
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1983

An Analytical Model for Evaluating Database Update Schemes An Analytical Model for Evaluating Database Update Schemes

Kathryn C. Kinsley
katekinsley@yahoo.com

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Kinsley, Kathryn C., "An Analytical Model for Evaluating Database Update Schemes" (1983). Retrospective
Theses and Dissertations. 693.
https://stars.library.ucf.edu/rtd/693

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Frtd%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/693?utm_source=stars.library.ucf.edu%2Frtd%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

AN ANALYTICAL MODEL FOR EVALUATING

DATABASE UPDATE SCHEMES

Kathryn C. Kinsley

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science at
the University of Central Florida

Orlando, Florida

April 1983

Major Professor: Dr. Charles E. Hughes

Abstract

A methodology is presented for evaluating the

performance of database update schemes. The methodology

uses the M/Hr/l queueing model as a basis for this analysis

and makes use of the history of how data is used in the

database. Parameters have been introduced which can be set

based on the characteristics of a specific system. These

include update to retrieval ratio, average file size,

overhead, block size and the expected number of items in

the database.

The analysis is specifically directed toward the

support of derived data within the relational model. Three

support methods are analyzed. These are first examined in

a central database system. The analysis is then extended

in order to measure performance in a distributed system.

Because concurrency is a major problem in a distributive

system, the support of derived data is analyzed with

respect to three distributive concurrency control

techniques -- master/slave, distributed and synchronized.
In addition to its use as a performance predictor, the

development of the methodology serves to demonstrate how

queueing theory may be used to investigate other related

database problems. This is an important benefit due to the

lack of fundamental results in the area of using queueing

theory to analyze database performance.

ACKNOWLEDGEMENTS

The author wishes to thank her adviser, Dr. Charles E.

Hughes for his direction of this work. It has been a

pleasure to work with him. His patience and insight is

appreciated.

In addition, the author wishes to thank her research

committee, namely, Drs. Mostafa Bassiouni, Ron Dutton, Ratan

Guha and Brian Petrasko, each of whom contributed to the

quality and direction of this dissertation. A special

thanks is due to Dr. Terry J. Frederick, head of the

Computer Science ~epartment, who has provided support and

encouragement throughout the author's graduate academic

career.

And of course, the author expresses her appreciation to

her husband for his understanding and encouragement

throughout this endeavor.

iii

wf,b"-p,f:;.&

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF SYMBOLS AND ABBREVIATIONS

TRODUCTION
A. Objective
B e Database Terminology
C. Queueing Theory Terminology
D. Organization of Presentation '.

11. SURVEYOFTHELITERATURE

A. Dynamic Derived Relations
B. Formal Analysis of Database Performance

in a Centralized Environment
C. Distributive Databases
D. Formal Analysis of Database Performance

in Distributive Database Systems . . .
111. EVALUATING DDR SUPPORT METHODS IN A

CENTRALIZEDSYSTEM . .
A. Characteristics of the Three

UpdateMethods & Using the History of Database Retrievals
and Updates to Determine the Average
Service Time

C. The M/G/l Model
D. Using the M/Hr/l Model to Represent the

Immediate Actual Method
Em Using the M/Hr/l Model to Represent the

Deferred Actual Method
F. Using the M/Hr/l Model to Represent the

Potential Method
G.. Incorporating Overhead into the Actual

Deferred Method
He Comparison of Performance of the Three

ddr Support Methods

-
IV. ANALYSIS OF DDR SUPPORT METHODS IN A

DISTRIBUTIVE ENVIRONMENT a a a a a a a a

A. Master/Slave System of Centralized
Control 76

B. The Distributive Control. 97
C. Synchronized Management 106

Comparison of the Three Methods 117

O N 122
scussion of the Three ddr
Support Methods 122
e Three Concurrency Methods 124
Methodology 125
ure Work 126

/'

USING THE HISTORY OF DATABASE RETRIEVALS
AND UPDATES TO DETERMINE THE AVERAGE
SERVICE TIME a a a a a a a a a a a a a a a

THE ddr SUPPORT METHODS IN A CENTRAL
D A T A B A S E m m a a m a e m a m m m a m m m a a m

THE MASTER/SLAVE DISTRIBUTIVE DATABASE
C A S E a m m m m m a e a a a m m a a a m a a m m

THE DISTRIBUTED CONCURRENCY CONTROL CASE . . .
THE SYNCHRONIZED CONCURRENCY CONTROL CASE . .

LIST OF REFERENCES 173

LIST OF FIGURES

1. An example of a dynamic derived relation . . .
2. An M/M/1 state-transition diagram
3. The M/Hr/lModel
4. Potential form algorithm for the support

ofddrs
5. Actual form algorithm which immediately

updates ddrs when a defining relation is -
updated

6. Update schemes for dynamic derived relation
using actual results method

Deferred actual algorithm

8. A state-transition diagram representing
update and retrieval arrivals

9. The M/H2/1 model
10. A state-transition diagram for the ~ / ~ 2 / 1

model
.11. An M/H2/1 model for the immediate-actual

updatemethod '
12. An M/Hn+l/l model for the deferred-actual

update method 60

13. An M/H2/1 model for the potential method . . . 65

14. Vary update/relation size (equal scale) . . . 70

15. Vary update/relation size 71

16. Vary number of ddrs 71

17.Vary culling factor 73

4 18 . Vary overhead 73

. 19 . Vary b locks i ze 74

. 20 . N o n s p e c i a l c a s e 74

. 2 1 .. Master/Slave flow among t h e nodes 77

. 22 . Informat ion flow f o r i n d i v i d u a l node 77

23 . M a s t e r h l a v e model f o r d e f e r r e d a c t u a l
method 79

24 . M a s t e r h l a v e model f o r immediate a c t u a l method 82

25 . M a s t e r h l a v e model f o r p o t e n t i a l method . . . 82

26 . M a s t e r h l a v e : vary update t o r e l a t i o n s i z e r a t i o 96

. 27 M a s t e r h l a v e : vary t h e number o r dd r s 96

. 28 M a s t e r h l a v e : vary c u l l i n g 98

. 29 M a s t e r h l a v e : vary block s i z e 98

30 . I n t e r n a l informat ion flow f o r d i s t r i b u t i v e
c o n t r o l 100

31 . D i s t r i b u t i v e model f o r defe r red-ac tua l
method 1 0 0

32 . D i s t r i b u t i v e model f o r immediate-actual
method 1 0 1

. . . . 33 D i s t r i b u t i v e model f o r p o t e n t i a l method 1 0 1

34 . D i s t r i b u t i v e c o n t r o l : vary u p d a t e / r e l a t i o n
s i z e . 107

35 . D i s t r
ddr

36 . D i s t r

D i s t r

i b u t i v e
s . . .
i b u t i v e

i b u t i v e

c o n t r o l :
c o n t r o l :

c o n t r o l :

vary . .
vary

vary

v i i

t h e number of 107

c u l l i n g 108

block s i z e 108

__.. - .
38. Internal information flow for synchronized

control 112
39. M/G/1 model for deferred-actual in

synchronized control 112
40. M/G/l model for immediate-actual in

synchronized control 113
41. M/G/1 model for potential method in

synchronized control 113
42. Synchronized control: vary update to

relation size ratio. 118
43. Synchronized control: vary number of. ddrs . . 118

. 44. Synchronized control: vary culling 119

45. Synchronized control: vary block size 119
46. Performance of deferred-actual in three

concurrency schemes 120

viii

A is the arrival rate to a node

b is the block size, indicating the number of ddr tuples
accessed in one I/O operation to the external device
that stores ddrs

C is the service rate for a lock

C2 is the square of the coefficient of variation

ddr is a dynamic derived relation

is the culling factor

I ki is the culling factor for the ith ddr

n is the average number of ddrs per defining relation

N is the number of nodes in the distributive database

P is the probability that an arrival is a ddr retrieval

pdf is the probability density function

pi is the probability that an arrival is a ddr retrieval
for the ith ddr (pl+p2+. ..+pn=P)

Pd is the probability that a defining relation will
reside locally

PI is the probability that an update will be local

Q is the probability that an arrival is an update, Q+P=l

q is the queue length

R is the utilization factor (R=X*A)

SUM1 is (kl+k2+. . .+kn) /b
SUM2 is (kl**2/pl+k2**2/p2+...+kn**2/pn)/b**2

1/U is the service time it takes to do one update

u i is t h e serv ice - -ra te t o r e t r i e v e t h e i t h ddr

X is t h e mean s e r v i c e t i m e a t t h e node
- , . i

~2 is t h e ' 'second' moment' +of t h e p r o b a b i l i t y d e n s i t y
f u n c t i o n (pdf 1

W is t h e average w a i t time a t t h e node

CHAPTER I

INTRODUCTION

This chapter discusses the objectives of the

dissertation, introduces basic terminology and outlines the

organization of the presentation.

& Obiective

The major objective of this dissertation is to present

a methodology for evaluating database update schemes. The

methodology uses the M/Hr/l queueing model as a basis for

this analysis. The M/Hr/l model was chosen because it

allows for several classes of customers, each with a

different service time, to be serviced by one processor.

This characteristic is consistent with an update/retrieval

system in which different actions can occur; however, only

one action can occur at a time and each of these actions

can have a different service time.

The methodology also makes use of the history of how

data is used in the database. The major historical

parameter is the update to retrieval ratio. This parameter

is essential in determining the performance of specific

update schemes. Additional parameters have been introduced

which can be set based on the characteristics of a specific

system. These include average file size, overhead and the

expected number of items in the database.

The analysis is specifically directed toward the

support of derived data within the relational model. Three

support methods are analyzed. These are first examined in

a central database. The analysis is then extended in order

to measure performance in a distributed system.

Because concurrency is a major problem in a

distributive system, the support of derived data in this

environment is analyzed with respect to three concurrency

control techniques -- masterhlave, distributed and

synchronized. The distributive database model uses

parameters that reflect the amount of nonlocal activity and

the cost of transmitting data into the networks. The

parameters can be tuned to reflect the characteristics of a

specific system.

In addition to its use as a performance predictor, the

development of the model presented here serves to

demonstrate how queueing theory may be used to investigate

other related database problems. This is an important

benefit due to the lack of fundamental results in the area

of using queueing theory to measure database performance.

-- - /
L- patabase Termonolou

In a relational database, the data can be thought of

as a collection of tables called relations. The tables are

made up of columns, which are called attributes, and rows

which are called tuples. More formally, given a collection

of sets Dl, D2, ..., Dn (not necessarily distinct), R is a
relation on these n sets if it is a set of ordered n-tuples

dl,d2,...dn such that dl belongs to Dl, ..., dn belongs to
Dn (Date 1979).

Most relational database systems provide the facility

for supporting dynamic derived relations (ddrs). A dynamic

derived relation is defined from existing relations and

reflects updates made to its defining relation(s1. In

other words, it is a "dynamic windowm of the database in

that when an update is made to any one of its defining

relations, the dynamic derived relation is automatically

updated in accordance with its definition.

A dynamic derived relation and its defining relations

are shown in Figure 1. In this case, since X is defined as

AUB, the union of A and B, any insertion into A or B would
. .

also be inserted into X. Any deletion from A would be

deleted from X if the tuple was not in B, and similarly for

. . L - . . ' ,., -
J .. . - .

' I , > -
. - 1 . L_ . .' 8 A - - . 2 . . I

~ i g b r e 1. An &iampld6f a dynamic deriirg-d r e l a t i b n X -

formed by AUB.

There are two basic approaches to the support of
_* -- -

dynamic derived relations -- potential form and actual

form. Implementation using potential form involves

describing the dynamic derived relation so that it can be

generated when needed. This description could use access

paths or a formula of the dynamic derived relation. The

dynamic derived relation is constructed each time it is

involved in a query. This method has the obvious advantage

of saving memory space; however, the cost of generating the

dynamic relation may occur many times because the same

result may have to be computed again and again.

Implementation using actual form involves physically

storing each dynamic derived relation. Therefore, the

relation "actually" exists. Any updates made to the

defining relation must be explicitly reflected in the ddr.

An advantage of using actual form is that, because the

dynamic derived relation physically exists, the derived

results do not have to be regenerated each time the ddr is

needed. However, more storage space is used to store the

ddrs and the reflection of defining relation updates is

sometimes difficult and time-consuming.

Oueaeinq Theory

Queueing theory. has been used as a common tool for

analyzing computer system performance. The characteristic

that a job arrives in--khe system and waits for service in a

queue is consistent with the queueing theory modelling

process. In general, the queue is FIFO; however, other

queueing disciplines can be used.

The notation which is used in this dissertation to

specify the queueing model is the widely used A/B/n where A

and B represent the interarrival and service time

probability density, respectively. The probability density

can be one of three types: M, G or D which are

characterized by exponential (Markov), arbitrary (general)

and deterministic probability density, respectively. The

last value in the notation, n, indicates the number of

servers. Thus, an M/M/1 queueing model is a system with

one server and exponential interarrival-time and service-

time distribution.

The M/M/l model is the simplest of the queueing

systems and, yet, is nontrivial enough to model many

different systems. The exponential density function has

the unique property that the service time remaining for a

customer is not affected by the amount of service time the

customer has previously accumulated, i.e., it has no

memory. This memoryless property allows the model to be

described totally in terms of how many customers are in the

system.

A state-transition- diagram for an M/M/l system is

shown in Figure 2. Customers enter the system at arrival

rate A and are serviced at service rate U. Each time a

customer arrives, the system moves to the next state, and

each time a customer is serviced and leaves the system, the

system moves back to the previous state. Therefore, the

entire system is described in terms of the number of

cutomers in the system.

By finding the probability of being in each state, we

have found the probability of having one customer in the

system, two customers in the system and so on. Once these

probabilities have been computed, the expected number of

customers and expected wait time can be found, as well as

other statistics.

The M/G/1 queue has Markov arrivals and uses a single

processor; however, the service time is general in nature.

That is, the service time is not necessarily of the

memoryless type. The state description, therefore, must

consider expended service time as well as the number of

customers in the system. In order to deal with this in a

manner consistent with the M/M/l analysis, we examine

selected points in time, i.e., state-transitions occur at

customer departure instants and the state variable is the

number of customers left behind by the departing customer.

Thus, the M/G/l queue can be analyzed to yield the expected

_ _ _ -
number of cus t0me . r~ i n t h e system and t h e mean w a i t time.

Th i s d i s s e r t a t i o n makes use of a s p e c i a l case of t h e

gene ra l s e r v i c e time, t h e M / H r / l queue, which is shown i n

F igure 3. The M / H r / l queue has Markov a r r i v a l s and uses a

s i n g l e p rocessor ; however, t h e system a l lows f o r r

p a r a l l e l s t a g e s . Each a d d i t i o n a l s t a g e i n c r e a s e s t h e

v a r i a b i l i t y of t h e s e r v i c e time and produces a s e r v i c e time

p r o b a b i l i t y d e n s i t y t h a t is r e f e r r e d t o a s

"hyperexponential" .

When a customer e n t e r s t h e s e r v i c e f a c i l i t y , he w i l l

proceed t o s t a g e one wi th p r o b a b i l i t y P1, s t a t e two wi th

p r o b a b i l i t y P2, ... , s t a g e r w i th p r o b a b i l i t y P r , where

Pl+P2+. . .+Pr=l . The customer w i l l t hen be s e r v i c e d

according t o t h e s e r v i c e t i m e i n d i c a t e d f o r t h a t s t a g e and

d e p a r t t h e system. A t t h a t time, ano ther customer can

e n t e r t h e s e r v i c e f a c i l i t y . By s p e c i f y i n g which s t a g e

wi th in t h e s e r v i c e f a c i l i t y t h e customer occupies , w e can

analyze t h e system wi th r e s p e c t t o average s e r v i c e time and

mean wa i t time (Kleinrock 1975) .

EL O r ~ a n i z a t i o n pf P r e s e n t a t i o n

Th i s d i s s e r t a t i o n has been organized i n t o f i v e

chap te r s . Chapter I (t h e c u r r e n t c h a p t e r) p r e s e n t s t h e

o b j e c t i v e s of t h e t h e s i s and t h e terminology used i n t h e

a r e a of da tabase and queueing theory. Chapter I1 d i s c u s s e s

Figure 2. An M / M / ~ state-transition diagram.

Figure 3. The M/H~/I model.

previous research with-respect to derived data and formal

analysis of database performance in both centralized and

distributive databases. Criteria for designing a

distributive database are also discussed in this chapter.
' . 7

,' . .

All research contributions of this dissertation are

found in Chapters 111 and IV. The formal queueing theory

analysis begins with Chapter 111. The characteristics to

be modelled for each ddr support method are discussed and a

specific queueing model is chosen. The support methods are
, '

then analyzed in a central database system.

Chapter IV extends the analysis in Chapter I11 to the

'distributive database system. Information flow is

incorporated in order to find the response time for a

transaction. The ddr support methods within three

distributive concurrency control methods are analyzed:

masterhlave, distributed control and synchronized control.

Graphical comparisons of both ddr support methods and the

concurrency control systems are made.
., - - . - '

Chapter V discusses the'-'d6nclusions that can be drawn

from the results of this dissertation. The performance of

the ddr support methods and the concurrency control methods

are compared. The unique characteristics of the

methodology used to analyze the performance of the schemes
. , . - , ,

are outlined. Areas of fu'tu-re. wi0r.k are indicated.

CHAPTER I1

SURVEY OF THE LITERATURE

In this chapter, important references regarding

dynamic derived relations and storage and retrieval

performance in both central and distributed database

systems are presented.

e m i c Derived Relations

Background

In 1971 the report of the CODASYL group of the Data

Base Task Group defined derived data as data that is

derived procedurally from related data items instead of

being explicitly stored and directly retrieved (CODASYL

1971). The relational model, introduced by Codd (19701,

extended this concept by introducing derived relations.

Derived relations have been used to support users1 views,

integrity constraints (Stonebraker 1975) and access control

(Eswaran 1975).

There are two types of derived relations--static

derived relations and dynamic derived relations (Chamberlin

1975). A static derived relation becomes independent of the

relation(s) used in its definition immediately after it is

populated. Once populat;sd, static derived relations can be

explicitly updated by insert, delete and modify operations.

Hence, immediately after their creation, static derived

relations behave exactly like base relations (Wiederhold

1977). On the other hand, a dynamic derived relation

automatically reflects changes made to the relation(s1 used

in its definition. In other words, it is a "dynamic

window" of the database in that, when an update is made to

its defining relation(s), the dynamic derived relation is

implicitly updated in accordance with its definition.

There are two basic methods of implementing dynamic

derived relations--the actual results method and the

potential results method. Implementation using the

potential results method involves storing a formula or

access paths to represent a dynamic derived relation.

Hence, the dynamic derived relation does not physically

exist but can be generated from the stored formula when it

is needed. At this time, updates to the defining

relation (s) are automatically reflected in the newly

generated dynamic derived relation. System R and INGRES

are two examples of relational systems which use the

potential results method (Astrahan 1976, Stonebraker 1975,

Stonebraker 1976).

Implementation using the actual results method

involves physically storing each dynamic derived relation.

*
4.;
%.$.

.r
'$
. L .

ci-

a::

Within this implementatinn technique, if a relation used in

the definition of a dynamic derived relation is changed, a

procedure must be invoked to immediately update the dynamic

derived relation. Therefore, in maintaining dynamic

derived relations in actual form, an explicit update to a

base relation causes implicit updates to all dynamic

derived relations which the base relation defines. An

advantage of using actual form is that, because the dynamic

derived relation physically exists, the derived results do

not have to be regenerated each time the dynamic derived

relation is needed. The RAQUEL I1 DBMS and, to some

extent, IS/l-PRTV are examples of systems which use the

actual results method (Dutton 1978, MacDonald 1975, Todd

1976).

Although Kim (1979) states that the potential method of

supporting dynamic derived relations is better for most

applications, this strategy is particularly vulnerable when

a ddr is frequently accessed and the recalculation involves

a large amount of tuples. Unfortunately, no formal

analysis has been done to validate or invalidate Kim's or

any other such claim.

Implementation of Dynamic Derived Relations

Three algorithms for the support of dynamic derived

relations are shown in Figures 4 , 5 and 7.

INPUT. A dynamic derived relation definition

OUTPUT. A dynamic derived relation in actual form

METHOD. This procedure is called to calculate a ddr
when the ddr is queried.

PROCEDURE POTENTIAL (ddr definition)
BEGIN

recalculate according to the definition
END; (* POTENTIAL *)

Figure 4. Potential form algorithm forthe support of
ddr s .

INPUT. A base relation

OUTPUT. All dynamic derived relations defined by the
base relation in updated form.

METHOD. This procedure updates all the ddrs defined by
a base relation, whenever the base relation
is updated.

PROCEDURE IMMEDIATE-ACTUAL (updated base relation)
BEGIN
FOR all ddrs defined by the base relation DO

Apply update schemes of Figure 6
END; (* IMMEDIATE-ACTUAL *)

Figure 5. Actual form algorithm which immediately
updates ddrs when a defining relation is updated.

__.- -
Definition of X Operation Insertion Update

~ ~ ~ 1 ~ 1 ~ ~ ~ ~ ~ ~ o o ~ o ~ ~ ~ ~ I ~ I ~ ~ o o ~ ~ I ~ ~ ~ ~ I I ~ o ~ ~ ~ m ~ ~ ~ ~ ~ ~ - - - - -

AUB 1.

2. AnB

3. B-A

4 . A-B

5. B(list)

union XU1

intersection XU (An11

difference

difference

projection

selection

XU (I-A)

X-I

XU1 (list)

7. A*B join XU (A*I)
---1-----0----~--1~---I---IIoo--I-II-....I-I-------II--

(a) Insertion Updates for Dynamic Derived Relations

Definition of X Operation Deletion Update
- ~ o ~ - ~ ~ ~ - . o ~ ~ . ~ ~ - ~ ~ ~ ~ ~ - ~ ~ ~ - - ~ - - - ~ - I ~ - - - L - - ~ - - - o - o - -

1. AUB union X- (D-A)

2. AnB

3. B-A

4. A-B

intersection X-D

difference

difference

projection

selection

X-D

XU (AnD)

X=(B-D) (list)

X-D

7. A*B join X- (A*D)
- - - 1 ~ - - ~ ~ o ~ - - - - - ~ - - I - - o ~ o - - ~ ~ ~ - ~ ~ - ~ - I - ~ - - - o - - - - - - - - -

(b) Deletion Updates for Dynamic Dexived Relations

Figure 6. Updates schemes for dynamic derived relation
using actual results method (Kinsley and Driscoll 1979).
Dynamic derived relation X is defined by relation B (and,
if needed, A) . Relation B has been updated. Relation I
holds the tuple inserved in relation B. Relation D holds
the tuple deleted from relation B. Join refers to natural
join on a key.

. 0 2 .

.. . -. . ,

. '-. . .
.. -

- .

. -

j. ..
. .

.; 1

I . :I

L " > ., .
.,. ,

r. ;.

/, " -. . -,.: - ., .. . - . . - ...
- 8 , .. - -. .
' I .
F .
- .. < . - ., '

.;: .
.1 :. .-

.4 -.
I. .
.,
. - .

1; .
..< : 3

ii :
\.;:f
a - .

5::
q:-l '

:+ ,'

-. t
7 , .

8.' = ' . .

'5'., , .
k!: '
,-$ Z', .* .
I . . . ,

I . '
1'{' '
I +

9.1.
I - : - - .

;>;As:ly :
-?. i ' ,* .. --
*T 6
L ,.-
. - ,-
;.\ ..', -

. + -

F? .>' &;:' , :
.F,.'.. '.

:,A- %:.:,.'
.,.. ,
,a : : .
- --

-dW,, 7,
.$,+ -8:

' , e =, '-

, :LY..
.p? . .

, y,.' . ;,'
\I;: 1 * '.'k. . . ,r. ,- '

-
+ .r.>..:+ -

,;&< L - . .:
1 ,;**;j I , '

rr?n:? , ,
t .

L ... fi: -
, L *

1 I . : ;

.. ., - ,
.
2.L - *.
' \ . '. :
L .

.I. . -

INPUT. A dynamic derived relation

OUTPUT. A dynamic derived relation in updated form

METHOD. This procedure updates the ddr whenever the ddr
is retrieved. Until that time, update tuples are collected
in a differential file. A check is made to see if the tuple
has been previously entered into the defining relation's
update tables. If it has, and the transaction types are
the same (L e e insertion or deletion), no action occurs.
If the transaction types do not match, the tuple is deleted
from that update table and inserted into the update table
that matches its transaction type. If the type is not in
the defining relation's update tables, it is inserted into
the corresponding update table. When all tuples have been
checked, the update schemes of Figure 6 are invoked, using
the I and D tables.

PROCEDURE DEFERRED-ACTUAL (ddr)
BEGIN
FOR all tuples used to update the defining relation DO
IF tuple already a member of defining relation's

update files THEN
IF update file type is same as tuple type THEN

no action
ELSE

BEGIN
delete tuple from update file;
insert tuple into update file with its type

END
ELSE (*TUPLE IS NOT IN UPDATE FILES*)
insert tuple into update file with its type

END; (* END OF BUILDING I AND D TABLES *)
apply update schemes of Figure 6
END; (*DEFERRED-ACTUAL*)

Figure 7. Deferred actual algorithm.

The algorithm in Fi-gnre 4 maintains ddrs in potential

form and thus must be recalculated whenever a dynamic

derived relation is used in a query. The algorithm in

Figure 5 supports the ddr in actual form. Each update to a

base relation causes all dynamic derived relations defined

by the updated base relation to also be updated. The

algorithms of Figures 5 and 7 both use the update schemes

shown in Figure 6. These were first developed by Kinsley

and Driscoll (1979). Related, independent work has been

done by Osman (1979) . The basis on which these schemes

were developed is as follows.

The procedure for inserting a tuple into a relation

can be represented as the union of the relation to be

updated and the relation formed from the tuple to be

inserted (Date 1979) . For instance, if relation B was to

be updated by inserting a tuple contained in relation I,

the update could be represented as BUI, where the relation

formed by BUI would be the updated B and would replace the

"old" B.

Now assume X is a ddr formed by AnB. If relation B

were updated by the insertion tuple which forms relation I,

then X can be implicitly updated by creating An (BuI) where

BUI is the updated B and An(BU1) is the updated X. However,

the expression A n(BU1) is equivalent to (A~B) U (An I) .
Therefore, XU(A n I) is the updated X. Using this

approach, a scheme has-been developed for insertion of a

tuple into a dynamic derived relation under the standard

set of database operations. These insertion schemes are

shown in Figure 6a. Each scheme takes advantage of the

fact that X physically exists in actual form.

The operation of deleting a tuple from a relation can

be represented as the relative complement of the relation

to be updated and a relation formed from the tuple to be

deleted. For instance, if relation B were to be updated by

deleting the tuple contained in relation D, the update

could be represented as B-D, where the relation formed by

B-D would be the updated B.

Now assume X is a dynamic derived relation formed by

AUB . If relation B were updated by the deletion tuple

which forms relation D, then X can be updated by creating

AU(B-Dl where B-D is the updated B and AU(B-D) is the

updated X. However, the expression AU(B-D) is equivalent

to (AUBI-(D-A). Therefore, X-(D-A) is the updated X.

Using this approach, a scheme has been developed for

deletion of a tuple from a dynamic derived relation under

every operation, except projection. As before, each

deletion scheme takes advantage of the fact that X

physically exists in actual form.

Modifying an existing tuple can be implemented as a

deletion followed by an insertion. Therefore, all tuple

update operations -- ins-eftion, deletion and modification

-I can be represented by using the insertion and deletion

update methods just mentioned. An insertion update table

(I) and a deletion upate table (Dl must exist for each

relation used to define a dynamic derived relation.

The algorithm presented in Figure 7 also maintains

dynamic derived relations in actual form; however, it

defers updates until the specific dynamic derived relation

is queried. Updates are collected in differential files

(Severance 1976) according to the algorithm, and the update

schemes of Figure 6 are used to update the ddr. In this

case, differential files I and D may hold more than one

tuple. Also, the algorithm may reduce the total number of

tuples involved in the actual update due to a culling

process that is carried out when update tuples are added to

the differential files. The same tuple used in more than

one update is reduced to only the last update before the

database is accessed.

In summary, very little research has been done with

respect to the best way to support ddrs. Three algorithms

have been presented in this subsection - one using the

Potential method and two using the actual method. The

proposed research will analyze the cost/performance of

these three methods.

Formal A - s ~ s - ~ Database P & !
bzi Centralized Envi.ronment

File Organization Analysis

Much of the research regarding database performance

has been directed at different types of file organization.

No specific database model is specified.

Lowe (1968) examines memory utilization and retrieval

performance for inverted-file with adjustable bucket size

and linked list file organizations. The analysis makes use

of Ziph1s law which involves f, the frequency of occurrence

of distinct items appearing in printed English text. Given

N distinct index items and a unique number j (l<=j<=N),

Ziphls law states that the probability that an index item

selected by the user of the system is the jth index is

p O . l / . The analysis of memory utilization and average

response time is found for f and p having uniform

distribution, p uniform and f having Ziphls distribution,

and both having Ziphls distribution. The cases of Ziphls

distribution and uniform distribution tend to represent the

extremes in database retrieval. It was found that, with an

appropriate assumption for f and p, a value for the bucket

size can be selected and a reasonable decision concerning

packing more than one list into single buckets can be made.

Collmeyer and Shemer (1970) investigate retrieval

Performance for spatial index (index records within the

index are stored in-pkysical order according to key),

calculated index (hashing), and tabular index (multilevel

index where each level has index records stored as

logically sequential). The investigation focuses on the

number of blocks transported from secondary storage to main

memory in the course of the index search. No attempt is

made to determine the effect of queueing delays. The mean

time to retrieve a record is expressed in terms of the file

organization parameter, characteristics of the storage

device and search and overflow strategy used. A case study

is presented. It was found that retrieval via hash was

generally faster, but hashing is not well suited for

sequential processing. Multilevel indexing is not good for

insertion/deletion activity because one change may affect

all levels of the index. Retrieval time for spatial index

organization increases at a faster rate than the other

organizations as the size of the file increases.

Cardenas (1973) discusses the factors which affect

file organization performance and presents a tool to help

in file structure selection based on the specific usage of

the system. The parameters are database characteristics

(e.g. number of records, record length, etc.), user

requirements (e.g. frequency of query, frequency of update,

mode of retrieval, etc.) and device specifications (e.g.

block length, average access time, etc.). A model was

designed which simulaGd three file techniques- binary

tree, inverted file and multilist--on six existing

databases. It was found that a combination of

characteristics can cause a great deal of difference in

performance based on the file technique used. This study

was one of the few to incorporate database usage into its

evaluation. Cardenas also noted that file organizations

which do well in retrieval of data do not perform well in

updating and vice versa. Further analysis on performance

of inverted list file organization is presented by Cardenas

(1975). He analyzes the inverted file organization within

levels 2 and 3 of the DIAM (Direct Independent Access

Model) hierarchy. Levels 2 and 3 involve the physical view

and the mapping from the conceptual to the physical view.

Siler (1976) presents a stochastic model based on a

statistical representation of the database. He measures

data retrieval performance associated with a set of user

queries, a particular database organization and a given

database. Monte Carlo techniques are used to measure

performance by estimating access frame movements and disk

rotations in the stochastic represention of the database.

The author compares inverted list, threaded list (records

I
with the same key are linked together) and cellular list (a

pointer exists to each bucket with at least one record in
I

I

L
I

the specified key; all records in each bucket with the same

d

key are linked together). Queries of different complexity

are examined. It was found that when the query complexity

increases, the pure inverted list organization

significantly improves performance.

Yao (1977) presents a general model for physical

database organization. This model has a hierarchical form

with attributes at the highest level followed by keywords,

accession lists and virtual records in descending order. He

develops general cost formulas using the model and

demonstrates how these costs are valid for inverted lists,

threaded lists, cellular, indexed sequential and B-tree

organization.

Performance Analysis Based
on a Specific Database Model

Analysis based on the three database models--

hierarchical, network and relational--are presented here.

In most cases, file organizations at the physical level are

considered with respect to a specific model. Performance

in the relational model is based not only on the method of

representing and referencing the database, but also on how

the query is evaluated. For this reason, query

optimization plays an important role in performance

analysis of relational operations. However, research

involving query optimization will not be discussed here

except in conjunction with access methods and file

organizations at the physical level.

Ghosh and Tuel (1976) and Lavenberg (1976)

investigate performance based on the hierarchical model.

Both papers are based on the IMS (Information Management

System) DBMS , an IBM system which is one of the most well-
known hierarchical systems. Ghosh examines six data

manipulation commands of IMS in conjunction with three IMS

access methods. IMS update commands of insertion,

replacement and deletion are not considered. On analysis,

it was found that the residual error does not have a

symmetric distribution; therefore, the model did not

account for all the factors affecting access time of the

given IMS database. Further examination suggested that the

interaction of the segment type and logical view are the

important controllable factors which affect access time.

Lavenberg and Shedler (1976) present a queueing model

based on an embedded finite state semi-Markov process. The

IMS DBMS call is represented as a sequence of processor and

I/O unit services. The processors are as follows:

1. determine the access path

2 . search buffer for the block containing the access path

find the
determine

path segment within the path block
if another path segment needs to be accessed

4. perform activities associated with block transfer

5. process target segment

6, I/O transfer

Database calls can compete concurrently for I/O and

processor units. A priority rule exists to manage the

contention. I/O and processor units can perform in

parallel. Expected service time and expected cumulative

process time are computed. This paper develops one of the

few queueing models for hierarchical database systems.

Teory and Oberlander (1978) develop an analytical

model for the evaluation of network database systems.

Specifically, they use the IDS (Integrated Data Store) DBMS

which closely follows the CODASYL network model. Input to

the model are the database characteristics (definition of

master and detail records, page size, record lengths,

etc.), workload specification (an application program) and

hardware characteristics. The model produces main storage

and secondary storage, I/O and CPU time requirements. It

does not incorporate queueing delays into the model.

Several performance analyses have been done involving

relational operations. Gotleib (1975) analyzed the

complexity of the natural join operation with respect to

memory utilization, I/O and CPU time. This research is

directed toward the calculation only, with no consideration

of storing the results ark the definition. The analysis is

assumed to be done in isolation with no contention for I/O

and processors.

Blasgen and Eswaran (1977) primarily consider access

time in their analysis of join, projection and selection.

Four methods for evaluating the query are examined based on

how the data is represented and referenced in the database.

The four methods are indexing on the join columns, sorting

both relations, multiple passes and use of key and key

indices. Cases involving the existence (or nonexistence) of

certain indices and clustering are explored. It was found

that in different situations, different methods performed

well and no one best method existed.

Yao (1979) presents a query optimizer which computes

the cost for seven optimization techniques. The author

compares access methods and takes into account the storage

structure of the database.

Menon and Hsiao (1981) develop a G/G/1 queueing model

to analyze a VLSI implemented equijoin algorithm of their

own design.

In summary, while a great deal of research has been

devoted to analyzing database performance, very little of

this research has been directed toward measuring queueing

delays. In a real world situation, this is an important

aspect of any performance measurement.

_ C - -
mstributive Databases

Background

A distributive database is.a database that is not

stored in its entirety in one physical location, rather it

is spread across a network of dis-ersed (but

interconnected) computers (Enslow 1978) . Any or all of

the database could be distributed - the data itself, the

description of the data and the database called the schema,

and/or the programs that run the DBMS could be dispersed.

There are three major advantages to a Distributive

Database Management System (dDBMS) (Rothnie 1975). First,

dDBMSs are reliable. Because a dDBMS is constructed from

multiple computers at multiple sites, it is not susce tible $& w* 4id --4 -

to total failure when one computer breaks down. Second,

accessibility is improved over a system which has

geographically dispersed users and a centralized DBMS

because it is possible to store data where it is most

f repuently accessed. Finally, there is the abil&,Q-,; t~ p* $&$$ >, <:,-,: +P+ ,+ - ' -
F &qLfL%hw,k7 c, " , J'J

handle database growth and large database management more

efficiently since large databases can be supported as

Several moderate sized DBMSs at different sites. If the

database grows larger, another site can simply be added.

The distributive property of a dDBMS gives importance

to certain design factors. One design factor which needs

to be taken into conSZieration, if the data is to be

distributed, is how to split the files. Typically, files

are split according to geographical or functional

considerations. For example, if an organization's branches

are geographically dispersed, where each branch serves a

unique set of customers, the obvious solution is to place

customer files at the location of the respective site. A
. . ,: ,::-i, : ;-'? ,';r,.rA~k.w . . ; :,,. ., - v, ., :TmL,.+?-+&g
- , ,

:; ,": - - . = ,- l i .%'(. . . . -.. 3 . L8.5,: 7,--<-v.*. .,i , A L 4 . - . , . ,& , *-.. *2.9=, 1 ,,A.fi LJ ,&
functional distribution might be a business whlch has

personnel accounts payable, accounts receivable, inventory

and order entry files used by the appropriate department

only. A solution would be to assign a processor and file

to each department.

Another consideration is whether or not to allow

redundancy in the data. In a system where a file is used

quite often by two different sites, the solution might be

to store the file at both sites. Redundancy could also be

advantageous in a point-of-Sales (POS) environment where a

central node holds a complete set of files and each local

node maintains files that are relevant to its site. Update

files could then be transmitted when the system is not
! ..#,, :;;, .,, t'q -; J-<-< - &?,.: .,.% . !;;: i

,., . , , . -
As an example, a credit balance could be kept at a

8- 7,* ~ - " A , . - ,+ +b n . sL,r<-, - . . , - - 3 t , - l~!<,L.;~$;;~;~;;;>~;~;;;;;~<;$~. -
r - ,

q*.; i-:y-:i,y .*:<$:~!;~$,;<$; ~-FEqpfgg~~:%,s; $;g$$h~~3i;*y,lbq&y&>~~-~;;~~g~;~~:;;*:~ T! :3,3'l33: 9
- ' : , ? , 8 .!,

, . , ,,;>,-.:*it. L ~ A > $: ~ i ~ ~ ~ L 5 - - - ,:;> z%$? Jhy ,#, - , 'A: ~2.! ;?. E - n ~ .z,~-+ ,, #I:, -, ,I . . , , - , ~ c ~ ~ < > . ~ ~ ~ < . - > + ~ { ~ ~
::.;%.:i2':Store for those customers associated with the store, .making

credit checks local. No redundancy simplifies the

reliability problem if one site fails and no other copy

exists (Rothnie 1977).

29

Directory (also called schema) distribution is another

design factor to consider. The directory is needed for

parsing queries, optimizing access of the data and

determining access privileges. The goal is to minimize

storage costs as well as processing and communications for

directory and data requests. There are three basic methods

for handling directory distribution in a dDBMS --
centralized, distributed and local. In a centralized

directory, the directory for the entire database is located

at one processing node. All requests, including local

requests, must go through this node. This may slow down

response time in a system that is geographically dispersed

over large areas. In a distributed directory, each node

has an entire copy of the directory. In such a system,

response time is improved but the cost of storing the

directory in its entirety at each node may be prohibitive

in any system where the database is large. A compromise to

the above two methods is a system of local directories. A

copy of that portion of the directory which pertains to the

local node is stored at that node. A centralized directory

may be used in conjunction with local directories.

Although this resolves local requests locally, all external

requests must still be routed through the central node.

Another design factor which needs to be considered is

how to distribute the programs of the dDBMS. Situations

may exist where programs must operate on an entire file

rather than a small set of records in the file. In such a

case, it may be feasible to locate the program at the node

where the file exists. An example of this is a system with
.- . . ru --a y-Li i2ijr.+. --':-;h 6,- +j v&&$,i;i& - F4

,,gi~jp~;~~~centralized directory (seen as a file itself and the

program which updates the directory.

Two alternatives exist for distributing the programs.

The Data Base Administrator (DBA) could either store the

programs at a centralized node and then send copies of the

programs to nodes which need them, or store the programs at

nodes which use them heavily and then have them dispatched

to other nodes as needed. In the first case, all requests

must go through the central node which may slow response

time . In the second, some method must exist which keeps

track of what programs are stored where. This may

introduce another directory and the corresponding overhead

is such that all

programs of the dDBMS are stored at each node, the problem

of what is stored where is solved; however, this may not be

feasible in a system where the programs are large and a

limited amount of storage exists.

The last area for consideration is how to design the

communications network to support interleaved message flow.

Characteristics of communication media vary. ETHERNET, for

example, provides a high band, low delay transmission that
p ' 4 ' 8 ' ' :**- +&.. t-qc
1~7 .

L, I - - A >,+J$ +;:< .$ & *..+., &q:<*z $He<" -. -,>*>/,q " * > ~ ~ q ~ * ~

is suitable for short range dDBMS. ARPANET uses a packet

switching network with a lower bandwith and higher delay.

~t is better suited for message sending over longer ranges.

A point to point leased circuit configuration has a lower

bandwidth and a lower delay. The requirements of the dDBMS

must considered choosing the communications network.

Concurrency Controls in Distributive Databases

One of the most important considerations in the design

of a shared database system is concurrency control. In a

distributive database system, where files used in

processing one query may be dispersed among several sites,

the complexity of the concurrency problem is increased.

Concurrency is a situation where more than one user is

allowed to access into an area of the database at one time.

While such a situation can improve throughput, unrestrained

concurrency can threaten the integrity of the database. To

illustrate this, suppose that two users are trying to

update a record consisting of SSP, NAME, ADDRESS AND PHONE.

Each user reads the specified record. The first user then

changes the address and writes back to the file, followed

by the second user who changes the phone number and writes

back to the file. After this series of events, the

record's phone number update, but not the address update,

will be reflected.

To avoid such in€er%eaving of updates, transactions

are used. A transaction is a series of commands issued by

one user which is treated as one indivisible unit. Thus, in

the previous example, the first user's read and update

commands would be one transaction and the second user's

read and update commands would be a second transaction.

The first user to issue a transaction would lock the

required record (or some other unit of the database

containing the needed record), perform the commands in the

transaction, unlock the record and allow a waiting

transaction to proceed. This locking protocol is called

two-phase locking (Bernstein 1979) .
Distributive systems concurrency control can be

divided into two basic groups -- centralized control and

decentralized control. In a centralized concurrency

control system, any conflicting read or write requests are

resolv.ed at a central site. In a decentralized control

system, each site has its own concurrency control. Both

types presently exist.

The centralized concurrency control makes decisions

regarding conflicts based on the total picture of what is

happening in the database. However, this type of system

can involve high costs for the communication overhead,

especially if the deadlock detector is several thousand

miles away.

-- -
In a decentrali-zed concurrency control system,

communication is kept to a minimum; however, a site may

abort a transaction simply because it does not have enough

information to proceed. Thus each system has drawbacks and

advantages.

Systems Using Centralized Concurrency Control

A centralized concurrency control system is presented by

Menasce and Muntz (1979). This system strives to minimize

the disadvantages of the centralized system by resolving

conflicts at a site "near" to the sites involved, if

possible. Two types of controllers exist--leaf controllers

(LK), which are for database components local to the site,

and non-leaf controllers (N L K) , which resolve conflicts.

This system makes use of a wait-for graph which

depicts when transactions are waiting for one or more other

transactions to release a lock. A global wait-for graph

is maintained at the primary site, while each LK maintains

a subset of the graph consisting of transactions involved

with the site's local resources. In addition, output parts

and input parts are depicted in the Local wait-for graphs

showing where a transaction came from and where it is going

next.

When a conflict occurs, it is sent to the NLK which is

the parent of the transaction and LK. If this node cannot

resolve the conflict-,-the next level up the tree is

employed. The conflict may be propagated all the way to

the root before a resolution is possible. Fortunately,

this is not usually necessary. Deadlock is detected by

finding a cycle in the wait-for graph.

A distributed version of INGRES is presented by

Stonebraker (1979) . Conflict resolution is done by one

machine dubbed "THE SNOOP". A local concurrency controller

(CC) exists at each site and receives parts of a

transaction involving its local resources from the site

where the transaction originated. If deadlock is detected

at one site, the CC picks a transaction, backs it out

locally and sends a message to the site where the

transaction originated, which in turn notifies the other

sites executing parts of the transaction.

If deadlock involves several sites, the transaction is

in a wait state. The CC sends the name of the waiting

transaction and the transaction causing the wait, to the

SNOOP, which uses a wait-for graph to determine if a

deadlock exists. If no deadlock is detected, the CC sets a

flag to indicate that the transaction is committed.

To minimize downtime, if a site should crash,

duplicate copies of database components are kept at

different sites. This, of course, introduces the problem of

maintaining these addifT6nal copies. One copy among the

up-sites is designated as the primary copy. Only the

primary copy is locked. When a site commits a transaction,

it directs the system to update the copies.

Systems Using Decentralized Concurrency Control

Two decentralized concurrency controls, WAIT-DIE and

WOUND-WAIT, are discussed by Rosenkrantz, Stearns and

Lewis (1978) . In both, a unique number is assigned in

ascending order to each transaction. This number is used

to indicate the age of the transaction. In the WAIT-DIE

system, if the requestor causing the conflict is older than

the locking transaction, the requestor waits, or else the

requestor is aborted, rolled back and restarted.

In the WOUND-WAIT system, if the requestor is younger,

he waits. If the requestor is older and the transaction

has not yet terminated at the site of origin, it is

aborted, rolled back and restarted. If the transaction has

terminated at the site of origin, no action occurs.

Although no deadlocks can occur under these systems,

unnecessary restarts can occur. To improve on this, the

authors allow transactions ,involving only local relations

to be handled in a different manner, thus eliminating

unnecessary local starts.

A decentralized coridiifrency control system using local

locking and time stamps to update replicated databases is

described by Gardarin and Wesley (1979) . A time stamp

holds the time a transaction entered the system. In this

case, the time stamp is local to the site and also includes

the site number. Each site maintains a lock table for each

transaction which lists all resources requested.

Transaction execution proceeds as follows: First, the

lock table and time stamp are sent to the sites with stored

copies of the resource. At each site, the local resource

is locked if no transaction with an older time stamp has

locked the resource, unless that lock has been guaranteed.

All younger transactions waiting for the same resource are

aborted. A transaction never waits on more than one

transaction per resource.

If all copies of a resource can be locked, the

transaction is committed. A message is sent to the site to

prevent cancellation by another transaction with an older

time stamp. The site of origin then sends a message to the

other sites involved to perform the update and unlock their

copies of the database. If a transaction is aborted, the

site that aborted sends a message to all involved sites,

which unlock their copies. The site of origin performs a

restart.

This system uses a- wait-for graph to determine cycles.

Duplicate files are maintained to help with recovery. A

site 'that was down recovers by using differential files to

update an old copy of the file.

A voting algorithm is used for concurrency control by

Thomas (1979) . Each site contains a total copy of the

database; however, the author states that the sites could

contain subsets of the database instead. When a

transaction enters the system, a time stamp is created that

consists of the local time, a site identifier and a

transaction identifier. Update requests consisting of the

updated value, a list of resources and their time stamps

are sent to the sites involved.

A site votes to reject if one or more of the variables

to be modified are older than the site of origin's

variable. It votes to accept if the variables are current

and no pending requests conflict. It votes to pass if the

variables are current but there is a .* "I ..-, conflict with a
/,>- :;-, ry..+L~A:-'I,.IX1<::,-;.Ti;::..C TI-) , -. I..-.. .-

,a ;q,.J A fi --.;??~;:~,$$??:,j;,~ ;~,~):*?:q'.;, -,,,..::?, r-:!i. :.:>., .<
, d < Y ki?~*$';,:.--:*, ,, z., , ,. . , ;, .- . - />-3(.-';-.:.-? .I~::,.:>-.,, ,> SL

request of higher priority. It defers voting if the

variables are younger than the site of origin variables.

When the site of origin has a majority of accept votes and

no reject votes, it performs the operation and notifies all

other sites to do so as well.

A decentralized concurrency control for a relational

system, SDD-1 is described by Bernstein (19801, Hammer and

Shipman (1980) , and -Rosenkrantz and Hunt (1980) . This

system uses preanalysis to determine the amount of

serialization needed. Each transaction is assigned a time

stamp from a local logical clock with an appended site

identifier. All write messages carry the time stamp and, if

the time stamp is younger than the original data item, the

transaction is not executed on that copy of the file.

Only time stamps on WRITE transactions are stored.

The system uses a conflict graph to determine if

transactions need to be serialized. .This graph is not

analyzed at run time but when the database is set up. This

analysis produces transaction classes. Let Tw be a

transaction write of a record and Tr be a transaction read

of the same record. The following serialization rules

1. if Tw precedes and conflicts with Tr, then Tw must
precede Tr in serialization

2. if Tr precedes and conflicts with Tw, then Tr must
precede Tw

3. if Twi conflicts with Tw, then Twi and Tw must be
executed in their time stamp order

Locking is invoked only when a cycle is formed. Each

Tr contains a list of classes with which it may conflict.

The Tr is deferred until all earlier Tw commands in the

specified class are processed. If a Tw in the specified

- - -
class with a later time stamp has already been processed,

the Tr is rejected.

The decentralized concurrency control introduced by

Stearns and Rosenkrantz (1981) makes use of time stamps and

allows a user to read values after a write transaction has

started to update an entity but before the entity has been

written back to the file. This is called the "before

valuen. The authors state that this is desirable since in

a traditional locking system a transaction might be aborted

and, in that case, the requestor would ultimately receive

the before value after waiting a period of time for a

transaction to release a lock. Two times for committment

are discussed, based on the following terms:

1. a transaction is said to be terminated when it is
finished processing at all sites and has made a
request to make its write values permanent

2. a transaction is said to be committed when it is
terminated and cannot be rolled back

3. a transaction is said to be closed when its write
values become official and it cannot be rolled back

A scheme for committing at termination requires that

no older transaction receive a before value of a younger

transaction and no younger transaction can write to an

entity read by an older, nonterminated transaction. In

this scheme, readers can receive after values of older

transactions that have not yet terminated. If commitment

is done when the system is closed, a younger transaction

must wait to read the afte? value of the older transaction

after it has closed.

Synchronized Concurrency Control

Synchronized concurrency control involves the use of a

daisy chain (a ring) formed of all nodes. Updates travel

around the ring to the required nodes. This

synchronization insures consistency.

Ellis (1977) presents an algorithm for updating

totally replicated databases which use a ring. Each

database has three states, idle, passive and active. An

idle database is not locked. An active database is locked

and in the process of performing an update. A passive

database is locked and knows .that an update is coming.

When an update is requested, it must move along the ring

until it receives passive locks from every node and returns

to the originating node. At that time, the originating

node receives an active lock and is updated. The other

nodes involved are then signaled to perform the update.

This is done by sending the update around the daisy chain

once again.

A synchronized control algorithm which uses a ring and

can be used for both replicated and partitioned databases

is presented by LeLann (1978). A particular message called

a token, which serves the purpose of ticketing allocation

requests, circulates -tli&virtual ring of nodes. When a

node receives the token, all updates for files residing at

that node are taken from the token and updates for files

residing at other nodes are appended to the token and sent

to the next node in the ring. This ordering insures

synchronized updating and thus eliminates conflicts in

concurrently accessing the same item.

L F s m a l A n u s i s P f Database Perf 0uiUnce
=Wutive Database Systems

Much of the performance analysis in Listributed

database systems can be found in the areas of performance

with respect to central vs. distributed controllers,

allocation of resources and updating replicated files.

File Directory

Chu (1976) develops a queueing model to study the

perform'ance of file directory systems Three directory

placements are considered: a single master directory, an

extended master directory (one master directory exists but

each node has.its own directory; if the needed information

is not in the local file, the master file must be accessed)

and multiple master directories (one copy of the master

directory per cluster or node). Arrivals at the input

queue of the directory represent the queries and updates

generated by all the computers in the system. ~etwork

topology, communication---costs, storage cost and code

translation are considered. The model is M/D/l. It was

found that for low update rates, the distributed file has

lower operating cost as compared with the central

directory systems. If the update rate is greater than 15%

of the query rate, the centralized system performs the

best. For update rates less than 1 to 5% of the query

rate, the extended central directory performs the best.

Updating Totally Replicated Databases

Denola (1981) presents a M/M/1 queueing model to

measure system performance for a totally replicated

distributed database in a centralized management system, a

masterhlave system (where the nodes handle updates locally

but updates to other nodes must be handled through the

master) and synchronized (where nodes involved in the

update are connected in a ring and must be visited in a

predetermined order.) Arrivals to the queue consist of

updates and retrievals. It was found that the master/slave

system has a better average response time than the central

system; which is reasonable since the local updates are

handled locally and the only contention for the master node

occurs when a nonlocal update is needed. The synchronized

model does not outperform the other two systems until they

have become totally saturated.

Gardarin and Chu - -Cf979) present a deadlock-£ ree

algorithm for updating replicated databases in a

distributed system. The algorithm locks tables locally and

provides time stamps to detect conflicts at replicated

sites. Performance comparisons between the voting and the

centralized locking algorithm are analyzed in terms of the

number of messages required to perform an update and the

volume of control messages required to perform the update

to multiple copies. No queueing analysis is done. The

proposed algorithm performed better than the voting

algorithm for more than two sites with respect to the

number of messages per update. The centralized algorithm

tended to perform better than either method with respect to

control messages where the number of updates plus one per

transaction is less than the number of sites in the

network. The author points out, however, that the

centralized management has response time problems.

Garcia-Molina (1979) presents a M/G/1 queueing model

to measure system performance for totally replicated

distributed database systems. Centralized control,

distributed voting control and Ellis ring control are

analyzed. The author considers conflicts as well as

specific query situations. It was found that the

centralized control algorithm performed best in most cases.

Gelenbe and Sevcik -- (-1g78) study concurrency issues in

totally replicated databases. They develop a precise

definition of coherence (how many different states exist in

the dDBMS at a given time) and promptness (distance of

nodes from the reference copy) and examine two control

tecnhiques with respect to these two performance measures.

Optimal File Allocation

Chen (1973) develops a M/M/k queuing model to analyze

the three types of file allocation problems:

1. minimize response time without regard to storage cost

2. minimize storage cost and meet a mean system response
time criterion

3. minimize storage cost and meet an individual response
time criterion for each file

It is proved that the optimal allocation strategy for

problems 1 and 2 is to allocate files that are more

frequently accessed to faster storage devices. No optimal

strategy was found for type 3 problems. However, it was

proved that the optimal allocation policy is not always the

same as the other two. Although not directed toward

distributed databases specifically, the author points out

that his results can easily be applied to a distributed

System.

Both Mahmoud and Riordon (1976) and Coffman, Gelenbe

and Plateau (1981) develop queueing models to determine how

/

to allocate copies of; -database files among the network

nodes. Mahmoud examines file allocation and communication

link capacities simultaneously. He develops an objective

function for optimal allocation and finds that its solution

falls into the class of nonlinear integer programming

techniques. Since a solution is cumbersome, he uses

decomposition to find a solution which has a relatively low

cost.

Coffman examines the allocation of resources based on

maximizing the read throughput in the presence of update

arrivals. An optimum number of copies is found. The

authors then examine the problem with respect to the Ellis

ring algorithm (1977) .
In summary, while queueing theory can be found in

distributed database performance analysis, there is no

prior research in the area of the performance of different

support techniques for dynamic derived relations. This is

clearly an important topic in a distributed system, since

the support of user views requires some type of

implementation of dynamic derived relations. In these

distributed systems, the potential technique is quite

costly since the ddr needs to be recalculated and

transmitted every time a user refers to it. But, the

actual technique is similarly hindered by the need to

regenerate the ddr each time an update is performed on one

of the base relations.- --Intuitively, the deferred-actual

has a high probability, under certain circumstances, of

outperforming either of the other methods. Our analysis

verifies this.

CHAPTER I11

EVALUATING DDR SUPPORT METHODS

IN A CENTRALIZED SYSTEM

This chapter presents a methodology for evaluating

database update schemes in a central database environment.

Specifically, three ddr support methods are analyzed. The

chapter discusses the characteristics of the three support

methods and illustrates how these characteristics and the

history of data usage in the database can be faithfully

represented using an M/Hr/l model.

A h Characteristics of the Three Update Methods

The purpose of this section is to discuss

characteristics of the three update methods. The three

algorithms shown in Figures 4, 5 and 7 will be referred

to as potential, immediate-actual and deferred-actual

methods, respectively. The immediate-actual method will be

altered slightly for simplicity and uniformity in the

modelling process.

The immediate-actual has been changed so that all ddrs

defined by its defining relation are updated when one ddr

is retrieved. Until that time, update tuples are stored in

a differential file. - N 6 culling will occur and the

immediate-actual method will not have overhead associated

with maintaining this file. This differs slightly from the

original algorithm which updates all ddrs when a defining

relation is updated; however, the amount of work done is

the same since we do not consider any advantage that might

arise from the batching of these updates. This

modification allows us to model the immediate-actual in a

way consistent with the deferred actual and potential

methods because now all maintenance work is done at ddr

retrieval time.

Each of the three ddr support methods has differing

characteristics with respect to how the ddr is retrieved,

what ddrs are updated, and what storage requirements

exist. A ddr retrieval in the immediate-actual method

involves applying all the defining relation update tuples

collected since the last ddr retrieval to the ddr.

The deferred-actual method also makes use of the

defining relation update tuples since the last ddr

retrieval. Updates are collected in differential files

until the ddr is retrieved. This ddr support method may

reduce - the total number of tuples involved in the actual

retrieval due to a culling process that is carried out when

update tuples are added to the differential files. The

same tuple used in more than one update is reduced to only

the last update before-The database is accessed. When

tuples are used as a collection (or batch) of elements,

there is the possibility that two updates might take less

than twice one update time. Therefore, batching may also

reduce the total work to be done.

The potential method totally reconstructs the ddr each

time it is retrieved. The advantage of batching tuples for

the ddr retrieval is also present in this case.

With respect to what ddrs are updated, both the

potential and the deferred-actual update only the ddr

involved in the query. The immediate-actual updates all

ddrs defined by the base relation that has been updated.

Different storage requirements exist in that both the

immediate-actual and the deferred-actual store the ddr in

actual form. The deferred-actual incurs an additional cost

for storing the differential files. The potential method

stores -only the formula of or access paths to the ddr so

that it can be recalculated. In the analysis performed in

this dissertation, storage requirements are modelled in the

distributive database case.

& Using Historv af patabase Retrievals and Updates
&Q petermine the Averaae Service

This section illustrates how the history of data usage

in a database can be used to determine needed parameters

for the system. ~pec~fLc~lly, we examine the update to

retrieval ratio.

The first parameter to determine is the average

service time to update a ddr. Let the probability of a ddr

retrieval be P and the probability of a base relation

update be Q. Under both actual storage methods, the amount

of work done to retrieve a ddr is based on the number of

updates which have occurred between two ddr retrievals.

In the immediate-actual, this is the total number of tuples

used to update the base relation between two ddr

retrievals. The deferred-actual allows for culling if the

same tuple is used to update the base relation more than

once. Thus, the number of tuples used in the ddr retrieval

may be less than or equal to the total number of tuples

used to update the base relation.

Whenever a ddr is retrieved, tuples used to update the

base relations which define the ddr are incorporated into

the ddr retrieval. Since the number of tuples used in a

ddr retrieval depends on the number of updates that have

occurred, the service time for a ddr retrieval is

k * (Q * A / P * A) * (1 / U) = k * Q / (P * U)

where A is the arrival rate and 1 / U is the average time to

perform one update. When updates are batched, there is the

possibility that two updates might take less than twice one

update time. This will be incorporated into the model

later but for now we win-not consider the advantage of

batching updates.

The value of k (O<k<=l) represents a culling factor.

This factor is needed to analyze the difference between the

two actual methods. In the immediate-actual, no culling

occurs, while in the deferred-actual method, duplicate

tuples are culled. If k is one, no duplicates are

recognized. As k approaches zero, the ratio of distinct

tuples to the total number of updates also approaches zero.

The product of k and the total number of tuples used to

update the base relation, (Q*A/PtA), represents the number

of update tuples used in the ddr retrieval.

To illustrate this, let k=l (no culling) and let there

be m times as many updates as ddr retrieval arrivals. The

state-transition diagram in Figure 8 represents this case

with infinite update service rates. Arrivals are of two

types, base relation updates and ddr retrievals. All

arrivals are considered to be Markov with arrival rates

for updates and retrievals being m*A and A, respectively.

Base relation updates are represented with respect to ddr

retrievals.

States SO,Sl,S2,... represent the number of updates

that have occurred to the base relation, since the last ddr

retrieval. A ddr retrieval arrival will immediately empty

the system, that is, all tuples used to update the base

Figure 8. A state-transition diagram representing
update and retrieval arrivals. The update arrivals
are m times more than the. retrieval arrivals.

relation will be usedA-in the ddr retrieval and the
8

collection of update tuples will begin again. As stated

previously, update arrivals occur at the rate m*A and

retrieval arrivals occur at rate A. The probability of

being in state Sj (j>O) is

PROB(Sj)= (((m * A)/ (A + m*A))**j) * PROB(So)
and the probability that no tuples are in the system, state

So, is

PROB (So) =1/ (m+l)

The expected number of customers (tuples) is:

which is the ratio of the update arrival rate to the

retrieval arrival rate. (See appendix 1 for detailed

calculatons.) Therefore, by determining the frequency of

update ' and retrieval calls, probabilities can be comkdted

which can be used to determine the average retrieval and

update times.

G TheM/G/1Model

As its notation indicates, the M/G/1 queue is a single

server system with Markov arrivals and arbitrary service

times. Within this system, a customer can be required to

go through r parallel stages which have different service

- ' \ - , . , - I.,
-.'.I =

times (called M/Hr/l) , or any combination of parallel and

serial stages. This type of model lends itself well to

representing a system which has updates and retrieval

arrivals and where each type of arrival requires a

different service time.

A 2-stage parallel server is shown in Figure 9 and its

state-transition diagram is shown in Figure 10. Note that

the first arrival proceeds to one of the parallel states

based on the probability that the arrival will be of a

specific type. This is because there is no one in the

queue and, therefore, execution can begin immediately.

After this point, all customers are queued, and when the

customer being serviced has finished, then and only then

can a queued customer enter for service. This is

consistent with the update/retr ieval system, where two

different actions can occur, however, only one action can

occur at a time and each of these has a different service

time .
The following notation will be used throughout the the

remainder of this dissertation:

A is the arrival rate to a node

b is the block size, indicating the number of ddr
tuples accessed in one I/O operation to the external
device that stores ddrs

is the culling factor

Ki is the culling factor for the ith ddr

Figure 10. A state-transition diagram for the ~ /~2/1
model.

A

gure 9. The M/H~/I .model.

u1

d L

b

is the average number-of ddrs per defining relation

P is the probability that an arrival is a ddr retrieval

pi is the probability that an arrival is a ddr retrieval
for the ith ddr (pl+p2+...+pn=P)

Q . is the probability that an arrival is an update
Q+P=l

1/U is the service time it takes to do one update

ui is the service rate to retrieve the ith ddr

X is the mean service time at the node

pdf is the probability density function

X2 is the second moment of the probability density
function (pdf)

C2 is the square of the coefficient of variation

R is the utilization factor (R=X*A)

q is the expected queue length at the node
' Z 9 '. .
..i+ ,.$$&-,!

W
y;.: ..: !:.-

is the average wait time at the node :; . .::j:l<!:;lgj ,. .. , . 5.2,..-,'z:

- 5 - . .

The formulas for the M/Hr/l model which are used to

analyze the individual nodes are as follows (Kleinrock

W= q/A

Refer to appendix 2 for a simplification of these formulas.

L mins m2 -- Model UI RJ%LQUa!ent
, mediate Actual Method

The M/Hr/l model representing the immediate-actual

method, which updates all ddrs whenever one ddr is

retrieved, is shown in Figure 11. Arrivals are of two

types, updates and retrievals. When an arrival occurs, the

probability of the arrival being a retrieval is P. The

probability of it being an update is Q. Note that Q+P=l.

As noted in section B, the retrieval service time for one

ddr is

k * (Q * A / P * A) * (l / U) = k * Q / (P * U)

Since all ddrs are updated whenever one ddr is retrieved,

and there are n ddrs, this service time should be

multiplied by n. Also, in this method, there is no culling

so the culling factor, k, is 1. Batching is not

considered in this case due to the fact that the original

version of the algorithm does not batch updates.

Therefore, the retrieval service time is

(n * Q) / (P * U)
As an illustration, let the probability of a ddr

retrieval arrival be P=.5 and the probability of an update

be 41.5 and let there exist two ddrs. The above formula

indicates that the expected service time for each retrieval

is (2*.5)/(.5*U) or 2*(1/U). That is, we can expect two

updates for each retrieval. To see how this might come

Figure 11. ~ / H 2 / 1 model for the immediate-actual method.

-- - -
a b o u t , c o n s i d e r t h e fo l l owing sequence, where an update

a r r i v a l is denoted by u and a ddr r e t r i e v a l a r r i v a l by d:

u d u d u d u d u d

S i n c e each ddr r e t r i e v a l upda tes a l l d d r s when one i s

r e t r i e v e d , each r e t r i e v a l even t w i l l cause bo th d d r s t o be

updated. I n t h e p reced ing sequence, t h e r e were f i v e

r e t r i e v a l s . One t u p l e was c o l l e c t e d between each of t h e s e

r e t r i e v a l s and, t h e r e f o r e , t h e r e were a t o t a l of t e n update

t u p l e s used. Thus, t h e average number of upda tes pe r

r e t r i e v a l s was 2 .

The w a i t time, W , i s

The d e t a i l e d c a l c u l a t i o n s f o r t h e pa ramete rs can be found

i n t h e appendix 2a. Note t h a t f o r R, t h e u t i l i z a t i o n

f a c t o r , less t h a n one, U i s g r e a t e r t han A*Q*(n+l).

The re fo re , n e i t h e r W nor q , t h e expected queue l e n g t h can

become n e g a t i v e .

L Using khe BtUkWl M k l LQ B e ~ r e s e n t
t h e Defe r red A c t u a l b l ~ d a t e Method

The M / H r / l model f o r t h e d e f e r r e d - a c t u a l update method

is shown i n F i g u r e 12 . I n t h i s method, o n l y t h e ddr

r eques t ed i n t h e ddr r e t r i e v a l is updated. Also , based on

t h e a l g o r i t h m , c e r t a i n c u l l i n g i s done when t h e same t u p l e

is used t o upda te a base r e l a t i o n more t h a n once. Note

Figure 12. ~/~n+l/l model for the deferred-actual
method.

that there are now n+l- pa3allel stages, one for each ddr

and one for a base relation update. The probability of a

retrieval occurring for the ith ddr is now pi where

pl+p2+...+pn=Pe Using the service time for one ddr

retrieval that was developed previously, we find the

retrieval service time for the ith ddr to be

where ki is the appropriate culling factor for the ith ddr.

Using the previous illustration, where the

probabilities of a ddr retrieval and update arrival are

both .5 and the number of ddrs is two, let one ddr have a

probability of .4 and the other ddr have a probability of

.1 of being retrieved. Representing the ddr with

probability of .4 as dl and the ddr with probability of .1

as d2, we might have the following arrival sequence with

the number of tuples used in the retrieval listed below it

arrival: u dl u dl u dl u dl u d2 u dl u dl u dl u dl u d2

tuples: 1 1 1 1 5 2 1 1 1 1

Once the system has stabilized, the total number of

tuples used to update the ddrs is again ten and the average

is two updates per retrieval. This coincides with the

result predicted by the above formula. The average service

time to retrieve ddrl is .5/(.4*U) or 1.25*(1/U) per

retrieval. The average service time to retrieve ddr2 is

-
.5/(.1*U) or 5*(1/U). Since there are four retrieval

arrivals of ddrl in this sequence and one retrieval of

ddr2, we have

Which is the same as the immediate-actual method.

Therefore, the number of tuples used in the ddr retrieval

is the same for both actual methods if no culling or

batching is done.

When updates are batched, as in the deferred-actual

method, there is a possibility that two updates might take

less than twice one update time. We must represent the

advantage of batching in order to accurately measure the

performance of the deferred-actual method.

Batching can be expressed in terms of a block size, b.

The block size is determined by how many tuples can be

fetched from an external device at one time. Therefore,

the expected ddr retrieval service time is

where k*Q/pi is the expected number of update tuples used

to update the ddr and l/b is the batching factor based on

the block size.

Using the formulas presented in section C, we find the

following :

where SUM1= (kl+k2+. . .+kn) /b
and ~~M2=(kl**2/pl+k2**2/p2+...+kn**2/pn)/b

See appendix 2b for detailed calculations. Note that if we

assume 'that all pi's are equal, that is pi=P/n, that all

ki=l and that the block size is 1, then

and hence, SUMl=n and SUM2=n**2/Pm This then gives an

expected wait time of

using simple albebra, we see that the formula reduces to

which i.s equivalent to the immediate-actual method. The

major advantage of the deferred-actual method is when

culling exists and batching is incorporated.

The potential method requires total reconstruction of

the ddr each time it is retrieved. Therefore, the

potential method is dependent upon the size of the defining

relation. Let S represent the average size (in tuples) of

a defining relation in the-database. As in the deferred-

actual method, we introduce the batching factor l/b where b

is the block size. Then the ddr retrieval time will be

The M/Hr/l model

Figure 13.

for the potential method shown

Using the formulas presented in section C, we find

that the wait time is

Again, the detailed calculations are in appendix 2c.

Note that the immediate-actual and deferred-actual

methods method are equivalent the potential

batching occurs, Q*n/P=S , and ki is 1 for all i.

Jncor~orating Overhead into
the Actual-Deferred Method

The actual-deferred method incurs overhead from which

the other two methods are exempt. The overhead involves

maintaining the insertion and deletion tuples in the

differential files. The cost of updating the differential

files should be proportional to how many tuples are in the

file. Since we know the service time to update a defining

relation, 1/U, we can express the service time to update

the differential file as a factor of this. Note that the

Figure 13. M/HZ/I model f o r p o t e n t i a l method.

update t o d e f i n i n g r e l a t i o n r a t i o w i l l always be less than

o r equa l t o one. The de fe r r ed -ac tua l r e q u i r e s t h a t t h e

j o i n be done on ly on t h e key and, t h e r e f o r e , a j o i n can n o t

cause t h e de r ived r e l a t i o n t o be l a r g e r than any of i ts

d e f i n i n g r e l a t i o n s . The o t h e r r e l a t i o n a l o p e r a t i o n s y i e l d

a de r ived r e l a t i o n t h a t is always s m a l l e r t han o r t h e same

s i z e as i t s d e f i n i n g r e l a t i o n s .

L e t Z be a f a c t o r which r e p r e s e n t s t h e r a t i o of t h e

s i z e of a ddr t o t h e sum of t h e s i z e s of i t s d e f i n i n g

r e l a t i o n s . Then l e t

r e p r e s e n t t h e s e r v i c e time t o update a
d e f i n i n g r e l a t i o n

l/U+Z/U r e p r e s e n t t h e s e r v i c e time t o update a
d e f i n i n g r e l a t i o n and t o i n s e r t it i n t o t h e
i n s e r t i o n o r d e l e t i o n t a b l e

Although it seems obvious t h a t t h e r a t i o of updates t o t h e

a c t u a l d e f i n i n g r e l a t i o n s i z e should be a parameter i n t h e

d i f f e r e - n t i a l f i l e update f u n c t i o n , t h e r e may be o t h e r

overhead involved i n main ta in ing t h e f i l e which have n o t

been considered. W e w i l l , t h e r e f o r e , i n t roduce another

f a c t o r Y such t h a t O < = Y < = l / Z , which can be a d j u s t e d t o

r e p r e s e n t a p a r t i c u l a r system. Using t h e Y and Z

parameters , t h e s e r v i c e time f o r an update becomes

Note t h a t when Y is ze ro , t h e r e is no overhead and when Y is

1 0 , the cost to update -the differential file is equivalent

to the cost of updating the defining relation.

L Qx@uison pf Performance pf the
Three ppB S E ! , Methods

In this section, comparisons of the performance of the

algorithms are presented. Because there exists no standard

data from a "typical" database, we have no way of knowing

what is the norm.or the exception in the way of data usage.

For this reason, we can not state emphatically that under

"typical" data usage, one ddr support method is best. We

have, instead, provided parameters which can be set based

on a specific system. This provides us with the

flexibility of considering special cases while allowing the

specialization necessary for a useful performance analysis

tool .
In deriving the average service time, queue length and

wait time for the three ddr support methods, we indicated

that by varying certain parameters, one method might.reduce

to the same performance as another method. One of the more

important parameters was the size of the ddr with respect

to its defining relation. It was found that the size

affects both the update/relation size ratio and the

deferred method's overhead execution time parameter.

Another important parameter is the number of ddrs per

defining relation. This was found to affect both the

_ . -

deferred-actual and the immediate-actual methods.

batching parameter affects both the deferred-actual

potential methods. Finally, the culling factor for

deferred update method is another important parameter which

affects the deferred-actual service time.

The special cases presented vary the parameters we have

discussed. They are considered to be special cases because

they cause the different update algorithms to either be

indistinguishable or to have extremely different

performance characteristics. These cases are discussed and

then presented graphically. After considering these

special cases, we examine a situation with none of these

limitations.

The

and

the

The graphical representations

respect to the arrival rate and

with

time .
Although,

presented

done so.

case,

are presented

the response

typically, queueing model performance

by varying the utilization factor, we have

is

not

This is because such a presentation is, in this

misleading. The service times vary with such

in order to set extremes under these special cases, that,

the systems to a specific utilization factor, the arrival

rates differed greatly. This was not obvious when plotting

the performance by varying the utilization factor. We

have, therefore, presented the special cases by varying the

arrival rate.

The graph in Figure 14 shows response time as a

function of the arrival rate. Using the equal scale on

both axis of the graph causes the data to plot as almost

indistinguishable lines. To more clearly illustrate the

differences in various factors as the arrival rate

increases, the other graphs in this dissertation will use

unequal scales.

Case A: Vary the ratio of updates to defining relation

tuples. The number of ddrs and block size is 1 and there

is no culling. This case will cause both of the actual

update methods to behave in the same way. The potential

method, however, will vary greatly with respect to the

ratio of updates to relation size. This is shown in Figure

15. This seems logical in view of the fact that the

amount of tuples used in reconstructing the ddr depends on

this parameter.

Case B: Vary the number of ddrs. There is no

culling, the block size is one and the ratio of updates to

relation size is one. In this case the immediate-actual

and the deferred-actual methods vary greatly. In the

immediate-actual method this is due to the fact that all

ddrs must be updated whenever one ddr is retrieved. The

greater the number of ddrs, the more that must be updated.

In the deferred-actual method, since no culling occurs and

-.!+f;,. i' -. ?>;';;(' :. . .
, "j& ;,;...;h ,,$. ,!.? :: , ;

4 ' . I . . :. . .
;;..cr * ,;;;; 27y.i:; $3,:
-,. < - ,! 8s - -
<:-. .-?., ,
r>..!,' .?I .=

PJ ,.-

A. Potential: ratio=.l
B . Immediate, deferred
C. Potential: ratio=.5
D. potential: ratio=l

Figure

100 200

Arrival Rate

14.. Vary update/relation size (equal scale).

A . Potent ia l : ratio=+. 1
B. Immediate, deferred
C. Potentials rat io=.5
Do Potent ia l : r a t io= l

Arrival Rate

Figure 15. Vary update t o re la t ion s ize .

A . Immediate, deferred:
ddr=5

B. Immediate, deferred:
ddr=2

C. Immediate, deferred:
ddr=l t

Potent ia l

Arrival Rate

'Figure 16. Vary number of ddrs.

no advantage is allowed-Yrm batching, it performs the same

as in immediate actual. This is shown in Figure 16.

Case C: Vary the culling factor. The number of ddrs

is one and the ratio of updates to defining relation size

is one. This case will cause the deferred actual to vary,

with worst case occurring when there is no culling. At

this point the performance is equal to the other two

methods. This is shown in Figure 17.

Case D: Vary overhead. This case will cause the

deferred-actual to vary with worst case occurring when the

cost of updating a ddr is equal to the cost of updating a

defining relation and best case when there is no overhead.

This is shown in Figure 18.

Case E: Vary the bucket size. This case will cause

the performance of the deferred-actual and potential

methods vary greatly. Note that because the update

relation size ratio is one and there are two ddrs, the

potential method has better performance than the other two

methods. This is shown in Figure 19.

Primary Factors Affecting the Performance of Each Method

As we have shown, the performance of each method is

based on certain parameters. With regard to the potential

method it is the ratio of updates to defining relation size

and the blocking factor. With regard to the immediate

C

D

A , Immediate
- Potent ia l

Def erred8 k=O
B. Deferred: k=.2

- C. Deferred: k=.9

ddrs=l
update/relation=l

10 20
Arrival r a t e

30

Figure 17. Vary cul l ing fac tor (k).

10 20
Arrival Rate

A . Potent ia l
B e Immediate

Deferred: ovhd=O
C. Deferred8 ovhd=.l
D o Deferred: ovhd=.5
E, Deferred: ovhd=1

ddr=5

update cu11in7046 relat ion=. 1

Figure 18. Vary overhead (ovhd).

10 20
Arrival Rate

Figure 19 . . Vary the block size (b) .

A. Immediate
B. Potential
C. Deferred

ddr=2
cul l ing=lO%

D

update/relati
-block size=l

- overhead=O ':/I 10 20 C 30 ,

Arrival Rate

Figure 20. Nonspecial case.

actual, the main performance parameter is the number of

ddrs. The deferred method also depends on this parameter

as well as the culling, blocking and overhead parameters.

In general, the deferred-actual method will perform better

than the immediate-actual method if batching and culling

are considered.

The deferred method performs well as compared to the

potential method when the update to relation size ratio and

the number of ddrs is low. Special cases such as no

culling, extreme overhead and the existence of many ddrs

contribute to poor response time for the deferred strategy.

Figure 18 presents a case closer to the medium of the

parameter ranges. The number of ddrs is two, a ddr is

considered to be one half the size of its defining

relation and culling occurs 10% of the time. The block

size is 3.

CHAPTER IV

ANALYSIS OF DDR SUPPORT METHODS IN A

DISTRIBUTIVE ENVIRONMENT

As stated previously, one of the most important design

considerations in a dDBMS environment is concurrency

control. This section presents the analysis of the 3 ddr

support schemes within three distributive concurrency

approaches -- centralized, distributed and synchronized

ring . The following notation is introduced in this

chapter :

C is the service rate for a lock

Pd is the probability that a defining relation is not
stored at the same node as its ddr

P1 is the probability that a nonlocal ddr is requested

N is .the number of nodes in the network

& uter/Slave Svstem af centralized Control

Figure 21 shows the information flow of a ~aster/~lave

centralized control system. All updates must be sent to

the master to lock the affected item before an update can

proceed. Figure 22 shows the master and slave information

flow. The slave sends all updates immediately to the

master. Retrievals for files at other nodes are also sent

76

master ab

slave

slave

w ?

slave

Figure 21. ~aster/~lave flow among the nodes

nonlocal retrieval
nonlocal requests , rewests

I local requests & I, f i n 2 7 v a n 7 r a c

a) master

nonlocal retrieval
" lock requetts

/local requests I local requests
slave reques

slave reques ,

b) slave

Figure 22. Information flow for individual node in
master/slave system.

_.- -
immediately to the appropriate node. Local retrievals are

sent to the queue from the node's terminals. From outside

the node, arrivals are occurring from the master which

grants update privileges, as well as from other nodes

requesting retrieval o f local files. These external

retrieval requests then result in data being sent to the

requesting nodes. Local requests, once fulfilled, are

returned to the terminals.

The master receives system requests for locks,

requests from other nodes for retrieval of the master's

files and update and retrieval requests from its terminals.

Notice that since items to be updated at the master must

also receive a lock before an update can proceed, its

updates must cycle through the system twice. Terminal

requests for other files are sent immediately to the

appropriate node and, after processing update and retrieval

requests from other nodes for the master's files, the files

are then sent to the requesting nodes.

Deferred Actual Method

Figure 23 shows an M/Hr/l model for the master and

slave nodes in the deferred-actual system. Here, only a

ddr which has been requested is updated. Due t o the

algorithm, culling may occur which may cause fewer updates

to be processed than may have actually occurred. The slave

b.)

Figure

Am

2

a) Master node f o r deferred-actual method

Slave node f o r deferred-actual method

23. Master/~lave model f o r deferred actual method.

__.. -
node is the same as in the central database. The master

node, on the other hand, must obtain locks for all updates.

Therefore, a service rate of C has been introduced for this

task. Because the masterhlave system must grant lock

requests for all nodes and the probability of an update

request occurring is Q, the probability of a lock request

occurring at the master node, assuming no conflicts, is

where 1/D, a normalizing factor (D=Qm+Pm+L), has been

introduced so that the sum of the probabilities entering

the service queue is one. Conflicting update requests will

be considered in a later section.

Using the formulas in Chapter 111, section B, the

average wait time Wm and Ws (for master and slave

respectively) are shown below. Detailed calculations can

be found in appendix 3a.

-- -
where SUMlm=(kml+km2+. . .+kmn) /b and

Qs**2 * SUM28
As * (--------------

Qs
+ -----.---- 1

u**2 u**2
+ -I~------~-------------------I-I-----o---

Qs * SUMls
1 - As (----------- Qs

+ -Do--- 1
u U

where SUMls= (ksl+ks2+. . .+ksn) /b and
SUM~S= (ksl**2/psl+ks2**2/ps2+. . .+ksn**2/psn) /b**2

Immediate Actual Method

Figure 24 shows the master and slave nodes for the

immediate actual method. In this algorithm, updates are

collected as they occur to defining relations. At

retrieval time for one ddr, all appropriate ddrs are

updated. The slave node is the same as in the central

database. The master has an added service stage for

granting locks. The values of Wm and Ws are shown below.

Detailed calculations can be found in appendix 3b.

Master node for immediate-actual method

b) Slave node for immediate-actual me thod

Figure 24,. ~aster/Slave model for immediate-actual method.

a) Master node for potential method

b) Slave node for potential method

Figure 25. ~aster/~lave model for potential method.

Figure 25 shows t h e M / G / 1 Model f o r t h e p o t e n t i a l

method. I n t h i s method, whenever a ddr is r e t r i e v e d , it is

t o t a l l y r econs t ruc t ed . Therefore , t h e s e r v i c e t i m e is based

on t h e average s i z e of a d e f i n i n g r e l a t i o n i n t h e system.

(Qm*n) **2 Qm L
Am * (--.I------ + ----.I. + -.-.I--)

D*Pm*U**2 D*U**2 D*C**2
+ ---.I-----w---w.I---I---~---.I-I---I.--.--

Qm* (n+l) L
1 - Am* + -.----.I 1

D*U D*C

(Qs*n) **2
A s * (-.--.I--.I-

Qs
+ ---.I--)

Ps*U**2 U**2
+ --.--II.I--.I-----.I----------I-..-------I

Qs* (n+ l)
1 - As* 1

u

P o t e n t i a l Method

- .- . _ _ --- ..*.:. ,: ,a A , -7 . *; . & . -- 5,;bb,,2, . -;*?,"'+. q2~* L:,'.: ; , ~ I ~ ~ ~ ~ & $ ~ ; ~ $; g ~ ' + ~ . $; : ~ j
-'.4 .Lo -*. ; .

This value, S, is based on a variable'''-PU which represents

a ration of the average number of updates between arrivals

compared to the average size of a defining relation.

Specifically, S can be computed from Q/(P*Pu), i.e. the

average number of updates to retrievals divided by the

factor'representing the percentage that the average number

of updates is to the size of the relation.

As in the actual ddr support methods, the slave node

is the same as in the central database. The master has an

added service stage for granting locks. The values for Wm

and Ws are shown below. Detailed calculations are in

appendix 3c.

Response Time for a Transaction

Response time is based on several variables. First of

all, there is the percentage of local requests as opposed

to nonlocal requests. It is the case that files should be

requested most often by the local terminals. If not, some

optimization probably needs to be done to accomplish this.

Although this seems logical, there is no real data provided

on how often this is the case. For this reason, the

variable P1 has been introduced in order to represent the

percentage of local requests. 1-P1 then represents the

percentage of nonlocal requests. This can be varied to

model a specific system in order to predict its expected

performance.

This analysis assumes that a ddr is stored at the same

node as one of its defining relations (perhaps the largest)

and that a ddr is defined by at most two base relations.

This is not an unreasonable assumption, since in any of the

- - -
three methods, storing a ddr away from its base relation

in an active update environment would add greatly to the

date time.

s, however, when the second defining

ored with its ddr and thus some

transmission must occur to update or construct the ddr.

Here again, no data can be found on how often this might

occur, so we introduce another variable, Pd, which

represents the percentage of ddr retrieval arrivals which

may involve a defining relation at another node. This can

be set to different values in order to analyze real

situations that might arise in the system being modelled.

As stated previously, the probability that a

transaction is a ddr retrieval is P an: the probability of

a base relation update is Q (P+Q=l). Let there be N slaves

and 1 master. Then, in a properly balanced system, the

average number of updates and retrievals per node will be

A*P/(N+l) + A*Q/(N+l) = A/(N+l)

In addition, the master node must examine all updates to

see if a lock can be obtained. If we assume that the

arrivals are distributed evenly among the nodes, the

probability that a request occurs to a slave node is

N/(N+l) and that a request occurs to the master node is

- - -
In order to determine the response time for a

transaction, we must look at the probability of an event

happening and the wait time and transmission time involved.

In this case, T represents the transmission time to any

node for one tuple or lock. We are representing an

Ethernet-like system with variable packet sizes so that

several packet transmissions for one transaction do not

have to be dealt with. This is adequate to model the

performance of the various update schemes in a general

sense.

The response time for a transaction in a Master/Slave

system can be divided into ten distinct events. One event

is obtaining a lock update for a slave node. This involves

the probability that the node is a slave and that the

request is an update, Q*N/(N+l). The time involved is the

wait at the master node to obtain the lock, Wm, and the

transmission to and from the master, 2*T. Therefore, the

probable wait time contributed by this event is

Q* (N/ (N+1) * (Wm+2*T)
A second event is obtaining an update lock for a

master. This analysis is the same as above, except that

there is no transmission time involved and the probability

of being a master node is l/(N+l). Therefore, the

contribution to the expected wait time as a result of this

event is

Q* (1/ (N+1) *Wm (2)

The third and fourth events involve local and nonlocal

slave update requests. The probability of a local slave

update request occurring is the probability that an update

occurs to a slave and is local, Pl*Q*(N/(N+l)). The time

involved is the wait time at the slave to do the update,

Ws. Therefore, the response time for a local slave update

is

Similarly, the probability of a nonlocal slave update

request is (1-Pl)*Q*(N/(N+l)). The time is the wait time

for the update at the slave node and the transmission time

for the update. Therefore, we have

(1-P1) * (Q*N/ (N+1) * (Ws+T)
The fifth and sixth events involve local and nonlocal

master update requests. The probability of a local master

update request occurring is the probability that an update

occurs to a master and is local, Pl*Q*(l/(N+l)). The time

involved is the wait time at the master to do the update,

Wm. Therefore, the response time contribution for a local

master update is

_ _ -.- /

Similarly, the probability of a nonlocal master update

request is (1-Pl)*Q*(l/(N+l)). The time is the wait time

for the update at the master node and the transmission time

for the update. Therefore, we have

(1-Pl)*(Q*l/(N+l)*(Wm+T)

- .
- -. - . .
. :. , . . .iZ.+nr.-/

Th!e seventh and eighth events involve local and
.; -, .! \;,,; ,, ;;; p+ .)$?-; .g!5;;$*.F!:: :>!&,:

. .:..c! , . c:;,,-''c:;, :(,::c, 2i-~,,.,3:2kg>, .:,+t,;
<4;7 .

. - - Cp nonlocal ddr retrieval requests at the master. The

probability of the local ddr retrieval request occurring at

the master is P*Pl*l/(N+l). The time involved to perform

this action is the wait time at the master node, Wm.

If one of the ddr defining relations is not local (with

probability Pd) we must send the portion of the local

defining relation to the nonlocal defining relation's node,

perform the update computation at that node, and send the

resulting update file back to the originating node. The

needed computation and resulting number of tuples

transmitted, depends on the ddr support method used.

Therefore, we will let the number of tuples transmitted be

TI and will illustrate what TI will be for each method in

the individual ddr support sections that follow. This

gives us, then

Pl*P/ (N+1) * (Wm+Pd* (Ws+2*T*T1 (7

Similarly, for nonlocal master retrievals, the

analysis is the same except that a request must be sent to

the node where the ddr resides and the ddr must be sent
- T ! L - : > + - ~ , ~ ! , , < -
.;,c;j-<- 8 " 7 I. AL>g $, .,L p , L" -CII.$.t ..,-

'r ' - . #

-. - - A

back. Since S is the average size of relations in the

database, we .will assume that the ddr is of size S.

Therefore, we have

(1-Pl)*P/(N+l) * (Wm+(S+1)*T+Pd*(Ws+2*T*Tf)) (8)

Finally, events nine and ten are for local and

nonlocal slave ddr retrievals. The probability of a local

retrieval occurring to a slave node is Pl*P*N/(N+l). The

time involves waiting at the slave node for the retrieval,

Ws, and, if a defining relation is not local, the same

time is involved as with the master node. Therefore, we

have

Pl*P*N/(N+l) * (Ws+Pd*(Ws+2*T*Tf)) (9)

The analysis is similar to the master for a nonlocal

retrieval as applied to the slave node. Therefore, we have

(1-P1) *P*N/ (N+1) * (Ws+Pd* (Ws+2*T*Tf) (10)

Combining events (1) through (10) , we have a total

expected response time for a transaction of

RT= Q*Wm + Ws/ (N+1) +Wm*N/ (N+1) + P*Pd* (Ws+2*T*T1 +
P*(S+l)*T*(l-P1) + Q*(N/(N+1)*2*T*+(l-Pl)*T)

This response time is consistent with an intuitive

view, for as the number of nodes approaches infinity, it is

more and more likely that requests will occur from nonlocal

sources and, thus, the likelihood of a transmission

approaches one. Also, increasing the number of nodes is

likely to diminish the wait time for a particular node

_.- -
because the work will be dispersed. Also, if the number of

slave nodes is zero, the response time reduces to Q*Wm+Wm,

which means that for any arrival, there is a wait at the

node, and if the arrival is an update, there is a second

wait for the lock.

The rest of this section involves the particular ddr

support methods and how the transmission time differs for

each. .>.+: : ,-.--
82, ,?,

G3:,::ir,: - ri ',.
< , : :- f,, ;&:

In the deferred update scheme, only the retrievedYddr

is updated. The defining relation updates are collected in

the differential file. Since there are n ddrs and P is the
.; F>

4 . Iv probability of a ddr retrieval, the probability of a - T f 4

specific ddr being requested is on the average of P/n.

Therefore, an average of Q/(P/n) or n*Q/P updates are

collected between ddr retrievals. Because of culling,

there may be less than n*Q/P updates involved. If the

culling factor is k, the average number of tuples

transmitted will be

T1 =n*Q*k/P

The immediate actual causes any ddr retrieval to update

all ddrs which have the same defining relations. Thus, if

a defining relation is not stored with the ddr, the

differential file update table must be transmitted to the

ddr to be used in the update. Since no culling occurs,

these files would have 'an average of Q/P tuples. Also,

-.- -
since all ddrs are updated when one is retrieved, this

transmission may occur several times. We will assume that

no more than one ddr defining relation is not local to the

node.. Therefore, the transmission time is

T1 =n*Q/P

Note that if there were no culling in the deferred-

actual method, the transmission times are the same.

The potential update scheme involves reconstructing

the ddr whenever it is retrieved. Therefore, each time a

ddr is retrieved, the entire defining relation is involved.

If a ddr involves a nonlocal defining relation, the entire

relation must be transmitted. Since S is based on the

average relation size, transmission involves the request

for the defining relation file (considered to be equivalent

to transmitting one tuple) plus transmitting the file to
y$?;F7-v,c: ,,A+!$,y& ;, <. .!-> ' ,: "- - -- ,;y.: ;..',-' -em.. , - # ' I .b;p %$.'f4 , ,z, .<-$:,.'.< , ! -. .+"'- + L, q;: ,.\

; =.!.: .,.: . .%+ t*5,;<;!;;?$~ !:.:<-;>;:L3.: -+; L.;;,::#.y-y-:5;;:;!>

the requesting node. Therefore, we have

As noted before, a variable Pu has been introduced to

represent the factor of what percentage the average number

of updates is to the average relation size. By varying Pu,

P and Q, different values for S can be obtained.

Introducing Conflict

This research is studying the effect on performance of

ddr support methods under specific concurrency control

- - -
schemes. We mustr therefore, introduce the cost of

conflict. The purpose of this section is to consider this

cost. We will assume that no request will conflict more

than once. Also, this conflict eventually is resolved

without rollback. In other wordsr no deadlock occurs.

The first value needed is how long an average

transaction holds a lock. In the masterhlave system, we

must consider two lock types-- a lock held by a file at the

master and a lock held by a file at a slave, Lm and Ls.

Then we have

Lm= t (obtain a lock)
+ t(perform the update)

Ls= t (get to master)
+ t (obtain the lock)
+ t (perform update)
+ t (get back to slave)

The average time a lock is held is

Lt 1/C + 1/U + (1-Pl)*T/(N+l) + 2*N*T/(N+l)
The average time an update has to wait for a lock is

if we assume that the conflicting update arrives at a

random point in time.

If there are M items in the database, the probability

that two updates vie for the same item is

_ _ -.- A

Using Little's result which states that the average number

of customers (in our case update requests waiting for a

lock) is equal to the product of the arrival rate of

customers to the system and the average time spent in the

system, we find the average number of updates in the system

holding a lock to be

J=Q*A*Lt/2

Therefore, Pw, the probability that an update has to wait

for a lock is

So, for any arriving update lock request at the masa--.r

node, if we assume that a conflict occurs at most once, the

lock requests will arrive at a rate

L=Q+PwQ

i.e. the update lock arrivals plus the number of updates

that a r e locked out and must try again. We assume that

they will not be locked out a second time.

Comparison of the Performance of the Three Methods

As in the centralized model, certain parameter settings

cause the algorithms to act in a similar manner. In a

distributive system, transmission time is especially

important . The three ddr support schemes differ in

transmission time based on the number of tuples needed for

a ddr retrieval when servicing nonlocal requests or when a

- .- A

defining relation is not found locally. In the potential

method, transmission time is the product of the average

defining relation size and the time it takes to transfer

one tuple. The immediate-actual method depends on the

updatehetrieval arrival rate ratio and the number of ddrs.

The deferred-actual depends on the culling factor, the

number of ddrs and the update retrieval ratio. Blocking is

an important parameter for both the potential and deferred-

actual methods. The fact that these were also important

parameters in the centralized model reinforces the

importance of selecting the correct ddr support method

based on a specific system usage.

Figure 26 illustrates the case where one ddr exists,

there is no culling and the percentage of updates to

relation size is one half. Here, as in the centralized

case, the immediate-actual and deferred-actual methods1

performance are equal. If overhead was not zero, the

deferred-actual method's performance would be slightly

worse. No advantage is gained from the deferred-actual

method over the immediate-actual due to no culling and a

block size of one. The potential method's response time is

poorer as the update to relation size ratio decreases.

This is consistent with the centralized model.

Figure 27 is the case where the number of ddrs is

varied and the updatehelation size ratio is 1. As in the

A. P o t e n t i a l : u / R = . ~
B. P o t e n t i a l r U / R = . ~
C. P o t e n t i a l : U/R=I

Immediate, Deferred

ddr=1
c u l l ing=o%
nodes=fi .

1 -PI=. 1.
Pd= .1
block=l

10 20 30 .

.. Arrival Rate
F igure 26. ~ a s t e r / s l a v e ; v a r y update t o r e l a t i o n s i z e

r a t i o (u/R).

A . Immediate, d e f e r r e d
ddr=fi

B. Immediate, d e f e r r e d
ddr=3

C. Immediate, d e f e r r e d
ddr=1

P o t e n t i a l

10 20
A r r i v a l Rate '

30

F igure . 27. ~ a s t e r / s l g v e r v a r y t h e number of dd r s .

d

centralized model, the &&mediate-actual and def erred-actual

methods are equal in their performance with poorer response

time as the number of ddrs increases. Here again, no

advantage is reflected in the def erred-actual method

because no culling is done and the block size is one.

Also, :there is no overhead reflected in this analysis.

-,, .-- . C -
- 1 -2. 1 &'

g . Figure 28 illustrates the results of varying the
:;;;;,:.:::.;;.,G.r,<;:..-;-, , . , . ; - , , . i ; . . . , , , , = ' : . 5 . . 8 - I . * - - i.7: .+.. y4 ::;;::;:, :, - I.'?; ': -f;.: 3;;<.-<:.:.,. .in :,:,,; :,!;. ;:: , , , , . , , , , , , - = . . - - "'I ;"- --_.., ... , 1 1 . .* 4 ; : ,*st l,:r-i7+. ? a:; - ~ ~ ~ L ~ : , ~ ~ + ; ~ . - . : , . ~ ~ , : .: .':::, ?':. L-.:2;-!f:.+.y,,. .> L>:v~ .:: .;.zq.p. - , .. . -3 i : I ,%. . .*-. . . 4 8 , - , . , . -, . - - .._ >, . . ,*.

culling. The immediate-actual and deferred-actual methods

are equal in performance due to the update to relation size

setting of one. The deferred-actual response time gets

improves as the percent of culling increases.

Figure 29 illustrates the results of varying the

block size. Response time for the deferred-actual and

potential methods improves as the block size increases.

pistributed Concurrencv Control

In the distributed control system, each node resolves

its own conflicts. Thus all nodes are essentially the same

and are similar to the master node presented in section A.

The only difference is that nodes do not get all lock

requests, but only those local to the node. Figure 30

shows the individual node flow. Updates and retrievals for

files at other nodes are sent to those nodes immediately.

Arrivals at the node consists of local requests from a

node's terminals and requests from other nodes for

retrievals and updates to its local files.

A . Potential
B. Immediate,

Deferred8 k=O
C. Deferred:' k=.5
D. Deferred.: k=. 9

Figure 28. Master/slaver vary culling (k) .

Arr.ival Rate
b 5 L

Figure 29. ~aster/slave r vary the block size (b) i'?.jl:
,;, ->,:,,- ! 6

_ -.- A

Acknowledgements, in the case of updates, and the ddrs in

the case of retrievals are sent back to the requesting node

or local terminal. Figures 31, 32 and 33 show the internal

node model for each ddr support method. As in the case of

master/slave, a normalizing factor of 1/D has been

introduced where D=P+L+Q.

The analysis for the distributed concurrency control

follows the same arguments as those for the master node in

the mastedslave concurrency control system with the

exception that each node in the distributed system handles

locks to only local files. With respect to conflict, the

average time a lock is held is

Lt =l/C + 1/U + (1-P1) *T

and the probability of a lock request arrival is

where

and Pw=Q*A*Lt/ (2*M) .
Based on the discussion for the master node of the

mastedslave system, the following values for the wait time

W are shown below for each ddr support scheme. Detailed

calculations can be found in Appendix 4a, 4b, and 4c.

- I
-C

nonlocal updates nonlocal updates
& retrievals & retrievals

local local A ,
requests requests

reauests requests

lock received

Figure 30. Internal information flow for distributed
control.

Figure 31. Distributed model for deferred-actual method.

Figure 32. Dis t r i bu t ed model f o r imrnediate-actual method.

Figure 33. Dis t r i bu t ed model f o r p o t e n t i a l method.

Deferred-actual ddr support method:

Q * SUM1 Q L
w = (----.--...---- + ------ + -----. 1

D*U D*U D*C

where SUMl =(kl+k2+...+kn)/b and

~~~2=(kl**2/pl+k2**2/p2+...+kn**2/pn)/b**2 

The immediate-actual ddr support method: 



_- - - 
The potential ddr support method: 

Response Time for a Transaction 

Because the distributed control method resolves 

updates at each node and does not have to depend on one 

node for this purpose, the analysis of the response time 

for a transaction is less complex than the masterhlave 

sys tem. Once again, probabilities Pd and 1-P1 for a 

nonlocal defining relation and nonlocal updates, 

respectively, apply. The response time for a transaction 

is determined by finding the probability of an event 

happening and the wait time and transmission time involved. 

One type of transmission which may occur is a request 

for a local update. The probability of a local update 

occurring is the product of the probability of an update 

occurring, Q, and the probability that it is local, P1. 

The transaction must wait at the node twice, once for the 



lock and once for the update. Therefore, we have 

Q*P1*2*W (11 

A second type of transaction which might occur is a 

request for a nonlocal update. This involves the 

probability that the arrival is an update, Q, and is 

nonlocal, P l .  The wait time involves the wait for the 

lock and the update, and the transmission time to and from 

the requested node. Therefore, we have 

Q* (1-P1) * (2*W+2*T) (12) 

A third type of transaction is a local retrieval. 

This involves the probability that an arrival is a ddr 

retrieval, P, and the probability that it is local, P1. 

The time involved is the wait time at the node to do the 

retrieval, W. If one of the defining relations in 

not local (with probability Pd) we must send either a 

message or the portion of the local defining relation to 

the nonlocal defining relation, and back. The needed 

computation and resulting number of tuples transmitted, 

depends on the ddr support method. Therefore, we will let 

the number of tuples transmitted be T1. The value of T1 

under each ddr support.method is the same as T1 under the 

masterhlave system. This gives us then 

P*P1*(W+Pd*(W+2*T*Tf)) (13) 

Finally, a transaction might be a request for a 

nonlocal ddr retrieval. The probability of a retrieval 



- - d 

being nonlocal is 1 P l  . Since the ddr retrieval is 

nonlocal, a request for the ddr must be sent and the ddr 

must be returned. The average size relation in the 

database is S, and, therefore, the transmission to get the 

ddr is (S+l)*T. The analysis is the same as the local ddr 

retrieval in the case of a nonlocal defining relation. 

Therefore, we have 

P* (1-P1) * (W+ (S+1) *T+Pd* (W+2*T*Tf ) (14) 

Combining events (11) through (141, we have a total 

response time of 

Note that if there were only one node, the last two 

terms would be zero because Pd and (1-P1) are zero. This 

would leave Q*W+W as the response time. Here, as in the 

masterhlave case, this is correct because an arrival would 

cause a wait at the node, and if the arrival were an 

update, an additional wait for a lock would be needed. 

Comparison of the Performance of the Three ddr Support 
Methods Under Distributed Control 

As in the masterhlave system, the transmission is a 

large factor influencing the performance of the algorithm. 

Here again, the transmission time is based on how many 

tuples are being transfered. Therefore, this analysis 



__.- - 
depends heavily on the update/retrieval ratio and the 

culling and blocking factor. Figures 34 through 37 show 

the special cases discussed previously which make the 

algorithms behave in similar manners. As these figures 

indicate, when the number of ddrs is one and the update to 

retrieval ratio is one, the immediate and potential methods 

perform better than the deferred method. As the culling 

and block size increases and the update to defining 

relation size decreases, the deferred method performs 

significantly better. 

.L- Svnchronized Nana~ement 

In synchronized management, nodes form a ring in order 

to synchronize the updates. All records are appended to a 

token which continuously cycles the ring. When a token 

arrives at a node, the updates relating to that node are 

taken off the.token and updates initiated by that node are 

appended. Therefore, updates are arriving in bulk at each 

node. This section begins by analyzing a simplified 

version of this algorithm and then proceeds to a more 

realistic representation of the algorithm. 

A Simplified Analysis 

In this analysis, we make the simplifying assumption 

that all retrieval and update arrivals are bulk, with all 

updates performed before retrievals are done. Note that 



A. P o t e n t i a l :  u / R = . ~  
B. Poten t i a l8  U/R= .5 
C. P o t e n t i a l :  u / R = ~  

Immediate, de fe r red  

ddr=1 
c u l l  ing=0% 
nodes=5 
1-P1= . 1 
Pd=ol 
block=l 

Arrival Rate 

Figure 34.. Dis t r ibu ted :  vary  update t o  r e l a t i o n  s i z e  
r a t i o  (u /R) .  

A. Immediate, 
ddr=5 

B. Immediate, 
ddr=3 

C.  Immediate, 
ddr=l  

I 1 I I 

10 20 30 
Arrival Rate 

deferred:  

defer red:  

defer red:  

Figure 35. Dis t r ibu ted :  va ry  t he  number of ddrs. 



A. Potential  
B. Immediate 

Deferred: 
C. Deferred: 
D o  Deferred: 

C 

nodes=5 
1 - P k . 3  

update/relat 

10 20 
Arrival Rate 

Figure 36. Distributed: vary culling (k) . 

A. Deferred6 b=l 
Be Potentialt b=l  
C 0  Deferred: b=3 
D. Potential: b=3 
Em Deferred: b=5 
F. Potential: b=5 

cu l l ing=~% 
nodes=5 
1-P1=0 1 
Pd=.l 
ddr=3 
update/relation=l 

10  20 
Arrival Rate 

Figure 37. Distributed: vary the block size (b). 



-.- -- 

t h i s  is no l o n g e r  an  M / G / 1  model because  t h e  a r r i v a l s  a r e  

Also ,  we assume t h a t  t h e  amount of time it 

t o  remove i ts u p d a t e s / r e t r i e v a l s  from t h e  

n o t  Markov. 

takes a  node 

t o k e n  and append n o n l o c a l  u p d a t e s h e t r i e v a l s  t o  t h e  token  

and send  it t o  t h e  n e x t  node i n  t h e  r i n g  is  n e g l i g i b l e .  

The ave rage  w a i t  time f o r  t h e  token  t o  r e a c h  t h e  

a p p r o p r i a t e  node is one h a l f  t h e  time it t a k e s  t o  go around 

t h e  r i n g .  L e t  N be  t h e  number of nodes i n  t h e  r i n g  and T 

b e  t h e  t r a n s m i s s i o n  time from node 

approximate  w a i t  time f o r  t h e  token  is 

(N*T) /2 

node, t h e n  t h e  

If  t h e  a v e r a g e  upda te  a r r i v a l  r a t e  is Q*A and t h e  ave rage  

r e t r i e v a l  a r r i v a l  r a t e  is P*A, t h e n  t h e  a v e r a g e  number of 

u p d a t e s  which a r r i v e  w i t h  t h e  token  is 

(Q*A*N*T) /2 

and t h e  a v e r a g e  number of ddr  r e t r i e v a l s  which a r r i v e  wi th  

t h e  t o k e n  is 

S i n c e  p r o c e s s i n g  o c c u r s  u n t i l  t h e  token  a r r i v e s ,  

a v e r a g e  wait time f o r  an  update  is one h a l f  t h e  t i m e  

t a k e s  t o  s e r v i c e  a l l  u p d a t e s  p l u s  t h e  a v e r a g e  time 

t h e  

around 

t h e  r i n g ,  i.e. 

(1/2)*(Q*A*N*T/(U*2)) + N*T/2 = (N*T/2)+(Q*W(2*U)+l) 



-. - -  A 

Similarly, average response time for retrieval is the time 

it takes to service all updates plus the time it takes to 

service half of the retrievals. In the immediate-actual 

method, the average service time for a retrieval involves 

updating all ddrs when one ddr is retrieved, 

The deferred-actual updates only the ddr to be retrieved 

and uses culling as discussed in Chapter 3. Therefore, we 

have 

where SUMl= (kl+k2+. . .+kn) /b. 
The potential method must totally reconstruct the ddr 

when it is retrieved. Therefore we have 

A More Realistic Analysis of the Synchronized Method 

The previous analysis for the synchronized method was 

unnecessarily restrictive with regard to retrievals. 

Specifically, there is no reason to delay all retrievals 

until the token arrives. The analysis in this section will 

remove this restriction and allow retrievals to arrive in a 



Markov distribution. 

- ---- - 
The algorithm can then be analyzed 

using the M/G/l model and, thus, produce results which can 

be compared with the other two methods which were analyzed 

using the 

synchronized 

M/G/l model. It is unlikely that 

algorithm could perform on a par with 

the 

the 

other two algorithms using the analysis just completed. 

Figure 38 shows the individual node flow and figures 

39, 40 and 41 show the M/G/l model for each node under the 

three ddr support schemes. Local retrievals are serviced 

locally while 

appropriate node. 

are 

the 

nonlocal retrievals are sent to the 

Updates issued locally for local files 

held until the token arrives at which time it enters 

execution queue as a bulk arrival with 

transactions files at this node. 

the other 

that update 

issued locally for files at other nodes are sent 

appropriate node and held there for the token. When 

token arrives, these updates are performed just as 

they had been issued locally. 

Let Q*A be the rate at which updates arrive 

system and P*A be the arrival rate for retrievals. 

Updates 

to the 

the 

though 

the to 

Since 

N*T/2 is the average wait for the token to get around the 

ring, we can compute the average number of update requests 

that arrive with the token 

Q*A*N*T/ 2 



nonlocal updates nonlocal retrieval 
. +. reauests- + 

local 
requests 

' local 
requests 

requests -- 
I 

Figure 38. . Internal information flow for synchronized 

token & retrieval 

Figure 39. M/G/I model for deferred actual in 
synchronized control. 

t- & 

trievals' 



Figure 4.0. M/G/~ model for immediate-actual in 
synchronized dontrol. 

- 

Fi re 41. M/G/~ model for potential method in 
sync 8" ronized control. 



-.. - 
The token arrival rate is 2/(N*T). Thus the total arrival 

rate at each node is 

P*A+2/ (N*T) 

As in the masterhlave and distributed control, 1/D is a 

normalizing factor. The average wait time for each ddr 

support method is shown below. Details are in appendix 5. 

Deferred-actual ddr support method: 

where SUMl= (kl+k2+. . .+kn) /b and 
SUM21 (kl**2/pl+k2**2/p2+. . .+kn**2/pn) /b**2 . 

Immediate-actual ddr support method: 

2*R*U + N*T*A*Q*n 
w 'a o ~ - o l l ~ - - ~ - o ~ ~ ~ - ~ o m o - -  

D*N*T*U 



Potential ddr support method: 

Response Time for A Transaction 

In the synchronized control, updates are serialized by 

issuing tickets from a token that is sent around the ring. 

No conflicts can occur because of this serialization. The 

ddr retrieval arrivals are Markov. 

In order to determine the response time for a 

transaction, we determine the probability of an event 

occurring and the wait time and transmission time involved. 

The response time for a transaction in the synchronized 

system can be divided into three distinct events. One 

event is an update. There is no distinction between a 

local and nonlocal updte in the synchronized system due to 

the fact that all must wait for the token and, thus, the 

transmission has occurred by passing the token.   his has 



-. 

been i n c o r p o r a t e d  i n  t h e  s e r v i c e  time. 

u p d a t e  t r a n s a c t i o n  w e  have 

T h e r e f o r e ,  

A second t r a n s a c t i o n  t y p e  is a  l o c a l  r e t r i e v a l .  

a s  i n  t h e  p r e v i o u s  s e c t i o n s ,  a  d e f i n i n g  r e l a t i o n  

s t o r e d  a t  node o t h e r  t h a n  t h e  node where t h e  

s t o r e d .  

and t h e  

f o r  an  

Here, 

may be  

ddr  i s  

T h e r e f o r e ,  we must i n c l u d e  t h i s  p r o b a b i l i t y ,  Pd, 

w a i t  and t r a n s m i s s i o n  time i n v o l v e d .  A s  i n  t h e  

p r e v i o u s  sect  i o n s ,  

t r a n s m i s s i o n  t o  and 

dependen t  on t h e  ddr  s u p p o r t  method used.  

P* (P1  (W+Pd* (W+Q*T*T1 

t r a n s a c t i o n  t y p e  i n v o l v e s  The l a s t  

r e t r i e v a l .  T h i s  

e x c e p t  t h a t  

c a s e  

we i n t r o d u c e  a  term TI 

from t h e  n o n l o c a l  node. 

is s i m i l a r  t o  

t h e  n o n l o c a l  ddr  must 

r e t r i e v e d .  W e  u s e  S ,  t h e  a v e r a g e  

d e t e r m i n e  t h i s .  W e  have t h e n  

a s  t h e  

T h i s  is 

W e  have ,  t h e n  

(16)  

t h e  

be  

n o n l o c a l  

p r e v i o u s  

r e q u e s t e d  

c a s e  

and 

r e l a t i o n  s i z e ,  t o  

(17)  

Combining (15)  t h r o u g h  (171,  we f i n d  t h a t  t h e  r e s p o n s e  

time is 

RT=Q*W+P* (W+Pd* (W+2*T*T' ) + ( (1-P1) * (S+1) *TI 1 )  

The v a l u e  of T1  f o r  each  ddr  s u p p o r t  method is t h e  same a s  

t h a t  d i s c u s s e d  under  t h e  m a s t e r h l a v e  system.  



__.- - 
Comparison of -the Three ddr Support Methods 

in Synchronized Concurrency Control 

The special cases discussed in sections A and B are 

shown in Figures 42 through 45. These results are 

consistent with those in the other sections. 

L Comparison pf the Three Concurrencv Control Methods 

Performance of the deferred-actual ddr support method 

is shown with respect to the three concurrency schemes in 

Figure 46. Both the synchronized and distributed 

control schemes have better performance than 

master/slave system. In the synchronized method, 

response time is better or as good as the distributed 

concurrenty control scheme as long as the system 

utilization is low. As the arrival rate increases, 

response time degrades quickly for the synchronized control 

while the distributed control does not suffer as greatly 
p*$*&-~~p;~~~~;$$;~+~g;$~.~~y-yJy~$;,$<$$&gg&;$g~$$if;~&%~ I&., ?~~$!$:p&p)~igg~7J~ -.t,:<:r&:>.~-y:.~~:8 \ 7 * . * . ,  2 

and has ,$rSgenera1ly lower response time than the 

synchronized method after this point. 

Previous research into these methods has predicted 

that the masterhlave should perform the best. In all 

cases, this was not expected nor did it seem reasonable. 

However, most of this prior research did 'not consider 

conflicts. This must be considered if the synchronized 

method is to be at all competitive. It is the "no 

rollback" aspect of the synchronized method that makes it 



A. Potentials u/R=.~ 
B. Potential1 u/R=.~ 
C. Potential: u/R=~ 

Immediate, Deferred 

Arrival Rate 

Figure 42. Synchronized: vary update to relation size 
ratio (u/R). 

- 
A B C A. Immediate, 

deferred: 
B. Immediate, 

LI 

deferred: 
C. Immediate, 

deferred: 
C 

Potential 

C 

I 

10 20 30 
Arrival Rate 

Figure 4-3. Synchronized: vary the number of ddrs. 



A. Potent ia l  
B o  Immediate, 

Deferred: k=O 
C. Deferred: k=.5 
D o  Deferred: k=.9 

Arrival Rate 

Figure 44. Synchronized: vary cul l ing (k) .  

Figure 45. Synchronized: vary the block s ize  (b). 



A. ~aster/slave 
B. Synchronized 
C. Distributed 

10 20 
- .  Arrival Rate 

A.   as ter/slave 
B. Synchronized 
C. Distributed 

10 20 
Arrival Rate 

Figure 4.6. Performance of deferred-actual in three 
concurrency,schemes . 



_.. - 
appea l ing .  I f  it is compared t o  systems which have no 

c o n f l i c t  and t h e r e f o r e  no r o l l b a c k ,  it w i l l  no t  compare 

favorab ly .  Therefore ,  i n  t h i s  r e sea rch ,  t h e  c o s t  of 

c o n f l i c t s  was determined,  both  i n  inc reased  a r r i v a l  r a t e  

f o r  r eques t ing  l o c k s  wi th  c o n f l i c t  and i n  prov id ing  an 

a d d i t i o n a l  s e r v i c e  s t a g e  f o r  g r a n t i n g  t h e  lock.  The 

a n a l y s i s  r e f l e c t s  t h i s  e x t r a  load  on t h e  system. 



CHAPTER V 

CONCLUSIONS 

This chapter gives an overview of what was learned 

from this research. We will begin by discussing 

conclusions regarding the ddr support methods and then look 

at the concurrency performance. The methodology is 

discussed and possibilities for future work are noted. 

Ad Discussion qf the Three DDR Sumort Methods 

Three methods have been presented for the support of 

ddrs. The potential method totally reconstructs the ddr 

each time it is needed. The immediate actual method 

updates all ddrs defined by the same defining relation 

whenever one ddr is retrieved. The deferred actual keeps 

tuples in a differential file, culling whenever the same 

tuple is used more than once to update a relation. 

Because database performance is highly dependent upon 

patterns of usage, there is no one conclusion that can be 

gleaned from the analysis performed here. In order to set 

boundaries, and observe any anomalies that might be 

present, we first measured the performance of each support 

method for a set of special cases. These included 



parameter  

ex t remely  

s e t t i n g s  
-. 

t h a t  caused one method t o  

poor o r  good performance. 

t h a t  c ause  s e v e r a l  

i d e n t i c a l  manner. 

t h e  methods 

have an 

W e  a l s o  chose  c a s e s  

perform i n  an 

W e  found t h a t ,  by l i m i t i n g  t h e  number of 

d d r s  t o  one,  making t h e  r a t i o  of t h e  update  t o  d e f i n i n g  

r e l a t i o n  s i z e  and t h e  block s i z e  equa l  t o  one,  t h e  

immediate-actual  and t h e  p o t e n t i a l  method, r e s p e c t i v e l y ,  

ha s  t h e  same performance a s  t h e  d e f e r r e d  method i f  no 

overhead and c u l l i n g  are incu r r ed .  

t h e s e  cases do n o t  seem t o  be  t h e  norm. I n t u i t i v e l y ,  

For  i n s t a n c e ,  examining t h e  case of t h e  r a t i o  of 

r e l a t i o n  t o  d e f i n i n g  r e l a t i o n  s i z e ,  s e l e c t i o n s ,  p r o j e c t i o n s  

d e r i v e d  

and t h e  se t  o p e r a t i o n s  union,  i n t e r s e c t i o n  and 

d i f f e r e n c e  would y i e l d  a ddr  w i t h  t h e  same o r  a few number 

of  t u p l e s / a t t r  i b u t e s .  I n  t h e  c a s e  of j o i n ,  because  we 

r e q u i r e  t h a t  a j o i n  be done on ly  on t h e  key, t h e  d e r i v e d  

d a t a  is,  a g a i n ,  

d e f i n i n g  r e l a t i o n s .  

t h a n  t h e i r  d e f i n i n g  

no l a r g e r  t h a n  t h e  number of t u p l e s  i n  it 

Hence, d d r s  a r e  i n  g e n e r a l  smaller 

r e l a t i o n s .  The c a s e  t h a t  each 

r e l a t i o n  

example, 

d e f i n e s  a t  most one ddr  is very  l i m i t i n g .  For  

d e f i n i n g  r e l a t i o n ,  STUDENT- one suppose  

ROSTER(SN0, SNAME ,CLASS ,GPA) , 
r e l a t i o n s  might  be needed, 

e x i s t s .  S e v e r a l  d e r i v e d  

such a s ,  s e l e c t i o n  by c l a s s ,  

s e l e c t i o n  by GPA range,  and p r o j e c t i o n  on SNO and SNAME. 



Although these special cases may not be the norm, they 

were considered in order to determine the bounds on 

relative performance. The potential method performs poorly 

as the update to relation size ratio decreases. Both the 

deferred-actual and potential methods are sensitive to 

block size while the actual methods response time increased 

as the number of ddrs increased. The deferred-actual 

method was also sensitive to culling and overhead. In 

general, no one method performed the best in all cases. 

Different circumstances causes each method to perform 

differently. 

In general, it was found that the deferred-actual 

method performs very well under what we consider to be 

normal conditions. Thus, this research has made a case for 

more study of the actual methods. This result is in 

contrast to the claims of others in that it supports the 

use of the actual method in some cases. 

The Three Concurrencv Methods 

The ddrs' support scheme performance was measured in 

three concurrency methods in the distributive database 

environment. It was' found that, as suspected, the 

masterhlave and distributive control performances were 

sensitive to lock conflicts, while the synchronized method 

was more sensitive to transmission times between nodes. 



In all of the systems, arrival rates were adjusted to 

consider arrivals generated by the system, as well as from 

external sources. For instance, the arrival rate at the 

master node in the masterhlave system was adjusted to 

reflect lock requests from all nodes and requests generated 

by conflicts. Thus, the model defined here is more 

realistic that those chosen by other researchers. For 

this reason, intuitive observations, such a s  the 

distributive control should perform better than the master- 

slave system, were supported. This has not been the case 

in previous research, but in these efforts, critera such as 

conflicts and internally generated arrivals were not 

considered. 

L The Methodoloax 

The major contribution of this dissertation is the 

development of a methodology through which database 

algorithms may be analyzed. The specific algorithms looked 

at here are update schemes for dynamically derived 

relations. 

This methodology has proven to be an important tool in 

modelling the specific update schemes as well as 

concurrency control in distributive database environments. 

It makes use of the M/Hr/l model which allows parallel 

stages within the service facility. This is significant in 



t h a t  d i f f e r e n t  classes of customers ( i n  t h i s  case, updates  

and r e t r i e v a l s )  can be analyzed. S i m i l a r  a t t e m p t s  t o  do 

t h i s  i n  t h e  M / M / l  model proved very  r e s t r i c t i v e .  

A key f a c t o r  i n  t h e  e f f i c a c y  of t h e  models developed 

h e r e  is t h e i r  use  of t h e  h i s t o r y  of how d a t a  is employed i n  

t h e  da tabase .  S e v e r a l  parameters  a r e  inc luded  s o  t h a t  t h e  

model can be used t o  ana lyze  a c t u a l  systems. 

The methodology is f l e x i b l e  and uses  concepts  which 

a r e  i n t u i t i v e l y  obvious, whi le  having a sound, t h e o r e t i c a l  

base .  This  a l l o w s  t h e  a n a l y s i s  t o  be done i n  a 

s t r a i g h t f o r w a r d  f a sh ion .  

L FuturemLk 

The r e sea rch  presen ted  i n  t h i s  d i s s e r t a t i o n  h a s  

i n d i c a t e d  s e v e r a l  a r e a s  f o r  f u t u r e  work. 

F i r s t ,  t h e  a n a l y s i s  was done wi th  t h e  r e l a t i o n a l  

model. Fu r the r  r e sea rch  might be warranted t o  s e e  how 

a p p r o p r i a t e  t h e  methods developed h e r e  a r e  t o  t h e  a n a l y s i s  

of da tabase  problems i n  o t h e r  models. 

Second, d d r s  de f ined  by more than  two d e f i n i n g  

r e l a t i o n s  and d d r s  d e f i n i n g  d d r s  should  be examined. I n  

a d d i t i o n ,  a combination of two of t h e  methods might be an 

a r e a  of i n t e r e s t .  For example, a ddr may e x i s t  i n  a c t u a l  

form u n t i l  it becomes t o o  l a r g e  t o  manage and, a t  t h a t  

time, reduces  t o  p o t e n t i a l  form. 



This research examijled - only  p a r t i t i o n e d  d i s t r i b u t e d  

databases .  A t h i r d  area might be t o  study performance i n  a 

p a r t i a l l y  or t o t a l l y  r e p l i c a t e d  database.  Rollback and 

noninstantaneous token handling is a fourth area t h a t  might 

be explored. 



APPENDICES 



APPENDIX 1 

USING THE HISTORY OF DATABASE RETRIEVALS AND UPDATES 

TO DETERMINE THE AVERAGE SERVICE TIME 

Chapter 111, section B, presented results which 

illustrated that, when given the frequency of update and 

retrieval calls,~probabilities can be computed which can be 

used in representing the average retrieval and update 

times. The details of the calculations are presented here. 

Figure 8 is the state transition diagram which 

represents m times as many update arrivals as ddr retrieval 

arrivals, culling 

the probabilities 

and in£ inite service 

being states 

rates. Computing 

have 



Note that  P(So) +P (S1)  +. . .=lo Theref ore ,  so lv ing  for  P(So) , 
w e  have 

The expected number of customers, c ,  is  



m 

which is the ratio of the update arrival rate the 

retrieval arrival rate. Therefore, by determining the 

frequency of update and retrieval calls, we can determine 

how many updates occur between ddr retrievals. 



APPENDIX 2 

THE ddr SUPPORT METHODS I N  A CENTRAL DATABASE 

This  appendix p r e s e n t s  d e t a i l s  of t h e  a n a l y s i s  

p re sen ted  i n  Chapter 111 which d e a l t  wi th  t h e  c e n t r a l  

da t abase  environment. W e  w i l l  f i r s t  s i m p l i f y  t h e  M / H r / l  

formulas and then  proceed t o  t h e  d e r i v a t i o n  of t h e  w a i t  

time f o r  each ddr suppor t  method. 

Chapter 111, s e c t i o n  C,  p r e sen ted  formulas f o r  t h e  

M / H r / l  queueing model. I n  t h i s  s e c t i o n  we w i l l  s i m p l i f y  

t h e  queue l e n g t h  and w a i t  time formulas s o  t h a t  t hey  can be 

expressed terms of t h e  average s e r v i c e  t i m e ,  X ,  t h e  

second moment of t h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n ,  X 2 , a n d  

t h e  a r r i v a l  rate, A. W e  are given t h a t  

q  = R + ' ( ~ * * 2  * (  (l+C2/(2*(1-R) 1 )  

where R=A*X and C2=(X2/X**2)-1 

S u b s t i t u t i n g ,  we have 

q = A*X + (A*X)**2 * ((l+((X2/X**2)-1)/(2*(l-A*XII 

= A*X + (((A**2)*X2)/(2*(1-A*X)) 
The a n a l y s i s  i n  t h i s  d i s s e r t a t i o n  w i l l  u se  t h i s  formula t o  

f i n d  t h e  queue l eng th .  



- 
2a. The ~mmediate-~ctual ddr S u ~ ~ o r t  in a Central Database 

Chapter 111, section D, presented the wait time for 

the immediate-actual ddr support method in a central 

database environment. Details of the calculations are 

presented here. 

The service time 

The second moment of the pdf 

The expected queue length 



The expected wait time 



2 h ,  TA! Deferred-Actual ddr in a central Patabase 

Chapter 111, section, E presented the wait time for the 

deferred-actual ddr support method in a central database 

environment. The details of the calculation is presented 

here, 

The service time: 



- Q * SUMl 
9 ----------- Q 

+ ------ 
u U 

where SUMl =(kl+k2+.  . .+kn) /b 

The second moment of t h e  pdf 

P l  ( k l * Q )  **2 ~2 (k2*Q) * *2 
x2=2* ( ---- * ----I- ----I + ------- * ----------- + m e .  

1 (pl*U*b) **2 1 (p2*U*b) **2 

The queue l e n g t h  

Q * SUMl 
q =A *(---- -------- Q 

+ ----I)- ) 
U u 



The expected wait time 



where SUM1 =(kl+k2+. . .+kn) /b and 
SUM2 = (kl* *2/pl+k2* *2/p2+. . .+kn**2/pn) /b**2 
26 --, Potential ddr Sup~ort in a Central Patabase 

Chapter 111, section F, presented the wait time for the 

potential ddr support method in a central environment. The 

details of the calculations are presented here. 

The service time 



- 

The second moment of t h e  pdf 

The queue l e n g t h  



The wait time 



APPENDIX 3 

THE MASTERISLAVE DISTRIBUTIVE DATABASE CASE 

This appendix shows details of the calculations for 

the service time, X, the second moment of the pdf, X2 and 

the queue length in a masterhlave distributive database. 

The M/Hr/l queue requires that the sum of the 

probabilities of proceeding to each stage be equal to one. 

We must, therefore, normalize the probabilities with 

respect to the master node. This is because the master 

node is receiving all lock requests and, therefore, will be 

receiving n*Q requests. The normalizing factor is thus 

D=Pm+Qm+L 

where L, the lock requests is n*Q+Pw*Q and Pw is the 

probability of a conflict. 

3a. TAg Deferred-Actual Method 

Chapter IV, section A presented the wait time for the 

deferred-actual ddr support method in a masterhlave 

system. The details of that calculation are presented here. 



MASTER NODE 

The service time: 

Pml kml *Qm ~ m 2  km2 *Qm x= --0- * -.-----. + -----0- * -------. + 0 . .  

D pml*U*b D pm2*U*b 

where SUMlm=(kml+km2+. ..+kmn)/b 

The second moment of the pdf 

pmn (kmn*Qm) * *2 an 1 L 1 
+ ----- * -.------- + ----- * ----- + ----- * ----- I 

D (pmn*U*b) **2 D U* *2 D C**2 

Qm* *2 L 
+ ------- + ----.- I 

D*U**2 D*C**2 



The q u e u e  l e n g t h  

Qm * SUMlm Qm L 
q =Am* (---------.-- + ---..- + ------ 1 

D*U D*U D*C 

Qm * SUMlm Qm L 
=Am* (--- --.---.-- + ----ow + .----- 

D*U D*U D*C 



-. 

The expected wait time 

Qm * SUMlm Qm L 
Wm =A* (----.-I.I-.- + ...I-I + -.---. 

D*U D*U D*C 

Qm* *2*SUM2m Qm L 
Am*( ------.--.-I. + -.-----.- + --..I-.. ) ) / A  

D*U**2 D*U**2 D*C**2 
+ ---- I ----- IL-I I -- I -- I~-I I . -~I~.oI- I---- I - . . . - ----  

Qm*SUMlm + Qm + L 
l-Am* (.I--.--- -.-.-I .-.-- 1 

D*U D*U D*C 

Qm * SUMlm Qm L 
= (-.----I-.-.- + ---I-. + ----.. 1 

D*U D*U D*C 

where SUMlm= (kml+km2+. . .+kmn) /b and 
SUM2m= (kml**2/pml+km2**2/pm2+. . .+kmn**2/pmn) /b**2 
SLAVE NODE 

The service time: 



Qs * SUMls - Qs - .-w----o..- + -111--- 

u u 

where SUMls= (ksl+ks2+.  . .+ksn) /b 

The second moment of  the  pdf 

psn (ksn*Qs) **2 Qs 1 
+ --.-- * 11-1101-0 + -o--- * 1.--- 1 

1 (psn*U*b) **2 1 U**2 

where SuM2s= (ksl**2/psl+ks2**2/ps2+. . .+ksn**2/psn) /b**2 

The queue length  

Qs * SUMls Qs 
q =As* (-----.------ + -.---- 1 

U u 



Qs * SUMls QS 
=AS*(.-----..---- + -.---- 

u U 

The expected wait time 

Qs * SUMls 
WS =A* 

Qs 
+ --.-.- 1 

u U 



__.- - 
Q s  * S U M l s  0s 

where S U M l s =  ( k s l + k s 2 + .  . . + k s n )  /b and 

Q s * * 2  * SUM2s Qs 
A s  * ( - , - ~ o ~ - - o o - - - -  + o o ~ o ~ o o ~ o o  1 

u* *2 U**2 
+ ~ o ~ L o ~ ~ ~ o o o o ~ ~ o I ~ o ~ o ~ L ~ o ~ ~ ~ o o ~ o ~ I o ~ ~ ~ o o ~ ~  

Q s  * S U M l s  
1 0 AS ( oo-oo--o--- 

Qs 
+ --oo-- 

U u 

I Cr - 1  

where S U M l s =  ( k s l + k s 2 + .  . . + k s n )  /b and 



3b. The Immediate-Actual Method 

Chapter  I V ,  s e c t i o n  A, p resen ted  t h e  w a i t  t i m e  f o r  t h e  

imrnediate-actual ddr suppor t  method i n  a m a s t e r h l a v e  

d i s t r i b u t i v e  da t abase  system. The d e t a i l s  of t h a t  

c a l c u l a t i o n  fol low.  

MASTER NODE 

The s e r v i c e  time 

The second moment of t h e  pdf 

The expected queue l e n g t h  

(Qm*n) **2 on L 
Am**2*2 * (--------- + .I-ImLI + ------ 1 

D*Pm*U**2 D*U**2 D*C**2 
+ I-------,-ll-DIIIIII.I-~I--------------------- 

Qm* (n+ l )  L 
2* ( 1 - Am* (---------- + ------- 1 )  

D*U D*C 



(Qm*n) **2 Om L 
Am * (.----.--- + ---om- + 0---0. 1 

D*Pm*U**2 D*U**2 D*C**2 
+ ----.-o-~---.-.o.--v-I..---..-..I)-.-.--- 1 

Qm* (n+l) L 
1 - Am* (-----.---- + ------- ) 

D*U D*C 

The expected wait time 

(Qm*n) **2 Qm L 
Am * (--------- + --.--- + ----Do 1 

D*Pm*U**2 D*U**2 D*C**2 
+ ----1-1--1----.---.-------.------------ 1 /Am 

Qrn* (n+l) L 
1 - Am*(---------- + --1)1--. 1 

D*U D*C 

(Qm*n) **2 Qm L 
Am * (------.-- + .----- + --.--.I) 1 

D*Pm*U**2 D*U**2 D*C**2 
+ 1-0--------11.--0--0--------------.---- 

Qm* (n+l) L 
1 - Am* (-------.-- + --II-..- 1 

D*U D*C 



SLAVE NODE 

The s e r v i c e  time 

The second moment o f  t h e  pdf 

The expected queue length  

(Qs*n) **2 Qs 
As**2*2 * (--------- + -mIo-o 1 

Ps*U**2 u**2 
+ ~ ~ ~ ~ ~ ~ I o ~ o o ~ ~ ~ ~ ~ ~ o ~ o ~ ~ ~ o ~ ~ ~ o ~ o ~ m o ~ o ~ ~ ~ L  

Qs* (n+ l )  
2* ( 1 - AS* (---------- 1 )  

u 



(Qs*n) **2 Qs 
AS * (.--.----- + ------ 

Ps*U**2 u**2 
~ - ~ m 9 ~ ~ - ~ - - ~ 9 - ~ - - - - - - 9 - - - - - - - - - - - - - - - - -  

Qs* ( n + l )  
1 - A s *  (---------- 1 

u 

The expected  w a i t  time 

(Qs*n) **2 Qs 
A s  * (--------- + --.--- 

Ps*U**2 u**2 
------------I-~~---II----m----I-llllll------ ) / A s  

Qs* ( n + l )  
1 - As*(---------- 1 

u 

(Qs*n) **2 
A s  * (--------- 

Qs 
+ 111.1--- 1 

Ps*U**2 u**2 
-l--l--~~--~---lI---lll-------L---~II~---- 

Qs* (n+l) 
1 - A s *  (---------- 1 

u 



(Qs*n) **2 Qs 
As * (--------- + --,--- 1 

Ps*U**2 u**2 
+ 1-~--~~~-~~~1~~~,0-~---0----0-------I-- 

Qs* (n+l) 
1 - As* (---------- 1 

U 

L X h e P  otentialMethod 

Chapter IV, section A, presented the wait time for the 

potential ddr support method in a masterhlave distributive 

database environment. The details of that calculation 

follow . 
MASTER NODE 

The service time 



The second moment of t h e  pdf 

The queue length 



The wait time 

I . . '  . . , i 
, . 8 .  .-.' 8 

,. - I -_  
- . , Z  
. , %  , 

. . 
. .. 

8 '  -. .:, 

SLAVE NODE 

The service time 



_ . -  

The second moment of t h e  pdf 

The queue l e n g t h  



The wait time 



APPENDIX 4 

THE DISTRIBUTED CONCURRENCY CONTROL CASE 

This appendix shows details of the calculations for 

the service time, second moment of the pdf and queue 

length for the distributed concurrency control database. 

The normalizing factor for the distributed control 

case involves locks for only those files local to the node, 

since the distributed control handles locking at each node, 

and the conflicting update requests. Therefore, the 

normalizing factor is 

where L is Q+PwfQ. 

4a. peferred-Actual Method 

Chapter IV, section B presented the wait time for the 

deferred-actual ddr support method in a distributed 

concurrency control system. The details of that 

calculation is presented here. 



The s e r v i c e  time: 

where SUMl= ( k l + k 2 + .  . . + k n )  /b 

The second moment o f  t h e  pdf 



where SUM2 = (kl**2/pl+k2**2/p2+. . .+kn**2/pn) /b**2 

The queue l ength  

Q * SUM1 Q L 
=A * (--I)--------- + .----- + -----I 

D*U D*U D*C 

Th-e expected wait time 

Q * SUM1 Q L 
W =A* (------I)----- + ------ + ---go- 

D*U D*U D*C 



Q * SUM1 Q L 
= (~111-100--0- + ----OD + I.---- 1 

D*U D*U D*C 

where SUMl = (kl+k2+. . .+kn) /b and 

Chapter IV, section B, presented the wait time for the 

immediate-actual ddr support method in a distributive 

concurrency database system. The details of that 

calculation follow. 

The service time 



The second moment o f  t h e  pdf 

The expected queue l e n g t h  



The expected wait time 

dc. The potential. Method 

Chapter IV, section A, presented the wait time for the 

potential ddr support method in a distributive concurrency 

database environment. The details of that calculation 

follow. 



_ _  ._-.- - 
The s e r v i c e  time 

The second moment of the  pdf 

The queue length 



The wait time 



APPENDIX 5 

THE SYNCHRONIZED CONCURRENCY CONTROL ENVIRONMENT 

This appendix will present details of the analysis 

presented in Chapter IV, section C, regarding the 

synchronized concurrency control method in a distributive 

database. 

5a. The Deferred-Actual Nethod 

Chapter IV, section C presented the wait time for the 

deferred-actual ddr support method in a synchronized 

concurrency control system. The details of that 

calculation are presented here. 

The service time 



where SUM1= (kl+k2+. . .+kn) /b 

The second moment o f  the  pdf 

2* (2* (R*U)  **2 + N*T*A*SUM2*Q**2) 
- o - . ~ o ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ . ~ ~ . . ~ ~ ~ ~  

D*N*T*U* *2 
,$~$;~;>p-$~;;:i$;:;<:~3~j;~,&$i~.: , 

. i, -p>. . y  -. ; L =, - -&;$:Y<yt* . ,T 
4 ! : ?>. , F$$ -:c ,.!:> .2:*$J ::,:+2.:2F\::5:i.k?$.g ; 

where SUM2= (kl**2/pl+k2**2/p2+. . .+kn**2/pn) /b**2. 

The queue l eng th  



The expected wait  time 

where SUMl=(kl+k2+,,,+kn)/b and 



5b . The ~mmediate--Actual ddr S u ~ ~ o r t  Nethod 

Chapter 4 ,  s e c t i o n  C ,  presented t h e  expected w a i t  time 

f o r  t h e  immediate a c t u a l  ddr support method i n  a 

d i s t r i b u t e d  concurrency c o n t r o l  system. The d e t a i l s  o f  

t h a t  c a l c u l a t i o n  a r e  presented here .  

The s e r v i c e  r a t e  

The second moment t h e  

The queue l e n g t h  



The wait time 



5c.  h he P o t e n t i a l  Method 

Chapter I V ,  s e c t i o n  C ,  presented t h e  w a i t  time f o r  t h e  

p o t e n t i a l  ddr support method i n  a synchronized concurrency 

c o n t r o l  system. The d e t a i l s  o f  t h a t  c a l c u l a t i o n  a r e  

presented  h e r e .  

The s e r v i c e  t i m e  

The second moment o f  t h e  pdf 



T h e  q u e u e  length 

T h e  wait t i m e  





LIST OF REFERENCES 

Astrahan, M. M.; Blasgen, W. W.; Chamberlin, D. D.; 
Eswaran, K.P.; Gray, J. N.; Griffiths, P.; King, 
F.; Lorie, R. J.; McJones, P. R.; Melh, J. W., 
Putzola, G. R.; Traiger, L.; Wade, B. W.; and Watson, 
V. "System R: Relational Approach to Database 
Management.' ACM Transactions pn patabase Svstems 1 
(June 1976): 97-137. 

Bernstein, P.; Shipman, D.; and Wong, W. "Formal Aspects 
of Serializability in Database Concurrency Control." 
LEEE Transactions pn Software m a i n e e r i ~  5 (May 
1979) : 203-215. 

Bernstein, P.; Shipman, D.; and Rothnie, J. "Concurrency 
Control in a System for Distributive Databases (SDD- 
1 . " ACM Transactions p ~ l  Database Svstems 5 (March 
1980) : 18-51. 

Blasgen, M.W., and Eswaran, K. P. "Storage and Access in 
Relational Data Bases." ;IBPZ Svstems Journal 6 (July 
1977) : 203-215. 

Cardenas, A.F. "Evaluation and Selection of File 
Organization -- A Model and System." unications 
Pf the ACM 16 (September 1973) : 540-548. 

Chamberlin, D.D.; Gray; J. N.; and Traiger, I. L. "Views, 
Authorization and Locking in a Relational Database 
System." In A m  Proceedinus .I Nat i o n a  
onference, 1975. Vol. 44, pp. 425-430. 

cQmwk= 

Chen, P.S. "Optimal File Allocation in Multi-level Storage 
Systems. " In AFIPS Proceeding- -- Na t i o n u  Com~uter 
Conference, 1973. Vol. 42, pp. 277-282. 

Chu, W.W. "Performance of File Directory Systems for Data 
Bases in Star and Distributed Networks." W I P S  
Conference Proceedings -0 National Q2mU-L <=onferencef 
1976, Val. 45, pp. 577-5870 



_ _  - - 
CODASYL. ,l&QU&l Report, April 1971. New York: 

ACM, 1975. a 

Codd,.E.F. "A Relational Model of Data for Large shared 
Data Banks." ommunjcation~ pf the ACN -13 (June 
1970): 377-387. 

Codd, E.F. "Extending the Relational Database Model to 
Capture More Meaning." ACM Transactions pn Database 
Svstems 4 (December 1979):397-434. 

Coffman, E.G.; Gelenbe, Em; and Plateau; B. "Optimization 
of the Number of Copies in a Distributed Data Base." 
IEEE Transact ions pn So£ tware Enaineerhg, 7 (January 
1981): 74-84. 

Collmeyer, A.J., and Shemer, J. E m  "Analysis of ~etrieval 
Performance for Selected File Organization 
Techniques." AFIPS Conference Proceedinas -- t ional 

Conference, 1970. Vol 37, pp. 207-210. 

Date, C.J. & Introduction & Database Svstems. 3rd ed. 
Reading, Mass.: Addison-Wesley, 1979. 

Denoia, L.A. Performance gmd Yimeliness in a Database 
(Ph.D. dissertation, Stanford University, 1979). NTIS 
AD-A075268. Springfield, VA: National Technical 
Information Service, 1979. 

Dutton, B. A., and Kinsley, K. C. "RAQUEL 110- A Relational 
Query Language." In Proceedin- pf the 16th Annual 
Southeast Reaional ACM Conference, Atlanta, November 
1977, pp. 327-333. New York: ACM, 1977. 

Ellis, C. "Consistency and Correctness of Duplicate Data 
Base Systems." In P r o c e e d i u  pf the Sixth Syn~osium 
rn O~erating Svstems princi~les, Lafayette, IN, 
November 1977 pp. 67-84. New York: ACM, 1977. 

Enslow, P. "What is a Distributed Data Processing System." 
C o m ~ u t w  (January 1978): 13-21. 

Eswaran, K.P., and Chamberlin, D m  D m  "Functional 
Specification of a Subsystem for Database Integrity." 
In Larae Data Bases (First International 
Conference, September 19751, pp. 624-633. Edited by 
Douglas S. Kerr. New York: ACM, 1975. 



_- . - 
erformance ef U~date Garcia-Molina, H. clorit m 

e~licated b I Distributive &)&ase D. 
dissertation, Stanford University, 1979). NUSC 
Technical Report No. 6099. New London, CT: Naval 
Underwater Systems Center, 1979. 

Gardarin, G. and Chu, W. W."A Reliable Distributed Control 
Algorithm for Updating Replicated Databases." In 
Sixth Data Communications Svm~osium, Pacific Grove, 
CA, Nov. 27-19, 1979, pp. 42-51. New York: IEEE 
Press, 1979. 

Gelenbe, E., and Sevcik, K. "Analysis of Update 
Synchronization for Multiple Copy ~ata-bases. " In 
Pr oceedinas af Third k Work ho . . QD 
istrtbuted Data Manaqement sr ~ ~ ~ ~ u t e r  ietEorks I 

University of California, August 1978, pp. .69-90. 
NTIS LBL-7953 (also published in U E E  Transacttons rn 
om~utinq 28 (October 1979) : 737-746) . 

Ghosh, S.P., and Tuel, W. G. "A Design of an Experiment to 
Model Data Base System Performance. * 
Trasac 

IEEE 
tions pn Software mneeritlg 2 (June 1976): 

97-106. 

Gotlieb, L.R. "Computing Joins of Relations." In ACM- 
SIGMOD Uternational Conference pn Nanaaement nf 
Data, San Jose, CA, May 1975, pp. 100-110. New York: 
ACM, 1975. 

Hall, P. "Optimization of a Single Relational Expression in 
a Relatioal Database System." Journal pf Research 

pevelo~ment 20 {June 1975):244-257. 

Hammer, M., and Shipman, D. "Reliability Mechanisms for 
SDD-1." C Transactions pn Database Svstems 5 
(December 1980 : 431-466. 

Hitchcock, P. "User Extensions to the Peterlee Relational 
Test Vehicle" In Svstems fnr L a q e  Data W e s  (2nd 
International Conference on Very Large Data Bases, 
September, 19761, pp. 169-180. Edited by P. C. 
Lockemann and E. J. Neuhold. New York: North-Holland 
Publishing, 1977. 

Kim, W. "Relational Database Systems." Com~utigq 
W v e v s  11 (September 1979) :185-210. 



Kinsley, K., and ~r'iscoll, J. "Dynamic Derived Relations 
Within the RAQUEL I1 DBMSN 1; proceedinas Qf the ACM 
Annual Conference, Detroit, October 1979, pp. 69-80. 
New York: ACM, 1979. 

Kinsley, K., and Driscoll, J. "Efficiently Maintaining 
Dynamic Derived Relations in Actual Form." Technical 
Report CS-TR-48, Department of Computer Science, 
University of Central Florida, Orlando, Florida, 
October 1980. 

Kleinrock, L. Queueina Svstems. Volume Lt Theory. New York: 
John Wiley and Sons, 1975. 

Koenig, S. and Paige, R. "A Transformational Framework for 
the Automatic Control of Derived Data." In Verx Larae 
pata Bases (Seventh International Conference, 
September 19811, pp. 306-318. New York: IEEE, 1981. 

Lavenberg, S.S., and Shedler, G.S. "Stochastic Modeling of 
Processor Scheduling with Application to Data Base 
Management Systems." JRM Journal pf Research and 
Develo~ment (September 1976) : 437-448. 

LeLann, G. "Distrubutive Systems -- Towards a Formal 
Approach." In Jpformatim Processing '77 (Proceedings 
of IFIP Congress '77, Toronto, Canada, August 1977) 
pp. 259-171. Edited by Bruce Gilchrist. New York: 
Elsevier North-Holland Publishing, 1977. 

Lowe, T.C. "The Influence of Data Base Characteristics and 
Usage on Direct Access File Organization." Jou- Pf 
ACM 15 (October 1978) : 535-548. 

Mahmoud, S., and Riordon, J. S. "Optimal Allocation of 
Resources in Distributed Information Networks" ACM 
Transactions pn Database S ! m  1 (March 1976) : 66- 
78. 

MacDonald, N. and Stonebraker, M. "CUPID: The ~riendly 
Query Language." In Proceed- pf the ACM Pacific 
eaional Conference, San Francisco, April1975, pp. 

127-131. New York: ACM, 1975. 

Menasce, D., and Muntz, R e  "Locking and Deadlock Detection 
in Distributed Data Bases." IEEE Transactions pn 
Software Engineerjag 5 (May 1979): 195-202. 



- 
Menon, M.J., and Hsiao, D.K. "Design and Analysis of a 

Relational Join Operation for VLSI." In Verv L a r ~  
Data Bases (Seventh International Conference, 
September 19811, pp. 203-211. New York: IEEE Press, 
1981. 

Rosenkrantz, D.; Stearns, R. ;and Lewis, P. "System Level 
Concurrency Control for Distributive Database 
Systems." ACM Transactions patabase Svstemn 3 
(June 1978): 178-198. 

Rosenkrantz, P., and Hunt, H. "Processing Conjunctive 
Predicates and Queries. " Technical Report , 
Department of Computer Science, State University of 
New York at Albany, June 1980. 

Rothnie, J. B . "Evaluating Inter-entry Retrieval 
Expressions in a Relational Data Base Management 
System." In AFIPS Conference Proceedings - National 

-, 1975. Vole 44, pp. 417-424. 

Severance, D.G. "Differential Files: Their Application to 
the Maintenance of Large Databases." ACM Transactions 

Database Svstems 1 (September 1976):256-267. 

Siler, K.F. "A Stochastic Evaluation Model for Datalase 
Organizations in Data Retrieval 
Systems."Communication~ P f  the FCM 19 (February 
1976): 84-95. 

Stearns, R.,. and Rosenkrantz, D. "Distributed Database 
Concurrency Controls Using Before-Values." Technical 
Report, State University of New York at Albany, 
February 1981. 

Stonebraker, M. "Implementation of Integrity Constraints 
and Views-- Query Modification. " In - 
nternationd Conference Q,$I Manaaement Pf Qatar San 

Jose, CA, May 1975, pp. 65-78. New York: ACM, 1975. 

Stonebraker, M.; Wong, E.; Kreps, P.; and Held, G. "The 
Design and Implementation of INGRES." ACM 
Tr ansactiong rn Database Svstems 1 (September 
1976) :189-122. 

Stonebraker, M. "Concurrency Control and Consistency of 
Multiple Copies of Data in Distributive INGRES." D E E  
T r a n ~ a c t i o ~  Qll Sof tware Bnaineer- , 5 (May 1979): 
203-215. 



_ _  7 -- 

Teory, T. J., and Oberlander, L. B. "Network Database 
Evaluation Using Analytical  odel ling." Technical 
Report 78-7, College of Engineering, University of 
Michigan, Ann Arbor, Michigan, 1978. 

Thomas, R. "A Majority Consensus Approach to Concurrency 
Control for Multiple Copy Databases." zLa!5 
Transactions M Database S v s t e ~  3 (June 1979) : 180- 
209. 

Todd, S. "The Peterlee Test Vehicle - A System Overview." 
J33M Svstems Journal 15 (May 1976):285-308. 

Wiederhold, G. patabase u. New York: McGraw-Hill, 
1977. 

Yao, S. B. "Approximating Block Accesses in Database 
Organizations." Communications the ACM 20 (April 
1977) : 260-261 . 

Yao, S. B. "An Attribute Based Model for Database access 
Cost Analysis." ACM Transactions p ~ a  Database 
2 (March 1977) : 45-67. 

-as&=- 


	An Analytical Model for Evaluating Database Update Schemes
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv
	v

	LIST OF FIGURES
	vi
	vii
	viii

	LIST OF SYMBOLS
	ix
	x

	CHAPTER I
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010

	CHAPTER II
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046

	CHAPTER III
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075

	CHAPTER IV
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121

	CHAPTER V
	122
	123
	124
	125
	126
	127

	APPENDICES
	128

	APPENDIX 1
	129
	130
	131

	APPENDIX 2
	132
	133
	134
	135
	136
	137
	138
	139
	140

	APPENDIX 3
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156

	APPENDIX 4
	157
	158
	159
	160
	161
	162
	163
	164

	APPENDIX 5
	165
	166
	167
	168
	169
	170
	171
	172

	LIST OF REFERENCES
	173
	174
	175
	176
	177
	178


