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Abstract 

A methodology is presented for evaluating the 

performance of database update schemes. The methodology 

uses the M/Hr/l queueing model as a basis for this analysis 

and makes use of the history of how data is used in the 

database. Parameters have been introduced which can be set 

based on the characteristics of a specific system. These 

include update to retrieval ratio, average file size, 

overhead, block size and the expected number of items in 

the database. 

The analysis is specifically directed toward the 

support of derived data within the relational model. Three 

support methods are analyzed. These are first examined in 

a central database system. The analysis is then extended 

in order to measure performance in a distributed system. 

Because concurrency is a major problem in a distributive 

system, the support of derived data is analyzed with 

respect to three distributive concurrency control 

techniques -- master/slave, distributed and synchronized. 
In addition to its use as a performance predictor, the 

development of the methodology serves to demonstrate how 

queueing theory may be used to investigate other related 

database problems. This is an important benefit due to the 

lack of fundamental results in the area of using queueing 

theory to analyze database performance. 
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A is the arrival rate to a node 

b is the block size, indicating the number of ddr tuples 
accessed in one I/O operation to the external device 
that stores ddrs 

C is the service rate for a lock 

C2 is the square of the coefficient of variation 

ddr is a dynamic derived relation 

is the culling factor 

I ki is the culling factor for the ith ddr 

n is the average number of ddrs per defining relation 

N is the number of nodes in the distributive database 

P is the probability that an arrival is a ddr retrieval 

pdf is the probability density function 

pi is the probability that an arrival is a ddr retrieval 
for the ith ddr (pl+p2+. ..+pn=P) 

Pd is the probability that a defining relation will 
reside locally 

PI is the probability that an update will be local 

Q is the probability that an arrival is an update, Q+P=l 

q is the queue length 

R is the utilization factor (R=X*A) 

SUM1 is (kl+k2+. . .+kn) /b 
SUM2 is (kl**2/pl+k2**2/p2+...+kn**2/pn)/b**2 

1/U is the service time it takes to do one update 



u i  is  t h e  serv ice - -ra te  t o  r e t r i e v e  t h e  i t h  ddr 

X is  t h e  mean s e r v i c e  t i m e  a t  t h e  node 
- ,  . i 

~2 is  t h e '  'second' moment' +of t h e  p r o b a b i l i t y  d e n s i t y  
f u n c t i o n  (pdf 1 

W is  t h e  average w a i t  time a t  t h e  node 



CHAPTER I 

INTRODUCTION 

This chapter discusses the objectives of the 

dissertation, introduces basic terminology and outlines the 

organization of the presentation. 

& Obiective 

The major objective of this dissertation is to present 

a methodology for evaluating database update schemes. The 

methodology uses the M/Hr/l queueing model as a basis for 

this analysis. The M/Hr/l model was chosen because it 

allows for several classes of customers, each with a 

different service time, to be serviced by one processor. 

This characteristic is consistent with an update/retrieval 

system in which different actions can occur; however, only 

one action can occur at a time and each of these actions 

can have a different service time. 

The methodology also makes use of the history of how 

data is used in the database. The major historical 

parameter is the update to retrieval ratio. This parameter 

is essential in determining the performance of specific 

update schemes. Additional parameters have been introduced 

which can be set based on the characteristics of a specific 



system. These include average file size, overhead and the 

expected number of items in the database. 

The analysis is specifically directed toward the 

support of derived data within the relational model. Three 

support methods are analyzed. These are first examined in 

a central database. The analysis is then extended in order 

to measure performance in a distributed system. 

Because concurrency is a major problem in a 

distributive system, the support of derived data in this 

environment is analyzed with respect to three concurrency 

control techniques -- masterhlave, distributed and 

synchronized. The distributive database model uses 

parameters that reflect the amount of nonlocal activity and 

the cost of transmitting data into the networks. The 

parameters can be tuned to reflect the characteristics of a 

specific system. 

In addition to its use as a performance predictor, the 

development of the model presented here serves to 

demonstrate how queueing theory may be used to investigate 

other related database problems. This is an important 

benefit due to the lack of fundamental results in the area 

of using queueing theory to measure database performance. 



-- - / 
L- patabase Termonolou 

In a relational database, the data can be thought of 

as a collection of tables called relations. The tables are 

made up of columns, which are called attributes, and rows 

which are called tuples. More formally, given a collection 

of sets Dl, D2, ..., Dn (not necessarily distinct), R is a 
relation on these n sets if it is a set of ordered n-tuples 

dl,d2,...dn such that dl belongs to Dl, ..., dn belongs to 
Dn (Date 1979). 

Most relational database systems provide the facility 

for supporting dynamic derived relations (ddrs). A dynamic 

derived relation is defined from existing relations and 

reflects updates made to its defining relation(s1. In 

other words, it is a "dynamic windowm of the database in 

that when an update is made to any one of its defining 

relations, the dynamic derived relation is automatically 

updated in accordance with its definition. 

A dynamic derived relation and its defining relations 

are shown in Figure 1. In this case, since X is defined as 

AUB, the union of A and B, any insertion into A or B would 
. . 

also be inserted into X. Any deletion from A would be 

deleted from X if the tuple was not in B, and similarly for 
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~ i g b r e  1.  An &iampld6f a dynamic deriirg-d r e l a t i b n  X - 

formed by AUB. 



There are two basic approaches to the support of 
_* -- - 

dynamic derived relations -- potential form and actual 

form. Implementation using potential form involves 

describing the dynamic derived relation so that it can be 

generated when needed. This description could use access 

paths or a formula of the dynamic derived relation. The 

dynamic derived relation is constructed each time it is 

involved in a query. This method has the obvious advantage 

of saving memory space; however, the cost of generating the 

dynamic relation may occur many times because the same 

result may have to be computed again and again. 

Implementation using actual form involves physically 

storing each dynamic derived relation. Therefore, the 

relation "actually" exists. Any updates made to the 

defining relation must be explicitly reflected in the ddr. 

An advantage of using actual form is that, because the 

dynamic derived relation physically exists, the derived 

results do not have to be regenerated each time the ddr is 

needed. However, more storage space is used to store the 

ddrs and the reflection of defining relation updates is 

sometimes difficult and time-consuming. 

Oueaeinq Theory 

Queueing theory. has been used as a common tool for 

analyzing computer system performance. The characteristic 



that a job arrives in--khe system and waits for service in a 

queue is consistent with the queueing theory modelling 

process. In general, the queue is FIFO; however, other 

queueing disciplines can be used. 

The notation which is used in this dissertation to 

specify the queueing model is the widely used A/B/n where A 

and B represent the interarrival and service time 

probability density, respectively. The probability density 

can be one of three types: M, G or D which are 

characterized by exponential (Markov), arbitrary (general) 

and deterministic probability density, respectively. The 

last value in the notation, n, indicates the number of 

servers. Thus, an M/M/1 queueing model is a system with 

one server and exponential interarrival-time and service- 

time distribution. 

The M/M/l model is the simplest of the queueing 

systems and, yet, is nontrivial enough to model many 

different systems. The exponential density function has 

the unique property that the service time remaining for a 

customer is not affected by the amount of service time the 

customer has previously accumulated, i.e., it has no 

memory. This memoryless property allows the model to be 

described totally in terms of how many customers are in the 

system. 



A state-transition- diagram for an M/M/l system is 

shown in Figure 2. Customers enter the system at arrival 

rate A and are serviced at service rate U. Each time a 

customer arrives, the system moves to the next state, and 

each time a customer is serviced and leaves the system, the 

system moves back to the previous state. Therefore, the 

entire system is described in terms of the number of 

cutomers in the system. 

By finding the probability of being in each state, we 

have found the probability of having one customer in the 

system, two customers in the system and so on. Once these 

probabilities have been computed, the expected number of 

customers and expected wait time can be found, as well as 

other statistics. 

The M/G/1 queue has Markov arrivals and uses a single 

processor; however, the service time is general in nature. 

That is, the service time is not necessarily of the 

memoryless type. The state description, therefore, must 

consider expended service time as well as the number of 

customers in the system. In order to deal with this in a 

manner consistent with the M/M/l analysis, we examine 

selected points in time, i.e., state-transitions occur at 

customer departure instants and the state variable is the 

number of customers left behind by the departing customer. 

Thus, the M/G/l queue can be analyzed to yield the expected 



_ _ _  - 
number of cus t0me . r~  i n  t h e  system and t h e  mean w a i t  time. 

Th i s  d i s s e r t a t i o n  makes use  of a s p e c i a l  case of t h e  

gene ra l  s e r v i c e  time, t h e  M / H r / l  queue, which is shown i n  

F igure  3. The M / H r / l  queue has  Markov a r r i v a l s  and uses  a 

s i n g l e  p rocessor ;  however, t h e  system a l lows  f o r  r 

p a r a l l e l  s t a g e s .  Each a d d i t i o n a l  s t a g e  i n c r e a s e s  t h e  

v a r i a b i l i t y  of t h e  s e r v i c e  time and produces a s e r v i c e  time 

p r o b a b i l i t y  d e n s i t y  t h a t  is r e f e r r e d  t o  a s  

"hyperexponential" .  

When a customer e n t e r s  t h e  s e r v i c e  f a c i l i t y ,  he w i l l  

proceed t o  s t a g e  one wi th  p r o b a b i l i t y  P1, s t a t e  two wi th  

p r o b a b i l i t y  P2, ... , s t a g e  r w i th  p r o b a b i l i t y  P r ,  where 

Pl+P2+. . .+Pr=l . The customer w i l l  t hen  be s e r v i c e d  

according t o  t h e  s e r v i c e  t i m e  i n d i c a t e d  f o r  t h a t  s t a g e  and 

d e p a r t  t h e  system. A t  t h a t  time, ano ther  customer can 

e n t e r  t h e  s e r v i c e  f a c i l i t y .  By s p e c i f y i n g  which s t a g e  

wi th in  t h e  s e r v i c e  f a c i l i t y  t h e  customer occupies ,  w e  can 

analyze  t h e  system wi th  r e s p e c t  t o  average s e r v i c e  time and 

mean wa i t  time (Kleinrock 1975) .  

EL O r ~ a n i z a t i o n  pf P r e s e n t a t i o n  

Th i s  d i s s e r t a t i o n  has  been organized i n t o  f i v e  

chap te r s .  Chapter  I ( t h e  c u r r e n t  c h a p t e r )  p r e s e n t s  t h e  

o b j e c t i v e s  of t h e  t h e s i s  and t h e  terminology used i n  t h e  

a r e a  of da tabase  and queueing theory.  Chapter I1 d i s c u s s e s  



Figure 2. An M / M / ~  state-transition diagram. 

Figure 3. The M/H~/I model. 



previous research with-respect to derived data and formal 

analysis of database performance in both centralized and 

distributive databases. Criteria for designing a 

distributive database are also discussed in this chapter. 
' .  7 

,' . . 

All research contributions of this dissertation are 

found in Chapters 111 and IV. The formal queueing theory 

analysis begins with Chapter 111. The characteristics to 

be modelled for each ddr support method are discussed and a 

specific queueing model is chosen. The support methods are 
, '  

then analyzed in a central database system. 

Chapter IV extends the analysis in Chapter I11 to the 

'distributive database system. Information flow is 

incorporated in order to find the response time for a 

transaction. The ddr support methods within three 

distributive concurrency control methods are analyzed: 

masterhlave, distributed control and synchronized control. 

Graphical comparisons of both ddr support methods and the 

concurrency control systems are made. 
., - - . -  ' 

Chapter V discusses the'-'d6nclusions that can be drawn 

from the results of this dissertation. The performance of 

the ddr support methods and the concurrency control methods 

are compared. The unique characteristics of the 

methodology used to analyze the performance of the schemes 
. , . - , , 

are outlined. Areas of fu'tu-re. wi0r.k are indicated. 



CHAPTER I1 

SURVEY OF THE LITERATURE 

In this chapter, important references regarding 

dynamic derived relations and storage and retrieval 

performance in both central and distributed database 

systems are presented. 

e m i c  Derived Relations 

Background 

In 1971 the report of the CODASYL group of the Data 

Base Task Group defined derived data as data that is 

derived procedurally from related data items instead of 

being explicitly stored and directly retrieved (CODASYL 

1971). The relational model, introduced by Codd (19701, 

extended this concept by introducing derived relations. 

Derived relations have been used to support users1 views, 

integrity constraints (Stonebraker 1975) and access control 

(Eswaran 1975). 

There are two types of derived relations--static 

derived relations and dynamic derived relations (Chamberlin 

1975). A static derived relation becomes independent of the 

relation(s) used in its definition immediately after it is 



populated. Once populat;sd, static derived relations can be 

explicitly updated by insert, delete and modify operations. 

Hence, immediately after their creation, static derived 

relations behave exactly like base relations (Wiederhold 

1977). On the other hand, a dynamic derived relation 

automatically reflects changes made to the relation(s1 used 

in its definition. In other words, it is a "dynamic 

window" of the database in that, when an update is made to 

its defining relation(s), the dynamic derived relation is 

implicitly updated in accordance with its definition. 

There are two basic methods of implementing dynamic 

derived relations--the actual results method and the 

potential results method. Implementation using the 

potential results method involves storing a formula or 

access paths to represent a dynamic derived relation. 

Hence, the dynamic derived relation does not physically 

exist but can be generated from the stored formula when it 

is needed. At this time, updates to the defining 

relation (s) are automatically reflected in the newly 

generated dynamic derived relation. System R and INGRES 

are two examples of relational systems which use the 

potential results method (Astrahan 1976, Stonebraker 1975, 

Stonebraker 1976). 

Implementation using the actual results method 

involves physically storing each dynamic derived relation. 
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Within this implementatinn technique, if a relation used in 

the definition of a dynamic derived relation is changed, a 

procedure must be invoked to immediately update the dynamic 

derived relation. Therefore, in maintaining dynamic 

derived relations in actual form, an explicit update to a 

base relation causes implicit updates to all dynamic 

derived relations which the base relation defines. An 

advantage of using actual form is that, because the dynamic 

derived relation physically exists, the derived results do 

not have to be regenerated each time the dynamic derived 

relation is needed. The RAQUEL I1 DBMS and, to some 

extent, IS/l-PRTV are examples of systems which use the 

actual results method (Dutton 1978, MacDonald 1975, Todd 

1976). 

Although Kim (1979) states that the potential method of 

supporting dynamic derived relations is better for most 

applications, this strategy is particularly vulnerable when 

a ddr is frequently accessed and the recalculation involves 

a large amount of tuples. Unfortunately, no formal 

analysis has been done to validate or invalidate Kim's or 

any other such claim. 

Implementation of Dynamic Derived Relations 

Three algorithms for the support of dynamic derived 

relations are shown in Figures 4 ,  5 and 7. 



INPUT. A dynamic derived relation definition 

OUTPUT. A dynamic derived relation in actual form 

METHOD. This procedure is called to calculate a ddr 
when the ddr is queried. 

PROCEDURE POTENTIAL (ddr definition) 
BEGIN 

recalculate according to the definition 
END; ( *  POTENTIAL *)  

Figure 4. Potential form algorithm forthe support of 
ddr s . 

INPUT. A base relation 

OUTPUT. All dynamic derived relations defined by the 
base relation in updated form. 

METHOD. This procedure updates all the ddrs defined by 
a base relation, whenever the base relation 
is updated. 

PROCEDURE IMMEDIATE-ACTUAL (updated base relation) 
BEGIN 
FOR all ddrs defined by the base relation DO 

Apply update schemes of Figure 6 
END; ( *  IMMEDIATE-ACTUAL *)  

Figure 5. Actual form algorithm which immediately 
updates ddrs when a defining relation is updated. 
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AUB 1. 

2. AnB 

3. B-A 

4 . A-B 

5. B(list) 

union XU1 

intersection XU (An11 

difference 

difference 

projection 

selection 

XU (I-A) 

X-I 

XU1 (list) 

7. A*B join XU (A*I) 
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(a) Insertion Updates for Dynamic Derived Relations 

Definition of X Operation Deletion Update 
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1. AUB union X- (D-A) 

2. AnB 

3. B-A 

4. A-B 

intersection X-D 

difference 

difference 

projection 

selection 

X-D 

XU (AnD) 

X=(B-D) (list) 

X-D 

7. A*B join X- (A*D) 
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(b) Deletion Updates for Dynamic Dexived Relations 

Figure 6. Updates schemes for dynamic derived relation 
using actual results method (Kinsley and Driscoll 1979). 
Dynamic derived relation X is defined by relation B (and, 
if needed, A ) .  Relation B has been updated. Relation I 
holds the tuple inserved in relation B. Relation D holds 
the tuple deleted from relation B. Join refers to natural 
join on a key. 
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INPUT. A dynamic derived relation 

OUTPUT. A dynamic derived relation in updated form 

METHOD. This procedure updates the ddr whenever the ddr 
is retrieved. Until that time, update tuples are collected 
in a differential file. A check is made to see if the tuple 
has been previously entered into the defining relation's 
update tables. If it has, and the transaction types are 
the same ( L e e  insertion or deletion), no action occurs. 
If the transaction types do not match, the tuple is deleted 
from that update table and inserted into the update table 
that matches its transaction type. If the type is not in 
the defining relation's update tables, it is inserted into 
the corresponding update table. When all tuples have been 
checked, the update schemes of Figure 6 are invoked, using 
the I and D tables. 

PROCEDURE DEFERRED-ACTUAL (ddr) 
BEGIN 
FOR all tuples used to update the defining relation DO 
IF tuple already a member of defining relation's 

update files THEN 
IF update file type is same as tuple type THEN 

no action 
ELSE 

BEGIN 
delete tuple from update file; 
insert tuple into update file with its type 

END 
ELSE (*TUPLE IS NOT IN UPDATE FILES*) 
insert tuple into update file with its type 

END; ( *  END OF BUILDING I AND D TABLES *) 
apply update schemes of Figure 6 
END; (*DEFERRED-ACTUAL*) 

Figure 7. Deferred actual algorithm. 



The algorithm in Fi-gnre 4 maintains ddrs in potential 

form and thus must be recalculated whenever a dynamic 

derived relation is used in a query. The algorithm in 

Figure 5 supports the ddr in actual form. Each update to a 

base relation causes all dynamic derived relations defined 

by the updated base relation to also be updated. The 

algorithms of Figures 5 and 7 both use the update schemes 

shown in Figure 6. These were first developed by Kinsley 

and Driscoll (1979). Related, independent work has been 

done by Osman (1979) . The basis on which these schemes 

were developed is as follows. 

The procedure for inserting a tuple into a relation 

can be represented as the union of the relation to be 

updated and the relation formed from the tuple to be 

inserted (Date 1979) . For instance, if relation B was to 

be updated by inserting a tuple contained in relation I, 

the update could be represented as BUI, where the relation 

formed by BUI would be the updated B and would replace the 

"old" B. 

Now assume X is a ddr formed by AnB. If relation B 

were updated by the insertion tuple which forms relation I, 

then X can be implicitly updated by creating An (BuI) where 

BUI is the updated B and An(BU1) is the updated X. However, 

the expression A n(BU1) is equivalent to (A~B) U (An I) . 
Therefore, XU(A n I) is the updated X. Using this 



approach, a scheme has-been developed for insertion of a 

tuple into a dynamic derived relation under the standard 

set of database operations. These insertion schemes are 

shown in Figure 6a. Each scheme takes advantage of the 

fact that X physically exists in actual form. 

The operation of deleting a tuple from a relation can 

be represented as the relative complement of the relation 

to be updated and a relation formed from the tuple to be 

deleted. For instance, if relation B were to be updated by 

deleting the tuple contained in relation D, the update 

could be represented as B-D, where the relation formed by 

B-D would be the updated B. 

Now assume X is a dynamic derived relation formed by 

AUB . If relation B were updated by the deletion tuple 

which forms relation D, then X can be updated by creating 

AU(B-Dl where B-D is the updated B and AU(B-D) is the 

updated X. However, the expression AU(B-D) is equivalent 

to (AUBI-(D-A). Therefore, X-(D-A) is the updated X. 

Using this approach, a scheme has been developed for 

deletion of a tuple from a dynamic derived relation under 

every operation, except projection. As before, each 

deletion scheme takes advantage of the fact that X 

physically exists in actual form. 

Modifying an existing tuple can be implemented as a 

deletion followed by an insertion. Therefore, all tuple 



update operations -- ins-eftion, deletion and modification 

-I can be represented by using the insertion and deletion 

update methods just mentioned. An insertion update table 

(I) and a deletion upate table (Dl must exist for each 

relation used to define a dynamic derived relation. 

The algorithm presented in Figure 7 also maintains 

dynamic derived relations in actual form; however, it 

defers updates until the specific dynamic derived relation 

is queried. Updates are collected in differential files 

(Severance 1976) according to the algorithm, and the update 

schemes of Figure 6 are used to update the ddr. In this 

case, differential files I and D may hold more than one 

tuple. Also, the algorithm may reduce the total number of 

tuples involved in the actual update due to a culling 

process that is carried out when update tuples are added to 

the differential files. The same tuple used in more than 

one update is reduced to only the last update before the 

database is accessed. 

In summary, very little research has been done with 

respect to the best way to support ddrs. Three algorithms 

have been presented in this subsection - one using the 

Potential method and two using the actual method. The 

proposed research will analyze the cost/performance of 

these three methods. 
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File Organization Analysis 

Much of the research regarding database performance 

has been directed at different types of file organization. 

No specific database model is specified. 

Lowe (1968) examines memory utilization and retrieval 

performance for inverted-file with adjustable bucket size 

and linked list file organizations. The analysis makes use 

of Ziph1s law which involves f, the frequency of occurrence 

of distinct items appearing in printed English text. Given 

N distinct index items and a unique number j (l<=j<=N), 

Ziphls law states that the probability that an index item 

selected by the user of the system is the jth index is 

p O . l / .  The analysis of memory utilization and average 

response time is found for f and p having uniform 

distribution, p uniform and f having Ziphls distribution, 

and both having Ziphls distribution. The cases of Ziphls 

distribution and uniform distribution tend to represent the 

extremes in database retrieval. It was found that, with an 

appropriate assumption for f and p, a value for the bucket 

size can be selected and a reasonable decision concerning 

packing more than one list into single buckets can be made. 

Collmeyer and Shemer (1970) investigate retrieval 

Performance for spatial index (index records within the 



index are stored in-pkysical order according to key), 

calculated index (hashing), and tabular index (multilevel 

index where each level has index records stored as 

logically sequential). The investigation focuses on the 

number of blocks transported from secondary storage to main 

memory in the course of the index search. No attempt is 

made to determine the effect of queueing delays. The mean 

time to retrieve a record is expressed in terms of the file 

organization parameter, characteristics of the storage 

device and search and overflow strategy used. A case study 

is presented. It was found that retrieval via hash was 

generally faster, but hashing is not well suited for 

sequential processing. Multilevel indexing is not good for 

insertion/deletion activity because one change may affect 

all levels of the index. Retrieval time for spatial index 

organization increases at a faster rate than the other 

organizations as the size of the file increases. 

Cardenas (1973) discusses the factors which affect 

file organization performance and presents a tool to help 

in file structure selection based on the specific usage of 

the system. The parameters are database characteristics 

(e.g. number of records, record length, etc.), user 

requirements (e.g. frequency of query, frequency of update, 

mode of retrieval, etc.) and device specifications (e.g. 

block length, average access time, etc.). A model was 



designed which simulaGd three file techniques- binary 

tree, inverted file and multilist--on six existing 

databases. It was found that a combination of 

characteristics can cause a great deal of difference in 

performance based on the file technique used. This study 

was one of the few to incorporate database usage into its 

evaluation. Cardenas also noted that file organizations 

which do well in retrieval of data do not perform well in 

updating and vice versa. Further analysis on performance 

of inverted list file organization is presented by Cardenas 

(1975). He analyzes the inverted file organization within 

levels 2 and 3 of the DIAM (Direct Independent Access 

Model) hierarchy. Levels 2 and 3 involve the physical view 

and the mapping from the conceptual to the physical view. 

Siler (1976) presents a stochastic model based on a 

statistical representation of the database. He measures 

data retrieval performance associated with a set of user 

queries, a particular database organization and a given 

database. Monte Carlo techniques are used to measure 

performance by estimating access frame movements and disk 

rotations in the stochastic represention of the database. 

The author compares inverted list, threaded list (records 

I 
with the same key are linked together) and cellular list (a 

pointer exists to each bucket with at least one record in 
I 

I 

L 
I 

the specified key; all records in each bucket with the same 
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key are linked together). Queries of different complexity 

are examined. It was found that when the query complexity 

increases, the pure inverted list organization 

significantly improves performance. 

Yao (1977) presents a general model for physical 

database organization. This model has a hierarchical form 

with attributes at the highest level followed by keywords, 

accession lists and virtual records in descending order. He 

develops general cost formulas using the model and 

demonstrates how these costs are valid for inverted lists, 

threaded lists, cellular, indexed sequential and B-tree 

organization. 

Performance Analysis Based 
on a Specific Database Model 

Analysis based on the three database models-- 

hierarchical, network and relational--are presented here. 

In most cases, file organizations at the physical level are 

considered with respect to a specific model. Performance 

in the relational model is based not only on the method of 

representing and referencing the database, but also on how 

the query is evaluated. For this reason, query 

optimization plays an important role in performance 

analysis of relational operations. However, research 

involving query optimization will not be discussed here 



except in conjunction with access methods and file 

organizations at the physical level. 

Ghosh and Tuel (1976) and Lavenberg (1976) 

investigate performance based on the hierarchical model. 

Both papers are based on the IMS (Information Management 

System) DBMS , an IBM system which is one of the most well- 
known hierarchical systems. Ghosh examines six data 

manipulation commands of IMS in conjunction with three IMS 

access methods. IMS update commands of insertion, 

replacement and deletion are not considered. On analysis, 

it was found that the residual error does not have a 

symmetric distribution; therefore, the model did not 

account for all the factors affecting access time of the 

given IMS database. Further examination suggested that the 

interaction of the segment type and logical view are the 

important controllable factors which affect access time. 

Lavenberg and Shedler (1976) present a queueing model 

based on an embedded finite state semi-Markov process. The 

IMS DBMS call is represented as a sequence of processor and 

I/O unit services. The processors are as follows: 

1. determine the access path 

2 .  search buffer for the block containing the access path 

find the 
determine 

path segment within the path block 
if another path segment needs to be accessed 

4. perform activities associated with block transfer 



5. process target segment 

6, I/O transfer 

Database calls can compete concurrently for I/O and 

processor units. A priority rule exists to manage the 

contention. I/O and processor units can perform in 

parallel. Expected service time and expected cumulative 

process time are computed. This paper develops one of the 

few queueing models for hierarchical database systems. 

Teory and Oberlander (1978) develop an analytical 

model for the evaluation of network database systems. 

Specifically, they use the IDS (Integrated Data Store) DBMS 

which closely follows the CODASYL network model. Input to 

the model are the database characteristics (definition of 

master and detail records, page size, record lengths, 

etc.), workload specification (an application program) and 

hardware characteristics. The model produces main storage 

and secondary storage, I/O and CPU time requirements. It 

does not incorporate queueing delays into the model. 

Several performance analyses have been done involving 

relational operations. Gotleib (1975) analyzed the 

complexity of the natural join operation with respect to 

memory utilization, I/O and CPU time. This research is 

directed toward the calculation only, with no consideration 



of storing the results ark the definition. The analysis is 

assumed to be done in isolation with no contention for I/O 

and processors. 

Blasgen and Eswaran (1977) primarily consider access 

time in their analysis of join, projection and selection. 

Four methods for evaluating the query are examined based on 

how the data is represented and referenced in the database. 

The four methods are indexing on the join columns, sorting 

both relations, multiple passes and use of key and key 

indices. Cases involving the existence (or nonexistence) of 

certain indices and clustering are explored. It was found 

that in different situations, different methods performed 

well and no one best method existed. 

Yao (1979) presents a query optimizer which computes 

the cost for seven optimization techniques. The author 

compares access methods and takes into account the storage 

structure of the database. 

Menon and Hsiao (1981) develop a G/G/1 queueing model 

to analyze a VLSI implemented equijoin algorithm of their 

own design. 

In summary, while a great deal of research has been 

devoted to analyzing database performance, very little of 

this research has been directed toward measuring queueing 

delays. In a real world situation, this is an important 

aspect of any performance measurement. 
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mstributive Databases 

Background 

A distributive database is.a database that is not 

stored in its entirety in one physical location, rather it 

is spread across a network of dis-ersed (but 

interconnected) computers (Enslow 1978) . Any or all of 

the database could be distributed - the data itself, the 

description of the data and the database called the schema, 

and/or the programs that run the DBMS could be dispersed. 

There are three major advantages to a Distributive 

Database Management System (dDBMS) (Rothnie 1975). First, 

dDBMSs are reliable. Because a dDBMS is constructed from 

multiple computers at multiple sites, it is not susce tible $& w* 4id --4 - 

to total failure when one computer breaks down. Second, 

accessibility is improved over a system which has 

geographically dispersed users and a centralized DBMS 

because it is possible to store data where it is most 

f repuently accessed. Finally, there is the abil&,Q-,; t~ p* $&$$ >, <:,-,: +P+ ,+ - ' - 
F &qLfL%hw,k7 c, " , J'J 

handle database growth and large database management more 

efficiently since large databases can be supported as 

Several moderate sized DBMSs at different sites. If the 

database grows larger, another site can simply be added. 

The distributive property of a dDBMS gives importance 

to certain design factors. One design factor which needs 



to be taken into conSZieration, if the data is to be 

distributed, is how to split the files. Typically, files 

are split according to geographical or functional 

considerations. For example, if an organization's branches 

are geographically dispersed, where each branch serves a 

unique set of customers, the obvious solution is to place 

customer files at the location of the respective site. A 
. . ,: ,::-i, : ;-'? ,';r,.rA~k.w . . ; :,,. ., - v, ., :TmL,.+?-+&g 
- ,  , 
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functional distribution might be a business whlch has 

personnel accounts payable, accounts receivable, inventory 

and order entry files used by the appropriate department 

only. A solution would be to assign a processor and file 

to each department. 

Another consideration is whether or not to allow 

redundancy in the data. In a system where a file is used 

quite often by two different sites, the solution might be 

to store the file at both sites. Redundancy could also be 

advantageous in a point-of-Sales (POS) environment where a 

central node holds a complete set of files and each local 

node maintains files that are relevant to its site. Update 

files could then be transmitted when the system is not 
! ..#,, :;;, .,, t'q -; J-<-< - &?,.: .,.% . !;;: i 

,., . , ,  . - 
As an example, a credit balance could be kept at a 
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::.;%.:i2':Store for those customers associated with the store, .making 

credit checks local. No redundancy simplifies the 

reliability problem if one site fails and no other copy 

exists (Rothnie 1977). 
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Directory (also called schema) distribution is another 

design factor to consider. The directory is needed for 

parsing queries, optimizing access of the data and 

determining access privileges. The goal is to minimize 

storage costs as well as processing and communications for 

directory and data requests. There are three basic methods 

for handling directory distribution in a dDBMS -- 
centralized, distributed and local. In a centralized 

directory, the directory for the entire database is located 

at one processing node. All requests, including local 

requests, must go through this node. This may slow down 

response time in a system that is geographically dispersed 

over large areas. In a distributed directory, each node 

has an entire copy of the directory. In such a system, 

response time is improved but the cost of storing the 

directory in its entirety at each node may be prohibitive 

in any system where the database is large. A compromise to 

the above two methods is a system of local directories. A 

copy of that portion of the directory which pertains to the 

local node is stored at that node. A centralized directory 

may be used in conjunction with local directories. 

Although this resolves local requests locally, all external 

requests must still be routed through the central node. 

Another design factor which needs to be considered is 

how to distribute the programs of the dDBMS. Situations 



may exist where programs must operate on an entire file 

rather than a small set of records in the file. In such a 

case, it may be feasible to locate the program at the node 

where the file exists. An example of this is a system with 
.- . . ru --a y-Li i2ijr.+. --':-;h 6,- +j v&&$ ,i;i& - F4 

,,gi~jp~;~~~centralized directory (seen as a file itself and the 

program which updates the directory. 

Two alternatives exist for distributing the programs. 

The Data Base Administrator (DBA) could either store the 

programs at a centralized node and then send copies of the 

programs to nodes which need them, or store the programs at 

nodes which use them heavily and then have them dispatched 

to other nodes as needed. In the first case, all requests 

must go through the central node which may slow response 

time . In the second, some method must exist which keeps 

track of what programs are stored where. This may 

introduce another directory and the corresponding overhead 

is such that all 

programs of the dDBMS are stored at each node, the problem 

of what is stored where is solved; however, this may not be 

feasible in a system where the programs are large and a 

limited amount of storage exists. 

The last area for consideration is how to design the 

communications network to support interleaved message flow. 

Characteristics of communication media vary. ETHERNET, for 

example, provides a high band, low delay transmission that 
p ' 4 '  8 ' ' :**- +&.. t-qc 
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is suitable for short range dDBMS. ARPANET uses a packet 

switching network with a lower bandwith and higher delay. 

~t is better suited for message sending over longer ranges. 

A point to point leased circuit configuration has a lower 

bandwidth and a lower delay. The requirements of the dDBMS 

must considered choosing the communications network. 

Concurrency Controls in Distributive Databases 

One of the most important considerations in the design 

of a shared database system is concurrency control. In a 

distributive database system, where files used in 

processing one query may be dispersed among several sites, 

the complexity of the concurrency problem is increased. 

Concurrency is a situation where more than one user is 

allowed to access into an area of the database at one time. 

While such a situation can improve throughput, unrestrained 

concurrency can threaten the integrity of the database. To 

illustrate this, suppose that two users are trying to 

update a record consisting of SSP, NAME, ADDRESS AND PHONE. 

Each user reads the specified record. The first user then 

changes the address and writes back to the file, followed 

by the second user who changes the phone number and writes 

back to the file. After this series of events, the 

record's phone number update, but not the address update, 

will be reflected. 



To avoid such in€er%eaving of updates, transactions 

are used. A transaction is a series of commands issued by 

one user which is treated as one indivisible unit. Thus, in 

the previous example, the first user's read and update 

commands would be one transaction and the second user's 

read and update commands would be a second transaction. 

The first user to issue a transaction would lock the 

required record (or some other unit of the database 

containing the needed record), perform the commands in the 

transaction, unlock the record and allow a waiting 

transaction to proceed. This locking protocol is called 

two-phase locking (Bernstein 1979) . 
Distributive systems concurrency control can be 

divided into two basic groups -- centralized control and 

decentralized control. In a centralized concurrency 

control system, any conflicting read or write requests are 

resolv.ed at a central site. In a decentralized control 

system, each site has its own concurrency control. Both 

types presently exist. 

The centralized concurrency control makes decisions 

regarding conflicts based on the total picture of what is 

happening in the database. However, this type of system 

can involve high costs for the communication overhead, 

especially if the deadlock detector is several thousand 

miles away. 
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In a decentrali-zed concurrency control system, 

communication is kept to a minimum; however, a site may 

abort a transaction simply because it does not have enough 

information to proceed. Thus each system has drawbacks and 

advantages. 

Systems Using Centralized Concurrency Control 

A centralized concurrency control system is presented by 

Menasce and Muntz (1979). This system strives to minimize 

the disadvantages of the centralized system by resolving 

conflicts at a site "near" to the sites involved, if 

possible. Two types of controllers exist--leaf controllers 

(LK), which are for database components local to the site, 

and non-leaf controllers ( N L K ) ,  which resolve conflicts. 

This system makes use of a wait-for graph which 

depicts when transactions are waiting for one or more other 

transactions to release a lock. A global wait-for graph 

is maintained at the primary site, while each LK maintains 

a subset of the graph consisting of transactions involved 

with the site's local resources. In addition, output parts 

and input parts are depicted in the Local wait-for graphs 

showing where a transaction came from and where it is going 

next. 

When a conflict occurs, it is sent to the NLK which is 

the parent of the transaction and LK. If this node cannot 



resolve the conflict-,-the next level up the tree is 

employed. The conflict may be propagated all the way to 

the root before a resolution is possible. Fortunately, 

this is not usually necessary. Deadlock is detected by 

finding a cycle in the wait-for graph. 

A distributed version of INGRES is presented by 

Stonebraker (1979) . Conflict resolution is done by one 

machine dubbed "THE SNOOP". A local concurrency controller 

(CC) exists at each site and receives parts of a 

transaction involving its local resources from the site 

where the transaction originated. If deadlock is detected 

at one site, the CC picks a transaction, backs it out 

locally and sends a message to the site where the 

transaction originated, which in turn notifies the other 

sites executing parts of the transaction. 

If deadlock involves several sites, the transaction is 

in a wait state. The CC sends the name of the waiting 

transaction and the transaction causing the wait, to the 

SNOOP, which uses a wait-for graph to determine if a 

deadlock exists. If no deadlock is detected, the CC sets a 

flag to indicate that the transaction is committed. 

To minimize downtime, if a site should crash, 

duplicate copies of database components are kept at 

different sites. This, of course, introduces the problem of 



maintaining these addifT6nal copies. One copy among the 

up-sites is designated as the primary copy. Only the 

primary copy is locked. When a site commits a transaction, 

it directs the system to update the copies. 

Systems Using Decentralized Concurrency Control 

Two decentralized concurrency controls, WAIT-DIE and 

WOUND-WAIT, are discussed by Rosenkrantz, Stearns and 

Lewis (1978) . In both, a unique number is assigned in 

ascending order to each transaction. This number is used 

to indicate the age of the transaction. In the WAIT-DIE 

system, if the requestor causing the conflict is older than 

the locking transaction, the requestor waits, or else the 

requestor is aborted, rolled back and restarted. 

In the WOUND-WAIT system, if the requestor is younger, 

he waits. If the requestor is older and the transaction 

has not yet terminated at the site of origin, it is 

aborted, rolled back and restarted. If the transaction has 

terminated at the site of origin, no action occurs. 

Although no deadlocks can occur under these systems, 

unnecessary restarts can occur. To improve on this, the 

authors allow transactions ,involving only local relations 

to be handled in a different manner, thus eliminating 

unnecessary local starts. 



A decentralized coridiifrency control system using local 

locking and time stamps to update replicated databases is 

described by Gardarin and Wesley (1979) . A time stamp 

holds the time a transaction entered the system. In this 

case, the time stamp is local to the site and also includes 

the site number. Each site maintains a lock table for each 

transaction which lists all resources requested. 

Transaction execution proceeds as follows: First, the 

lock table and time stamp are sent to the sites with stored 

copies of the resource. At each site, the local resource 

is locked if no transaction with an older time stamp has 

locked the resource, unless that lock has been guaranteed. 

All younger transactions waiting for the same resource are 

aborted. A transaction never waits on more than one 

transaction per resource. 

If all copies of a resource can be locked, the 

transaction is committed. A message is sent to the site to 

prevent cancellation by another transaction with an older 

time stamp. The site of origin then sends a message to the 

other sites involved to perform the update and unlock their 

copies of the database. If a transaction is aborted, the 

site that aborted sends a message to all involved sites, 

which unlock their copies. The site of origin performs a 

restart. 



This system uses a- wait-for graph to determine cycles. 

Duplicate files are maintained to help with recovery. A 

site 'that was down recovers by using differential files to 

update an old copy of the file. 

A voting algorithm is used for concurrency control by 

Thomas (1979) . Each site contains a total copy of the 

database; however, the author states that the sites could 

contain subsets of the database instead. When a 

transaction enters the system, a time stamp is created that 

consists of the local time, a site identifier and a 

transaction identifier. Update requests consisting of the 

updated value, a list of resources and their time stamps 

are sent to the sites involved. 

A site votes to reject if one or more of the variables 

to be modified are older than the site of origin's 

variable. It votes to accept if the variables are current 

and no pending requests conflict. It votes to pass if the 

variables are current but there is a .* "I ..-, conflict with a 
*/,>- :;-, ry..+L~A:-'I,.IX1<::,-;.Ti;::.*.C TI-) ,  -. I..-.. .- 

,a ;q,.J A fi --.;??~;:~,$$??:,j;,~ ;~,~):*?:q'.;, -,,,..::?, r-:!i. :.:>., .< 
, d < Y  ki?~*$';,:.--:*, ,, z., , ,. . , ;, .- . - />-3(.-';-.:.-? .I~::,.:>-.,, ,> SL 

request of higher priority. It defers voting if the 

variables are younger than the site of origin variables. 

When the site of origin has a majority of accept votes and 

no reject votes, it performs the operation and notifies all 

other sites to do so as well. 

A decentralized concurrency control for a relational 

system, SDD-1 is described by Bernstein (19801, Hammer and 



Shipman (1980) , and -Rosenkrantz and Hunt (1980) . This 

system uses preanalysis to determine the amount of 

serialization needed. Each transaction is assigned a time 

stamp from a local logical clock with an appended site 

identifier. All write messages carry the time stamp and, if 

the time stamp is younger than the original data item, the 

transaction is not executed on that copy of the file. 

Only time stamps on WRITE transactions are stored. 

The system uses a conflict graph to determine if 

transactions need to be serialized. .This graph is not 

analyzed at run time but when the database is set up. This 

analysis produces transaction classes. Let Tw be a 

transaction write of a record and Tr be a transaction read 

of the same record. The following serialization rules 

1. if Tw precedes and conflicts with Tr, then Tw must 
precede Tr in serialization 

2. if Tr precedes and conflicts with Tw, then Tr must 
precede Tw 

3. if Twi conflicts with Tw, then Twi and Tw must be 
executed in their time stamp order 

Locking is invoked only when a cycle is formed. Each 

Tr contains a list of classes with which it may conflict. 

The Tr is deferred until all earlier Tw commands in the 

specified class are processed. If a Tw in the specified 
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class with a later time stamp has already been processed, 

the Tr is rejected. 

The decentralized concurrency control introduced by 

Stearns and Rosenkrantz (1981) makes use of time stamps and 

allows a user to read values after a write transaction has 

started to update an entity but before the entity has been 

written back to the file. This is called the "before 

valuen. The authors state that this is desirable since in 

a traditional locking system a transaction might be aborted 

and, in that case, the requestor would ultimately receive 

the before value after waiting a period of time for a 

transaction to release a lock. Two times for committment 

are discussed, based on the following terms: 

1. a transaction is said to be terminated when it is 
finished processing at all sites and has made a 
request to make its write values permanent 

2. a transaction is said to be committed when it is 
terminated and cannot be rolled back 

3. a transaction is said to be closed when its write 
values become official and it cannot be rolled back 

A scheme for committing at termination requires that 

no older transaction receive a before value of a younger 

transaction and no younger transaction can write to an 

entity read by an older, nonterminated transaction. In 

this scheme, readers can receive after values of older 

transactions that have not yet terminated. If commitment 

is done when the system is closed, a younger transaction 



must wait to read the afte? value of the older transaction 

after it has closed. 

Synchronized Concurrency Control 

Synchronized concurrency control involves the use of a 

daisy chain (a ring) formed of all nodes. Updates travel 

around the ring to the required nodes. This 

synchronization insures consistency. 

Ellis (1977) presents an algorithm for updating 

totally replicated databases which use a ring. Each 

database has three states, idle, passive and active. An 

idle database is not locked. An active database is locked 

and in the process of performing an update. A passive 

database is locked and knows .that an update is coming. 

When an update is requested, it must move along the ring 

until it receives passive locks from every node and returns 

to the originating node. At that time, the originating 

node receives an active lock and is updated. The other 

nodes involved are then signaled to perform the update. 

This is done by sending the update around the daisy chain 

once again. 

A synchronized control algorithm which uses a ring and 

can be used for both replicated and partitioned databases 

is presented by LeLann (1978). A particular message called 

a token, which serves the purpose of ticketing allocation 



requests, circulates -tli&virtual ring of nodes. When a 

node receives the token, all updates for files residing at 

that node are taken from the token and updates for files 

residing at other nodes are appended to the token and sent 

to the next node in the ring. This ordering insures 

synchronized updating and thus eliminates conflicts in 

concurrently accessing the same item. 

L F s m a l  A n u s i s  P f  Database Perf 0uiUnce 
=Wutive Database Systems 

Much of the performance analysis in Listributed 

database systems can be found in the areas of performance 

with respect to central vs. distributed controllers, 

allocation of resources and updating replicated files. 

File Directory 

Chu (1976) develops a queueing model to study the 

perform'ance of file directory systems Three directory 

placements are considered: a single master directory, an 

extended master directory (one master directory exists but 

each node has.its own directory; if the needed information 

is not in the local file, the master file must be accessed) 

and multiple master directories (one copy of the master 

directory per cluster or node). Arrivals at the input 

queue of the directory represent the queries and updates 

generated by all the computers in the system. ~etwork 



topology, communication---costs, storage cost and code 

translation are considered. The model is M/D/l. It was 

found that for low update rates, the distributed file has 

lower operating cost as compared with the central 

directory systems. If the update rate is greater than 15% 

of the query rate, the centralized system performs the 

best. For update rates less than 1 to 5% of the query 

rate, the extended central directory performs the best. 

Updating Totally Replicated Databases 

Denola (1981) presents a M/M/1 queueing model to 

measure system performance for a totally replicated 

distributed database in a centralized management system, a 

masterhlave system (where the nodes handle updates locally 

but updates to other nodes must be handled through the 

master) and synchronized (where nodes involved in the 

update are connected in a ring and must be visited in a 

predetermined order.) Arrivals to the queue consist of 

updates and retrievals. It was found that the master/slave 

system has a better average response time than the central 

system; which is reasonable since the local updates are 

handled locally and the only contention for the master node 

occurs when a nonlocal update is needed. The synchronized 

model does not outperform the other two systems until they 

have become totally saturated. 



Gardarin and Chu - -Cf979) present a deadlock-£ ree 

algorithm for updating replicated databases in a 

distributed system. The algorithm locks tables locally and 

provides time stamps to detect conflicts at replicated 

sites. Performance comparisons between the voting and the 

centralized locking algorithm are analyzed in terms of the 

number of messages required to perform an update and the 

volume of control messages required to perform the update 

to multiple copies. No queueing analysis is done. The 

proposed algorithm performed better than the voting 

algorithm for more than two sites with respect to the 

number of messages per update. The centralized algorithm 

tended to perform better than either method with respect to 

control messages where the number of updates plus one per 

transaction is less than the number of sites in the 

network. The author points out, however, that the 

centralized management has response time problems. 

Garcia-Molina (1979) presents a M/G/1 queueing model 

to measure system performance for totally replicated 

distributed database systems. Centralized control, 

distributed voting control and Ellis ring control are 

analyzed. The author considers conflicts as well as 

specific query situations. It was found that the 

centralized control algorithm performed best in most cases. 



Gelenbe and Sevcik -- (-1g78) study concurrency issues in 

totally replicated databases. They develop a precise 

definition of coherence (how many different states exist in 

the dDBMS at a given time) and promptness (distance of 

nodes from the reference copy) and examine two control 

tecnhiques with respect to these two performance measures. 

Optimal File Allocation 

Chen (1973) develops a M/M/k queuing model to analyze 

the three types of file allocation problems: 

1. minimize response time without regard to storage cost 

2. minimize storage cost and meet a mean system response 
time criterion 

3. minimize storage cost and meet an individual response 
time criterion for each file 

It is proved that the optimal allocation strategy for 

problems 1 and 2 is to allocate files that are more 

frequently accessed to faster storage devices. No optimal 

strategy was found for type 3 problems. However, it was 

proved that the optimal allocation policy is not always the 

same as the other two. Although not directed toward 

distributed databases specifically, the author points out 

that his results can easily be applied to a distributed 

System. 

Both Mahmoud and Riordon (1976) and Coffman, Gelenbe 

and Plateau (1981) develop queueing models to determine how 
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to allocate copies of; -database files among the network 

nodes. Mahmoud examines file allocation and communication 

link capacities simultaneously. He develops an objective 

function for optimal allocation and finds that its solution 

falls into the class of nonlinear integer programming 

techniques. Since a solution is cumbersome, he uses 

decomposition to find a solution which has a relatively low 

cost. 

Coffman examines the allocation of resources based on 

maximizing the read throughput in the presence of update 

arrivals. An optimum number of copies is found. The 

authors then examine the problem with respect to the Ellis 

ring algorithm (1977) . 
In summary, while queueing theory can be found in 

distributed database performance analysis, there is no 

prior research in the area of the performance of different 

support techniques for dynamic derived relations. This is 

clearly an important topic in a distributed system, since 

the support of user views requires some type of 

implementation of dynamic derived relations. In these 

distributed systems, the potential technique is quite 

costly since the ddr needs to be recalculated and 

transmitted every time a user refers to it. But, the 

actual technique is similarly hindered by the need to 

regenerate the ddr each time an update is performed on one 



of the base relations.- --Intuitively, the deferred-actual 

has a high probability, under certain circumstances, of 

outperforming either of the other methods. Our analysis 

verifies this. 



CHAPTER I11 

EVALUATING DDR SUPPORT METHODS 

IN A CENTRALIZED SYSTEM 

This chapter presents a methodology for evaluating 

database update schemes in a central database environment. 

Specifically, three ddr support methods are analyzed. The 

chapter discusses the characteristics of the three support 

methods and illustrates how these characteristics and the 

history of data usage in the database can be faithfully 

represented using an M/Hr/l model. 

A h  Characteristics of the Three Update Methods 

The purpose of this section is to discuss 

characteristics of the three update methods. The three 

algorithms shown in Figures 4, 5 and 7 will be referred 

to as potential, immediate-actual and deferred-actual 

methods, respectively. The immediate-actual method will be 

altered slightly for simplicity and uniformity in the 

modelling process. 

The immediate-actual has been changed so that all ddrs 

defined by its defining relation are updated when one ddr 

is retrieved. Until that time, update tuples are stored in 



a differential file. - N 6  culling will occur and the 

immediate-actual method will not have overhead associated 

with maintaining this file. This differs slightly from the 

original algorithm which updates all ddrs when a defining 

relation is updated; however, the amount of work done is 

the same since we do not consider any advantage that might 

arise from the batching of these updates. This 

modification allows us to model the immediate-actual in a 

way consistent with the deferred actual and potential 

methods because now all maintenance work is done at ddr 

retrieval time. 

Each of the three ddr support methods has differing 

characteristics with respect to how the ddr is retrieved, 

what ddrs are updated, and what storage requirements 

exist. A ddr retrieval in the immediate-actual method 

involves applying all the defining relation update tuples 

collected since the last ddr retrieval to the ddr. 

The deferred-actual method also makes use of the 

defining relation update tuples since the last ddr 

retrieval. Updates are collected in differential files 

until the ddr is retrieved. This ddr support method may 

reduce - the total number of tuples involved in the actual 

retrieval due to a culling process that is carried out when 

update tuples are added to the differential files. The 

same tuple used in more than one update is reduced to only 



the last update before-The database is accessed. When 

tuples are used as a collection (or batch) of elements, 

there is the possibility that two updates might take less 

than twice one update time. Therefore, batching may also 

reduce the total work to be done. 

The potential method totally reconstructs the ddr each 

time it is retrieved. The advantage of batching tuples for 

the ddr retrieval is also present in this case. 

With respect to what ddrs are updated, both the 

potential and the deferred-actual update only the ddr 

involved in the query. The immediate-actual updates all 

ddrs defined by the base relation that has been updated. 

Different storage requirements exist in that both the 

immediate-actual and the deferred-actual store the ddr in 

actual form. The deferred-actual incurs an additional cost 

for storing the differential files. The potential method 

stores -only the formula of or access paths to the ddr so 

that it can be recalculated. In the analysis performed in 

this dissertation, storage requirements are modelled in the 

distributive database case. 

& Using Historv af patabase Retrievals and Updates 
&Q petermine the Averaae Service 

This section illustrates how the history of data usage 

in a database can be used to determine needed parameters 



for the system. ~pec~fLc~lly, we examine the update to 

retrieval ratio. 

The first parameter to determine is the average 

service time to update a ddr. Let the probability of a ddr 

retrieval be P and the probability of a base relation 

update be Q. Under both actual storage methods, the amount 

of work done to retrieve a ddr is based on the number of 

updates which have occurred between two ddr retrievals. 

In the immediate-actual, this is the total number of tuples 

used to update the base relation between two ddr 

retrievals. The deferred-actual allows for culling if the 

same tuple is used to update the base relation more than 

once. Thus, the number of tuples used in the ddr retrieval 

may be less than or equal to the total number of tuples 

used to update the base relation. 

Whenever a ddr is retrieved, tuples used to update the 

base relations which define the ddr are incorporated into 

the ddr retrieval. Since the number of tuples used in a 

ddr retrieval depends on the number of updates that have 

occurred, the service time for a ddr retrieval is 

k *  ( Q * A / P * A )  * ( 1 / U )  = k * Q /  ( P * U )  

where A is the arrival rate and 1 / U  is the average time to 

perform one update. When updates are batched, there is the 

possibility that two updates might take less than twice one 

update time. This will be incorporated into the model 



later but for now we win-not consider the advantage of 

batching updates. 

The value of k (O<k<=l) represents a culling factor. 

This factor is needed to analyze the difference between the 

two actual methods. In the immediate-actual, no culling 

occurs, while in the deferred-actual method, duplicate 

tuples are culled. If k is one, no duplicates are 

recognized. As k approaches zero, the ratio of distinct 

tuples to the total number of updates also approaches zero. 

The product of k and the total number of tuples used to 

update the base relation, (Q*A/PtA), represents the number 

of update tuples used in the ddr retrieval. 

To illustrate this, let k=l (no culling) and let there 

be m times as many updates as ddr retrieval arrivals. The 

state-transition diagram in Figure 8 represents this case 

with infinite update service rates. Arrivals are of two 

types, base relation updates and ddr retrievals. All 

arrivals are considered to be Markov with arrival rates 

for updates and retrievals being m*A and A, respectively. 

Base relation updates are represented with respect to ddr 

retrievals. 

States SO,Sl,S2,... represent the number of updates 

that have occurred to the base relation, since the last ddr 

retrieval. A ddr retrieval arrival will immediately empty 

the system, that is, all tuples used to update the base 



Figure 8. A state-transition diagram representing 
update and retrieval arrivals. The update arrivals 
are m times more than the. retrieval arrivals. 



relation will be usedA-in the ddr retrieval and the 
8 

collection of update tuples will begin again. As stated 

previously, update arrivals occur at the rate m*A and 

retrieval arrivals occur at rate A. The probability of 

being in state Sj (j>O) is 

PROB(Sj)= (((m * A)/ (A + m*A))**j) * PROB(So) 
and the probability that no tuples are in the system, state 

So, is 

PROB (So) =1/ (m+l) 

The expected number of customers (tuples) is: 

which is the ratio of the update arrival rate to the 

retrieval arrival rate. (See appendix 1 for detailed 

calculatons.) Therefore, by determining the frequency of 

update ' and retrieval calls, probabilities can be comkdted 

which can be used to determine the average retrieval and 

update times. 

G TheM/G/1Model 

As its notation indicates, the M/G/1 queue is a single 

server system with Markov arrivals and arbitrary service 

times. Within this system, a customer can be required to 

go through r parallel stages which have different service 

- ' \ - ,  . , -  I., 
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times (called M/Hr/l) , or any combination of parallel and 

serial stages. This type of model lends itself well to 

representing a system which has updates and retrieval 

arrivals and where each type of arrival requires a 

different service time. 

A 2-stage parallel server is shown in Figure 9 and its 

state-transition diagram is shown in Figure 10. Note that 

the first arrival proceeds to one of the parallel states 

based on the probability that the arrival will be of a 

specific type. This is because there is no one in the 

queue and, therefore, execution can begin immediately. 

After this point, all customers are queued, and when the 

customer being serviced has finished, then and only then 

can a queued customer enter for service. This is 

consistent with the update/retr ieval system, where two 

different actions can occur, however, only one action can 

occur at a time and each of these has a different service 

time . 
The following notation will be used throughout the the 

remainder of this dissertation: 

A is the arrival rate to a node 

b is the block size, indicating the number of ddr 
tuples accessed in one I/O operation to the external 
device that stores ddrs 

is the culling factor 

Ki is the culling factor for the ith ddr 



Figure 10. A state-transition diagram for the ~ /~2/1 
model. 

A 

gure 9. The M/H~/I .model. 
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is the average number-of ddrs per defining relation 

P is the probability that an arrival is a ddr retrieval 

pi is the probability that an arrival is a ddr retrieval 
for the ith ddr (pl+p2+...+pn=P) 

Q .  is the probability that an arrival is an update 
Q+P=l 

1/U is the service time it takes to do one update 

ui is the service rate to retrieve the ith ddr 

X is the mean service time at the node 

pdf is the probability density function 

X2 is the second moment of the probability density 
function (pdf) 

C2 is the square of the coefficient of variation 

R is the utilization factor (R=X*A) 

q is the expected queue length at the node 
' Z 9  '. . 
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W 
y;.: ..: !:.- 

is the average wait time at the node :; . .::j:l<!:;lgj ,. .. , . 5.2,..-,'z: 
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The formulas for the M/Hr/l model which are used to 

analyze the individual nodes are as follows (Kleinrock 

W= q/A 

Refer to appendix 2 for a simplification of these formulas. 



L mins m2 -- Model UI RJ%LQUa!ent 
, mediate Actual Method 

The M/Hr/l model representing the immediate-actual 

method, which updates all ddrs whenever one ddr is 

retrieved, is shown in Figure 11. Arrivals are of two 

types, updates and retrievals. When an arrival occurs, the 

probability of the arrival being a retrieval is P. The 

probability of it being an update is Q. Note that Q+P=l. 

As noted in section B, the retrieval service time for one 

ddr is 

k *  ( Q * A / P * A )  * ( l / U )  = k * Q /  ( P * U )  

Since all ddrs are updated whenever one ddr is retrieved, 

and there are n ddrs, this service time should be 

multiplied by n. Also, in this method, there is no culling 

so the culling factor, k, is 1. Batching is not 

considered in this case due to the fact that the original 

version of the algorithm does not batch updates. 

Therefore, the retrieval service time is 

(n * Q) / (P * U) 
As an illustration, let the probability of a ddr 

retrieval arrival be P=.5 and the probability of an update 

be 41.5 and let there exist two ddrs. The above formula 

indicates that the expected service time for each retrieval 

is (2*.5)/(.5*U) or 2*(1/U). That is, we can expect two 

updates for each retrieval. To see how this might come 



Figure 11. ~ / H 2 / 1  model for the immediate-actual method. 
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a b o u t ,  c o n s i d e r  t h e  fo l l owing  sequence,  where an  update  

a r r i v a l  is denoted  by u  and a  ddr r e t r i e v a l  a r r i v a l  by d: 

u d u d u d u d u d  

S i n c e  each ddr  r e t r i e v a l  upda tes  a l l  d d r s  when one i s  

r e t r i e v e d ,  each r e t r i e v a l  even t  w i l l  cause  bo th  d d r s  t o  be 

updated.  I n  t h e  p reced ing  sequence,  t h e r e  were f i v e  

r e t r i e v a l s .  One t u p l e  was c o l l e c t e d  between each of t h e s e  

r e t r i e v a l s  and,  t h e r e f o r e ,  t h e r e  were a t o t a l  of t e n  update  

t u p l e s  used. Thus, t h e  average  number of upda tes  pe r  

r e t r i e v a l s  was 2 .  

The w a i t  time, W ,  i s  

The d e t a i l e d  c a l c u l a t i o n s  f o r  t h e  pa ramete rs  can be found 

i n  t h e  appendix 2a. Note t h a t  f o r  R,  t h e  u t i l i z a t i o n  

f a c t o r ,  less t h a n  one, U i s  g r e a t e r  t han  A*Q*(n+l). 

The re fo re ,  n e i t h e r  W nor  q ,  t h e  expected  queue l e n g t h  can 

become n e g a t i v e .  

L Using khe BtUkWl M k l  LQ B e ~ r e s e n t  
t h e  Defe r red  A c t u a l  b l ~ d a t e  Method 

The M / H r / l  model f o r  t h e  d e f e r r e d - a c t u a l  update  method 

is  shown i n  F i g u r e  12 .  I n  t h i s  method, o n l y  t h e  ddr 

r eques t ed  i n  t h e  ddr  r e t r i e v a l  is updated.  Also ,  based on 

t h e  a l g o r i t h m ,  c e r t a i n  c u l l i n g  i s  done when t h e  same t u p l e  

is  used t o  upda te  a base  r e l a t i o n  more t h a n  once.  Note 



Figure 12. ~/~n+l/l model for the deferred-actual 
method. 



that there are now n+l- pa3allel stages, one for each ddr 

and one for a base relation update. The probability of a 

retrieval occurring for the ith ddr is now pi where 

pl+p2+...+pn=Pe Using the service time for one ddr 

retrieval that was developed previously, we find the 

retrieval service time for the ith ddr to be 

where ki is the appropriate culling factor for the ith ddr. 

Using the previous illustration, where the 

probabilities of a ddr retrieval and update arrival are 

both .5 and the number of ddrs is two, let one ddr have a 

probability of .4 and the other ddr have a probability of 

.1 of being retrieved. Representing the ddr with 

probability of .4 as dl and the ddr with probability of .1 

as d2, we might have the following arrival sequence with 

the number of tuples used in the retrieval listed below it 

arrival: u dl u dl u dl u dl u d2 u dl u dl u dl u dl u d2 

tuples: 1 1 1 1 5 2 1 1 1 1 

Once the system has stabilized, the total number of 

tuples used to update the ddrs is again ten and the average 

is two updates per retrieval. This coincides with the 

result predicted by the above formula. The average service 

time to retrieve ddrl is .5/(.4*U) or 1.25*(1/U) per 

retrieval. The average service time to retrieve ddr2 is 



- 
.5/(.1*U) or 5*(1/U). Since there are four retrieval 

arrivals of ddrl in this sequence and one retrieval of 

ddr2, we have 

Which is the same as the immediate-actual method. 

Therefore, the number of tuples used in the ddr retrieval 

is the same for both actual methods if no culling or 

batching is done. 

When updates are batched, as in the deferred-actual 

method, there is a possibility that two updates might take 

less than twice one update time. We must represent the 

advantage of batching in order to accurately measure the 

performance of the deferred-actual method. 

Batching can be expressed in terms of a block size, b. 

The block size is determined by how many tuples can be 

fetched from an external device at one time. Therefore, 

the expected ddr retrieval service time is 

where k*Q/pi is the expected number of update tuples used 

to update the ddr and l/b is the batching factor based on 

the block size. 

Using the formulas presented in section C, we find the 

following : 



where SUM1= (kl+k2+. . .+kn) /b 
and ~~M2=(kl**2/pl+k2**2/p2+...+kn**2/pn)/b 

See appendix 2b for detailed calculations. Note that if we 

assume 'that all pi's are equal, that is pi=P/n, that all 

ki=l and that the block size is 1, then 

and hence, SUMl=n and SUM2=n**2/Pm This then gives an 

expected wait time of 

using simple albebra, we see that the formula reduces to 

which i.s equivalent to the immediate-actual method. The 

major advantage of the deferred-actual method is when 

culling exists and batching is incorporated. 

The potential method requires total reconstruction of 

the ddr each time it is retrieved. Therefore, the 

potential method is dependent upon the size of the defining 

relation. Let S represent the average size (in tuples) of 



a defining relation in the-database. As in the deferred- 

actual method, we introduce the batching factor l/b where b 

is the block size. Then the ddr retrieval time will be 

The M/Hr/l model 

Figure 13. 

for the potential method shown 

Using the formulas presented in section C, we find 

that the wait time is 

Again, the detailed calculations are in appendix 2c. 

Note that the immediate-actual and deferred-actual 

methods method are equivalent the potential 

batching occurs, Q*n/P=S , and ki is 1 for all i. 

Jncor~orating Overhead into 
the Actual-Deferred Method 

The actual-deferred method incurs overhead from which 

the other two methods are exempt. The overhead involves 

maintaining the insertion and deletion tuples in the 

differential files. The cost of updating the differential 

files should be proportional to how many tuples are in the 

file. Since we know the service time to update a defining 

relation, 1/U, we can express the service time to update 

the differential file as a factor of this. Note that the 



Figure  13. M/HZ/I model f o r  p o t e n t i a l  method. 



update t o  d e f i n i n g  r e l a t i o n  r a t i o  w i l l  always be less than  

o r  equa l  t o  one. The de fe r r ed -ac tua l  r e q u i r e s  t h a t  t h e  

j o i n  be done on ly  on t h e  key and, t h e r e f o r e ,  a j o i n  can n o t  

cause  t h e  de r ived  r e l a t i o n  t o  be l a r g e r  than  any of i ts  

d e f i n i n g  r e l a t i o n s .  The o t h e r  r e l a t i o n a l  o p e r a t i o n s  y i e l d  

a de r ived  r e l a t i o n  t h a t  is  always s m a l l e r  t han  o r  t h e  same 

s i z e  as i t s  d e f i n i n g  r e l a t i o n s .  

L e t  Z be a  f a c t o r  which r e p r e s e n t s  t h e  r a t i o  of t h e  

s i z e  of a ddr t o  t h e  sum of t h e  s i z e s  of i t s  d e f i n i n g  

r e l a t i o n s .  Then l e t  

r e p r e s e n t  t h e  s e r v i c e  time t o  update a 
d e f i n i n g  r e l a t i o n  

l/U+Z/U r e p r e s e n t  t h e  s e r v i c e  time t o  update  a 
d e f i n i n g  r e l a t i o n  and t o  i n s e r t  it i n t o  t h e  
i n s e r t i o n  o r  d e l e t i o n  t a b l e  

Although it seems obvious t h a t  t h e  r a t i o  of updates  t o  t h e  

a c t u a l  d e f i n i n g  r e l a t i o n  s i z e  should  be a  parameter i n  t h e  

d i f f e r e - n t i a l  f i l e  update f u n c t i o n ,  t h e r e  may be o t h e r  

overhead involved i n  main ta in ing  t h e  f i l e  which have n o t  

been considered.  W e  w i l l ,  t h e r e f o r e ,  i n t roduce  another  

f a c t o r  Y such t h a t  O < = Y < = l / Z ,  which can be a d j u s t e d  t o  

r e p r e s e n t  a p a r t i c u l a r  system. Using t h e  Y and Z 

parameters ,  t h e  s e r v i c e  time f o r  an  update becomes 

Note t h a t  when Y is ze ro ,  t h e r e  is no overhead and when Y is 



1 0 ,  the cost to update -the differential file is equivalent 

to the cost of updating the defining relation. 

L Qx@uison pf Performance pf the 
Three ppB S E ! ,  Methods 

In this section, comparisons of the performance of the 

algorithms are presented. Because there exists no standard 

data from a "typical" database, we have no way of knowing 

what is the norm.or the exception in the way of data usage. 

For this reason, we can not state emphatically that under 

"typical" data usage, one ddr support method is best. We 

have, instead, provided parameters which can be set based 

on a specific system. This provides us with the 

flexibility of considering special cases while allowing the 

specialization necessary for a useful performance analysis 

tool . 
In deriving the average service time, queue length and 

wait time for the three ddr support methods, we indicated 

that by varying certain parameters, one method might.reduce 

to the same performance as another method. One of the more 

important parameters was the size of the ddr with respect 

to its defining relation. It was found that the size 

affects both the update/relation size ratio and the 

deferred method's overhead execution time parameter. 

Another important parameter is the number of ddrs per 

defining relation. This was found to affect both the 
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deferred-actual and the immediate-actual methods. 

batching parameter affects both the deferred-actual 

potential methods. Finally, the culling factor for 

deferred update method is another important parameter which 

affects the deferred-actual service time. 

The special cases presented vary the parameters we have 

discussed. They are considered to be special cases because 

they cause the different update algorithms to either be 

indistinguishable or to have extremely different 

performance characteristics. These cases are discussed and 

then presented graphically. After considering these 

special cases, we examine a situation with none of these 

limitations. 

The 

and 

the 

The graphical representations 

respect to the arrival rate and 

with 

time . 
Although, 

presented 

done so. 

case, 

are presented 

the response 

typically, queueing model performance 

by varying the utilization factor, we have 

is 

not 

This is because such a presentation is, in this 

misleading. The service times vary with such 

in order to set extremes under these special cases, that, 

the systems to a specific utilization factor, the arrival 

rates differed greatly. This was not obvious when plotting 

the performance by varying the utilization factor. We 

have, therefore, presented the special cases by varying the 

arrival rate. 



The graph in Figure 14 shows response time as a 

function of the arrival rate. Using the equal scale on 

both axis of the graph causes the data to plot as almost 

indistinguishable lines. To more clearly illustrate the 

differences in various factors as the arrival rate 

increases, the other graphs in this dissertation will use 

unequal scales. 

Case A: Vary the ratio of updates to defining relation 

tuples. The number of ddrs and block size is 1 and there 

is no culling. This case will cause both of the actual 

update methods to behave in the same way. The potential 

method, however, will vary greatly with respect to the 

ratio of updates to relation size. This is shown in Figure 

15. This seems logical in view of the fact that the 

amount of tuples used in reconstructing the ddr depends on 

this parameter. 

Case B: Vary the number of ddrs. There is no 

culling, the block size is one and the ratio of updates to 

relation size is one. In this case the immediate-actual 

and the deferred-actual methods vary greatly. In the 

immediate-actual method this is due to the fact that all 

ddrs must be updated whenever one ddr is retrieved. The 

greater the number of ddrs, the more that must be updated. 

In the deferred-actual method, since no culling occurs and 
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A. Potential: ratio=.l 
B . Immediate, deferred 
C. Potential: ratio=.5 
D. potential: ratio=l 

Figure 

100 200 

Arrival Rate 

14.. Vary update/relation size (equal scale). 



A .  Potent ia l  : ratio=+. 1 
B. Immediate, deferred 
C. Potentials rat io=.5 
Do Potent ia l :  r a t io= l  

Arrival Rate 

Figure 15. Vary update t o  re la t ion  s ize .  

A .  Immediate, deferred: 
ddr=5 

B. Immediate, deferred: 
ddr=2 

C.  Immediate, deferred: 
ddr=l  t 

Potent ia l  

Arrival Rate 

'Figure 16. Vary number of  ddrs.  



no advantage is allowed-Yrm batching, it performs the same 

as in immediate actual. This is shown in Figure 16. 

Case C: Vary the culling factor. The number of ddrs 

is one and the ratio of updates to defining relation size 

is one. This case will cause the deferred actual to vary, 

with worst case occurring when there is no culling. At 

this point the performance is equal to the other two 

methods. This is shown in Figure 17. 

Case D: Vary overhead. This case will cause the 

deferred-actual to vary with worst case occurring when the 

cost of updating a ddr is equal to the cost of updating a 

defining relation and best case when there is no overhead. 

This is shown in Figure 18. 

Case E: Vary the bucket size. This case will cause 

the performance of the deferred-actual and potential 

methods vary greatly. Note that because the update 

relation size ratio is one and there are two ddrs, the 

potential method has better performance than the other two 

methods. This is shown in Figure 19. 

Primary Factors Affecting the Performance of Each Method 

As we have shown, the performance of each method is 

based on certain parameters. With regard to the potential 

method it is the ratio of updates to defining relation size 

and the blocking factor. With regard to the immediate 



C 

D 

A ,  Immediate 
- Potent ia l  

Def erred8 k=O 
B. Deferred: k=.2 
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Figure 17. Vary cul l ing fac tor  (k). 
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A .  Potent ia l  
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Deferred: ovhd=O 
C. Deferred8 ovhd=.l 
D o  Deferred: ovhd=.5 
E, Deferred: ovhd=1 
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update cu11in7046 relat ion=.  1 

Figure 18. Vary overhead (ovhd). 
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Figure 19 . .  Vary the block size (b)  . 

A. Immediate 
B. Potential 
C. Deferred 

ddr=2 
cul l  ing=lO% 

D 

update/relati 
-block size=l 

- overhead=O ':/I 10 20 C 30 , 

Arrival Rate 

Figure 20. Nonspecial case. 



actual, the main performance parameter is the number of 

ddrs. The deferred method also depends on this parameter 

as well as the culling, blocking and overhead parameters. 

In general, the deferred-actual method will perform better 

than the immediate-actual method if batching and culling 

are considered. 

The deferred method performs well as compared to the 

potential method when the update to relation size ratio and 

the number of ddrs is low. Special cases such as no 

culling, extreme overhead and the existence of many ddrs 

contribute to poor response time for the deferred strategy. 

Figure 18 presents a case closer to the medium of the 

parameter ranges. The number of ddrs is two, a ddr is 

considered to be one half the size of its defining 

relation and culling occurs 10% of the time. The block 

size is 3. 



CHAPTER IV 

ANALYSIS OF DDR SUPPORT METHODS IN A 

DISTRIBUTIVE ENVIRONMENT 

As stated previously, one of the most important design 

considerations in a dDBMS environment is concurrency 

control. This section presents the analysis of the 3 ddr 

support schemes within three distributive concurrency 

approaches -- centralized, distributed and synchronized 

ring . The following notation is introduced in this 

chapter : 

C is the service rate for a lock 

Pd is the probability that a defining relation is not 
stored at the same node as its ddr 

P1 is the probability that a nonlocal ddr is requested 

N is .the number of nodes in the network 

& uter/Slave Svstem af centralized Control 

Figure 21 shows the information flow of a ~aster/~lave 

centralized control system. All updates must be sent to 

the master to lock the affected item before an update can 

proceed. Figure 22 shows the master and slave information 

flow. The slave sends all updates immediately to the 

master. Retrievals for files at other nodes are also sent 

76 



master ab 

slave 

slave 

w ? 

slave 

Figure 21. ~aster/~lave flow among the nodes 

nonlocal retrieval 
nonlocal requests , rewests 

I local requests & I, f i n 2 7  v a n 7 r a c  

a) master 

nonlocal retrieval 
" lock requetts 

/local requests I local requests 
slave reques 

slave reques , 

b) slave 

Figure 22. Information flow for individual node in 
master/slave system. 
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immediately to the appropriate node. Local retrievals are 

sent to the queue from the node's terminals. From outside 

the node, arrivals are occurring from the master which 

grants update privileges, as well as from other nodes 

requesting retrieval o f  local files. These external 

retrieval requests then result in data being sent to the 

requesting nodes. Local requests, once fulfilled, are 

returned to the terminals. 

The master receives system requests for locks, 

requests from other nodes for retrieval of the master's 

files and update and retrieval requests from its terminals. 

Notice that since items to be updated at the master must 

also receive a lock before an update can proceed, its 

updates must cycle through the system twice. Terminal 

requests for other files are sent immediately to the 

appropriate node and, after processing update and retrieval 

requests from other nodes for the master's files, the files 

are then sent to the requesting nodes. 

Deferred Actual Method 

Figure 23 shows an M/Hr/l model for the master and 

slave nodes in the deferred-actual system. Here, only a 

ddr which has been requested is updated. Due t o  the 

algorithm, culling may occur which may cause fewer updates 

to be processed than may have actually occurred. The slave 
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a )  Master node f o r  deferred-actual method 

Slave node f o r  deferred-actual method 

23. Master/~lave model f o r  deferred actual  method. 
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node is the same as in the central database. The master 

node, on the other hand, must obtain locks for all updates. 

Therefore, a service rate of C has been introduced for this 

task. Because the masterhlave system must grant lock 

requests for all nodes and the probability of an update 

request occurring is Q, the probability of a lock request 

occurring at the master node, assuming no conflicts, is 

where 1/D, a normalizing factor (D=Qm+Pm+L), has been 

introduced so that the sum of the probabilities entering 

the service queue is one. Conflicting update requests will 

be considered in a later section. 

Using the formulas in Chapter 111, section B, the 

average wait time Wm and Ws (for master and slave 

respectively) are shown below. Detailed calculations can 

be found in appendix 3a. 



-- - 
where SUMlm=(kml+km2+. . .+kmn) /b and 

Qs**2 * SUM28 
As * (-------------- 

Qs 
+ -----.---- 1 

u**2 u**2 
+ -I~------~-------------------I-I-----o--- 

Qs * SUMls 
1 - As ( ----------- Qs 

+ -Do--- 1 
u U 

where SUMls= (ksl+ks2+. . .+ksn) /b and 
SUM~S= (ksl**2/psl+ks2**2/ps2+. . .+ksn**2/psn) /b**2 

Immediate Actual Method 

Figure 24 shows the master and slave nodes for the 

immediate actual method. In this algorithm, updates are 

collected as they occur to defining relations. At 

retrieval time for one ddr, all appropriate ddrs are 

updated. The slave node is the same as in the central 

database. The master has an added service stage for 

granting locks. The values of Wm and Ws are shown below. 

Detailed calculations can be found in appendix 3b. 



Master node for immediate-actual method 

b) Slave node for immediate-actual me thod 

Figure 24,. ~aster/Slave model for immediate-actual method. 

a) Master node for potential method 

b) Slave node for potential method 

Figure 25. ~aster/~lave model for potential method. 



Figure  25 shows t h e  M / G / 1  Model f o r  t h e  p o t e n t i a l  

method. I n  t h i s  method, whenever a ddr is r e t r i e v e d ,  it is 

t o t a l l y  r econs t ruc t ed .  Therefore ,  t h e  s e r v i c e  t i m e  is based 

on t h e  average s i z e  of a d e f i n i n g  r e l a t i o n  i n  t h e  system. 

(Qm*n) **2 Qm L 
Am * (--.I------ + ----.I. + -.-.I-- ) 

D*Pm*U**2 D*U**2 D*C**2 
+ ---.I-----w---w.I---I---~---.I-I---I.--.-- 

Qm* (n+l )  L 
1 - Am* + -.----.I 1 

D*U D*C 

(Qs*n) **2 
A s  * (-.--.I--.I- 

Qs 
+ ---.I-- ) 

Ps*U**2 U**2 
+ --.--II.I--.I-----.I----------I-..-------I 

Qs* (n+ l )  
1 - As* 1 

u 

P o t e n t i a l  Method 
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This value, S, is based on a variable'''-PU which represents 

a ration of the average number of updates between arrivals 

compared to the average size of a defining relation. 

Specifically, S can be computed from Q/(P*Pu), i.e. the 

average number of updates to retrievals divided by the 

factor'representing the percentage that the average number 

of updates is to the size of the relation. 

As in the actual ddr support methods, the slave node 

is the same as in the central database. The master has an 

added service stage for granting locks. The values for Wm 

and Ws are shown below. Detailed calculations are in 

appendix 3c. 



Response Time for a Transaction 

Response time is based on several variables. First of 

all, there is the percentage of local requests as opposed 

to nonlocal requests. It is the case that files should be 

requested most often by the local terminals. If not, some 

optimization probably needs to be done to accomplish this. 

Although this seems logical, there is no real data provided 

on how often this is the case. For this reason, the 

variable P1 has been introduced in order to represent the 

percentage of local requests. 1-P1 then represents the 

percentage of nonlocal requests. This can be varied to 

model a specific system in order to predict its expected 

performance. 

This analysis assumes that a ddr is stored at the same 

node as one of its defining relations (perhaps the largest) 

and that a ddr is defined by at most two base relations. 

This is not an unreasonable assumption, since in any of the 
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three methods, storing a ddr away from its base relation 

in an active update environment would add greatly to the 

date time. 

s, however, when the second defining 

ored with its ddr and thus some 

transmission must occur to update or construct the ddr. 

Here again, no data can be found on how often this might 

occur, so we introduce another variable, Pd, which 

represents the percentage of ddr retrieval arrivals which 

may involve a defining relation at another node. This can 

be set to different values in order to analyze real 

situations that might arise in the system being modelled. 

As stated previously, the probability that a 

transaction is a ddr retrieval is P an: the probability of 

a base relation update is Q (P+Q=l). Let there be N slaves 

and 1 master. Then, in a properly balanced system, the 

average number of updates and retrievals per node will be 

A*P/(N+l) + A*Q/(N+l) = A/(N+l) 

In addition, the master node must examine all updates to 

see if a lock can be obtained. If we assume that the 

arrivals are distributed evenly among the nodes, the 

probability that a request occurs to a slave node is 

N/(N+l) and that a request occurs to the master node is 
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In order to determine the response time for a 

transaction, we must look at the probability of an event 

happening and the wait time and transmission time involved. 

In this case, T represents the transmission time to any 

node for one tuple or lock. We are representing an 

Ethernet-like system with variable packet sizes so that 

several packet transmissions for one transaction do not 

have to be dealt with. This is adequate to model the 

performance of the various update schemes in a general 

sense. 

The response time for a transaction in a Master/Slave 

system can be divided into ten distinct events. One event 

is obtaining a lock update for a slave node. This involves 

the probability that the node is a slave and that the 

request is an update, Q*N/(N+l). The time involved is the 

wait at the master node to obtain the lock, Wm, and the 

transmission to and from the master, 2*T. Therefore, the 

probable wait time contributed by this event is 

Q* (N/ (N+1) * (Wm+2*T) 
A second event is obtaining an update lock for a 

master. This analysis is the same as above, except that 

there is no transmission time involved and the probability 

of being a master node is l/(N+l). Therefore, the 



contribution to the expected wait time as a result of this 

event is 

Q* (1/ (N+1) *Wm ( 2 )  

The third and fourth events involve local and nonlocal 

slave update requests. The probability of a local slave 

update request occurring is the probability that an update 

occurs to a slave and is local, Pl*Q*(N/(N+l)). The time 

involved is the wait time at the slave to do the update, 

Ws. Therefore, the response time for a local slave update 

is 

Similarly, the probability of a nonlocal slave update 

request is (1-Pl)*Q*(N/(N+l)). The time is the wait time 

for the update at the slave node and the transmission time 

for the update. Therefore, we have 

(1-P1) * (Q*N/ (N+1) * (Ws+T) 
The fifth and sixth events involve local and nonlocal 

master update requests. The probability of a local master 

update request occurring is the probability that an update 

occurs to a master and is local, Pl*Q*(l/(N+l)). The time 

involved is the wait time at the master to do the update, 

Wm. Therefore, the response time contribution for a local 

master update is 
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Similarly, the probability of a nonlocal master update 

request is (1-Pl)*Q*(l/(N+l)). The time is the wait time 

for the update at the master node and the transmission time 

for the update. Therefore, we have 

(1-Pl)*(Q*l/(N+l)*(Wm+T) 

- .  
- -. - .  . 
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. - - Cp nonlocal ddr retrieval requests at the master. The 

probability of the local ddr retrieval request occurring at 

the master is P*Pl*l/(N+l). The time involved to perform 

this action is the wait time at the master node, Wm. 

If one of the ddr defining relations is not local (with 

probability Pd) we must send the portion of the local 

defining relation to the nonlocal defining relation's node, 

perform the update computation at that node, and send the 

resulting update file back to the originating node. The 

needed computation and resulting number of tuples 

transmitted, depends on the ddr support method used. 

Therefore, we will let the number of tuples transmitted be 

TI and will illustrate what TI will be for each method in 

the individual ddr support sections that follow. This 

gives us, then 

Pl*P/ (N+1) * (Wm+Pd* (Ws+2*T*T1 (7 

Similarly, for nonlocal master retrievals, the 

analysis is the same except that a request must be sent to 

the node where the ddr resides and the ddr must be sent 
- T ! L - : > + - ~ , ~ !  , , < - 
.;,c;j-<- 8 "  7 I. AL>g $ , .,L p , L" -CII.$ .t ..,- 

'r ' - . #  



-. - -  A 

back. Since S is the average size of relations in the 

database, we .will assume that the ddr is of size S. 

Therefore, we have 

(1-Pl)*P/(N+l) * (Wm+(S+1)*T+Pd*(Ws+2*T*Tf)) (8) 

Finally, events nine and ten are for local and 

nonlocal slave ddr retrievals. The probability of a local 

retrieval occurring to a slave node is Pl*P*N/(N+l). The 

time involves waiting at the slave node for the retrieval, 

Ws, and, if a defining relation is not local, the same 

time is involved as with the master node. Therefore, we 

have 

Pl*P*N/(N+l) * (Ws+Pd*(Ws+2*T*Tf)) (9) 

The analysis is similar to the master for a nonlocal 

retrieval as applied to the slave node. Therefore, we have 

(1-P1) *P*N/ (N+1) * (Ws+Pd* (Ws+2*T*Tf ) (10) 

Combining events (1) through (10) , we have a total 

expected response time for a transaction of 

RT= Q*Wm + Ws/ (N+1) +Wm*N/ (N+1) + P*Pd* (Ws+2*T*T1 + 
P*(S+l)*T*(l-P1) + Q*(N/(N+1)*2*T*+(l-Pl)*T) 

This response time is consistent with an intuitive 

view, for as the number of nodes approaches infinity, it is 

more and more likely that requests will occur from nonlocal 

sources and, thus, the likelihood of a transmission 

approaches one. Also, increasing the number of nodes is 

likely to diminish the wait time for a particular node 
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because the work will be dispersed. Also, if the number of 

slave nodes is zero, the response time reduces to Q*Wm+Wm, 

which means that for any arrival, there is a wait at the 

node, and if the arrival is an update, there is a second 

wait for the lock. 

The rest of this section involves the particular ddr 

support methods and how the transmission time differs for 

each. .>.+: : ,-.-- 
82, ,?, 

G3:,::ir,: - ri ',. 
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In the deferred update scheme, only the retrievedYddr 

is updated. The defining relation updates are collected in 

the differential file. Since there are n ddrs and P is the 
.; F> 

4 .  I ... .v probability of a ddr retrieval, the probability of a - T f 4  

specific ddr being requested is on the average of P/n. 

Therefore, an average of Q/(P/n) or n*Q/P updates are 

collected between ddr retrievals. Because of culling, 

there may be less than n*Q/P updates involved. If the 

culling factor is k, the average number of tuples 

transmitted will be 

T1 =n*Q*k/P 

The immediate actual causes any ddr retrieval to update 

all ddrs which have the same defining relations. Thus, if 

a defining relation is not stored with the ddr, the 

differential file update table must be transmitted to the 

ddr to be used in the update. Since no culling occurs, 

these files would have 'an average of Q/P tuples. Also, 
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since all ddrs are updated when one is retrieved, this 

transmission may occur several times. We will assume that 

no more than one ddr defining relation is not local to the 

node.. Therefore, the transmission time is 

T1 =n*Q/P 

Note that if there were no culling in the deferred- 

actual method, the transmission times are the same. 

The potential update scheme involves reconstructing 

the ddr whenever it is retrieved. Therefore, each time a 

ddr is retrieved, the entire defining relation is involved. 

If a ddr involves a nonlocal defining relation, the entire 

relation must be transmitted. Since S is based on the 

average relation size, transmission involves the request 

for the defining relation file (considered to be equivalent 

to transmitting one tuple) plus transmitting the file to 
y$?;F7-v,c: ,,A+!$,y& ;, <. .!-> ' ,: "- - -- ,;y.: ;..',-' -em.. , - # ' I  .b;p %$.'f4 , ,z, .<-$:,.'.< , ! -. .+"'- + L, q;: ,.\ 
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the requesting node. Therefore, we have 

As noted before, a variable Pu has been introduced to 

represent the factor of what percentage the average number 

of updates is to the average relation size. By varying Pu, 

P and Q, different values for S can be obtained. 

Introducing Conflict 

This research is studying the effect on performance of 

ddr support methods under specific concurrency control 
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schemes. We mustr therefore, introduce the cost of 

conflict. The purpose of this section is to consider this 

cost. We will assume that no request will conflict more 

than once. Also, this conflict eventually is resolved 

without rollback. In other wordsr no deadlock occurs. 

The first value needed is how long an average 

transaction holds a lock. In the masterhlave system, we 

must consider two lock types-- a lock held by a file at the 

master and a lock held by a file at a slave, Lm and Ls. 

Then we have 

Lm= t (obtain a lock) 
+ t(perform the update) 

Ls= t (get to master) 
+ t (obtain the lock) 
+ t (perform update) 
+ t (get back to slave) 

The average time a lock is held is 

Lt 1/C + 1/U + (1-Pl)*T/(N+l) + 2*N*T/(N+l) 
The average time an update has to wait for a lock is 

if we assume that the conflicting update arrives at a 

random point in time. 

If there are M items in the database, the probability 

that two updates vie for the same item is 
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Using Little's result which states that the average number 

of customers (in our case update requests waiting for a 

lock) is equal to the product of the arrival rate of 

customers to the system and the average time spent in the 

system, we find the average number of updates in the system 

holding a lock to be 

J=Q*A*Lt/2 

Therefore, Pw, the probability that an update has to wait 

for a lock is 

So, for any arriving update lock request at the masa--.r 

node, if we assume that a conflict occurs at most once, the 

lock requests will arrive at a rate 

L=Q+PwQ 

i.e. the update lock arrivals plus the number of updates 

that a r e  locked out and must try again. We assume that 

they will not be locked out a second time. 

Comparison of the Performance of the Three Methods 

As in the centralized model, certain parameter settings 

cause the algorithms to act in a similar manner. In a 

distributive system, transmission time is especially 

important . The three ddr support schemes differ in 

transmission time based on the number of tuples needed for 

a ddr retrieval when servicing nonlocal requests or when a 
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defining relation is not found locally. In the potential 

method, transmission time is the product of the average 

defining relation size and the time it takes to transfer 

one tuple. The immediate-actual method depends on the 

updatehetrieval arrival rate ratio and the number of ddrs. 

The deferred-actual depends on the culling factor, the 

number of ddrs and the update retrieval ratio. Blocking is 

an important parameter for both the potential and deferred- 

actual methods. The fact that these were also important 

parameters in the centralized model reinforces the 

importance of selecting the correct ddr support method 

based on a specific system usage. 

Figure 26 illustrates the case where one ddr exists, 

there is no culling and the percentage of updates to 

relation size is one half. Here, as in the centralized 

case, the immediate-actual and deferred-actual methods1 

performance are equal. If overhead was not zero, the 

deferred-actual method's performance would be slightly 

worse. No advantage is gained from the deferred-actual 

method over the immediate-actual due to no culling and a 

block size of one. The potential method's response time is 

poorer as the update to relation size ratio decreases. 

This is consistent with the centralized model. 

Figure 27 is the case where the number of ddrs is 

varied and the updatehelation size ratio is 1. As in the 
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r a t i o  (u/R).  

A .  Immediate, d e f e r r e d  
ddr=fi 

B. Immediate, d e f e r r e d  
ddr=3 

C. Immediate, d e f e r r e d  
ddr=1 

P o t e n t i a l  

10 20 
A r r i v a l  Rate ' 

30 

F igure .  27. ~ a s t e r / s l g v e  r v a r y  t h e  number of  dd r s  . 
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centralized model, the &&mediate-actual and def erred-actual 

methods are equal in their performance with poorer response 

time as the number of ddrs increases. Here again, no 

advantage is reflected in the def erred-actual method 

because no culling is done and the block size is one. 

Also, :there is no overhead reflected in this analysis. 

-,, .-- . C  - 
- 1 -2. 1 &' 

g .  Figure 28 illustrates the results of varying the 
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culling. The immediate-actual and deferred-actual methods 

are equal in performance due to the update to relation size 

setting of one. The deferred-actual response time gets 

improves as the percent of culling increases. 

Figure 29 illustrates the results of varying the 

block size. Response time for the deferred-actual and 

potential methods improves as the block size increases. 

pistributed Concurrencv Control 

In the distributed control system, each node resolves 

its own conflicts. Thus all nodes are essentially the same 

and are similar to the master node presented in section A. 

The only difference is that nodes do not get all lock 

requests, but only those local to the node. Figure 30 

shows the individual node flow. Updates and retrievals for 

files at other nodes are sent to those nodes immediately. 

Arrivals at the node consists of local requests from a 

node's terminals and requests from other nodes for 

retrievals and updates to its local files. 



A .  Potential 
B. Immediate, 

Deferred8 k=O 
C. Deferred:' k=.5 
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Figure 28. Master/slaver vary culling ( k ) .  
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Figure 29. ~aster/slave r vary the block size (b) i'?.jl: 
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Acknowledgements, in the case of updates, and the ddrs in 

the case of retrievals are sent back to the requesting node 

or local terminal. Figures 31, 32 and 33 show the internal 

node model for each ddr support method. As in the case of 

master/slave, a normalizing factor of 1/D has been 

introduced where D=P+L+Q. 

The analysis for the distributed concurrency control 

follows the same arguments as those for the master node in 

the mastedslave concurrency control system with the 

exception that each node in the distributed system handles 

locks to only local files. With respect to conflict, the 

average time a lock is held is 

Lt =l/C + 1/U + (1-P1) *T 

and the probability of a lock request arrival is 

where 

and Pw=Q*A*Lt/ (2*M) . 
Based on the discussion for the master node of the 

mastedslave system, the following values for the wait time 

W are shown below for each ddr support scheme. Detailed 

calculations can be found in Appendix 4a, 4b, and 4c. 
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nonlocal updates nonlocal updates 
& retrievals & retrievals 

local local A ,  
requests requests 

reauests requests 

lock received 

Figure 30. Internal information flow for distributed 
control. 

Figure 31. Distributed model for deferred-actual method. 



Figure 32. Dis t r i bu t ed  model f o r  imrnediate-actual method. 

Figure  33. Dis t r i bu t ed  model f o r  p o t e n t i a l  method. 



Deferred-actual ddr support method: 

Q * SUM1 Q L 
w = ( ----.--...---- + ------ + -----. 1 

D*U D*U D*C 

where SUMl =(kl+k2+...+kn)/b and 

~~~2=(kl**2/pl+k2**2/p2+...+kn**2/pn)/b**2 

The immediate-actual ddr support method: 
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The potential ddr support method: 

Response Time for a Transaction 

Because the distributed control method resolves 

updates at each node and does not have to depend on one 

node for this purpose, the analysis of the response time 

for a transaction is less complex than the masterhlave 

sys tem. Once again, probabilities Pd and 1-P1 for a 

nonlocal defining relation and nonlocal updates, 

respectively, apply. The response time for a transaction 

is determined by finding the probability of an event 

happening and the wait time and transmission time involved. 

One type of transmission which may occur is a request 

for a local update. The probability of a local update 

occurring is the product of the probability of an update 

occurring, Q, and the probability that it is local, P1. 

The transaction must wait at the node twice, once for the 



lock and once for the update. Therefore, we have 

Q*P1*2*W (11 

A second type of transaction which might occur is a 

request for a nonlocal update. This involves the 

probability that the arrival is an update, Q, and is 

nonlocal, P l .  The wait time involves the wait for the 

lock and the update, and the transmission time to and from 

the requested node. Therefore, we have 

Q* (1-P1) * (2*W+2*T) (12) 

A third type of transaction is a local retrieval. 

This involves the probability that an arrival is a ddr 

retrieval, P, and the probability that it is local, P1. 

The time involved is the wait time at the node to do the 

retrieval, W. If one of the defining relations in 

not local (with probability Pd) we must send either a 

message or the portion of the local defining relation to 

the nonlocal defining relation, and back. The needed 

computation and resulting number of tuples transmitted, 

depends on the ddr support method. Therefore, we will let 

the number of tuples transmitted be T1. The value of T1 

under each ddr support.method is the same as T1 under the 

masterhlave system. This gives us then 

P*P1*(W+Pd*(W+2*T*Tf)) (13) 

Finally, a transaction might be a request for a 

nonlocal ddr retrieval. The probability of a retrieval 
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being nonlocal is 1 P l  . Since the ddr retrieval is 

nonlocal, a request for the ddr must be sent and the ddr 

must be returned. The average size relation in the 

database is S, and, therefore, the transmission to get the 

ddr is (S+l)*T. The analysis is the same as the local ddr 

retrieval in the case of a nonlocal defining relation. 

Therefore, we have 

P* (1-P1) * (W+ (S+1) *T+Pd* (W+2*T*Tf ) (14) 

Combining events (11) through (141, we have a total 

response time of 

Note that if there were only one node, the last two 

terms would be zero because Pd and (1-P1) are zero. This 

would leave Q*W+W as the response time. Here, as in the 

masterhlave case, this is correct because an arrival would 

cause a wait at the node, and if the arrival were an 

update, an additional wait for a lock would be needed. 

Comparison of the Performance of the Three ddr Support 
Methods Under Distributed Control 

As in the masterhlave system, the transmission is a 

large factor influencing the performance of the algorithm. 

Here again, the transmission time is based on how many 

tuples are being transfered. Therefore, this analysis 
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depends heavily on the update/retrieval ratio and the 

culling and blocking factor. Figures 34 through 37 show 

the special cases discussed previously which make the 

algorithms behave in similar manners. As these figures 

indicate, when the number of ddrs is one and the update to 

retrieval ratio is one, the immediate and potential methods 

perform better than the deferred method. As the culling 

and block size increases and the update to defining 

relation size decreases, the deferred method performs 

significantly better. 

.L- Svnchronized Nana~ement 

In synchronized management, nodes form a ring in order 

to synchronize the updates. All records are appended to a 

token which continuously cycles the ring. When a token 

arrives at a node, the updates relating to that node are 

taken off the.token and updates initiated by that node are 

appended. Therefore, updates are arriving in bulk at each 

node. This section begins by analyzing a simplified 

version of this algorithm and then proceeds to a more 

realistic representation of the algorithm. 

A Simplified Analysis 

In this analysis, we make the simplifying assumption 

that all retrieval and update arrivals are bulk, with all 

updates performed before retrievals are done. Note that 
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t h i s  is no l o n g e r  an  M / G / 1  model because  t h e  a r r i v a l s  a r e  

Also ,  we assume t h a t  t h e  amount of time it 

t o  remove i ts u p d a t e s / r e t r i e v a l s  from t h e  

n o t  Markov. 

takes a  node 

t o k e n  and append n o n l o c a l  u p d a t e s h e t r i e v a l s  t o  t h e  token  

and send  it t o  t h e  n e x t  node i n  t h e  r i n g  is  n e g l i g i b l e .  

The ave rage  w a i t  time f o r  t h e  token  t o  r e a c h  t h e  

a p p r o p r i a t e  node is one h a l f  t h e  time it t a k e s  t o  go around 

t h e  r i n g .  L e t  N be  t h e  number of nodes i n  t h e  r i n g  and T 

b e  t h e  t r a n s m i s s i o n  time from node 

approximate  w a i t  time f o r  t h e  token  is 

(N*T) /2 

node, t h e n  t h e  

If  t h e  a v e r a g e  upda te  a r r i v a l  r a t e  is Q*A and t h e  ave rage  

r e t r i e v a l  a r r i v a l  r a t e  is P*A, t h e n  t h e  a v e r a g e  number of 

u p d a t e s  which a r r i v e  w i t h  t h e  token  is 

(Q*A*N*T) /2 

and t h e  a v e r a g e  number of ddr  r e t r i e v a l s  which a r r i v e  wi th  

t h e  t o k e n  is 

S i n c e  p r o c e s s i n g  o c c u r s  u n t i l  t h e  token  a r r i v e s ,  

a v e r a g e  wait time f o r  an  update  is one h a l f  t h e  t i m e  

t a k e s  t o  s e r v i c e  a l l  u p d a t e s  p l u s  t h e  a v e r a g e  time 

t h e  

around 

t h e  r i n g ,  i.e. 

(1/2)*(Q*A*N*T/(U*2)) + N*T/2 = (N*T/2)+(Q*W(2*U)+l) 



-. - -  A 

Similarly, average response time for retrieval is the time 

it takes to service all updates plus the time it takes to 

service half of the retrievals. In the immediate-actual 

method, the average service time for a retrieval involves 

updating all ddrs when one ddr is retrieved, 

The deferred-actual updates only the ddr to be retrieved 

and uses culling as discussed in Chapter 3. Therefore, we 

have 

where SUMl= (kl+k2+. . .+kn) /b. 
The potential method must totally reconstruct the ddr 

when it is retrieved. Therefore we have 

A More Realistic Analysis of the Synchronized Method 

The previous analysis for the synchronized method was 

unnecessarily restrictive with regard to retrievals. 

Specifically, there is no reason to delay all retrievals 

until the token arrives. The analysis in this section will 

remove this restriction and allow retrievals to arrive in a 



Markov distribution. 

- ---- - 
The algorithm can then be analyzed 

using the M/G/l model and, thus, produce results which can 

be compared with the other two methods which were analyzed 

using the 

synchronized 

M/G/l model. It is unlikely that 

algorithm could perform on a par with 

the 

the 

other two algorithms using the analysis just completed. 

Figure 38 shows the individual node flow and figures 

39, 40 and 41 show the M/G/l model for each node under the 

three ddr support schemes. Local retrievals are serviced 

locally while 

appropriate node. 

are 

the 

nonlocal retrievals are sent to the 

Updates issued locally for local files 

held until the token arrives at which time it enters 

execution queue as a bulk arrival with 

transactions files at this node. 

the other 

that update 

issued locally for files at other nodes are sent 

appropriate node and held there for the token. When 

token arrives, these updates are performed just as 

they had been issued locally. 

Let Q*A be the rate at which updates arrive 

system and P*A be the arrival rate for retrievals. 

Updates 

to the 

the 

though 

the to 

Since 

N*T/2 is the average wait for the token to get around the 

ring, we can compute the average number of update requests 

that arrive with the token 

Q*A*N*T/ 2 



nonlocal updates nonlocal retrieval 
. +. reauests- + 
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' local 
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I 

Figure 38. . Internal information flow for synchronized 

token & retrieval 

Figure 39. M/G/I model for deferred actual in 
synchronized control. 

t- & 

trievals' 



Figure 4.0. M/G/~ model for immediate-actual in 
synchronized dontrol. 

- 

Fi re 41. M/G/~ model for potential method in 
sync 8" ronized control. 
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The token arrival rate is 2/(N*T). Thus the total arrival 

rate at each node is 

P*A+2/ (N*T) 

As in the masterhlave and distributed control, 1/D is a 

normalizing factor. The average wait time for each ddr 

support method is shown below. Details are in appendix 5. 

Deferred-actual ddr support method: 

where SUMl= (kl+k2+. . .+kn) /b and 
SUM21 (kl**2/pl+k2**2/p2+. . .+kn**2/pn) /b**2 . 

Immediate-actual ddr support method: 

2*R*U + N*T*A*Q*n 
w 'a o ~ - o l l ~ - - ~ - o ~ ~ ~ - ~ o m o - -  

D*N*T*U 



Potential ddr support method: 

Response Time for A Transaction 

In the synchronized control, updates are serialized by 

issuing tickets from a token that is sent around the ring. 

No conflicts can occur because of this serialization. The 

ddr retrieval arrivals are Markov. 

In order to determine the response time for a 

transaction, we determine the probability of an event 

occurring and the wait time and transmission time involved. 

The response time for a transaction in the synchronized 

system can be divided into three distinct events. One 

event is an update. There is no distinction between a 

local and nonlocal updte in the synchronized system due to 

the fact that all must wait for the token and, thus, the 

transmission has occurred by passing the token.   his has 
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been i n c o r p o r a t e d  i n  t h e  s e r v i c e  time. 

u p d a t e  t r a n s a c t i o n  w e  have 

T h e r e f o r e ,  

A second t r a n s a c t i o n  t y p e  is a  l o c a l  r e t r i e v a l .  

a s  i n  t h e  p r e v i o u s  s e c t i o n s ,  a  d e f i n i n g  r e l a t i o n  

s t o r e d  a t  node o t h e r  t h a n  t h e  node where t h e  

s t o r e d .  

and t h e  

f o r  an  

Here, 

may be  

ddr  i s  

T h e r e f o r e ,  we must i n c l u d e  t h i s  p r o b a b i l i t y ,  Pd, 

w a i t  and t r a n s m i s s i o n  time i n v o l v e d .  A s  i n  t h e  

p r e v i o u s  sect  i o n s ,  

t r a n s m i s s i o n  t o  and 

dependen t  on t h e  ddr  s u p p o r t  method used.  

P* (P1  (W+Pd* (W+Q*T*T1 

t r a n s a c t i o n  t y p e  i n v o l v e s  The l a s t  

r e t r i e v a l .  T h i s  

e x c e p t  t h a t  

c a s e  

we i n t r o d u c e  a  term TI 

from t h e  n o n l o c a l  node. 

is s i m i l a r  t o  

t h e  n o n l o c a l  ddr  must 

r e t r i e v e d .  W e  u s e  S ,  t h e  a v e r a g e  

d e t e r m i n e  t h i s .  W e  have t h e n  

a s  t h e  

T h i s  is 

W e  have ,  t h e n  

(16)  

t h e  

be  

n o n l o c a l  

p r e v i o u s  

r e q u e s t e d  

c a s e  

and 

r e l a t i o n  s i z e ,  t o  

(17)  

Combining (15)  t h r o u g h  (171,  we f i n d  t h a t  t h e  r e s p o n s e  

time is 

RT=Q*W+P* (W+Pd* (W+2*T*T' ) + ( (1-P1) * (S+1) *TI 1 )  

The v a l u e  of T1  f o r  each  ddr  s u p p o r t  method is t h e  same a s  

t h a t  d i s c u s s e d  under  t h e  m a s t e r h l a v e  system.  
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Comparison of -the Three ddr Support Methods 

in Synchronized Concurrency Control 

The special cases discussed in sections A and B are 

shown in Figures 42 through 45. These results are 

consistent with those in the other sections. 

L Comparison pf the Three Concurrencv Control Methods 

Performance of the deferred-actual ddr support method 

is shown with respect to the three concurrency schemes in 

Figure 46. Both the synchronized and distributed 

control schemes have better performance than 

master/slave system. In the synchronized method, 

response time is better or as good as the distributed 

concurrenty control scheme as long as the system 

utilization is low. As the arrival rate increases, 

response time degrades quickly for the synchronized control 

while the distributed control does not suffer as greatly 
p*$*&-~~p;~~~~;$$;~+~g;$~.~~y-yJy~$;,$<$$&gg&;$g~$$if;~&%~ I&., ?~~$!$:p&p)~igg~7J~ -.t,:<:r&:>.~-y:.~~:8 \ 7 * . * . ,  2 

and has ,$rSgenera1ly lower response time than the 

synchronized method after this point. 

Previous research into these methods has predicted 

that the masterhlave should perform the best. In all 

cases, this was not expected nor did it seem reasonable. 

However, most of this prior research did 'not consider 

conflicts. This must be considered if the synchronized 

method is to be at all competitive. It is the "no 

rollback" aspect of the synchronized method that makes it 



A. Potentials u/R=.~ 
B. Potential1 u/R=.~ 
C. Potential: u/R=~ 

Immediate, Deferred 

Arrival Rate 

Figure 42. Synchronized: vary update to relation size 
ratio (u/R). 
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Figure 4-3. Synchronized: vary the number of ddrs. 
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Deferred: k=O 
C. Deferred: k=.5 
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Figure 44. Synchronized: vary cul l ing (k) .  

Figure 45. Synchronized: vary the block s ize  (b). 
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Figure 4.6. Performance of deferred-actual in three 
concurrency,schemes . 
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appea l ing .  I f  it is compared t o  systems which have no 

c o n f l i c t  and t h e r e f o r e  no r o l l b a c k ,  it w i l l  no t  compare 

favorab ly .  Therefore ,  i n  t h i s  r e sea rch ,  t h e  c o s t  of 

c o n f l i c t s  was determined,  both  i n  inc reased  a r r i v a l  r a t e  

f o r  r eques t ing  l o c k s  wi th  c o n f l i c t  and i n  prov id ing  an 

a d d i t i o n a l  s e r v i c e  s t a g e  f o r  g r a n t i n g  t h e  lock.  The 

a n a l y s i s  r e f l e c t s  t h i s  e x t r a  load  on t h e  system. 



CHAPTER V 

CONCLUSIONS 

This chapter gives an overview of what was learned 

from this research. We will begin by discussing 

conclusions regarding the ddr support methods and then look 

at the concurrency performance. The methodology is 

discussed and possibilities for future work are noted. 

Ad Discussion qf the Three DDR Sumort Methods 

Three methods have been presented for the support of 

ddrs. The potential method totally reconstructs the ddr 

each time it is needed. The immediate actual method 

updates all ddrs defined by the same defining relation 

whenever one ddr is retrieved. The deferred actual keeps 

tuples in a differential file, culling whenever the same 

tuple is used more than once to update a relation. 

Because database performance is highly dependent upon 

patterns of usage, there is no one conclusion that can be 

gleaned from the analysis performed here. In order to set 

boundaries, and observe any anomalies that might be 

present, we first measured the performance of each support 

method for a set of special cases. These included 



parameter  

ex t remely  

s e t t i n g s  
-. 

t h a t  caused one method t o  

poor o r  good performance. 

t h a t  c ause  s e v e r a l  

i d e n t i c a l  manner. 

t h e  methods 

have an 

W e  a l s o  chose  c a s e s  

perform i n  an 

W e  found t h a t ,  by l i m i t i n g  t h e  number of 

d d r s  t o  one,  making t h e  r a t i o  of t h e  update  t o  d e f i n i n g  

r e l a t i o n  s i z e  and t h e  block s i z e  equa l  t o  one,  t h e  

immediate-actual  and t h e  p o t e n t i a l  method, r e s p e c t i v e l y ,  

ha s  t h e  same performance a s  t h e  d e f e r r e d  method i f  no 

overhead and c u l l i n g  are incu r r ed .  

t h e s e  cases do n o t  seem t o  be  t h e  norm. I n t u i t i v e l y ,  

For  i n s t a n c e ,  examining t h e  case of t h e  r a t i o  of 

r e l a t i o n  t o  d e f i n i n g  r e l a t i o n  s i z e ,  s e l e c t i o n s ,  p r o j e c t i o n s  

d e r i v e d  

and t h e  se t  o p e r a t i o n s  union,  i n t e r s e c t i o n  and 

d i f f e r e n c e  would y i e l d  a ddr  w i t h  t h e  same o r  a few number 

of  t u p l e s / a t t r  i b u t e s .  I n  t h e  c a s e  of j o i n ,  because  we 

r e q u i r e  t h a t  a j o i n  be done on ly  on t h e  key, t h e  d e r i v e d  

d a t a  is,  a g a i n ,  

d e f i n i n g  r e l a t i o n s .  

t h a n  t h e i r  d e f i n i n g  

no l a r g e r  t h a n  t h e  number of t u p l e s  i n  it 

Hence, d d r s  a r e  i n  g e n e r a l  smaller 

r e l a t i o n s .  The c a s e  t h a t  each 

r e l a t i o n  

example, 

d e f i n e s  a t  most one ddr  is very  l i m i t i n g .  For  

d e f i n i n g  r e l a t i o n ,  STUDENT- one suppose  

ROSTER(SN0, SNAME ,CLASS ,GPA) , 
r e l a t i o n s  might  be needed, 

e x i s t s .  S e v e r a l  d e r i v e d  

such a s ,  s e l e c t i o n  by c l a s s ,  

s e l e c t i o n  by GPA range,  and p r o j e c t i o n  on SNO and SNAME. 



Although these special cases may not be the norm, they 

were considered in order to determine the bounds on 

relative performance. The potential method performs poorly 

as the update to relation size ratio decreases. Both the 

deferred-actual and potential methods are sensitive to 

block size while the actual methods response time increased 

as the number of ddrs increased. The deferred-actual 

method was also sensitive to culling and overhead. In 

general, no one method performed the best in all cases. 

Different circumstances causes each method to perform 

differently. 

In general, it was found that the deferred-actual 

method performs very well under what we consider to be 

normal conditions. Thus, this research has made a case for 

more study of the actual methods. This result is in 

contrast to the claims of others in that it supports the 

use of the actual method in some cases. 

The Three Concurrencv Methods 

The ddrs' support scheme performance was measured in 

three concurrency methods in the distributive database 

environment. It was' found that, as suspected, the 

masterhlave and distributive control performances were 

sensitive to lock conflicts, while the synchronized method 

was more sensitive to transmission times between nodes. 



In all of the systems, arrival rates were adjusted to 

consider arrivals generated by the system, as well as from 

external sources. For instance, the arrival rate at the 

master node in the masterhlave system was adjusted to 

reflect lock requests from all nodes and requests generated 

by conflicts. Thus, the model defined here is more 

realistic that those chosen by other researchers. For 

this reason, intuitive observations, such a s  the 

distributive control should perform better than the master- 

slave system, were supported. This has not been the case 

in previous research, but in these efforts, critera such as 

conflicts and internally generated arrivals were not 

considered. 

L The Methodoloax 

The major contribution of this dissertation is the 

development of a methodology through which database 

algorithms may be analyzed. The specific algorithms looked 

at here are update schemes for dynamically derived 

relations. 

This methodology has proven to be an important tool in 

modelling the specific update schemes as well as 

concurrency control in distributive database environments. 

It makes use of the M/Hr/l model which allows parallel 

stages within the service facility. This is significant in 



t h a t  d i f f e r e n t  classes of customers ( i n  t h i s  case, updates  

and r e t r i e v a l s )  can be analyzed. S i m i l a r  a t t e m p t s  t o  do 

t h i s  i n  t h e  M / M / l  model proved very  r e s t r i c t i v e .  

A key f a c t o r  i n  t h e  e f f i c a c y  of t h e  models developed 

h e r e  is t h e i r  use  of t h e  h i s t o r y  of how d a t a  is employed i n  

t h e  da tabase .  S e v e r a l  parameters  a r e  inc luded  s o  t h a t  t h e  

model can be used t o  ana lyze  a c t u a l  systems. 

The methodology is f l e x i b l e  and uses  concepts  which 

a r e  i n t u i t i v e l y  obvious, whi le  having a sound, t h e o r e t i c a l  

base .  This  a l l o w s  t h e  a n a l y s i s  t o  be done i n  a 

s t r a i g h t f o r w a r d  f a sh ion .  

L FuturemLk 

The r e sea rch  presen ted  i n  t h i s  d i s s e r t a t i o n  h a s  

i n d i c a t e d  s e v e r a l  a r e a s  f o r  f u t u r e  work. 

F i r s t ,  t h e  a n a l y s i s  was done wi th  t h e  r e l a t i o n a l  

model. Fu r the r  r e sea rch  might be warranted t o  s e e  how 

a p p r o p r i a t e  t h e  methods developed h e r e  a r e  t o  t h e  a n a l y s i s  

of da tabase  problems i n  o t h e r  models. 

Second, d d r s  de f ined  by more than  two d e f i n i n g  

r e l a t i o n s  and d d r s  d e f i n i n g  d d r s  should  be examined. I n  

a d d i t i o n ,  a combination of two of t h e  methods might be an 

a r e a  of i n t e r e s t .  For example, a ddr may e x i s t  i n  a c t u a l  

form u n t i l  it becomes t o o  l a r g e  t o  manage and, a t  t h a t  

time, reduces  t o  p o t e n t i a l  form. 



This research examijled - only  p a r t i t i o n e d  d i s t r i b u t e d  

databases .  A t h i r d  area might be t o  study performance i n  a 

p a r t i a l l y  or t o t a l l y  r e p l i c a t e d  database.  Rollback and 

noninstantaneous token handling is a fourth area t h a t  might 

be explored. 
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APPENDIX 1 

USING THE HISTORY OF DATABASE RETRIEVALS AND UPDATES 

TO DETERMINE THE AVERAGE SERVICE TIME 

Chapter 111, section B, presented results which 

illustrated that, when given the frequency of update and 

retrieval calls,~probabilities can be computed which can be 

used in representing the average retrieval and update 

times. The details of the calculations are presented here. 

Figure 8 is the state transition diagram which 

represents m times as many update arrivals as ddr retrieval 

arrivals, culling 

the probabilities 

and in£ inite service 

being states 

rates. Computing 

have 



Note that  P(So) +P (S1)  +. . .=lo Theref ore ,  so lv ing  for  P(So) , 
w e  have 

The expected number of customers, c ,  is  



m 

which is the ratio of the update arrival rate the 

retrieval arrival rate. Therefore, by determining the 

frequency of update and retrieval calls, we can determine 

how many updates occur between ddr retrievals. 



APPENDIX 2 

THE ddr SUPPORT METHODS I N  A CENTRAL DATABASE 

This  appendix p r e s e n t s  d e t a i l s  of t h e  a n a l y s i s  

p re sen ted  i n  Chapter 111 which d e a l t  wi th  t h e  c e n t r a l  

da t abase  environment. W e  w i l l  f i r s t  s i m p l i f y  t h e  M / H r / l  

formulas and then  proceed t o  t h e  d e r i v a t i o n  of t h e  w a i t  

time f o r  each ddr suppor t  method. 

Chapter 111, s e c t i o n  C,  p r e sen ted  formulas f o r  t h e  

M / H r / l  queueing model. I n  t h i s  s e c t i o n  we w i l l  s i m p l i f y  

t h e  queue l e n g t h  and w a i t  time formulas s o  t h a t  t hey  can be 

expressed terms of t h e  average s e r v i c e  t i m e ,  X ,  t h e  

second moment of t h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n ,  X 2 , a n d  

t h e  a r r i v a l  rate, A. W e  are given t h a t  

q  = R + ' ( ~ * * 2  * (  (l+C2/(2*(1-R) 1 )  

where R=A*X and C2=(X2/X**2)-1 

S u b s t i t u t i n g ,  we have 

q = A*X + (A*X)**2 * ((l+((X2/X**2)-1)/(2*(l-A*XII 

= A*X + (((A**2)*X2)/(2*(1-A*X)) 
The a n a l y s i s  i n  t h i s  d i s s e r t a t i o n  w i l l  u se  t h i s  formula t o  

f i n d  t h e  queue l eng th .  



- 
2a. The ~mmediate-~ctual ddr S u ~ ~ o r t  in a Central Database 

Chapter 111, section D, presented the wait time for 

the immediate-actual ddr support method in a central 

database environment. Details of the calculations are 

presented here. 

The service time 

The second moment of the pdf 

The expected queue length 



The expected wait time 



2 h ,  TA! Deferred-Actual ddr in a central Patabase 

Chapter 111, section, E presented the wait time for the 

deferred-actual ddr support method in a central database 

environment. The details of the calculation is presented 

here, 

The service time: 



- Q * SUMl 
9 ----------- Q 

+ ------ 
u U 

where SUMl =(kl+k2+.  . .+kn) /b 

The second moment of t h e  pdf 

P l  ( k l * Q )  **2 ~2 (k2*Q) * *2 
x2=2* ( ---- * ----I- ----I + ------- * ----------- + m e .  

1 (pl*U*b) **2 1 (p2*U*b) **2 

The queue l e n g t h  

Q * SUMl 
q =A *(---- -------- Q 

+ ----I)- ) 
U u 



The expected wait time 



where SUM1 =(kl+k2+. . .+kn) /b and 
SUM2 = (kl* *2/pl+k2* *2/p2+. . .+kn**2/pn) /b**2 
26 --, Potential ddr Sup~ort in a Central Patabase 

Chapter 111, section F, presented the wait time for the 

potential ddr support method in a central environment. The 

details of the calculations are presented here. 

The service time 



- 

The second moment of t h e  pdf 

The queue l e n g t h  



The wait time 



APPENDIX 3 

THE MASTERISLAVE DISTRIBUTIVE DATABASE CASE 

This appendix shows details of the calculations for 

the service time, X, the second moment of the pdf, X2 and 

the queue length in a masterhlave distributive database. 

The M/Hr/l queue requires that the sum of the 

probabilities of proceeding to each stage be equal to one. 

We must, therefore, normalize the probabilities with 

respect to the master node. This is because the master 

node is receiving all lock requests and, therefore, will be 

receiving n*Q requests. The normalizing factor is thus 

D=Pm+Qm+L 

where L, the lock requests is n*Q+Pw*Q and Pw is the 

probability of a conflict. 

3a. TAg Deferred-Actual Method 

Chapter IV, section A presented the wait time for the 

deferred-actual ddr support method in a masterhlave 

system. The details of that calculation are presented here. 



MASTER NODE 

The service time: 

Pml kml *Qm ~ m 2  km2 *Qm x= --0- * -.-----. + -----0- * -------. + 0 . .  

D pml*U*b D pm2*U*b 

where SUMlm=(kml+km2+. ..+kmn)/b 

The second moment of the pdf 

pmn (kmn*Qm) * *2 an 1 L 1 
+ ----- * -.------- + ----- * ----- + ----- * ----- I 

D (pmn*U*b) **2 D U* *2 D C**2 

Qm* *2 L 
+ ------- + ----.- I 

D*U**2 D*C**2 



The q u e u e  l e n g t h  

Qm * SUMlm Qm L 
q =Am* (---------.-- + ---..- + ------ 1 

D*U D*U D*C 

Qm * SUMlm Qm L 
=Am* (--- --.---.-- + ----ow + .----- 

D*U D*U D*C 



-. 

The expected wait time 

Qm * SUMlm Qm L 
Wm =A* (----.-I.I-.- + ...I-I + -.---. 

D*U D*U D*C 

Qm* *2*SUM2m Qm L 
Am*( ------.--.-I. + -.-----.- + --..I-.. ) ) / A  

D*U**2 D*U**2 D*C**2 
+ ---- I ----- IL-I I -- I -- I~-I I . -~I~.oI- I---- I - . . . - ----  

Qm*SUMlm + Qm + L 
l-Am* (.I--.--- -.-.-I .-.-- 1 

D*U D*U D*C 

Qm * SUMlm Qm L 
= (-.----I-.-.- + ---I-. + ----.. 1 

D*U D*U D*C 

where SUMlm= (kml+km2+. . .+kmn) /b and 
SUM2m= (kml**2/pml+km2**2/pm2+. . .+kmn**2/pmn) /b**2 
SLAVE NODE 

The service time: 



Qs * SUMls - Qs - .-w----o..- + -111--- 

u u 

where SUMls= (ksl+ks2+.  . .+ksn) /b 

The second moment of  the  pdf 

psn (ksn*Qs) **2 Qs 1 
+ --.-- * 11-1101-0 + -o--- * 1.--- 1 

1 (psn*U*b) **2 1 U**2 

where SuM2s= (ksl**2/psl+ks2**2/ps2+. . .+ksn**2/psn) /b**2 

The queue length  

Qs * SUMls Qs 
q =As* (-----.------ + -.---- 1 

U u 



Qs * SUMls QS 
=AS*(.-----..---- + -.---- 

u U 

The expected wait time 

Qs * SUMls 
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Qs 
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u U 
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Q s  * S U M l s  0s 

where S U M l s =  ( k s l + k s 2 + .  . . + k s n )  /b and 

Q s * * 2  * SUM2s Qs 
A s  * ( - , - ~ o ~ - - o o - - - -  + o o ~ o ~ o o ~ o o  1 

u* *2 U**2 
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Qs 
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U u 

I Cr - 1  

where S U M l s =  ( k s l + k s 2 + .  . . + k s n )  /b and 



3b. The Immediate-Actual Method 

Chapter  I V ,  s e c t i o n  A, p resen ted  t h e  w a i t  t i m e  f o r  t h e  

imrnediate-actual ddr suppor t  method i n  a m a s t e r h l a v e  

d i s t r i b u t i v e  da t abase  system. The d e t a i l s  of t h a t  

c a l c u l a t i o n  fol low.  

MASTER NODE 

The s e r v i c e  time 

The second moment of t h e  pdf 

The expected queue l e n g t h  

(Qm*n) **2 on L 
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+ I-------,-ll-DIIIIII.I-~I--------------------- 
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2* ( 1 - Am* (---------- + ------- 1 )  

D*U D*C 



(Qm*n) **2 Om L 
Am * (.----.--- + ---om- + 0---0. 1 

D*Pm*U**2 D*U**2 D*C**2 
+ ----.-o-~---.-.o.--v-I..---..-..I)-.-.--- 1 

Qm* (n+l) L 
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D*U D*C 

The expected wait time 
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1 - Am* (-------.-- + --II-..- 1 

D*U D*C 



SLAVE NODE 

The s e r v i c e  time 

The second moment o f  t h e  pdf 

The expected queue length  
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The expected  w a i t  time 
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L X h e P  otentialMethod 

Chapter IV, section A, presented the wait time for the 

potential ddr support method in a masterhlave distributive 

database environment. The details of that calculation 

follow . 
MASTER NODE 

The service time 



The second moment of t h e  pdf 

The queue length 



The wait time 
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APPENDIX 4 

THE DISTRIBUTED CONCURRENCY CONTROL CASE 

This appendix shows details of the calculations for 

the service time, second moment of the pdf and queue 

length for the distributed concurrency control database. 

The normalizing factor for the distributed control 

case involves locks for only those files local to the node, 

since the distributed control handles locking at each node, 

and the conflicting update requests. Therefore, the 

normalizing factor is 

where L is Q+PwfQ. 

4a. peferred-Actual Method 

Chapter IV, section B presented the wait time for the 

deferred-actual ddr support method in a distributed 

concurrency control system. The details of that 

calculation is presented here. 



The s e r v i c e  time: 

where SUMl= ( k l + k 2 + .  . . + k n )  /b 

The second moment o f  t h e  pdf 



where SUM2 = (kl**2/pl+k2**2/p2+. . .+kn**2/pn) /b**2 

The queue l ength  

Q * SUM1 Q L 
=A * (--I)--------- + .----- + -----I 

D*U D*U D*C 

Th-e expected wait time 

Q * SUM1 Q L 
W =A* (------I)----- + ------ + ---go- 

D*U D*U D*C 



Q * SUM1 Q L 
= (~111-100--0- + ----OD + I.---- 1 

D*U D*U D*C 

where SUMl = (kl+k2+. . .+kn) /b and 

Chapter IV, section B, presented the wait time for the 

immediate-actual ddr support method in a distributive 

concurrency database system. The details of that 

calculation follow. 

The service time 



The second moment o f  t h e  pdf 

The expected queue l e n g t h  



The expected wait time 

dc. The potential. Method 

Chapter IV, section A, presented the wait time for the 

potential ddr support method in a distributive concurrency 

database environment. The details of that calculation 

follow. 
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The s e r v i c e  time 

The second moment of the  pdf 

The queue length 



The wait time 



APPENDIX 5 

THE SYNCHRONIZED CONCURRENCY CONTROL ENVIRONMENT 

This appendix will present details of the analysis 

presented in Chapter IV, section C, regarding the 

synchronized concurrency control method in a distributive 

database. 

5a. The Deferred-Actual Nethod 

Chapter IV, section C presented the wait time for the 

deferred-actual ddr support method in a synchronized 

concurrency control system. The details of that 

calculation are presented here. 

The service time 



where SUM1= (kl+k2+. . .+kn) /b 

The second moment o f  the  pdf 

2* (2* (R*U)  **2 + N*T*A*SUM2*Q**2) 
- o - . ~ o ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ . ~ ~ . . ~ ~ ~ ~  

D*N*T*U* *2 
,$~$;~;>p-$~;;:i$;:;<:~3~j;~,&$i~.: , 

. i, -p>. . y  -. ; L =, - -&;$:Y<yt* . ,T 
4 ! : ?>. , F$$ -:c ,.!:> .2:*$J ::,:+2.:2F\::5:i.k?$.g ; 

where SUM2= (kl**2/pl+k2**2/p2+. . .+kn**2/pn) /b**2. 

The queue l eng th  



The expected wait  time 

where SUMl=(kl+k2+,,,+kn)/b and 



5b . The ~mmediate--Actual ddr S u ~ ~ o r t  Nethod 

Chapter 4 ,  s e c t i o n  C ,  presented t h e  expected w a i t  time 

f o r  t h e  immediate a c t u a l  ddr support method i n  a 

d i s t r i b u t e d  concurrency c o n t r o l  system. The d e t a i l s  o f  

t h a t  c a l c u l a t i o n  a r e  presented here .  

The s e r v i c e  r a t e  

The second moment t h e  

The queue l e n g t h  



The wait time 



5c.  h he P o t e n t i a l  Method 

Chapter I V ,  s e c t i o n  C ,  presented t h e  w a i t  time f o r  t h e  

p o t e n t i a l  ddr support method i n  a synchronized concurrency 

c o n t r o l  system. The d e t a i l s  o f  t h a t  c a l c u l a t i o n  a r e  

presented  h e r e .  

The s e r v i c e  t i m e  

The second moment o f  t h e  pdf 



T h e  q u e u e  length 

T h e  wait t i m e  
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