virtual page 
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number being requested during page fault can be determined by 

loading only one register which is enabled by the page fault. 

Reading the register would require only one command. When a page 

fault occurs~ a page fault interrupt must be enabled because the 

program may continue with invalid results. 

The use of virtual memory in microcomputers can be obstructed 

because of the amount of space taken up by the operating system in 

the real memory. A solution for this could be that the operating 

system that services the interrupts and errors for input/output 

devices can be resident in the controller while the actual service 

routines for the keyboard and display in the terminal need not be 

resident but could be paged in when required. These are a few 

of the things to be taken into account for a virtual memory. 

The virtual memory described in this chapter uses a method 

wherein every page of the main memory has associated with it a page 

comparator and counter. The address translation and page fault 

detection hardware is cellular, i.e., each page of the memory has 

an associated cell for address translation and page fault detection. 

This can help to incorporate the entire logic on the memory chip 

containing that page and thus also make the system extensible. But 

the number of comparisons required in this system are very many. 

The system described in Chapter V {Figure 17) uses an associative 

memory to carry on the address trans1 ,ation function. The 

comparisons carried on are associative and the same number of 
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separate comparisons are required for each page as a system based 

on Figure 20. The Least-Recently-Used replacement algorithm used 

is implemented in Chapter V by the use of an associative queue 

method as compared to the counter method adopted here. 



CHAPTER VIII 

CONCLUSION 

A virtual memory system is a very efficient and economical 

system for storing information. Virtual memory offers advantages 

of low cost of bit storage and high access rates which are possible 

because of the hierarchical use of different memory techno1ogies. 

The concept of address space removes much of the restrictions posed 

by a nonvirtual memory system in which the user is limited in 

addressing to the actual size of the main memory. Also, the auto­

matic storage allocation whi1 ch is achieved by the operating system 

relieves the user of any storage allocation problems. Virtual 

memory is very efficient and useful where time-shared systems are 

used. But even with these advantages certain problems exist which 

are of interest. 

Since the virtual memory gives an illusion to the programmer 

as being one single large directly addressable main memory, the pro­

grammer may tend not to restrict the size of the program as he would 

have in a non virtual memory system. This i11usion may generate 

unnecessary overhead in the automatic storage allocation mechanism 

and reduce efficiency of multiprogramming operation. Another 

problem which exists is of fr ,agmentation. The type of fragmentation 
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prevalent in paged and nonpaged systems are different, but both 

basically cause the loss of useful storage space. Many time­

sharing systems tend to use demand paging policy which tends to 

increase the cost of operation (1). It is desired that the hit 

ratio should be high for efficient operation; if this happens to 

be 1ow~ an excessive amount of swapping takes place leading to the 

phenomenon called thrashing. 

Virtual memory is implemented by different mechanisms and 

pohcies which are used to determine how the information is to be 

a 11 ocated or moved in the memory. Paging and segrnentat ion are two 

mechanisms. Paging divides the memory into fixed size regions and 

offers a uniform treatment of the memory, but it suffers from 

internal fragmentation and thrashing problems under multiprogramming. 

Segmentation uses variable length blocks or segments and these are 

susceptible to external fragmentation. Paging is preferred to 

segmentation because of the ease it offers in memory management 

and transfer of pages. 

In a virtual memory operation, it is required that the 

information be present in the main memory when it is to be 

referenced, otherwise the information needs to be transferred from 

the auxiliary memory which will be very time consuming. The 

1 oca l i ty of reference property,, according to which data normally 

clusters in groups, is very useful and gives rise to the important 

concept of implementation of virtual memory, namely paging. 
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Memory, being a limited resource, must be shared among 

different programs. Dynamic allocation allocates and also alters 

(i .,e., in case of multiprogramming) the storage space during program 

execution. The allocation techniques discussed were the preemptive 

and nonpreemptive. The preemptive technique applies for both paged 

and segmented systems. In this technique, the incoming information 

could be assigned space by expelling or rearranging (i.e., case 

of segments} the existing pages or segments. In the nonpreemptive 

method) used only in the case of segmentation, the segment could be 

placed in a region if the region was unoccupied and large enough 

to accomodate the segment. The best and the first fit were the two 

ways of achieving the nonpreemptive technique. 

In the preemptive allocation strategy the pages or segments 

could be expelled or pr 1eempted by using certain replacement 

policies. The three different policies discussed were FIFO, least 

recently used and least often used. FIFO even though easy to 

implement, was not practical, as it expelled blocks independent 

of use and only on the order of access. The other two policies 

work by expelling pages which have not been referenced often. 

Least often expelled by using counters and least recently used 

te,chnique by which the addresses referenced most re,cently were 

always found at the top of the list leaving the lower addresses to 

be preempted. Either the least recently used or least often used 

policy is preferred to FIFO. 
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Use of cache and associative memories have great influence 

on the system performance. A cache is a sma 11 fast memory used 

mainly to bridge the CPU and main memory speed gap. The cost of 

this element restricts its size, but because of the fast access 

time and also because of the concept of locality of reference 

property, the cache hit ratio can be made high. Associative memo­

ries offer an advantage of time saving by comparing pages for 

matches in one memory eye.le ,. The real time virtual address 

decoder discussed uses an associative memory for performing the 

address translation function. 
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