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ABSTRACT 

The custom integrated circuit routing problem normally requires 
partitioning into rectangular routing regions. Natural partitions 
usually result in regions that form both "channels" and "areas". This 
dissertation introduces several new channel and area routing 
algorithms and measures their performance. 

A formal description of the channel routing problem is presented 
and a relationship is established between the selection of intervals for 
each track and the number of tracks in the completed channel. This 
relationship is used as an analysis tool that leads to the development 
of two new and highly efl'ective channel routing algorithms: the 
Revised and LCP algorithms. The performance of these algorithms is 
compared against the Dogleg, Greedy, and several area routing 
algorithms over sets of randomly generated channels. The results 
indicate performance increases ranging from 2. 74 to 34 times, 
depending on the characteristics of the channel 

In area routing, a new Degree of Freedom(DOF) based algorithm is 
developed that is straightforward to implement, is extensible to 
multipoint nets and reports if a path does not exist to complete the 
net. The quality of area routing algorithms is measured by the 
difficulty of the areas that can be successfully routed over sets of 
randomly generated areas. An extended definition of Manhattan Area 
Measure (MAM) is introduced as a measure of the difficulty of 
completing the wiring for areas with multipoint nets. 

The results show that the DOF algorithm has higher completion 
. rates than the Lee algorithm. This di.ff erence is greatest in areas with 

high aspect ratios. A new measure of the difficulty of an area is 
developed that places upper bounds on the performance of area 
routing algorithms. In areas with low aspect ratios,. the drop in 
algorithm completion rates is closely related to this upper bound. 
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CHAPTER 1 

Introduction 

With the advent of Very Large Scale Integrated (VLSI) circuits, the 

number of devices that can be placed on a chip is quickly exceeding 

the ability of human designers to interconnect them. The 

interconnection of elements of the circuit is called routing. For large 

circuits, the routing can easily exceed 30% of the entire design time. 

This time leads designers to forego any late changes to the design, for 

fear of having to reconnect the new pieces . The design of adequate 

tools for integrated circuit design and routing is imperative if we 

intend to exploit the power of VLSI. 

These circuits are usually created bottom up. A designer creates 

small cells that can be combined into larger cells . A cell that does not 

use lower level cells is called a leaf cell. Figure 1.1 gives an example 

of a leaf cell: a nMOS shift register. The designer might enter the cell 

using a color graphics terminal, with each color representing a 

different layer in the fabrication proc~ss. For example, a red 

Figure 1.1 A nMOS shift register cell. 



rectangle might correspond to a polysilicon area in the fabricated 

chip. These cells are then used as components in more .complicated 

cells. 

A composite cell is created by calling lower level cells and placing 

them in the area of the current cell. Abstractions of lower level cells 

are called modules. 

This dissertation focuses on the interconnection of functional 

modules on Large Scale Integrated (LSI) and Very Large Scale 

Integrated (VLSI) circuits. An example of this problem is shown is 

Figure 1.2. 

Figure 1.2. A Custom routing wiring solution. 

2 
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At the edge of each module are points that the designer would like 

interconnected. These points are called pins . Pins are connected to 

other pins using wire . 

The input to the general interconnection (also called general 

routing) problem consists of a set of module specifications and a set 

of signal net definitions . For our purposes, a module is specified by a 

rectangular bounding box with fixed dimensions and an associated set 

of pins. Each pin specifies a fixed location along the perimeter of a 

module, where a wire should be connected. Figure 1.3 shows an 

example of the general routing problem and a possible solution. A 

signal net is defined to be a set of pins which are to be electrically 

connected by wire. A two point signal net has only two pins in the set 

while a multipoint (or multipin) net has more than two pins. The nets 

are assumed to be composed of disjoint pins. The routi:ng region is 

. ' . . 
-1--·--:--- ·: --··: :···: · . :-. ----81 ·--·------····· 

1 2 
i 3 i l 

.... ~ .. ,__--:---~~ ... -l- .... 1 ... 

~ ' i l ----··t-t·-· ··: I i : .. .. .. .. .... . 

. ) ...... ; ...... 1 .... L ..... J .... i .... L. 
i ! j i ! j ! ! 

..•.... ; .. ...... ....... j ... . . ' .... .. .. -····' ... . 
i j ~ 6 j ! 

·······r· --· · . s ····1 ·····: 
: . ! I • 

··-··-f·-· --·:·····--1·--···· '1 .... .. , .... . 
: : j I 

·····+····+· ·--·· • . .. +·. +·· .. . .......... .. 

:J:.::J:·::r:.:-i····· i .. ·i :.t:·:1~-· .. _--!~ . ••. :~:.r· 
: : : I : : : : f: I: ; ; : : ; ; : : 

Figure 1.3. General routing problem. 

SIGNAL 
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defined to be the area available for routing the wires. The routing 

region is gridded, with all pins and wires aligned on this grid. We will 

assume there are only two layers available for wires, typically 

polysilicon and metal. The two layers can be electrically connected 

using a structure called a via. For reasons that will be explained in 

Chapter 3, we will assume that one layer always runs horizontally and 

the other always runs vertically. The net ~2,7,Bj is a multipoint net, 

while the others are two point nets. Note that wires are not permitted 

to pass over any module. 

Layout organizations that allow the designer to specify both the 

size and placement of the modules are called custom layouts. 

Gate arrays are another popular layout organization. In gate arrays, 

the only leaf level cells are logic gates (such as 2 input NAND gates). 

The cells are organized as a fixed number of rows with a certain 

number of gates per row. The rows are always separated by a constant 

sized routing region called a channel. Figure 1.4 illustrates the gate 

array organization. 

Routing Channel 

I I I I 
Routing Channel 

I I I I I 

Figure 1.4. Gate array layout organization. 
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To implement a gate array style layout, a designer gives the gate 

array producers a circuit diagram. They, in turn, map gates in the 

circuit to gates on the chip and specify the wiring necessary to 

9onnect those gates on the chip. The advantage of gate arrays is that, 

for the most part, the translation from circuit diagrams to final wiring 

can be automated. Also gate arrays have speed and cost advantages 

(in high enough volumes) over conventional TTL logic. 

The disadvantages are many. The fixed module size forces the 

designer to implement complex functions using very simple building 

blocks. It is similar to implementing an ALU using nothing but 

individual NAND gates. The fixed placement restricts the ability of the 

designer to group modules according to their function. Thus gate 

array organizations have a very poor density of active elements 

(transistors) per unit of area. This waste of active area limits chip 

complexity, increases cost (because fewer chips can be placed on a 

single wafer), decreases speed and increases power consumption. 

To utilize the full power of integrated circuit technology, circuit 

designers are turning to Computer Aided Design (CAD) . Here, 

computer scientists are becoming deeply involved in the design of 

powerful tools that will give some leverage toward solving the very 

difficult problems posed by VLSI. The interconnection problem is one 

of the more difficult of these challenges. 

As chip size increases, the complexity of the routing problem 

grows too quickly to allow the entire problem to be routed as a single 

entity. For this reason, the routing region is usually divided in 

rectangular blocks, and each block is routed separately. The 

interconnection of pins along the perimeter of rectangular blocks is 
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called the Intra region routing problem, and the characteristics and 

algorithms that can be applied to this problem is the focus of this 

dissertation. If fixed pins are located on all four sides of the region, 

the problem is called the swilchbox or area routing problem. If fixed 

pins are only located on the top and bottom edges, the problem is 

called the channel routing problem. Two very different algorithms are 

used to route each of these problems. The quality of a channel routing 

solution is measured by the number of horizontal rows in the 

completed channel. Each row in the solution is called a track. The 

number of tracks is compared against the density, the minimum 

number of tracks that must be used to complete the wiring . In area 

routing problems, the quality of the area routing algorithms is 

measured by comparing the number of problems attempted to the 

number of problems where the wiring is successfully completed. This 

ratio is called the completion rate. 

Chapter 2 reviews past work in integrated circuit routing. Several 

algorithms that are described in this chapter are used in the 

comparisons presented in later chapters. 

Chapter 3 analyzes channel routing algorithms. The discussion 

begins with a formal definition of the channel routing problem. This 

formalization allows the succinct description of each of the more 

popular channel routing algorithms. This formalization also allows a 

relationship to be established between the selection of wiring for the 

current track and the number of tracks in the final solution. This 

relationship is used to prove the optimality of the Left Edge channel 

routing algorithm. The relationship also allows the "diagnosis" of the 

conditions that led to the failure of the algorithm to complete a given 

channel in the density. A careful analysis of the effectiveness of 



previous algorithms led to the development of two new channel 

routing algorithms that are shown in Chapter 5. Each significantly 

reduces the number of tracks necessary to complete the channel 

routing problem. The chapter ends with a discussion of the problems 

associated with using exclusively channel routers in routing custom 

integrated circuits. 

7 

Chapter 4 analyzes area routing algorithms. M.I.T. 's Placement 

and Interconnect project is discussed as an example of the use of area 

routing algorithms to route custom integrated circuits. The quality of 

area routing a.Lgorithm is measured by the difficulty of the areas that 

it can successfully route. The Manhattan Area Measure (MAM) is used 

as a measure of the difficulty of completing the wiring for areas with 

two point nets. This chapter also examines the sequential nature of 

area routing algorithms. These algorithms typically route one wire at 

a time. Algorithms with this characteristic must use caution to route 

each wire in a way that minimizes the effect of the path on nets yet to 

be routed. Three important considerations are layer assignment, pin 

blocking and vias. Minimizing the number of vias is of special 

importance in achieving high completion rates . This section uses 

systems of distinct representatives to analyze why routing simplest 

paths :first is a good strategy for minimizing the number of vias in the 

solution. A new Degree Of Freedom (DOF) based algorithm is 

developed that is functionally equivalent to the LUZ router, a special 

purpose area router for two interconnecting areas with two point nets. 

The DOF algorithm is easier to implement, is extensible to multipoint 

nets and reports if a path does not exist to complete the net. To 

measure the difficulty of areas with multipoint nets, this chapter 

extends the MAM to multipoint nets. This extension is based on 



developing a lower bound on the rectilinear Steiner tree. This bound 

is shown to be exact for two and three point nets. 

Chapter 5 compares area and channel routing algorithms over a 

wide variety of sample channels . Sample channels are generated 

using algorithms developed at M.I.T. and by the author. The area 

routing and channel routing algorithms are extended to allow 

reasonable comparisons. The results clearly show that the area 

routing algorithms take more tracks to route the same channels. Of 

the channel routing algorithms, the two new algorithms developed in 

Chapter 3 give very close to optimal performance, exceeding the 

performance of well known channel routing algorithms by between 

2. 74 and 20 times, with an average improvement of 10. 

B 

Chapter 6 compares several area routing algorithms over 

randomly generated test cases. These statistics show an improvement 

in completion rates when using the DOF algorithm as opposed to other 

popular area routing algorithms. The results show that these 

improvements occur for both two point and multipoint nets using 

areas with several different aspect ratios. The results also show a 

dramatic decrease in completion rates as the complexity of the region 

reaches a certain threshold. This chapter develops a measure of the 

difficulty of the routing regions that is used to show upper bounds on 

area routing algorithms performance. The statistics generated in this 

section can also be used to determine how large the routing region 

must be lo give the routing algorithms a reasonable chance of 

completing the wiring. 

The final chapter concludes the discussion of intra region routing 

and examines some questions remaining for future research. 



CHAPTER 2 

Previous Work 

This chapter reviews previous work concerning integrated circuit 

routing. The algorithms discussed are the Lee Algorithm, the 

Hightower algorithm, the LUZ algorithm and channel routing 

algorithms. 

2.1. The Lee Algorithm 

The oldest and still the most popular method of routing custom 

integrated circuits is the Lee algorithmLe6 1 (henceforth the Lee). The 

Lee is a maze search algorithm that is guaranteed to find the shortest 

path, if one exists . The algorithm has been widely used in both printed 

circuit board and integrated circuit routing. 

The Lee begins with an arbitrary shaped gridded routing region 

with any number of obstacles. Grid points are called cells. Two pins 

are labeled as the source and target. The Lee labels each empty 

adjacent cell to the source with a cost 1, the cost of reaching that cell 

from the source. Since wires cannot be placed diagonally, these cells 

are not considered adjacent to the source. Then the Lee identifies 

each empty cell that is adjacent to cells with a cost one and labels 

these with a cost two. The edge of the labeled cells is called the 

wavefront. This process continues until either the target pin has been 

labeled or there are no remaining empty cells adjacent to any labeled 

cells. In the latter case, the Lee reports that there is no path from 

the source to the target. 

9 



If the target pin has been labeled, the algorithm backtracks from 

the target, moving at each step to any cell with a lower cost. Figure 

2.1 shows the propagation pattern of the Lee search and a possible 

backtrack path. Here, the pins have not been placed on a module 

boundary to highlight the diamond shaped' wavefront propagation of 

the Lee . 

. r Another way of looking at the expanding wavefront is to consider 
) 

it as a breadth first searchM057, from the source to the target, where 

all edges (as paths between cells) have unit cost. 

The Lee can also be extended to create different costs for each 

10 

J routing layer and for vias. These costs allow the algorithm to establish 

\ preferential directions for each routing layer, penalties for crossings 

and additional costs for vias. The use of variable costs adds a great 

deal of flexibility to the Lee. 

The extended Lee uses a simple graphical model of the routing 

region. Each cell is replaced by a pair of nodes, one for the lower 

. ' . . 

.... ..i.~..L!. l- -~- i. . ·: ······: .... : ..... 
-- ~· .L?.J .. ~.J.7. .L~. L ... : .... L .... L .. ...i . -· 
.?Js.l..~-L~.:l.1 .l.~ . ..1. .. ! ... .! .. L. 
slsl, islsl1lei i i ...... -~ . ... ~ -- f. : . . ~ . . · i . . -~.... ··! . . . .. ·! ... -. ··! -..... 
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Figure 2.1. Lee algorithm wavefront expansion. 
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layer and one for the upper layer . Edges form the possible path 

directions into and out of each node. For example, if we restrict the 

upper layer to the vertical direction and the lower layer to the 

horizontal direction, Figure 2.2(a) illustrates the graphical model for a 

simple example. 

/ · V sing this model, costs can be assigned to edges in the graph. In 

. ) this example, a cost 1 is placed on all horizontal and vertical edges 

and a cost 3 on the via edges. This might cause the algorithm to 

choose a path that has more horizontal and vertical edges, but less 

vias. The importance of variable costs is explained in Chapter 4. 

The Lee is modified by replacing the breath first search with a 

general single source shortest path algorithm. The one used in our 
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Figure 2.2. Graph model and Dijkstra's algorithm. 
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~implementation of the variable cost Lee is Dijkstra's algorithrnDi59. 

Dijkstra's algorithm is a step by step procedure where, by the kth 

step, the shortest paths to the k nodes closest to the source have 

been calculated. These nodes are contained in the set N. At the k +1 th 

step, a new node is added to N whose cost to the source is the shortest 

of the remaining nodes outside of N. For example, in Figure 2.2(b), 

node a is selected as the source. At the initial step, node a is placed 

in the set N and the cost to each adjacent node is computed. In the 

first step, we add node c to the set N and recompute the costs using 

node c 's adjacent nodes. If any of the recomputed costs form a 

cheaper path than was previously found, the old distance is replaced 

in the cost list. This process is repeated until the target node has 

been added to the set N. Simple bookkeeping allows the path to be 

backtracked to the source. The path found in the example is 

(a,c,g,i,j). 

One of the disadvantages of ~he L~i1.S--m-em.Q[_~eqytrements. 

Each grid point is required to store the cost of reaching the cell, along 

with some additional information regarding the type of object located 

at that cell. In large designs, the total could easily exceed one million 

grid points. 

AkersAk67 suggested improvements in the cost labelingj!t~ach 

cell, reducing the number of bits necessary at each grid point to just 

, ~o. The first expansion of the wavefront is done by labeling each cell 
1 adjacent to the source with a one. The second expansion labels each 

adjacent cell, also with a one. The next expansion labels adjacent cells 

\ with a two. The following expansion also uses a two. The process then 



repeats, with the next expansion using a one, until the target is 

reached or there are no longer any more cells in the wavefront. 

The backtrack procedure is changed to backtrack cells with the 
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J pattern ... 1,1,2,2,1,1.. etc., starting with the number labeled in the 

target cell. In most current implementations, the "one-two" labeling 

of Akers is replaced by a backward pointer to the previous cell in the 

path. The backtracking routine simply follows the pointers back from 

the target to the source . 
../ 

The second disadvantag~ of the Lee is its execution ti:rrie. Figure 

2.1 reveals that the Lee algorithm extends its wavefront in all 

directions at equal rates. BubinRu74 sugg_ested thaLsince the targei_is 

kn~, ~~ should expand more in--t.ha direction, unl~ss th~t direction 

is blocked. His router achieves this by sorting the wave!~nt using a 

key which is a total of the true distance from the_s..o.w:c~he 

~attan distance to the target. J'his_- echnicrne-places a e alty-on 

moves away from the ~arget. The technique also preserves the 

characteristic that the path found will always be the shortest. 

Souku280~8 dey~lo_Q_ed the arrow router whi_e~hieve.s_a...s.i~t 
-- -

~ ontrolling the loading_an~unloading oJ the st~on~he 

wavefront entries. 

If we are willing to sacrifice the guarantee of minimality, KornK0 82 

suggests techniques that will averpull the path toward the target. This 

technique is fundamentally the same as Rubin's, except that the 

L penalties placed on moves away from the target are increased. This 

tends to "pull" the wavefront in the direction of the target. His 

statistics indicate order of magnitude performance increases over the 

traditional Lee. 
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2. 2. The Hightower Algorithm 

David HightowerHi69 suggested an algorithm that produces routing 

completion rates similar to the Lee but reduces execution time and 

memory requirements. The fundamental difference b_etween t:g.is 

router and the Lee is that it does not store_ the entire ru..ane in a 

matrix. Instead, only lines and points (as zero length lines) are 

stored. When finding a path between two points, it is necessary to test 

only those lines that currently exist. 

The Hightower algorithm begins by constructing vertical and 

horizontal expansion lines emanating from the source and target 
i 

.-1 terminals. Then, for each line, it finds the longest perpendicular 

escape line. If there is a multiple choice, the escape line nearest to 

the starting terminal is taken. This process is repeated until lines 

from both sets intersect, generating a connection. Figure 2.3 

illustrates the Hightower expansion process. Once the two sets 

intersect, a backtracking procedure is used to make the connection 

- •• - -, .. - - •. -- - - - - •. I - • 
I -i-1 

I 
-• - 1 -

I B I 
I 

____ L ______________ _ 

I 

Figure 2.3. The Hightower expansion process. 
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between the two points. 

The Hightower performs well when the routing are<! is __small or has 

only a few connections. Its run time ch~racteristics are P-O_gr_ on la_r~, 

. ~omplicated mazes since these require the alggrith.rr)_to __ kee:p__tra.ck-of 

a large stack of data. In these cases,_ the Hightow~r does not 

guarantee a connection, even if one exists. 

The Hightower algorithm's insistence on choosing the longest 

perpendicular escape line can cause :goor p.11ths t~ _be selected. 

Consider Figure 2.4. Here the path selected wiJU:,~o~d 

contain more vias th~n is !1-ecessar_~. Hightower reports only a 10% 

increase in path length using his algorithm although the results were 

reported for printed circuit boards where module obstructions are not 

present. The performance of this approach on the custom routing 

problem is unknown. 

One interesting feature of the-l=-Iigh.low_er is that it tends to use 
-- - - -

paths with the minimum number of vias. The importance of this 

feature is detailed in chapter 4 and may be partly responsible for the 
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Figure 2.4. Poor routing using the Hightower. 



Hightower's completion rates being similar to the Lee's, even though 

the Lee always finds a connection, if one exists. 

Two algorithms have been developed that attempt to merge the 

advantages of the Lee with the line searches performed in the 
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' Hightower. MikamiMiTa developed an algorithm that is identical to the 

/ Lee, except that, rather than simply marking the adjacent cells with a 

cost, the algorithm marks all the costs along the horizontal and 

vertical expansion lines of the Hightower. The Lee will expand the 

lowest cost entry in the region, again extending the the costs as in the 

Hightower. Mikami reported a speedup of 2 over the unmodified Lee. 

Moreover, his approach can guarantee that it will find the shortest 

path connection, if one exists. 

HaynsHaBO developed an algorithm, also based on the Lee, that 

expands similar to the Mikami approach, except that only the line 

segments bounding the wavefront are stored rather than the whole 

grid. 

2.3. The LUZ Algorithm 

The LUZ algorithmS.m83 was developed by Lyle Smith and Tim Saxe 

at Stanford University as a means of analyzing path complexity. The 

algorithm starts with a rectangular routing region with pins on all four 

sides and no obstructions. This is commonly called the area routing 

problem or the switchbox problem. Because the LUZ is primarily an 

analysis tool, it deals only with two point nets. 

2.3.1. Path Shapes 

The LUZ gets its name from the three basic path shapes it uses: L 

shaped paths, U shaped paths and Z shaped paths. These paths are 
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called LUZ level 1 paths. Assuming there is no other wiring in the 

region, any two point net can be wired using one of these basic path 

shapes. LUZ level 2 paths are formed by adding two L shaped corners 

into a LUZ 1 path. Higher LUZ number paths can be similarly defined. 

Figure 2.5 illustrates LUZ level 1 and some typical LUZ 2 paths. 

2.3.2. Toe LUZ Algorithm 

The LUZ attempts to minimize the number of vias by routmg 

simplest paths first. Thus, the algorithm attempts to route each net 

using a LUZ level one path. In statistical studies using hundreds of 

randomly generated examples, Smith showed 75% of the nets can be 

routed using level one paths . The remaining nets are tried using LUZ 

level 2 paths. These studies showed that another 20% of the nets can 

be routed using these path shapes. The analysis goes on to show that 

almost no improvement comes from routing paths at a complexity 

higher than LUZ level 3. Unfortunately, the LUZ algorithm does not 
- - ---- ---- -- ---

L LI 1 
(a) LUZ level 1 paths. 

(b) Example=s of LUZ level 2 pal.bs. 

Figure 2.5. The LUZ path shapes. 



have any means to determine when to halt. It simply believes it has 

not tried a complex enough path. 
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Smith compared the results from the LUZ algorithm with the Lee 

for the same examples. The results showed that the LUZ using only 

LUZ level 2 paths had completion rates equal to the Lee . The LUZ 

exceeded the Lee in completion rates if level 3 paths were used. 

Figure 2.6 shows a very dense example routed using the LUZ 

algorithm. 

Smith contends LUZ level 3 paths are very difficult to 

algorithmicly construct and concluded that a composite algorithm 

combining the LUZ and the Lee would produce excellent results . The 
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Figure 2.6. A dense rouling example. 
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composite algorithm would have the LUZ route level 1 and level 2 

paths . If any nets remain unrouted, the Lee would be used to 

complete the remaining nets. Since the Lee algorithm's execution 

time is proportional to the sparsity of the routing region, the Lee 

should run very quickly if 95% of the routing has been completed. 
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Chapter 4 redefines the LUZ algorithm, explaining the 

performance improvements and improving the definition of the 

simplest path. The new implementation has the advantage that it uses 

the Lee algorithm, realizes when to halt, and can be extended to 

multipoint nets . 

2.4. Channel Routing 

Channel routers have received a great deal of attention in the 

literature because of their applicability to gate array layout 

organizations. 

The channel routing problem is given a rectangular region, called 

a channel, with pins located on the top and bottom edges. The region 

is gridded, with all pins and wires aligned on the grid. Horizontal grid 

lines are referred to as tracks . The objective of channel routing is to 

electrically connect all the nets using a minimum number of tracks. 

Figure 2.? shows an example of a channel routing problem and a 

typical solution. 

The horizontal segment of a net is determined by its leftmost and 

rightmost terminal connections. Let the local density, di, be the 

number of nets whose horizontal segments intersect column j. Since 

horizontal segments of distinct nets must not overla-p, the maximum 

value of d; will be a lower bound on the number of horizontal tracks 
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Figure 2.7. Channel routing example 

necessary to route the channel. This lower bound is ca11ed the 

cha:nnel density. 
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The relationship between horizontal segments can be defined 

using an interval graph. Figure 2.B(a) illustrates the interval graph 

for the net list in Figure 2.7. Let HG(VillJ,Ehg) be a interval graph where 

a node v, E:V represents net i and an edge (v;,,v; )E:E1r.g if the hor1zontal 

segments of net i and net j cross a common column. This graph is 

commonly referred lo as the lwrizontal constraint graph. In terms of 

the interval graph, the maxi.mum clique number is the density. 

1 6 

3 7 10 

4 I 

Figure 2. 8. Horizontal constraint ~raph. 
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The "left edge" channel router of Hashimoto and StevensHaSt71 

attempts to maximize the packing of horizontal segments in each 

track, starting from the bottom track. The method sorts the edges by 

the left endpoint of each segment. The sorted list for Figure 2. 7 is 

(2, 1,3,4,5,6, 7,8, 9, 10). The algorithm selects the first edge, 2, and 

places it in the lower left corner of the routing region. Net 2 is deleted 

from the sorted list. It then scans through the remaining list for the 

first net that does not overlap net 2. In Figure 2.7, this would be net 7. 

This process is repeated until no more elements can be placed on 

track 1. The algorithm starts again using the remaining unplaced nets 

in the list and :filling track 2. The track selections made by the left 

edge algorithm are shown in Figure 2.9. 

Although the track assignments of the left edge appear to be 

reasonable, a problem arises when connecting the horizontal segments 

to the corresponding pins. Notice that to connect net 1 to the top of 

the channel, net 1 crosses directly over the end of net 3. Since net 3 

will have to place a via at that position, this organization will short 

nets 1 and 3 . Thus, net 1 must be above net 3. This was not taken into 
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Figure 2.9. The left edge algorithm's track assignments. 



account by the left edge algorithm. Constraints such as these are 

called vertical constraints. 
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To capture the vertical constraints we construct a vertical 

constraint graph. Let VG( Vvg ,Evg) be a directed graph where Yv17 = Vhg. 

Let (vi,v;) E.Evgif! there is a column containing a pin of net i on the top 

and one of net j on the bottom. An edge between nodes vi and v; 

indicates that the horizontal segment of net 7¾ must be placed above 

the horizontal segment of net n;. The vertical constraint graph for 

Figure 2.7 is shown in Figure 2.10. 

The "left edge" algorithm is only guaranteed to produce correct 

results if E1117 =¢, indicating that there are no vertical constraints. This 

is the case if only pins of the same net are in the same vertical 

column. Chapter 3 shows that the "left edge'' algorithm is guaranteed 

to find the optimal solution if there are no vertical constraints. 

A "constrained left edge'' algorithm was implemented by 

Persky.PcDeSc?S This algorithm again places horizontal segments from 

the lower left corner of the routing region. The difference is that this 

algorithm will not place a horizontal segment for a net that has any 

descendants in the vertical co_nstraint graph. Using the same example 

Figure 2.10. Vertical constraint graph. 
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as in Figure 2. 9, net 2 can be placed since it is a leaf cell in the 

vertical constraint graph. Once a net has been placed, the 

corresponding node is deleted from the vertical constraint graph. The 

algorithm scans the remaining list of horizontal segments (sorted by 

left endpoint) for the first edge that does not overlap the previous net 

and has no descendants in the vertical constraint graph. Net 8 is the 

next net that fulfills both these requirements. This process is 

repeated, filling each track from left to right until all horizontal 

segments have been placed. Figure 2.11 illustrates the completed 

routing. In this case, the constrained left edge algorithm produced an 

optimal solution, since the number of tracks used is equal to the 

channel density. 

The previous algorithm has disastrous results if there is a cycle in 

the vertical constraint graph. Cycles in the vertical constraint graph 

are called vertical constraint loops . Consider the channel routing 

problem and vertical constraint graph shown in Figure 2.12(a) and (b). 

In this example, the constrained left edge algorithm cannot route 
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Figure 2.11. Constrained left edge track assignments. 
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Figure 2.12. Vertical constraint loop. 

either net l or net 2 since both have descendants in the vertical 

constraint graph. Figure 2.12(c) shows that a solution to this problem 

is only possible if we allow the horizontal segment of a net to be split. 

Splitting nets in this fashion is called dogleggi:ng De76. The restricted 

channel routing problem does not allow doglegging. The Dogleg 

algorithm proposed by Deutsch uses doglegging both to avoid vertical 

constraint loops and to decrease the density of the channel. The 

statement of Deutsch's algorithm given below has been modified based 

on an understanding of the vertical constraint graph. The routings 

produced by the revjsed algorithm are identical to the original, but 

the statement of the algorithm has been significantly simplified. 

Deutsch's algorithm (henceforth the Dogleg) takes each multiple 

pin net and breaks it up into individual horizontal segments. A break 

occurs only in columns that contain a pin for that net. Figure 2.13 

illustrates the horizontal segment definition and the corresponding 



vertical constraint graph for both the "restricted" and the 

"unrestricted" algorithms. 
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A basic form of the Dogleg that is very similar to the Left edge 

algorithm is described below. Horizontal segments are sorted in 

increasing order of their left endpoint. The first segment in the list 

that has no descendants in the vertical constraint graph is placed in 

the channel. The node corresponding to this section of the net is 

removed from the vertical constraint graph. Then, the next net in the 

list that does not overlap the first segment and has no descendants in 

the vertical constraint graph is placed. This process continues for 
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Figure 2.13. Horizontal segment definition. 
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each track, from left to right, until all segments have been completed. 

Figure 2.14 illustrates the completed channel. Notice that the channel 

is optimal while the "restricted" channel router would require 4 

horizontal tracks. 

The Dogleg algorithm as suggested by Deutsch alternates between 

the filling of top and bottom tracks and fills bottom tracks from left to 

right and top tracks from right to left. A formal description of this 

algorithm is given in Chapter 0. Deutsch claimed that this symmetric 

alternating format produces routing with a smaller total vertical 

length than routing all nets from the bottom of the channel to the top. 

Channel routers discussed thus far are only applicable on regions 

that have fixed pins on opposite sides of the routing region. Channel 

routers can be easily extended to connect to pins on the left and right 

edges of the channel, but the position of the connection must be left 

to the discretion of the algorithm. These pins are called floating pins, 

since the designer can only specify the side they connect to. Pins on 

the left and right edges of the channel are called endpins. Figure 2.15 
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Figure 2.14. Dogleg channel routing example. 
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Figure 2.15. Channel routing example with endpins. 

shows an example of a channel routing problem with endpins and the 

solution produced by the constrained left edge algorithm. 
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The Dogleg algorithm considers only a few of the possible 

candidates for merging. In Figure 2.16, for example, the Dogleg would 

consider only nets 2, 3 and 8 for placement on the first row, although 

other nets, such as 2 and 9, could also share a track, since they do not 

overlap and there is no directed path between them in the vertical 

constraint graph. Two algorithms by Yoshimura and Kuh YoKu82 

attempt to exploit alternate pairings of horizontal segments. The first 

algorithm attempts to minimize the longest path in the vertical 

constraint graph by attempting to combine those tracks that 

minimize the path through the vertical constraint graph. The second 
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Figure 2.16. Merging of nets example. 

algorilhm achieves longest path minirnizalion through rnalching 

techniques on a bipartite graph. Both techniques report better 

results than the Dogleg. 

Both the Dogleg and the Yoshimura and Kuh algorithms will not 

work if there are cycles remaining in the vertical constraint graph. 

2B 

The Greedy channel routerRiFiB2, RiBaMiB l takes a totally different 

approach to the problem. The channel routing is done on a column by 

column basis {raLher than row by row) beginning at the left side of lhe 

channel. In each column, the router tries to maximize the number of 

tracks available in the next vertical column using a sequence of 

heurislics. 

Assume that the greedy algorithm has completed i-1 columns. A 

set of ne Ls entel's column i from the lefl. The Greedy algorithm 

constructs the wiring in column i using the following steps: 

(1) Ext.end vertical segments from each lerrninal to either the first 

empty track or a track occupied by the same net, whichever uses 

the least vertical wire. Figure 2.1 ?(a) shows an example. If no 
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such track is available, the Greedy router creates an additional 

track in the center of the channel. 
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(2) Choose vertical wiring that maximizes the number of empty 

tracks in column i + 1. In Figure 2.1 ?(b), the possible choices for 

vertical wiring are shown. Assuming that net 2 has no terminals 

to the right of column i and net 3 has a terminal to the right of 

column i, the second choice of vertical wiring will free 3 tracks 

and the .first choice will free only 2 tracks. If there is a tie, the set 

of vertical segments that free tracks closest to the edges of the 

channel are chosen. 



(3) Add vertical wiring to minimize the distance between tracks 

containing the same net. In Figure 2.1 ?(c), a small amount of 

vertical wiring is added to reduce the distance between the two 

portions of net 3. 

(4) Add vertical wiring to "pull" nets to tracks closest to the next 

terminal with that net number. In Figure 2.1 ?(d), vertical wiring 

is added to bri~ net 1 to the bottom of the channel. 

The performance and quality of the routing solutions generated 

will be measured in chapter 5. Since the approach does not use the 

vertical constraint graph, it avoids the vertical constraint loop 

problem. 
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A new algorithm by Burstein and Pelavin called the Hierarchical 

Channel RouterBuPeB3 will handle these constraint loops but has better 

electrical characteristics than the "greedy" approach. This algorithm 

hierarchically decomposes the channel into cells, and then applies 

graph techniques to minimize the wiring within each cell. This 

approach was able to solve the most difficult example in the literature, 

Deutsch's example, in the optimal 19 tracks. The Dogleg was only able 

to solve the problem in 21 tracks. The Yoshimura and Kuh algorithms 

required 21 and 20 tracks respectively, but used considerably less vias 

than the Dogleg. The "greedy" algorithm also required 20 tracks, but 

required extra wire and vias. 



CHAPTER 3 

Analysis of Channel Routing Algorithms 

Finding optimal solutions to the routing problem is very hard. 

I.aPaughLaBO showed that even the restricted channel routing problem 

(no doglegging) is NP-complete, and W. Donath YoKu82 showed the 

unrestricted channel routing problem is also NP-complete. Since 

finding an optimal solution is very difficult, routing algorithms rely on 

heuristics to provide acceptable solutions. 

Channel routers have three important characteristics: 

( 1) Efficient algorithms with straightforward implementations are 

well known. 

(2) An algorithm's effectiveness can be measured against easily 

computed lower bounds. These lower bounds form a basis for 

comparing different channel routing heuristics. 

(3) Channel routers can guarantee 100% completion rates if 

constraints are noncyclic. This guarantee is obtainable because 

channel routing algorithms can always, if necessary, add 

additional tracks in the center of the routing region without 

disturbing tracks that have been already placed. 

In this chapter, we develop a formalization of the channel routing 

problem and prove a necessary and sufficient condition for a channel 

to be completed in the optimal number of tracks. 
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This condition will then serve 

(1) as the basis for proofs on the optimality of channel routing 

alg ori thrns. 

(2) as an analysis tool to determine at what point in the routing a 

"mistake" occurred. 

(3) as the basis for new channel routing heuristics that improve the 

number of tracks above the density necessary to complete the 
-
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routing. The effectiveness of these heuristics will be measured i:1 

Chapter 5. The results indicate an improvement in algorithm 

performance ranging from 2. 74 to 20, depending on the 

characteristics of the channel, with an average improvement of 

10. 

3.1. Formalizing the Channel Routing Problem 

,; 

The channel routing problem can be formalized as the following 

decision problem. A simple example to clarify this notion is presented 

later in Figure 3.1. 

Given: A set of terminals T and nets N. Each terminal, t, is an 

ordered pair (c,s) where l~c~n is the column and se:lbot,topJ 

is the side . A terminal on the top or bottom of the channel is 

also called a pin. The set of terminals may also contain 

end.pins of the form (O,left) and (n+l,right}. Endpins are 

terminals connected to nets that enter or exit the left or right 

side of the channel. Fort =(c ,s ), let the function C(t )=c. 

Let N be a collection of m disjoint sets of pins and possibly 

non-disjoint endpins. We let Ni, for l~i~m. represent the i th 
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net, such that Nt.=~t 1.t2, . .. , td where l~2 and ti's are ordered 

such that C(ti)~C(ti+i) for l~i~l-1. 

Let the interval, p =[a,z ]i, denote the set of all columns in net 

Ni between columns a and z inclusive. Two intervals, [a,z Ji 
and [a',z'];, are incident if ~a.zJnla',z'j#¢. Thus, two intervals 

of different nets are incident if they share a common endpoint. 

The interval set Pi for net Ni is Pi=!plP=[C(t;),C(tj+i)]i for 

l~j~l-1 where tj,tj+ 1ENi and C(tj)#C{tj+1) . Let S=~UPi for 

l~i~m j be the set of all intervals. 

Vertical constraints are defined by the directed graph 

VG( Yvg ,Evg) where 

Vvg ={v Iv ESi 

.Evg=Hv 1,v2) lv 1EP, and v 2E.PJ for 1~i.j~m where i#j 

and v 1 and v 2 are incident in column x and 

(x ,top )ENi l-

Horizontal constraints are defined by the undirected graph 

HG(l'hg,Eh/1) where 

Eh/I =i(p.q )I pEP;. and q EP; for l<i,j~m where i#j and 

pnq#¢. 



Channel Routing Problem: 

Given a positive integer k, determine a mapping, 6, which 

assigns to every interval, p ES, a number between 1 and k 

inclusive such that 

(i) ii (p ,q )EE119 then o(p )>o(q) 

(ii) if (p ,q )E.E1ig then o(p );to(q) 

If such a o exists, o is called the channel assignment mapping and 

each integer in the range 1 to k represents a tra.ck in the channel. 

Condition (i) represents vertical constraints, and condition (ii) 

guarantees that the horizontal segments of different nets do not 

overlap. Figure 3.1 gives a simple example using the notation 

described above . 
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The density for a set of intervals S ' where S'c.S is defined as 

follows . For each net, Ni., let Qi=g lLELJ[a,z]iES'~ represent the set of 

all columns defined by the intervals in S' that belong to net i . Let the 

local density, dj(S') for column j, l~j~n, be the number of sets where 

i E.Q. . Thus, the local density is the number of distinct nets in column 

i. The density is the maximum value of d;(S'). Let the D{S') represent 

the density for intervals in the set S'. D(S) is called the channel 

density. The channel density is also defined by the number of vertices 

in the maximal clique in HG. Since D(S) represents the number of 

nets that satisfy condition (ii), the channel density is the minimum 

value of k necessary to complete the routing. 

3. 2. Channel Assignment in Optimal Solutions 

Let the track Tri, for l~i~k, be the set of intervals mapped to i by 

o, the channel assignment mapping. Let Si denote the set of intervals 
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Figure 3.1. Formalization of a simple channel 

remaining to be mapped after i tracks have been completed. Hence, 

S0=S. 

The following Theorem characterizes the number of tracks 

required in a channel rouUng solution. The theorem assumes the 

mapping of intervals in track i-1 is completed before any intervals 

are mapped to track i. 
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Theorem 3.1: The number of tracks, k, in a channel routing solution is 

equal to the channel density, D(S0), plus the number of 

tracks where D(Si_ 1)=D(Si)-

Proof 

The densities, D(Sd after the selection of intervals in track 

Tri form the non-increasing sequence 

D(S0 )'?!::.D(S 1)~D(S2), ... , ~D(St )=O 

Because of this and condition(ii)'s guarantee that the 

intervals in distinct nets do not overlap, 

~D (Si-1)-D(Si)~ 1. 

Thus, the selection of intervals for Tri must lower the density 

of the remaining intervals by either 1 or 0. Clearly the 

density must be lowered exactly D(S0) times and repeated 

k-D(S0) times. 

Consider the example of Figure 3. 2. Track Tr 1 is at the bottom of 

the channel and Tr 4 is at the top. The density ordering is ~~~1~0. 

D(S0)=3, the number of tracks where D(S1.-i)=D(S1.) is one, and k =4. 

1 2 1 2 3 

• • 

• • 
• • 

4 4 3 f> i 

1 2 S , 5 I 

Figure 3.2. Theorem 3.1. example 
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A selection of intervals for track Tri is called density reducing if 

D(Si - 1)-D(Si)= 1. If each track Tri is density reducing, ttie number of 

times D(Si _1)=D(Si) must be zero and solution must have exactly D(S0) 

tracks . This result implies the following Lemma: 

Lem.ma 3.1: A solution to a given channel routing problem has k =D(S0) 

tracks if and only if for each track Tr,;, where l~i~k, 

D ( Si - 1 )-D (Si}= 1. 

Theorem 3 .1 and Lemma 3 .1 are used frequently in this chapter. In 

section 3. 3, Lemma 3.1 is used to show that the Left edge algorithm 

always produces an optimal solution in the absence of vertical 

constraints . In section :3 .6, Theorem 3.1 is used to analyze conditions 

that lead to the Dogleg algorithm's failure to complete the channel in 

the channel densit y . This analysis leads to two new channel routing 

algorithms with significantly higher completion rates than the Dogleg 

algorithm. 

3.3. The Left Edge Algorithm 

This section presents a formal description of the Left Edge 

algorithm and proves that it produces an optimal solution in the 

absence of vertical constraints. 

Let L be an ordering of S where Lj=[a;,zj]i and L;+1=[a;+1,z;+1]' 

denote the jeh and j + 1th elements of L such that a;~a;+i for 

l~j~( IS I -1). Thus, the set of mtervals L is ordered by ascending left 

endpoint. 

The Left Edge algorithm is shown below. 



The Left Edge Algorithm 

1 i = 0 
2 while (L#¢)~ 
3 i = i + 1 
4 for each l~j ~ I L I f 
5 HCG = true iff Tr,;,=¢ or (p,Lj)~Ehg for pc.Tr,;, 
6 if HCG 
7 Trt = Tr,;, ULi 
B ~ 
9 L=L-Tr· 

) ' 10 > 

3B 

For each track Tri, the left edge algorithm scans the ordered set L for 

intervals that are compatible (in terms of HG) to previous segments 

placed in that track . Each compatible interval is added to Tri.. 

Intervals from Tri are then removed from S. 

Consider the sample channel in Figure 3.3(a). L initially contains 

([0,3J3.[1,7] 1,[2.4]2,[5,8]4 ,[6,9]5). After the first pass of L, Tr 1 contains 

ffo,3J3,[5,8] 4 ~. The set L after the deletion of these vertices is 

([1, 7]1,[2,4]2,[6,9J5). The process continues until all intervals have been 

placed to yield Tr2=ff1,7]1j and Tr3=f[2,4]2,[6,9]5 ~. Figure 3.3(b) shows 

the completed channel. 

1 2 2 1 2 2 4 

I I .,__. 

' • • ' 
I 

3 3 • • ' I • I 
I 

3 4 5 1 3 4 5 1 5 

012345 8759 0 1 2 3 .. 5 8 ., 8 9 

(a) (b) 

Figure 3 .3. Left edge example 
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The complexity of the Left Edge algorithm is a function of b, the 

number of intervals in L. During each pass i of the left edge 

algorithm, line 5 guarantees that the first interval, L1, is placed in Tri· 

The worst case performance occurs when no other intervals can be 

placed in track i. Thus, the number of times the inner loop is 

executed is b+{b-l)+(b-2) ... +1 or b(b
2
- 1}. The inner loop involves 

determining if the current interval, Li is compatible with other 

elements in Tri.. The complexity of this step is considerably simplified 

by noting that if the current interval is compatible with the last 

interval added to Tri, the interval is also compatible with all other 

intervals in the track. Since the creation of HG and L also require no 

more than O{b 2), the worst case Left Edge complexity is O{b 2). 

Corollary 3.1: Given a channel routing problem with no vertical 

Proof 

constraints, the Left Edge algorithm always produces an 

optimal solution with k =D(S0). 

Lemma 3.1 guarantees that if each selection of 'I'ri is density 

reducing, the solution is optimal. By contradiction, let Tri be 

the first track where ·n(si_1)-D(Si)=O. Let column j be the 

first column such that D(S,_1)=d,-(S,), the local density in 

column j. This is the first column at the density that is not 

included in the set of intervals Tri selected by the left edge 

algorithm. Since all columns to the left of column j have a 

density less than d;(Si), there must be some interval that 

begins in column j. But since the density did not decrease in 

this column, the interval must have been compatible with all 

previous intervals selected for this track, and thus would 



have been selected by the left edge algorithm, a 

contradiction. 

The proof that the Left Edge algorithm is optimal in the absence 

of vertical constraints was first shown by Hashimoto and 

StevensHaSL 7 1 _ LaPaughLa80 showed that the interval assignment 

problem under these conditions is equivalent to the interval coloring 

problem, which was shown to be solvable in polynomial timeGa?2_ 

3.4. The Basic Dogleg Algorithm 

This section formally describes the Dogleg algorithm and, using 

Lemma 3.1, determines under what conditions the Dogleg algorithm 

fails to complete the channel in a number of tracks equal to the 

density. 
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The Basic Dogleg algorithm is much the same as the Left Edge 

algorithm presented earlier. The algorithm presented here fills tracks 

from left to right, starting with track 1, then track 2, etc. until all 

intervals have been placed. As in the Left Edge algorithm, L denotes 

the set of intervals in S ordered by ascending left endpoint and L; 

denotes the j th element in L. 

The Basic Dogleg algorithm is shown below. 
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2 
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8 
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10 
11 
12 
13 

The Basic Dogleg Algorithm 

i = 0 
while (L ~¢) i 

i = i + 1 
for each l~j~ I LI l 

HCG ~ true ~ff Tr,=¢ or (p ,L; );t.E_hg for p €Tr, 
VCG - true if! (L1,q)~Evg for q€Yi,9 
if HCG and VCG l 

Tri = Tr, ULi 
VG= VG - Li 

~ J 
L=L-Tr· 
J \ 
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This algorithm is very similar to the left edge algorithm with the 

exception of lines 6, 7 and 9. Line 6 assigns the boolean variable VCG a 

true value if and only if ~ has no descendants in the vertical 

constraint graph. If an interval has descendants in the vertical 

constraint graph, condition (i) of the channel routing problem 

requires that all descendents be assigned before this interval is 

selected. Line 9 removes a selected interval from the vertical 

constraint graph. This removal process implies the removal of any 

edges into or out of that vertex. As an illustration of this algorithm, 

consider the channel and vertical constraint graph of Figure 3.4(a). L 

initially contains {[1,3] 1,(2,4]5,[2,4]0,[ 4,6]5, [5,Bl4.f5, 7]2
) . After the first 

pass, 'Pr 1 contains a1,3]1,[5,B]4 j; L now contains 

([2,4]3,[2,4f',[ 4,6]5,(5,7]2), and the vertices corresponding to nets 1 and 

4 have been deleted from the vertical constraint graph. In the second 

pass, intervals f[2,4]3,[5.7]2 ~ have no ancestors in the vertical 

constraint graph. Both are selected in the left to right pass of L and 

placed in 7'r 2. Figure 3.4(b) shows the track selections made by the 

Basic Dogleg algorithm for the remainder of the channel. 
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1 5 5 2 5 
[2,4] 5 [4,6] 5 [5,7] 2 

[1,3] l • V J 
. [2,4] 3 [5,B] 4 

3 1 3 4 2 

Vertic:lll constraint 1na.ph 

12345 67B 

(a) 

1 5 5 2 5 

3 1 3 4 2 

(b) 

Figure 3.4. Basic Dogleg example 

Since the vertical constraint graph is acyclic, there must be at 

least one interval with no descendants that can be selected for each 

track. Since there are a finite number of intervals, b, the Basic Dogleg 

algorithm always :finds a solution with at most b tracks. The worst 

case performance of the Basic 'Dogleg occurs when only one interval is 

selected for placement on each track. As in the Left Edge, the worst 

case performance is O(b 2 ) . 

3.5. The Dogleg Algorithm 

Deutsch's statement of the Dogleg algorithm has two differences 

compared to the Basic Dogleg algorithm presented above: 

( 1) Deutsch's algorithm alternates between the filling of top and 

bottom tracks 
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(2) Deutsch's algorithm fills top tracks from right to left and bottom 

tracks from left to rjght 

The Dogleg algorithm, presented below, incorporates the 

extensions specified by Deutsch. 

As in the Left Edge algorithm, L denotes the set of intervals in S 

ordered by ascending left endpoint, and Li denotes the j'h element in 

L. Similarly, R denotes the set of intervals in S ordered by 

descending right endpoint. 

The extended Dogleg algorithm is shown below. 

1 
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The Dogleg Algorithm 

i = 0 
while (L ¢¢) f 

i = i + 1 
for each l~j~ I LI 

if i is odd f 

vet!= true iff Tri=¢ or (Li ,q )~Evg for q e: Yi,9 
I 

else f 
s=R· 
VCG' = true iff Tri=¢ or (q ,Rj )~Evg for q e:Viig 

H~G = true iff (p ,L; )~Ehg for p e:Tr,. 
if HCG and VCG f 

Tr;. = Tri us 
Vvg = Yvg - s 

I I 
L=L-Tr, 
R=R-'k· 
J I 

To extend the basic dogleg algorithm to alternate between the filling of 

top and bottom tracks, lines 6-7 are executed when the track index, i, 

is odd, indicating a bottom track; and lines 11-12 are executed when 

the track index is even, filling a top track. In the case of a bottom 

track, line ? assigns a boolean value to VCG indicating that the current 



interval, s, has no descendants in the vertical constraint graph. 

Similarly, line 11 indicates thats has no ancestors in the vertical 

constraint graph. 

44 

To extend the algorithm. to make a left to right pass on bottom 

tracks and a right to left pass on top tracks, intervals are chosen from 

L on bottom tracks and from R on top tracks . Selecting intervals 

sorted by increasing left end-point is called a left edge pass while 

selecting intervals sorted by decreasing right endpoint is called a 

right edge pass. 

Consider the sample channel routing problem given in Figure :3.5. 

L initially contains ([1.3] 1,[2,4J\[2.4J5,[ 4,6]5
, [5,8]4.[5,7]2

). R contains 

([5,8]4,[5,7]2,[ 4,6f',[2.4Y', r2,4]3,r1,3] 1). For the first pass, i is odd; the 

1 5 5 2 5 
[2,4) 5 (4,6) 5 [5,7) 2 

[1.3]1. V l 
4 

[2,4) 3 [5,8) 4 

3 1 3 4 2 

v~rllclll constraint arapb 

12345 8?8 

(a) 

1 5 5 2 5 

.__. ~ 
I I I 
.--- I 

I ~ I 

·!.-..L., I.---. 4 
I I 

3 1 3 4 2 

(b) 

Figure 3.5. Dogleg algorithm example 



pass is left to right; and the intervals are selected from set L. Since 

odd values of i imply that the track filled is a bottom track, line 7 

determines if the interval s has any descendants in the vertical 

constraint graph. Thus, at the end of the first pass, Tr 1 contains 
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ff 1,3]1.[5,8]4
~. These intervals are deleted from the vertical constraint 

graph and the process continues, filling Tr2 with intervals destined for 

the top track using the ordered set R. The intervals selected for the 

top track are [5,7]2 and [2,4]5 . The final channel produced by the 

Dogleg algorithm is shown in Figure ~.5(b). Notice that the track 

index i no longer corresponds directly to the track number although 

it is not difficult, once the algorithm has completed, to rearrange the 

track indices to correspond to physical track numbers. 

Since each pass through the algorithm uses either a left edge 

algorithm or a right edge algorithm, the Dogleg algorithm's worst case 

complexity is identical to the Left edge algorithm; the worst case 

complexity is O{b 2}. 

The Dogleg algorithm uses a symmetric approach to choosing 

tracks and intervals to be filled as opposed to the bottom to top, left 

to right approach of the Basic Dogleg algorithm. Does this approach 

decrease the average number of tracks in channel routing solutions? 

For example, in Figure 3.4 the Basic Dogleg completed the sample 

channel in only 3 tracks whereas the Dogleg algorithm produced a 

solution using 4 tracks. Although a formal description of the 

generation of test cases and results is postponed until Chapter 5, the 

evidence indicates that the Basic Dogleg and the Dogleg algorithms 

require approximately the same number of tracks to complete 

randomly generated sample channels. If these statistics are 

representative, why use the more complicated Dogleg algorithm? One 
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reason is that the Dogleg algorithm, by alternating between top and 

bottom tracks, tends to minimize the length of the vertical wiring. 

For example in section 5.4, the Basic Dogleg used 13% more vertical 

wire than the Dogleg algorithm did. This increases the capacitance of 

the integrated circuit, decreases speed and increases power 

consumption. 

3.6. An Analysis of Dogleg Generated Solutions 

Theorem 3.1 guarantees one extra track must be added to the 

channel for each selection of intervals in track Tr" that is not density 

reducing, i.e . where D{S1.-1)-D(Si,)=O. This section uses this result in 

determining when the Basic Dogleg and Dogleg algorithms fail to 

complete the wiring in the channel density. 

Figure 3.6 steps through the Basic Dogleg algorithm using an 

example that does not complete in the density. Figure 3.6(a) shows a 

sample channel and the corresponding vertical constraint graph. The 

density of the channel is 3, yet the Basic Dogleg and Dogleg algorithms 

complete the channel in 4 tracks, as shown in Figure 3.6(b). Both 

algorithms choose intervals [1,3] 1 and [6, 7]4 for track 1. Notice that 

these intervals are not density_reducing. Theorem 3.1 guarantees 

that this selection of intervals will increase by one the number of 

tracks necessary to complete the channel. 

Had the Basic Dogleg algorithm used a right edge rather than a 

left edge algorithm, the channel would have completed using only the 

3 tracks shown in Figure 3.6(c). Clearly the order (top or bottom) in 

which tracks are chosen to be filled and the direction (left edge or 

right edge) each track is filled affects the number of tracks in the final 

solution. In Chapter 5 results are presented that indicate that the 
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Figure 3. 6. Routing f allure example. 
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Basic Dogleg and Dogleg algorithms use almost an identical number of 

tracks over a large number of randomly generated channels. Since 

each algorithm uses diff crent track selection and direction schemes, 

any particular choice of ordering merely changes the solution; it does 

not necessarily improve it. The Bell Labs LTXPeDeSc?S system tries 

several possible permutations, saving the choice that results in the 

lowest number of tracks . Since the number of such permutations 

grows exponentially, using random permutations r~quires repealed 

application of the Dogleg algorithm and does not guarantee that a 

favorable ordering will be among the permutations tried. 
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3. 7. A Revised Dogleg Algorithm 

The Dogleg algorithm fixes the order tracks are selected and the 

direction each track is filled. This section uses Theorem 3.1 as the 

basis for heuristics that substantially improve the Dogleg algorithm's 

performance . 

Theorem 3.1 guarantees that if the selection of intervals to be 

placed on a track is not density reducing, the selection will increase 

by one the number of tracks in the completed channel. The Revised 

Dogleg algorithm attempts to maximize density reducing track 

selections by analyzing four possible track selections. 

The alternatives attempted are 

!
11 left edge on a bottom track 
2 right edge on a bottom track 
3 right edge on a top track 
4 left edge on a top track 

Consider the example given in Figure 3. 7. Figure 3.7(a) shows the 

intervals that need lo be placed and the values for the local densities, 

d,(S0). Figure 3. 7(b-d) shows each of the track selection alternatives 

along with the local densities after those intervals have been 

eliminated. Figure 3. 7(b) corresponds to a left edge pass on a bottom 

track; Figure 3.7(c), a right edge pass on a bottom track; Both the left 

edge and the right edge passes on the top track produce the track 

selection shown in Figure 3. 7( d). Clearly choices c and d are better 

than b since ea.c'h ns density reducing. 

The Rer;ised algorithm makes bolh a left edge and right edge pass 

of the intervals; that can be placed on the top track, followed by a left 

edge and a right edge pass of intervals that can be placed on the 

bottom track. The notation 'Prii is used to represent the track 

containing intervals chosen for a top track using a left edge pass of 
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Figure 3. 7. Revised algorithm track selection example . 
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the available intervals . Similarly, track Trbr represents a track that 

contains intervals chosen for a bottom track using a right edge pass, 

etc. 

The Revised Dogleg algorithm is shown below. 
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The Revised Dogleg Algorithm 

i = 0 
while (L #-¢) 1 

i = i + 1 
for each l~j~I LI l 

s=L · 
VCG!0P =true i/f (Li ,q )~Evg for q E:Yi,g 
VCGbot =true iff (q ,Lj )~Eyg_ for q E: V"i 
HCG = true iff Tri.=¢ or \P ,s )~Et,,g JOT p ETr1. 
if HCG ~ 

if vcc,C?l' 
'I'rti = 1 Ttt Us 
if VCGbot 

1'rt,t = 'I'rbt us 
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Lines 5-14 fill a top track using both a left edge ( 'I'ru) and a right 

edge ( 1'rbi) pass. Similarly, lines 15-25 fill tracks 1'rtr and 'I'rbr · The 

SELECT function in line 26 attempts to choose a track that is d~nsity 

reducing. 



The SELECT function is shown below. 

SELECT function 

SELECT. ( L . Trtt . Trbt, Trtr , Trbr) 
CXtt = l,~z I di (L )=D(L) for ili;;l~n + lj -Trtt I 
a,r= ll ldi(L)=D(L)for O~l~n+1J-Trtr I 
aor= ~l I di (L )=D(L) /or ~l~n + 1 I-Trbr I 
!Xot = {l I di (L )=D(L) for O~l~n + 1}-Trbt 

i'u = g I di (L )-di (L-Tru =1)for~l~n + 1 

i'bl = {l I di (L }-di (L-Trbt = 1)forO~l~n + 1 

'!tr= ll I di (L )-di (L-Trtr = l)forlli;;l~n + 1 

i'trr= ~l I di(L}-di(L-Trbr=l)forOSl~n-+1 j 

return track with minimum value of a.. If 
two or more tracks have the same a. return the 
track with the maximum value of 7. 

end SELECT 
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A column j is covered by track Tr .. if d;(Si-i)-d;(Si)=l. A column j 

is said to be critical if d;(Si-i)=D(S, - 1) . Thus, a track is density 

reducing if each critical column is covered . The value of ex represents 

the number of critical columns that are not covered by the selection 

of the intervals in the track. Thus, a. can be thought of as a penalty 

for selecting a particular track assignment. If no track is density 

reducing , the SELECT function -will choose the track that minimizes a.. 

If two or more tracks minimize a., the SELECT function chooses 

the track that covers the most number of columns. This is equivalent 

to choosing the track with the smallest amount of "white space". 

Since the algorithm is guaranteed to find an optimal solution if a 

density reducing selection of intervals can be selected during each 

pass, this heuristic attempts to minimize the number of critical · 

columns by maximizing local density reductions in areas with non­

critical columns. 
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Returning to Figure 3.7, O.tr and au = O; exoi=l; and abr = 0. 

"Yet =1tr =6; "Ybt =5; and "Ybr =5. Tracks 'I'rtr, 'Pru and, TrbT all .have equal 

values for a. Since 'Pru and 'Prbr maximize 1, this choice is used for Tr,;.. 

This process continues until all the intervals have been placed. Figure 

3.7(e) shows the completed channel. 

Chapter 5 compares the completion rates of the Revised channel 

routing algorithm with the Dogleg algorithm over a variety of 

randomly generated channels. The results indicate that the Dogleg 

algorithm uses approximately four times the number of additional 

tracks as the Revised algorithm does. 

The revised algorithm requires that, during each pass, four 

possible tracks be attempted. This requires each interval to be 

examined 4 times. This is a linear increase in the worst case 

performance of the Dogleg algorithm. Thus, the complexity _of the 

Revised algorithm is also O(b 2). 

3.8. The Least Cost Path (LCP) Algorithm 

The Revised Dogleg algorithm attempts to map a set of density 

reducing intervals to a track. To accomplish this the algorithm makes 

both a left edge and right edge_ pass of the intervals that can be placed 

on the top track, followed by a left edge and a right edge pass of 

intervals that can be placed on the bottom track. As the results in 

Chapter 5 will confirm, this approach significantly improves the 

number of tracks over the density required to complete the channel. 

Unfortunately, there exist channels where none of the revised 

algorithm's passes will uncover a combination of intervals that is 

density reducing, even if in the remaining intervals, ·such a set exist. 
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Consider the example in Figure 3 .8(a). In making the choice of 

intervals for the first track, the left edge pass always selects [1,3]7, 

and the right edge pass always selects [8, 10]1 . Neither of these two 

choices is density reducing; thus, by Theorem 1, the routing will 

always exceed the density. The completed channel produced by the 

Revised Algorithm is shown in Figure :3.8(b) . Figure 3.8(c) shows that 
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Figure 3.8. Revised algorithm misrouting 



there is a set of intervals that is density reducing that was not 

considered by the Revised algorithm. 
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In this section we develop a new Least Cost Path (LCP) algorithm. 

This algorithm is shown in Chapter 5 to yield significantly improved 

results . The LCP algorithm guarantees that if a set of intervals 

contains a density reducing set of intervals, then those intervals will 

be selected for the current track. 

The selection process involves finding the least cost path through 

two directed weighted acyclic graphs : one for the intervals that have 

no descendants in the vertical constraint graph and one for the 

intervals with no ancestors. The paths through each graph correspond 

to possible combinations of intervals eligible for the current track. 

Two pseudo-intervals are added to the graph that act as a source and 

sink for the path. The source is represented by the interval 

V•ource=[o,o]0, and the sink, by Vsin,t=[n+1.n+1]O. The LCP algorithm 

attempts to select a path that is density reducing. 

Let the directed graph GT( V,0p ,Etap) be defined for some set of 

intervals S'cS as follows: 

V,op = ~V•ourc•, Vnn.t JU ~v_ I( q. v ),_E11g for q, v E: Yvg J 

Etop =i(p =[a,z ]i ,q =[a' ,z' Ji)! (,:p ,q }t:.Ehg and a~a· for p ,q EVtop J 

Similarly, GB( vt, 0t ,Ebot) is defined as 

~ot =iv.aurc• 'Vm,t J utv l(v ,q ).£.Evg for q ,v E. Vi.ig J 

Ebot =i(p =[a,z ]i ,q =[a' ,z' ]i)I (,:p ,q )t:.Et,g a:nd a~a· for p ,q El't,o, J 

Associated with each edge, e =(p=[a.z J' ,q =[a',z,Y), in Eiop and Ebot, 

let the cost-function C( e ) = l{z I de ( S;-1) = D( S.-i) for z <l <11 '}I· Thus, C( e ) 

maps each edge in Etop to the number of columns between intervals P 
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and q that are critical. Let Y=v.aurce ,v 1,v 2 , . .. , vnnJc be a path in GT or 

GB. Let W(Y) be the sum of the weights of the edges in path Y. Thus, 

for the intervals in Y to be density reducing, W(Y) must be equal to 

zero . W( Y) is equivalent to a, the number of critical columns not 

covered by the Revised algorithm in the SELECT function. 

As an example, Figure 3.9 repeats the channel in Figure 3.8 and 

shows the graphs for GT and GB. 

The least cost path, Y, through GT is [o,0]0,[2,5]5,[7,9]2,[11,11]0 and 

W(Y)=O . 

The number of vertices in GT and GB is a subset of the number of 

intervals, b. The number of edges in a directed acyclic graph is O{b 2). 

Thus, the creation of GT and GB is O{b 2). Finding the shortest path 

through a graph using Dijkstra's algorithm is O{ I EI), the number of 

edges. Thus , the worst case time complexity necessary to create the 

graph and find the shortest path is also O{b 2). In practice, the least 

cost path can be determined during the construction of GT and GB. 

The LCP algorithm can now be stated in terms of these two 

graphs. Let Ptop and Pbot be the minimum weighted paths in GT and 

GB respectively. Two or more paths are density equivalent if they 

have the same weighted cost, i.e. they cover the same number of 

columns that are at the density. If two or more paths are density 

equivalent, the path is chosen that covers the most columns. This 

additional heuristic is identical to that used in the Revised algorithm 

described earlier. 
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The complete LCP algorithm is shown below. 

The Least Cost Path Algorithm 

1 i = 0 
2 while (S#¢) f 
3 i = i + 1 
4 Construct GT and find Ptop 
5 Con st ruct Gil and find P00, 

6 Let P be a path of P,0pand Pbot 
7 with minimum cost W(P), and 
8 maximum column coverage. 
9 Tr,=P 

10 S=S-Tr, 
11 Yvg = Vvg -Tr,;. 
12 I 

In Figure 3.9, Ptop is [o.0]0.[2,5]5,[7,9]2.[11,11]0 and P00, is 

[o,0]0,[2,4]6,[6,9]3,[11, 11]0 ; both of which are density equivalent. The 

intervals in each path cover 7 columns. Thus, the choice of which path 

to choose for the first track is arbitrary; otherwise, the path that 

maximizes the number of columns covered would be selected. This 

process continues until all the intervals have been processed. In the 

next pass of the LCP algorithm, the GT and GB graphs are recomputed 

and the least cost path is again selected. This process continues until 

all intervals have been placed. The completed channel is shown in 

Figure 3 .10. 

If a combination of intervals exists that reduces the density of the 

remaining problem, the LCP algorithm will find it since GT and GB 

contain all possible combinations of intervals that can be placed on 

the current track. The channel routing problem is still, of course, NP 

complete . If neither Pio,, nor P,,ot is density reducing, there is no 

guarantee that a di.ff erent choice of density equivalent paths in earlier 

tracks would not have resulted in a density reducing choice of 
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Figure 3.10. Channel selection for the LCP algorilhm 

intervals in the current track. To guarantee an optimal solution, 

backtracking must be used to reconsider previous arbitrary choi.ces. 

The complexity of the LCP algorithm is proportional to the 

number of times through the loop times the time necessary to 

construct and find the shortest path through GT and GB. Thus, the 

LCP complexity is O(b*b 2) or O(b 3) . Although the worst case 

complexity is greater than the previous algorithms, in practice, the 

algorithm performs very well. 
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The LCP algorithm presented above uses the number of columns 

covered in the track to select between density equivalent paths. This 

cho;ce can be improved by considering a measure of the importance 

of covering a particular column. Let j be a column with a density of 

d; (S'}. If d; (S'}=l, only one interval must be mapped into D(S') tracks; 

if d.;(S')=D(S'}-1, then D(S')-1 intervals must be mapped into D(S') 

tracks. Clearly it is more important to place intervals that reduce 

those columns with the highest local density. Ll.nes 4,5 and 6-8 of the 

LCP algorithm involve choosing between density equivalent paths. To 

incorporate the importance of the column, the path with the lowest 

weighted covering is selected. The weighted covering is the sum of 
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d; (S') for all columns j not included in the intervals in a path P. Thus, 

if column j is not selected, the "penalty" associated with that choice is 

equal to the local density in that column. Consider Figure 3.11. 
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Figure 3.11. Weighted covering example 



The possible density reducing paths through GB are shown below. 

PATH 
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1
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P2= 0,0 °, 1.3 1
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Given that S=~[J,3] 1,[2,4]2,[4,7h[6,8]4.[5,7]5 L the weighted covering for 

P 1 is then d1(S)+d2(S)+ds(S)+da{S)+d1(S)+d8=12. Since P4 maximizes 

the weighted covering, this path is selected. 

The use of the LCP algorithm and the weighted cover heuristic 

form an extremely effective channel routing algorithm. As the results 

in Chapter 5 indicate, thls algorjthm used up to 20 times fewer tracks 

over the density than the standard Dogleg algorithm. 

3. 9. Applying Channel Routers to the Custom Routing Problem 

The custom routing problem interconnects nets with fixed pins on 

the edges of randomly sized blocks. To apply channel routing 

algorithms to the custom routing problem, we must: 

(1) Break up the routing region into channels. 

(2) Select an ordering of the channels to be routed such that no 

floating pin's location becomes fixed before that channel is 

routed. 

This section will show some of the difficulties with applying these 

steps to the general rouUng problem. 

The first problem is to break up the routing region. Consider the 

example shown in Figure 3.1.2. Here the region has fixed pins on two 
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adjacent sides of the channel. Regions with this fixed pin organization 

are difficult if not impossible to break into channels. 

Even if it is possible to partition the routing region into channels, 

there is no guarantee that it is possible to derive an appropriate order 

to route the channels. Consider the example in Figure 3.13(a). Here 

the channel C1 must be routed before channel C2 , since the floating 

pins on the ends of C 1 cannot be fixed ( as would happen if C2 was 

routed first). A preferred ordering is an ordering of the channels such 

that ,when routed according to that order, the endpins of unrouted 

channels are not fixed. Thus, a possible pref erred ordering is to route 

C1 followed by C2. A channel graph is used to determine a preferred 

ordering for a set of channels. Let CG( V,E) be a directed graph where 

node v,E:Vrepresents channel q and an edge (vi,v;}EE if channel q 

must be routed before channel C;. Figure 3.13(b) shows the channel 

graph for a simple example. If the channel graph does not contain 

cycles, a pref erred order can always be selected. 
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M1 c1 M2 

(a) (b) 

Figure 3.13. Channel ordering problem. 

Unfortunately, it is not difficult to construct cases where no 

preferred ordering exists (i.e ., there are cycles in the channel graph). 

Consider Figure 3 .14(a) . In this example, the only way to partition the 

problem into channels is as shown. Unfortunately, the 4 center 

channels form what is known as a T loop. The channel graph in Figure 

3.14(b) has a cycle, indicating that the no preferred ordering exists. 

Even if the region can be properly partitioned and a preferred 

channel ordering exists, good channel routing solutions are not 

guaranteed. Consider Figure 3.15(a). Here the routing region has 

been partitioned into channels C1, C2 and Ca. A preferred ordering 

also exists: C1, Ca, C2. Figure 3.15(b) shows the routing produced by 

the Dogleg in channels C1 and C3 . For comparison purposes, Figure 

3.15(d) illustrates the best possible routing for channel C2. 

The problem encountered in this example is that the crossings 

from channel to channel have not been judiciously chosen. Since 
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Figure 3.14. Problems with preferred ordering. 

channel routers must be given the flexibility to choose the cndpins, it 

is not possible to control the crossings between channels. 

These examples indicate that channel routers alone are probably 

insufficient tools for solving the custom routing problem. Chapter 4 

gives a detailed description area routing algoriLhrns . Chapter 5 

compares these algorithms with channel routing algorithms to 

determine which completes channels in the fewest number of tracks. 
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The results will show that channel routers use fewer tracks than area 

routers when the region fits the definition of a channel. These results 

indicate that regions of custom integrated circuits that form natural 

channel should be routed as such, for the channel routing algorithms 



use fewer tracks, are much faster area routing algorithms and 

guarantee 100% completion rates by allowing additional tracks to be 

added to the center of the channel. 

3.10. Summary 

This chapter formally described the channel routing problem. 
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This formalization enabled us to succinctly describe the Left edge, 

Basic Dogleg and Dogleg algorithms. This formalization also led to the 

development of necessary and sufficient conditions for a channel to be 

completed in the channel density. Using Theorem 3.1 and Lemma 3.1, 

the Left edge algorithm was proved optimal and the Dogleg routing 

failures were analyzed. This analysis led to the development of the 

Revised and LCP algorithms. Chapter 5 compares the channel routing 

algorithms over a variety of randomly generated channels. The results 

will show clearly that the new algorithms significantly reduce the 

number of tracks over the density required to complete the channels. 

This chapter also discussed some of the pitfalls involved in using solely 

channel routers to complete the wiring of custom integrated circuits. 



CHAPTER 4 

Analysis of Area Routing Algorithms · 

A channel was defined in Chapter 3 as a region with fixed pins on 

the top and bottom of the reg ion and "floating" pins on the right and 

left edges of the region. An area is a fixed sized rectangular region 

with fixed pins on any side of the region. 

Consider an area with pins only on the top and bottom sides with 

the height of the region equal to k . Clearly if an area routing 

algorithm can determine if the channel can be completed ink tracks, 

the algorithm will provide a solution to the channel routing problem. 

Thus, the area routing problem must be at least as hard as the NP­

complete channel routing problem. 

The previous chapter examined some of the problems associated 

with applying channel routing algorithms to the general routing 

problem. This chapter further motivates a discussion of area routing 

using the PI (Placement and Interconnect) project at MIT. This system 

depends upon area routers to _complete the routing. The completion 

rate of routing algorithms is a function of the difficulty of the region. 

This chapter introduces a measure of the difficulty of a routing region. 

This measure is used to compare different area routing algorithms. 

The chapter also examines techniques used to minimize the effect of 

the net currently being completed on future unrouted nets. Finally, 

we introduce a new area routing algorithm that is functionally 

equivalent to the LUZ algorithm presented earlier, but has a much 

simpler implementation. The algorithm has several advantages over 

the LUZ algorithm. First, the new algorithm is extensible to 
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multipoint nets. Since multipoint nets are common in custom 

integrated circuits , this is an important extension. Second, the LUZ 

algorithm tried continually more complex paths, never knowing 

whether the path between source and destination is blocked. The new 

algorithm realizes when no path exists between source and destination 

and does not attempt to apply more complex path shapes; it simply 

halls and returns failure . 

4.1. PI {Placement and Interconnect) Project 

This section describes the partitioning of the routing region and 

the use of area routers in the P I (Placement and 

Interconnect)RiBZa, B1:1Bl project. In this project the custom routing 

region is broken into "naturally" shaped areas, rather than channels. 

The algorithm performs this partitioning of the routing region by 

extending vertical and horizontal lines outward from the corner of 

each module, as shown in Figure 4 . 1 (a) . The heuristic used to combine 

the areas chooses the shortest line segment over all the lines 

extending from the corners. This line is selected as the boundary of 

one of the areas and all other lines extending from the endpoints of 

the chosen segment are removed . Figure 4. l(b) illustrates the 

selection and edge deletion step . Then, the next shortest line segment 

is selected, etc., until all areas have been defined. The final partition 

is shown in Figure 4. l(c). 

PI then uses a heuristic that fixes all crossings between areas. 

This approach allows global considerations to be included in the 

crossing placement, rather than allowing the crossings to be placed by 

the channel router. This has the side effect that every area has fixed 

pins on three or four sides. The result is a decomposition of the 
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routing region into separate independent areas. PI then routes each 

area using one of several area routing algorithms. 
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The PI project has several limitations. First, it ignores the 

difficulties involved in placing the modules in the custom routing. How 

much space should be allowed between two modules? This question 

depends a great deal on how difficult the area is to route. If the 

routing is fairly simple, the placement of the blocks should leave only 

a small amount of area to complete the routing. In this section, a 

complexity measure called the Ma:nhattan Area Measure, developed by 

Smith8m83 , will be presented . The concept of measuring the difficulty 

of a routing region for use in the placement of modules required that 

the measure accurately model the wiring in the region. Smith's 

measure is inappropriate for this use because it deals strictly with two 

point nets. This chapter will extend the concept of area complexity 

measure to multipoint nets . 

The problem of module placement is exacerbated by the inability 

of the PI system to dynamically update the region if necessary to 

complete the routing. Channel routers, however, can add tracks to 

the region to complete the routing. 

As mentioned above, the PI system uses three different routers: a 

quick router (similar to LUZ 1 paths), a slice router (similar to the 

"greedy" channel router) and the Lee. Since the Lee is used as the 

router of last resort, we make the assumption that it completed the 

areas more often than the other two approaches. The quality of the PI 

solutions depends on the completion rates of the area routing 

algorithms. This chapter presents a new area routing algorithm, 

functionally equivalent to the LUZ, that is extensible to multi-point 

nets. The new algorithm is compared against the Lee over a variety of 
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randomly generated areas . The results, presented in Chapter 6, will 

show that the new algorithm has higher completion rates than the Lee 

and thus can improve the solutions produced by the PI system. 

4.2. Manhattan Area Measure (MAM) 

In area routing, the most important measure of an algorithm is its 

completion rale . The completion rate is defined as the number of 

times an algorithm completes all the routing divided by the number of 

problems attempted over a large number of samples. The completion 

rate is a function of the difficulty of the wiring problem. This function 

is qualitatively illustrated by the graph shown in Figure 4.2. The poor 

algorithm will have high completion rates only on very simple 

problems; a good algorithm will have high completion rates on much 

more difficult problems . 

To measure the difficulty of the routing region, SmithSm83 

proposed the use of the Manhattan Area Measure (MAM). The 

computation of the MAM for a given problem is as follows. For each 
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net, compute the minimum number of grid points necessary to 

complete the net, independen t of all other nets . For two point nets, 

this number is computed by calculating the manhattan distance 

between the closest grid point to each pin. This number corresponds 

to the number of edges in the path. Adding one to this number gives 

the number of grid points in the path. Then, the number of grid 

points for each net is summed and the result is divided by the number 

of grid points in the region. 

The resultant number is the number of grid points that must be 

used to complete the routing . Mu1tiple layers are accommodated by 

multiplying the number of grid points by the number of layers. Figure 

4.3 gives an example . Here the MAM is computed as : 
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Using Figure 4 .3, the MAM is computed as follows: 

3+(2+~)+(10+2) 
10• 10• 2 .11 
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As the above example illustrates, a .11 MAM is a very sparse 

region . In contrast, the difficult example shown in Figure 2.6 that was 

completed by the LUZ had a MAM of . 7. 

Smith's definition of MAM is only applicable in two point nets. In 

later sections of this chapter the definition of MAM is extended to 

consider the more useful case of multi-point nets and revised to 

create tighter bounds using a two layer wiring model. 

4.3. Area Routing Characteristics 

If only one wire needs to be routed, the lower bound defined by 

the MAM is eas ily achieved. The difficulty in designing good routing 

algorithms is in optimizing the interaction between the different nets . 

An algorithm's approach to this interaction can be divided into two 

categories : sequential and parallel Su82. An algorithm is sequential if, 

when routing the i",. net, it only considers the placement of the i-1 

nets already routed and some objective function for placing the net i. 

A parallel algorithm conceptually routes each wire independently of all 

other nets, and then resolves local conflicts by re-routing certain nets 

where there is over utilization of some grid edge. The Lee algorithm is 

an example of a sequential algorithm while most channel routing 

algorithms fall into the class of parallel algorithms. 

A sequential algorithm must choose a path in such a way as to 

minimize the effect on nets yet to be routed . Four important 
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considerations are layer assignment. pin blocking. vias and degree of 

freedom. 

4.3.1. Layer Assignment 

Up to this point. all horizontal wires have been routed using one 

layer and all vertical wires using the other layer . This decision. when 

viewed locally, seems to increase the area required to complete the 

routing . For example. in Figure 4.4(a) nets 1 and 2 can be routed 

using only a single track with net one using the upper layer and net 2 

using the lower layer. When viewed globally. this track sharing can 

6SSSSSI 

2 1 1 2 

(a) local view 

Layer 1 
Layer 2 

3 

3 

(b) Global view 

. 3 

3 

(c) One layer per direc\.ion. 

Figure 4.4. Layer assignment examples. 

2 

1 



74 

have a dramatic effect on the routing of future nets . In Figure 4.4(b), 

Nets 1 and 2 have been routed using only one horizontal track. 

However, since only two routing layers are available, this choice 

prevents net 3 from being routed. Also, overlapped nets are 

susceptible to capacitive coupling between the wires, an undesirable 

electrical phenomenon. Figure 4 .4(c) illustrates a solution using 

required directions for each routing layer . This layer assignment 

minimizes the impact on future nets and is used on most sequential 

(and parallel) routing algorithms . 

4.3.2. Pin Blocking 

Even using a single routing layer per direction, the path chosen 

for a net can still dramatically affect the ability to route future nets . 

Figure 4 .5 gives a typical example . Here the path chosen for net 1 

prevents net 2 from gaining access to the routing region. This 

problem is called pin blocking . 

2 1 

. . . . . ·- ·········-···· ·· -·· . .. .... . .. ... .. . . . ' . . 
I t O I I 
o t t I I 
o t t I I 
t • t I t 
I O I t 0 . . . . . 

3 

~])[:II:I 3 

l 2 

··+ ··· 
4 4 

Figure 4.5. Example of pin blocking 



75 

The original Lee algorithm choses paths blindly, with little or no 

regard for nets yet to be routed. Smith analyzed the completion rates 

for the Lee and his results are reproduced in Figure 4 . 6: Because 

uniform pin distributions around the periphery of the routing region 

are the most representative of integrated circuit routing, and they 

also appear to be the most difficult, Smith choose this pin distribution 

for comparison of the algorithms presented . The completion rate of 

the Lee drops off dramatically when the MAM reaches .1. Recall the 

very sparse region in Figure 4. 3 had a MAM of .11, indicating that the 

Lee has very poor performance . 

Two techniques have been used to decrease the effec.ts_o_i:gin 

blocking . The first is called net ordering. In Figure 4.5, had net 2 

been routed before net 1, the pin blocking problem would not have 

1.0 

.9 

.e 

.7 

Fraction .6 
Completed 

.5 

·" 
.3 

.2 

.1 

.05 .1 .15 .2 

)b.nballau Area Mwuure 

Figure 4. 6. Completion rate of the Lee. 
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occurred. In general, however, net ordering is difficult to effectively 

implement and it is not difficult to suggest examples that do not have 

any preferred order, i.e ., any net ordering choice will result in a pin 

being blocked . 

p,. more direct approach is suggested by Saxe and reported by 

Smith. His technique places tails on each pin extending across 50% of 

the routing region. These tails behave much the same as wires and 

are called reservations. During the routing process, only wires that 

belong to the same net are allowed to intersect the rese~ ion. The 

use of reservations is intended to guarantee each pin access to the 

routing regj.on. Once a net has been compleled._any unused-se-etie-R-of 

the reservation is returned to g~ neral use . Figure 4 .7(a) illustrates 

the initial reservations and Figure 4. ?(b) shows the results after 

routing net 1. :tfote t_hat the reservation for pin 2 made it imp.ossihle 

for net 1 to block net 2's access to the routing region. 

2 1 

(•) Initial rHervations 

2 1 

{b) reviHd reservations 

atler net 1 1ru routed. 

Figure 4. 7. Example using reservations 
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Smith showed that using reservations in conjunction with the Lee 

increased completion rates by almost an order of magnitude. His 

results are reproduced in Figure 4.8 and compared to the Lee. 

4.3.3. Vias 

Vias can cause problems similar to the layer assignment problem. 

Vias form blockages in the routing area. These blockages present 

obstructions to future paths. Consider Figure 4. 9. Here, two possible 

paths are shown for net 1. If the diagonal path is chosen, the vias will 

prevent net 2 from being completed. 

Agrawa1Ag73 studied the effect of block es on a sgµare routing 

region by randomly placing obstructions over the r_Quting __ r~ ion and 

measuring the probability of being able to route a random two-pc:>int 

net. His study indicated that as the percentage of blockages reached 
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Figure 4.8. Completion rate of the Lee with Reservations 
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Figure 4. 9 . The problem with vias. 

35%,_llle chances of being able to route a future net JelJ_o:ff 

dramatically. His experiments were also run on blockages that were 

created by the Lee algorithm. His statistics indicated that the vias 

created by the Lee caused the abi1ity to route future nets to fall off 

faster than the rate for randomly distributed blockages. He 

hypothesized that this was due to the Lee creating higher local 

densities . 
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One technique aimed at reducing the number of vias is to utilize 

the graph routing region model used by the variable cost Lee router 

(Chapter 2.1). If the weight assigned to a via edge is greater than the 

longest path in either of the routing layers, the shortest path 

algorithm will always find the path with the m.i.nimum number of vias. 

This technique will route each net individually using the minimum 
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number of vias, but does not attempt to minimize the overall number 

of vias . 

Consider Figure 4 .10. This solution required a total of 9 vias. Had 

net 2 been routed in a way that did not interfere with net 3 or 4, all 

three nets could have been completed using only 5 vias . 

One way to achieve this result would be to route nets 3 and 4 

before routing net 2 . Changing the order that nets are routed is called 

net ordering . 

4. 4. Degree of Freedom Based Routing 

In this section a net ordering scheme is developed based on the 

number of E._ossible p9-th_ choices for a net. This routing algorithm is 

functionally equivalent to the LUZ algorithm, but is implemented using 

a variable cost Lee algorithm. The result is a router with higher 

completion rates, that is extensible to multipoint nets, and has the 

advantage over the LUZ that it halts . 
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Figure 4.10. Routing via interaction 
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4. 4.1. Systems of Distinct Representatives 

Consider the following subproblem. Let E be a set and 

A 1,A2 , . .. , An be a family of subsets of E . A family e 1,e 2 , .. . , en of 

elements of E is a system of representatives of A1,A2 , . . . , An provided 

e 1 is in Ai, e 2 is in A2 , . .. , and en is in An - If, in addition, e 1,e 2 , . . . , en 

are distinct elements, then e i,e 2, . . . , en is a system of distinct 

representatives for A1,A2 , . . . , An . 

Consider the example shown in Figure 4.11 . A system of 

representatives might be 2,3,3,5. A system of distinct representatives 

might be 2,3,4,5 . 

Assuming that there is a system of distinct representatives for the 

set E, what is the probability of randomly selecting a system of 

distinct representatives using only the previous selections to guide the 

selection process? 

This probability can be computed for the example in Figure 4.11 

by constructing the decision tree shown in Figure 4.12. As the tree 

E = l 1,2,3,4,5 ! 
Ai = 2,3 J 
A2 3 ~ 
As 1,4,3,5 J 
A. 5 I 

Figure 4.11. Example of systems of distinct representatives. 
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. (+++) 

Figure 4.12. Decision tree using random set ordering 

Bl 

indicc1Les, either 2 or 3 can be selected from sel A1 . If 3 is chosen, 3 

cannot be selected from A2 since this clement was selected in A1. This 

path will terminate in failure. If 2 is chosen from A1, 3 must be 

selecled from A2 . Choices for As have now been reduced to f 1,4,5L 

because 3 has already been selected from A3 . This process continues 

for the rest of the tree . Successful paths are marked with an check. 

TI1e probabilily of successfully finding a sel of distinct represenLalives 

can be computed using the probability of making a correct choice at 

each level in the tree. Figure 4.12 computes this probability at 1/3. 

Assume the ordering is changed so that elements are selected 

from set A2,A4,A 1 and A3 . The decision tree for this ordering is shown in 

Fig·µre 4.13. The probability of finding a system of distinct 

representatives in this case is 1. The dramatic improvement is clearly 

related to the ordering chosen. Why was this ordering selected? 

Let us define the degree of freedom !Qr a set_~denQle.cLdo.LJp.J.o 

be ~umber of elements minus 1 in the ~t. For example, in Figure 
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p I: l 

Figure 4 .13. Decision tree using do/ ordering. 

4.12, do/ A
1
= 1,dof A

2
=0,dof A

3
=3 and do/ A.=o. The degree ~f fre_eg._om is a 

measure of the :flexibility involved in the selection. The order that sets --- - - - - - - --
WE!_!'e selected in Figure 4 .12 was random, while in F_!gur~ 4.13, the 

selection was based on increasing degrees of freedom. This_strategy 

ection_m_ items having more flexibilit 

the chances thai_an incorrect selection is made. Although this - ~-
strateg will n_ot alwa_ys find a system of distinct repres~ntatives, .it 

clearl · as _g_ood or better (usually much better) than the random 

case . 

4.4.2. Degree of Freedom (DOFj Algorithm 

This notion of degree of freedom is useful in the area routing 

problem. Let the position of the two pins in an arbitrary two point net 

determine the intrinsic degree of freedom according to the following 

table: 



0 
0 
1 

if pins are directly opposite one another 
if pins are on adjacent sides 
if pins are on opposite sides 

83 

'fhe degree of freedom in these cases is equivalent to the number of 

edges thaL are nol fixed by Lhe posiLion of Lhe pins. For example, a Z 

shaped path has the two endpoints fixed but the middle segment is 

free to move, creating the one degree of freedom. 

Now return to the example in Figure 4 .10, reproduced for 

convenience as Figure 4 .14. The original order chosen to route the 

nels wc1s based only on Lhe net number. In Figure 4 .14, lhe nels tire 

routed according to increasing degrees of freedom. Thus, the degree 

of freedom of net 1, denoted do/ 1, is 0. The do/ 2= 1, do/ 3=0, and 

do/ 4=0. The resull is a routing thal uses only 5 vias, reducing Lhe 

number of blockages in the region and increasing the chances that 

subsequent nets can be completed. 

1 2 
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• " I I 

1 
I L -
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2 3 ' 
Figure 4.14. DOF routing example 



This degree of freedom analysis also provides a clue as to what 

should be done if a net cannot be completed using the intrinsic 

number of vias. 

Given a path with n vias , the do/ is dynamically defined !;..S 

d.of = 0 
do/ = n-1 

if n = 0 
if n > Q 
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Consider Figure 4.15. In this example, all three paths have an intrinsic 

degree of freedom 0. ·when two or more nets have the same degree of 

treedom, the routing order is arbitrary. Net 1 can be routed using 

only one via. Net 2 now cannot be routed using one via because of a 

conflict with net 1. At this point it is clear that Net 2 must be routed 

using a path with at least 3 vias. This indicates that the new path has 

d.of equal to 2. Hence, the list of nets yet to be routed is dynamically 

updated with net 2 placed after all nets with less than 2 degrees of 

freedom. Thus net 3 would be routed, followed by net 2. 
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1 t------.. 1 

t 
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I 
I 
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""'-,---.... 2 

--'---' ------- 3 T 
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I 
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3 

Figure 4.15. Dynamic modification of net do/. 



The following algorithm implements Degree Of Freedom, DOF, 

based routing. 

1 
2 
3 
4 
5 
6 
7 
B 
g 

Degree Of Freedom algorithm 

i = O· 
while

1

( # nets remaining ! = 0) l 
for each(net not routed) f 

route net using no more than i vias. 
if success mark the net as finished and 

decrease the number of nets remaining. 
~ 

i=i+l· 
~ ' 
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For each iteration of the while loop, each unrouted net is attempted 

using no more than i vias . Remaining nets are attempted until all the 

nets have been completed. 

The routing of each net is accomplished using the variable cost 

Lee algorithm presented in Chapter 2.1. Let V be greater than the 

longest path in a single layer. The cost of a via edge in the variable 

cost Lee is set to V. Thus, the maximum cost of a path with n vias is 

((n+l)*V)-1. Thus, to restrict the path found by the Lee to less than i 

vias, the standard Lee algorithm is run, but the Lee does not allow any 

node to be placed in the cost list that has a weight greater than 

{(i+l)*L)-1. By not allowing these nodes to be placed in the cost list, 

those paths that contain more· than i vias are "pruned" from the 

search path. Pruning simply means that a possible path was not 

considered because the cost of such a path exceeded the number of 

vias allowed in this pass . For example, on the :first pass (i = 0), only 

paths with zero vias are attempted. 

( Ordering the nets in this manner is functionally equivalent to 

) routing them using the LUZ algorithm presented earlier, with the 

l added advantages of being easy to implement and understand. The 



DOF router also has the advantage of knowing when to halt. In the 

original LUZ, the algorithm must try successively more complex 

B6 

paths, although Smith's studies indicate that little or no improvement 

occurs beyond LUZ level 3 paths . The Lee based approach can 

determine if any more paths are possible using the next degree of 

freedom by recording whether any paths were "pruned" by the 

current degree of freedom. If paths have been pruned, other paths of 

more complexity have been overlooked. If no paths were "pruned" and 

the Lee failed to find a path, no increase in the number of vias will 

help; all paths are blocked. 

Finding improved implementations of the LUZ algorithm is 

important because the LUZ algorithm was shown by Smith to be have 

higher completion rates than the Lee. His results are shown in the 

graph in Figure 4 .16. In light of the discussion concerning degree of 
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Figure 4.16. Comparison of the Lee and LUZ algorithms. 
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freedom routing, these results should not be surprising. The Lee is 

capable of selecting the same path shapes that are used by the LUZ. 

The difference in completion rates is due to the net ordering imposed 

by the LUZ. More complex paths are postponed until simpler paths 

have been completed. Thus, we would expect the Lee based DOF 

algorithm to perform no worse and probably better than the Lee. 

Smith's comparison of the Lee and LUZ algorithms was restricted to 

square routing regions consisting of only two point nets. Later in this 

chapter, the DOF algorithm is extended to consider multipoint nets . 

The MAM is also extended to provide a lower bound on the number of 

grid points required by multipoint nets . In Chapter 6, extensive 

comparisons of the DOF and Lee algorithms are made over a variety of 

sample areas . 

The DOF algorithm has interesting performance characteristics. 

Since the cost values in the wavefront are bounded, the number of 

cells considered at each stage will be a function of the number of cells 

reachable using less than or equal to i vias . Because the path 

complexity increases with each pass, the run time for each successive 

path should be longer . At the same time, the number of unused grid 

points in the routing region is decreasing, and thus the search time 

for a path decreases . Smith indirectly provided an upper bound on 

the execution time of the DOF algorithm. His results indicated that 

routing paths with complexity over LUZ level 3 ( ~ 6 vi.as) had little or 

no effect on completion rates. Since each pass through the DOF 

algorithm allows one additional via in the path, we would expect to 

make less than 6 passes through the algorithm before halting. 

We can provide a speedup of two lo the DOF algorithm by 

partitioning the nets into two groups based on intrinsic degree of 



88 

freedom. If a net has an intrinsic do/ = 0, the number of vias in the 

path must be odd . Likewise, if the intrinsic do/ = 1, the _number of 

vias in the path must be even. Thus, if i is even, the Lee need only be 

run on nets with intrinsic do/ = 1. Likewise, if i is odd, the Lee need 

only run on nets with intrinsic do/ = 0. 

Using Smith's result and the improvements above, approximately 

six passes should be made through the algorithm, with alternate 

passes using a partition of the nets remaining . Thus, we would expect 

that the performance of the DOF algorithm would be no more than 

three times the Lee. In practice, the performace on the DOF 

algorithm was approximately 1.8 times that of the Lee. 

4.5. Extending Degree of Freedom Routing to Multipoint Nets 

The LUZ algorithm proposed by Smith cannot be used on 

multipoint nets . Since most area routing problems contain multipoint 

nets, this severely restricts the usefulness of the LUZ. This section 

will identify the problems created by multipoint nets and propose the 

revisions necessary to extend the DOF algorithm to these cases. 

The multipoint net problem is equivalent to the geometric Steiner 

tree problemGa79_ 

Problem: Geometric Steiner Tree Problem 
Instance: 

Set Pr.:.;.ZxZ of points in the plane, 
positive integer k. 

Question: 
Is there a finite set Qr;:.ZxZ such that 
there is a spanning tree of total weight 
k or less for the vertex set PU Q, 
where the weight of an eige l (-y 1.f 1),(x2

1
Y2) J 

is the rectilinear metric x 1-x21+_fY1-Y2 . 
A spanning tree that mimmizes the value of k is called a 
Minimum Weight Steiner Tree (MWST). 

Consider Figure 4.1 ?(a) . The set Pis called the set of distinguished 
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Figure 4 .17. Steiner tree example. 
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vertices, or vertices that must be included in the Steiner tree's vertex 

set. In routing problems P represents pins in a signal net and k 

represents the minimum amount of wire necessary to complete the 

net. Garey and Johnson GaJo?9 showed_this problem t_a be NP­

complete . Th~s indiC:_ates thatJi.ndingA_ MWS:l is_ ver dlf!_icult. 

Fortunately, good heuristic algorithms are well known. 

Figure 4 .17(d) illustrates a MWST for Figure 4.17(a). The points in 

P are connected using a minimum number of edges. A popular 

J:!.euri_§_tic commonly used i~ c!'1:!Junction with the Lee makes use of 

D~r~·~ shortest path algorit~ to produce a Steiner tree. The 
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a!_gorithm begins by finding_the shortesl rectilinear distanc_e atw:e_en 

an two pins ( elements of P) . In Fig_ure 4!.l.4 .. (-aj, th LWf>-e-1€-m~nts_of p 

with.the sho:c_test rec1filne__ar._ distanc...e_are d and e, or_g_ and._d. If two 

or more ~ els of points have equal distance the choice i..§.. qybitrg._ry. 

These points are connected using the path th_at produced the shortest 

distance . As shown in Figure 4 .1 7(b), d and e are chosen to be 

connected . This_ partial net is called a subnet. Then, thE:_closest 

distin uished vertex to any point in the subnet is chosen, and this 

path is added, creating a larger subnet. In the example, c has the =---- - -
minimum distance (2) from the subnet. This connection is made. This 

process is repealed until the entire net has been completed. A 

completed Steiner tree using this heuristic is shown in Figure 4.1 ?(c). 

The minimum weight Steiner tree is shown for comparison in Figure 

4.17( d) . Notice that the cost of this Steiner tree is 17, as opposed to 

the minimum weight Steiner tree's weight of 16. 

BaratzBaBt showed that the weight of a Steiner lr(;?_e generated 

using this algorith!!3- is no more than twice the optimal :.weight. 

A variation on this heuristic is commonly implemented using the 

Lee algorithm. The first pin in a net is selected as the source and all 

other pins in the net are labeled as targets. The Lee forms a subnet 

by conne cling the source to the closest pin. The Lee then arbitrarily 

chooses another pin in the net and uses it as the source and the 

subnet as a destination. This process continues until the entire net is 

completed. 

The DOF algorithm presented in the previous section is based on 

the Lee algorithm. Using the techniques explained above, t_!ie ~ 

based DOF algorithm can also im lement the Steiner tree_ heuristic. 

During each pass of the DOF algorithm, connections are attempted 
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between pins of the same net using paths with i vias. If the 

connection between a pin and the subnet cannot be accomplished 

using only i vias, the net is marked as incomplete, and the completion 

of the net is postponed until the next pass. 

4.6. Extending the Definition of MAM to Multipoint Nets 

The MAM, presented in section 4.2, is used as a measure of the 

complexity of the routing region. This measure is used to compare 

the completion rates of various algorithms and to determine the size 

of the routing areas that must be provided during the placement of 

blocks in lhe general routing problem. This section extends the notion 

of MAM to multipoint nets. 

Recall from section 4 .2 that the MAM provides a lower bound on 

the number of grid points necessary to complete the wiring. If all 

edges are of weight one, the the weight of the MWST is equal to the 

number of edges in the tree . The number of vertices in a tree is 

always equal to the number of edges in the tree plus one. Thus, the 

MWST also minimizes the number of grid points. In this section we will 

develop a reasonable lower bound on the weight of the MWST. This 

lower bound is shown to be eq~al lo the weight of the MWST for two 

and three pin nets. Since two and three pin nets make up the vast 

majority of all nets in custom routing, this measure provides an 

excellent lower bound on the the minimum number of edges in the 

MWST and hence the number of grid points necessary to complete the 

wiring. 

Assume we are given an instance of the rectilinear Steiner tree 

problem. Let P=UJ 1,p 2, ... ,Pm J be the set of distinguished vertices 

where A =(.r,.Yi). In the area routing problem, Pi is the closest 
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adjacent point to pin i . This distinction merely implies that p.;, is in 

the routing region while pin i is connected to the bounding rectangle. 

If m = 2, the MWST is formed by the minimum length path between p
1 

and p 2 . The weight of this tree is the rectilinear distance between the 

two points: jx1-x2 j+ IY1-Y2 j. We define the bounding rectangle 

R(p 1,p2 , . .. ,Pi) as the minimum rectangle that encloses vertices 

P1,P2, · · · , Pi) . 

lemma 4.1: For each additional vertex, Pi for 2>i~m, the additional 

weight of the MWST is greater than or equal to the distance 

from Pi to R(p 1,P2 , ... ,Pi-1). 

Proof: First we observe that a MWST on i vertices has exactly one path 

from R(p1,P2 , ... ,Pi - 1) to Pi · Clearly multiple paths would 

have a weight greater than simply connecting the two exit 

points using a path formed by the perimeter of R and 

connecting A to the closest point in this path. Thus, the 

additional weight of the MWST is greater than or equal to 

distance from A to the exit point of the path. 

Thus , to compute a lower bound on the weight of the MWST, two 

points of the net are chosen and the manhattan distance between 

them is computed . For each additional point, A distance is computed 

to the bounding rectangle of the previous points and is added to to the 

previous sum. The total provides a lower bound on the number of 

edges in the MWST. Figure 4.18 gives an example. · P initially contains 

lP1=(0,3),p 2 =(5,0),p 3=(3,5),p4 =(10,3)1. The manhattan distance between 

P1 and p 2 is 8. Thus 8 is the lower bound on the weight of the MWST for 

the first two points. Lemma 5.1 guarantees that the weight of the 

MWST for the first three points is greater than the weight of the MWST 
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pli].JI ltttf p4 

Figure 4.18. MWST lower bound example. 

for the first two points plus the manhattan distance to the smallest 

rectangle that encloses the first two points. Figure 4.1B(b) illustrates 

the distance for the addition of p 3 • Thus, a lower bound on the weight 

of the MWST for the first 3 points is 10. Figure 4.1B(c) shows the 

distance required by the addition of the last point, p 4 . A lower bound 

on the weight of the MWST is 15. The minimum number of grid points 

necessary to complete the wiring is then equal to the weight of the 

MWST plus one or 16. 

The proof that the lower bound is tight for 3 points is shown in 

Lernma4.2. 
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Consider any three points, P , where P=!p 1,p 2 ,p 3 J. 

Lemma 4.2: The MWST for P is equal to the manhattan distance from 

p 1 to p 2 plus the manhattan distace from (x3 ,y3) to the 

closest point in R (.p 1,P2). 

Proof: Let p4 be the closest point in R(p 1,p 2 ) from p 3 . Clearly the 

MWST for JJ1 and P2 can be formed in such a way as to include 

p 4 . Thus, the minimum path betweenp3 and P4 creates a 

tree on three vertices. Lemma 4.1 guarantees that the 

weight of this tree is less than or equal to the weight of the 

MWST. 

4. 7. Extending the llAM to the One Layer Per Direction Yi.ring Model 

The MAM proposed by Smith does not make any assumptions 

concerning the wiring model used . For example in Figure 4.19, the L 

shaped path will use a minimum of 5 grid points. The MAM for this net 

will then be :a . If we restrict the wiring model to one layer in the 

vertical direction and one layer in the horizontal direction, a via must 

be used to swtich from one layer lo the other This via will use both a 

B 

A 

Figure 4.19. Extended MAM mode]. 
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grid point on the top layer and a grid point on the bottom layer. Thus, 

the minimum number of grid points for the net is 6 and the MAM is 

~ Clearly, this revised definition of the MAM provides a tighter 
f>O 

bound on the number of grid points necessary to complete the wiring. 

The value of the MAM for this wiring model is easily calculated as 

the manhattan distance plus one (the old value of the :MAM) plus the 

minimum number of vias in the path. Since the algorithms presented 

use the one layer per direction wiring model, the difficulty of the 

routing region will be exclusively measured using this definition of the 

MAM. 

4.8. Summary 

This chapter described the area routing problem and its 

importance in routing custom integrated circuits. Smith's MAM was 

introduced as a means of measuring the complexity of an area. The 

chapter went on to describe characteristics of area routing problems 

such as layer assignment, pin blocking and vias. The LUZ concept of 

"simplest" paths was explained in terms of systems of distinct 

representatives. This new definition enabled us to develop a 

functionally equivalent definition of the LUZ algorithm that was 

extensible to multipoint nets and halted if a path could not be found 

for a given net. The notion of MAM was also extended to measure the 

complexity of areas that contain multipoint nets and to utilize the one 

layer per direction routing model. In Chapter 6, these extensions 

allow a comparison of completion rates using the Lee and DOF 

algorithms on areas with multipoint nets. The results will show that 

the DOF algorithm has better completion rates than the Lee algorithm 
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over a variety of sample channels using both two point and multipoint 

nets. 



CHAPrER 5 

Measurements of Algorithm Performance over Channels 

A channel was previously defined as a routing region with fixed 

terminal positions on the top and bottom of the region and "floating" 

connections on the right and left ends. In gate array, polycell and 

standard cell layouts, channels are naturally formed between rows of 

logic elements . An area was defined as a routing region with fixed pins 

on other than the top and bottom sides of the region. In custom 

integrated circuit layouts, some regions form natural channels while 

others require an area routing solution. 

This chapter compares the solutions generated by both channel 

routing algorithms and area routing algorithms using a variety of 

randomly generated channels . The randomly generated channels are 

created using both an algorithm developed by Rivest and one 

developed by the author. The channel routing algorithms used in this 

comparison are the Dogleg, Revised Dogleg and LCP algorithms that 

were described in Chapter 3. The area routing algorithms used are 

the Lee and DOF algorithms. The area routing algorithms are 

extended in this chapter to incorporate the additional :flexibility of 

floating endpins. 

The comparison of channel routing solutions and area routing 

solutions over channels is important for the following reasons: 

( 1) Channel routing algorithms have different strengths and 

weaknesses from area routing algorithms. This chapter 

determines which characteristics are most important in achieving 

an optimum number of tracks in the channel. 

Y7 



(2) Area routing algorithms are used to route custom integrated 

circuits . Some portions of these circuits form natural channels. 
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If the area routing algorithms have low completion rates in 

randomly generated channels, we would expect similar results 

when these algorithms are applied to the custom r_outing problem. 

This p r oblem is especially acute in routing projects such as the PI 

system. Here, natural channels are turned into areas with fixed 

pins on all four sides of the region. Thus, the flexibility of floating 

endpins is taken away. If the Lee and DOF algorithms perform 

poorly on channels with floating endpins, we expect that the 

reduced :flexibility imposed by the PI project would further reduce 

the algorithm's completion rates . 

The results of this section will clearly indicate that the Revised 

Dogleg and LCP algorithms, developed in Chapter 3, use significantly 

fewer tracks over the density than the Greedy algorithm, which uses 

fewer tracks than the Dogleg . The results also show that area routing 

algorithm's use significantly more tracks over the density than any of 

the channel routing algorithms . 

5.1. Algorithm Characteristics 

Each algorithm used in this comparison has particular strengths 

and weaknesses. Three characteristics that are of particular interest 

are horizontal line segment organization, vertical constraints and path 

shapes. 

Horizontal line segment organization refers to how well an 

algorithm minimizes the amount of while space between two different 

segments . The Dogleg does an excellent job of minimizing this white 

space. The Greedy router also does an excellent job of aligning 
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horizontal line segments . At each column, the Greedy router brings a 

new net into the first available track. This process tends to pack line 

segments together. Conversely, the DOF and Lee algorithms make no 

effort to minimize the amount of white space between segments. The 

Revised and LCP algorithms are loosely based on the Dogleg algorithm. 

These algorithms, while minimizing white space, also chose segments 

in ways that maximize density reductions. 

In terms of vertical constraints, the Dogleg based algorithms do 

an excellent job of considering vertical constraints. The Greedy 

router indirectly handles vertical constraints by extending each 

terminal to the nearest available track and adding the wiring 

necessary to reduce the distance between the track a net is currently 

running in and the corresponding pin. The use of reservations in the 

Lee and the DOF algorithms implements a very basic form of vertical 

constraint. 

In terms of path shapes , the Lee and DOF algorithms have the 

advantage . Each is capable of using arbitrarily shaped paths to 

complete a net, although the net ordering implied by the DOF 

algorithm tends to use complex path shapes more wisely than the Lee. 

The Dogleg, Revised Dogleg and LCP algorithms are forced to use a 

very restricted set of path shapes. The Greedy router uses more 

complex path shapes than the Dogleg but not as complex as those 

offered by the Lee and DOF algorithms. 

Since each algorithm has particular strengths and weaknesses, 

thls comparison will also help determine which characteristics are 

most important in achieving high completion rates. 
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5. 2. Algorithm Normalization 

As we have s een in Chapter 3, the input to the channel routing 

problem is shown in Figure 5 . l(a) . Each position on the top and 

bottom of the channel has either the net number of the terminal at 

that position or a blank, indicating that no terminal is located at that 

position. On the left and right sides of the channel, net numbers 

indicate that the net must connect to some point on that side of the 

channel. A solution to the channel routing problem is shown in Figure 

5. l(b) . The objective of each algorithm is to minimize the number of 

horizontal tracks necessary to complete the interconnection of the 

nets . 

This section will discuss modifications in the Greedy, DOF and Lee 

algorithms necessary to produce comparable solutions. 

5. 2.1. Eliminating Extra Columns Generated by the Greedy 

The Greedy router, as described by Fiduccia and Rivest, generates 

routings that can use more columns than were given in the original 

problem description. In Figure 5.2 the number of columns, n, 

specified in the problem is 20. The solution produced by the Greedy 
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Figure 5. t. Channel routing problem 
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router used 21 columns. Since this additional area is not used by the 

Dogleg, Lee or DOF algorithms, a fair comparison of the algorithms 

requires the elimination of these extra columns. 

Let k be the number of horizontal tracks used in a solution and 

the density, D, be the minimum number of tracks necessary to 

complete the routing . 

The greedy router takes an initial value fork as an input 

parameter and increases k as necessary to complete the routing. Our 

implementation sets the initial value of k to D. If the completed 

channel uses more than the number of columns specified in the 

problem description, the algorithm is rerun, increasing the initial 

value of k by one . This process continues until no net extends beyond 

then columns specified in the problem statement. 
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Figure 5.2. Extra column example 



This method of ~xtra column elimination, although effective, is 

rarely necessary . Over the hundreds of test cases applied to the 

Greedy router, less that 2% required greater than n columns. 

5.2.2. Minimizing the Routing Area using the Lee or DOF 
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In the Dogleg and Greedy routers, k is automatically increased 

from D as necessary to ensure completion of the channel. In contrast, 

the Lee and DOF algorithms are given a fixed area and either produce 

a valid routing or return failure, indicating that the algorithm did not 

produce a solution in the given area. To find the minimum area 

required for the completion of a given channel using the Lee and DOF 

algorithms, these algorithms are first run using k =D tracks. If the 

routing fails, k is increased and the algorithm is rerun. This process 

continues until the channel is successfully completed. 

5.2.3. Extending the Lee and DOFwith Floating Endpins 

The Dogleg and Greedy algorithms are given the flexibility to 

choose the positions of pins on the left and right edges of the channel. 

The Lee and DOF algorithms, however, require that the positions of all 

pins be fixed . Fixed pin positi9ns take :flexibility away from the Lee 

and the DOF. 

To complete a fair comparison, the Lee and DOF algorithms are 

extended to choose the positions of floating endpins. Figure 5.3 shows 

a two point net to be routed. Pins A and B belong to the same net. 

The position of pin A is fixed while the position of pin B is selected by 

the algorithm. The extended Lee and DOF algorithms use Pin A as the 

source and all unused locations on the side of pin Bas the target. 

These positions are marked in Figure 5.3(a). Using these selections 
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Figure 5.3. Floating pin extension. 

the first target pin reached is used as the location of pin B. Figure 

5.3(b) shows the flna] position of B and the path selected by the Lee or 

DOF. 

This extensjon is consistent with the Lee's performance in custom 

layouts . If a channel is present in the routing region, the Lee chooses 

the crossing point along the edge of the channel using a path that does 

not conflict with earlier crossings. 

5.3. Test Channel Generation 

To verify each routing algorithm's overall effectjveness, this 

section describes algorithms that generate sample channels. Each 

algorithm is parameterized to· create sets of channels exhibiting 

particular characteristics . 

5.3.1. Ri.vest·s Channel Generation Algorithm 

The first algorithm was written in uspWmSl at MIT by R. 

RivestRi82b_ The algorithm was rewritten in "C"KeRi?B by the author for 

use in these experiments. 



The algorithm accepts the following parameters: 

n 
D 
C 

u 

t 

a 

The channel width (number of vertical columns) 
The channel density 
The congestion of the channel (i .e . what fraction 
of the terminal positions are actually used along 
the top and bottom of the channel) 
The number of nets that must enter from the left 
end of the channel and exit from the right. 
Our implementation fixes u =O. 
The approximate number of terminals per net 
If t =2 each net is restricted to exactly 2 terminals. 
If a = true the vertical constraint 
graph is acyclic. 
The initial random number seed. 

A typical example of a channel generated by Rivest's algorithm and 

routed by the Dogleg is shown in Figure 5.4 using the following input 

parameters : 

Rivest( n=20, D=10, t=2.5, c=.9, u=0, a=true) 
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Rivest's algorithm begins by generating a set of nets, L, that enter the 

channel from the left end, where L=~l,2, .. . , Dj and Dis the channel 
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Figure 5.4. Sample channel using Rivest's algorithm 



density input parameter. A set N, the currently active nets, is 

created with N=L . For a given column, the set N contains the nets 

that enter the column from the left. For each column i from 1 to n 
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' 
the algorithm determines, based on the value of c, whether to place 

terminals on the top and/ or bottom of column i. Terminals are either 

chosen from N or a new net is created, in which case the new net is 

added to N. To ensure that the number of nets in N does not exceed 

the dens ity, a new net is never created if IN I =D . Terminals chosen 

from the set of currently active nets are removed from N with 

probability (t .:_l) . If t is equal to 2.0, nets are automatically removed 

from the current set as soon as the first two pins are placed. If t is 

greater than 2.0, the number of pins per net is exponentially 

distributed. In practice, the average number of pins per net is less 

than t . For example in these test cases, the average number of pins 

per net if t =2.5 was 2.39. After all columns have been considered, the 

remaining elements of N are placed in R, the set of nets that enter 

the channel from the right. 

6.3.2. Alternate Channel Generation Algorithm 

Rivest's algorithm generates channels that have several 

properties that are not generally found in custom layouts. 

( 1) The left edge of the channel always is at the density with the right 

edge usually less than the density. This causes asymmetric 

channels . 

(2) The left to right approach also tends to group connections for a 

net. If a new net is created in column i, the probability of the net 

being terminated before column i +s increases as s increases. 



The Alternate channel generation algorithm generates channels 

which do not exhibit these characteristics . The algorithm takes 5 

input parameters and a random seed: 

n 
C 

l 

t 

a 

To 

The channel width (number of vertical columns) 
The congestion of the channel (i.e . what fraction 
of the terminal positions are actually used along 
the top and bottom of the channel) 
The channel height (approximately c• l 
endpin positions are used as terminals) 
The approximate number of terminals per net. 
If t = 2 each net is restricted to exactly 2 terminals . 
If a = true the vertical constraint 
graph is acyclic. 
The initial random number seed. 

It is important to note that these parameters do not include D, 

the channel density. The alternate algorithm makes no attempt to 

control the density of the channels produced. Figure 5.5 shows an 

example of a channel generated by this algorithm using the 

parameters 

Alternate (n=30, c=.9, 1=10, t=2 .5, a=true) 
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The algorithm begins by defining a rectangular area with height 

l+l and width n+l. The algorithm places the first and second terminal 

of net 1 in random positions on the boundary of the rectangle. The 

corners of the rectangle are not considered as possible terminal 

positions . Additional terminals for the net are made with probability 

1- ( 1 ) . The number of connections for a single net on either the left 
t-1 

or right edge of the channel is constrained to be less than or equal to 

one. This prevents a net from having multiple connections to the left 

or right edge of the channel. After net 1 is completed, the process is 

repeated for net 2, then 3, etc. until the fraction of positions filled is 

greater than or equal to c. 
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Figure 5.5. Sample channel u~ing the Allernate algorithm 

5.4. Completion Rates of Channel Routing Algorithms 
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Finding a single set of test cases to compare channel routing 

algorithms is difficult because, in practice, channel characteristics 

vary widely. Our approach is to generate sets of channels, each with a 

specific set of characteristics. If one algorithm consistently has a 

higher completion rate than the other algorithms over all the sets of 

channels generated, the strong inference is that the algorithm has 

better overall performance. If a particular algorithm has a higher 

completion rate on only a few of the sets of channels, we can isolate 

which channel characteristics the algodthm requires to achieve high 

completion rates. 

Each set of test channels contains 50 sample channels. Each 

channel was routed using each of the six algorithms and the number 



of tracks each used was recorded. The results are shown using a 

_graph that plots the completion rate against the effectiveness 

~ efficient, p . Given that k is the number of tracks used in the 

solution and D is the density, p= ~ -1. This reflects the fraction of 

tracks over _th~ densit re@ired to complete the _routing . 
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In Chapter 3, the statement was made that the Dogleg and Basic 

Dogleg algorithm had almost identical completion rates . As an 

example of the format for comparing different algorithms, Figure 5.6 

compares the completion rate against the effectiveness coefficients 

for the two algorithms. The samples were generated by the Alternate 

algorithm. Each channel had 30 columns, an average of 9 nets 

entering the right and left side of the channel, 2. 5 terminals per net 

and 90% of the possible terminal positions were filled. The graph 
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Figure 5.6. Cornparison of the Dogleg and Basic Dogleg 
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shows that of the 50 channels, the Dogleg algorithm completed 47% in 

the density; 87% completed in . 05 tracks over the densi~y while 98% 

completed using . 10 tracks over the density. The Basic Dogleg 

improved only slightly on these results . 

The following sections compare the routing results in highly 

congested channels with multipoint nets, highly congested channels 

with two point nets, moderately congested channels with multipoint 

nets and channels with low aspect ratios and multipoint nets. A 

complete summary of all the results is provided in Appendix 1. In 

addition to the competition rate data presented in this section, the 

summaries contain breakdowns of wire and vias in the wiring, heights 

of vertical constraint graphs, channel utilizations, etc . 

5.4.1. Highly Congested Channels with Multipoint Nets 

Two sets of highly congested channels with multipoint nets were 

created and compared . 

5.4.1.1. Channels Generated Using Rivest·s Algorithm 

Each channel contained 50 columns, a density of 20, 2.5 

connections per net, 90% of the possible terminal positions used for 

terminals, and an acyclic vertical constraint graph. Figure 5. 7 graphs 

each algorithm's completion rate against the effectiveness coefficient, 

p. 

The result indicate that the LCP algorithm uses the fewest tracks 

over the density, followed by the Revised Dogleg, the Greedy 

algorithm, the Dogleg, the DOF. and the Lee algorithm. 

The effectiveness ratio is defined as the ratio of the mean 

effectiveness coefficient, for each algorithm algorithm over the lowest 
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Figure 5.7. Rivest (n=50, d=20, t=2.5, c=.9, u=0, a=Lrue) 

mean effectiveness coefficient. The mean value of the effectiveness 

coeffkients and the effectiveness ratios are given be]ow: 

TABLE 1 
IIlGHLY CONGESTED CHANNELS WITH MULTIPOINT NETS 

GENF,RATED USING RIVEST'S ALGORITHM 

p .071 

~ 9.889 
.009 

.0'1 

4.44 

.121 .133 

13.444 14. 778 

.017 

1.88 

.009 

1 
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This table indicates that over these test cases, the Dogleg algorithm 

required almost 10 times as many tracks over the density as the LCP 

algorithm. The DOF algorithm, the best of the two area routing · 

algorithms, required over 13 times the number of tracks over the 

density. 
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Section 5 .1 pointed out that the the Dogleg based algorithms do 

an excellent job of taking into consideration vertical constraints and 

doing line segment ordering, but they use a limited set -of path shapes . 

It is interesting to contrast this with the Lee and DOF algorithms that 

do a poor job of line segment ordering, a fair job of handling vertical 

constraints, but have at their disposal an unlimited selection of path 

shapes. The above statistics indicate that complex path shapes are 

not as important as other factors . In fact, statistics kept for the DOF 

algorithm over these 50 test cases indicate less than 1.4% of all the 

paths used by the DOF algorithm contained 3 or more vias! 

5.4.1.2. Channels generated using the Alternate Algorithm 

The density mean for the channels generated by the Alternate 

algorithm is 19.6 . The expected number of connections per net is 2.5. 

The fraction of positions with pins is . 9, and the number of columns is 

30. Figure 5 .8 graphs each algorithm's completion rate against the 

effectiveness coefficient. 

The mean value of the effectiveness coefficients and the 

effectiveness ratios are given in Table 2. 

- TABLE 2 
HIGHLY CONGESTED CHANNELS 'WITH MULTIPOINT NETS 

GENERATED USING THE ALTERNATE ALGORITHM 

p .0377 

_p_ 9.425 
.004 

5.525 22.95 21.6 2.325 1 

Jt is interesting to note that although the relative positio_ns of the 

algorithms did not change from the statistics in the previous section, 

each algorithms completion rates significantly improved. The 
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Figure 5.8. AllernaLe (n=30, 1=10, t=2 .5, c=.9, a=true) 

statistics generated during the routing reveal several possible 

explanations. First, the number of columns in these examples was 30 

rather than the 50 column examples generated by Rivest's algorithm 

with the density approximately the same. Second, the channels 

generated usfrig the alternate algorithm tend to be hourglass shaped, 

leaving areas of white space in the routing region. One possible 

measure of this white space is the cha.nnel utilization, 7. -y is defined 

as the sum of the minimum lengths of all horjzontal segments divi.ded 

by the sum of the lengths of the horizontal tracks. Thus -y indicates 

the fraction of the total horizontal tracks that must be used to 

complete the wiring. The channels generated by Rivest's algorithms in 

section 5.4.1.1 had gamm.a =. 77 with standard deviation of .12, as 

compared to the Alternate algorithms ga:m.ma =. 73 and standard 



deviation of .04. Furthermore, 54% of the Rivest algorithm channels 

had very difficult channels(-,,~ .BO) as opposed to only 4% of the 

channels generated by the Alternate algorithm. 

5.4.2. Highly Congested Channels with Two Point Nets 
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Zahir2a82 examined completed custom layouts of student projects 

at Stanford University and found that 80% of all nets (with the 

exception of power, ground and clock lines) were made up of two point 

nets . In the following sections, Rivest's and the Alternate algorithms 

are again used lo construct sets of sample channels consisting solely 

of two point nets. 

5.4.2.1. Channels Generated Using Ri.vest's Algorithm. 

The channels generated again have 50 columns, a density of 20, a 

fraction of possible terminal positions used of . 9 and an acyclic 

vertical constraint graph. All nets are two point nets. Figure 5.9 

graphs each algorithm's completion rate against the effectiveness 

coefficient. 

The mean value of the effectiveness coefficients and the 

effectiveness ratios for each algorithm are given in Table 3. 

TABLE 3 
HIGHLY CONGESTED CHANNEI.B WITH TWO POINT NETS 

GENERATED USING RIVEST'S ALGORITHM 

p 

_£_ 
.002 

12.0 7.0 11.5 16.0 1 1 

Although the results again indicate that the relative positions of 

the algorithms remain the same, a comparison of these results with 
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Figure 5 .9 . Rivesl (n=50, d=20, L=2.0, c=.9, u=0, a=Lrue) 
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those of section 5.4 .1.1 also indicate a substantial improvement in 

completion rates for all the algorithms when routing channels that 

consist solely of two point nets. This improvement can be traced to 

the vertical constraint graphs of routing problems with only two point 

nets. As was shown in Chapter 3.3, if no vertkal constrajnts are 

present, the Left edge algorithm always produces an optimal solution. 

Vertical constraints present obstacles to channel routing algorithms. 

A t point net generally has t -2 interior connection points, i.e. 

connection points that connect two line segments of the net. A 

connection point in co]umn i generates vertical constraints to all line 

segments that begin or end in column i and that do not belong to the 

same net. If a routing problem has only two point nets, a single 

column i can have at most two line segments that make connecUons 
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in that column. Thus the maximum number of vertical constraints 

created is 1. For multipoint nets column i could have -up to four line 

segments that terminate in a single column (assuming both top and 

bottom connections in column i are interior nodes of multipoint nets) 

generating up to four vertical constraints . Figure 5.10(a) and (b) 

illustrate the two cases. 

This increase in the number of vertical constraints was reflected 

in channels generated using the different values for t. For t =2.0, the 

mean number of vertical constraints among the test cases was 37.64; 

fort =2.5, the mean was 57.32. 

5.4.2.2. Channels Generated Using the Alternate Algorithm 

This set of channels again restricts the number of terminals per 

net to two. The number of columns is 30 and the fraction of terminal 

positions used is . 9. The density mean for the channels generated is 

21.4. Figure 5.11 graphs each algorithms completion rate against the 

effectiveness coefficient. 
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Figure 5.10. Effect of multipoint nets on vertical constraints 
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Flgw·e 5.11. Alternate (n=30, 1=10, k=2.0, c=.9, a=Lrue) 

The mean value of the effectiveness coefficients and the 

effectiveness ratios are given in Table 4. 

TABLE 4 
HIGHLY CONGESTED CHANNELS W1TH TWO POINT NETS 

GENERATE D USING THE ALTERNATE ALGORJTHM 

p 

p 
.0027 

.0249 

9.222 

.0229 

8.481 

.0619 .0809 

22.926 29.963 

.005 

1.85 
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1 

In these examples, the channels generated by the .Alternate algorithm 

had higher completion rates than those generated by Rivest's 

algorithm. This was surprising since in section 5.4.1, the channels 

generated by Rivest's algorithm had higher completion rates. In that 

section, we noted that a possible cause of the completion rate 
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difference was that the Alternate algorithm was generating channels 

with a lower channel utilization factor, -y . The channel utilization 

factor was considered important because it measured the amount of 

white space in the channel. The statistics for the channels generated 

in this section show that Rivest's algorithm generated channel with a 

mean value for --y of .46 . The Alternate algorithm generated channels 

with --y equal to .72. Thus, in this section the Alternate algorithm 

produced the more difficult channels as was reflected in the lower 

completion rates. 

5.4.3. Moderately Congested Channels with :Multipoint Nets 

To generate this set of sample channels, only Rivest's algorithm is 

used with the fraction of possible pin positions used decreased to .6. 

The approximate number of terminals per net is 2.5, the number of 

columns is 50 and the density is 20. Figure 5.12 graphs each 

algorithm's completion rate against the effectiveness coefficient. 

The mean value of the effectiveness coefficients and the 

e.ff ectiveness ratios are given is Table 5. 

TABLE 5 
LIGHTLY CONGESTED CHANNELS WITH MULTIPOINT NETS 

GENERATED USING RIVEST'S ALGORITHM 

p 

_p_ 
.00~ 

20 .0 11.333 31.667 26.333 1.667 1 

A comparison of these results with those of section 5.4.2. indicates 

that decreasing the value of c increases the completion rates. One 

reason for thls improvement is decreasing c also decreases the 

number of vertical constraints since vertical constraints are only 
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Figure 5 .12. Rivest (n=50, d=20, l=2.5, c=.6, u=0, a=Lrue) 
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generated when different nets connect to the top and bottom of 

column i . Using a value of c = .9, the probabiUty of generating at least 

one vertical constraint is c 2 or .81. Decreasing c to .6 decreases this 

probability to .36. 

This decrease in the number of vertical constraints can be 

measured by comparing the number of edges in the vertical 

constraint graph. In section 5.4.2, the average number of edges in the 

vertical constraint graph with c = .9 was 57.32 while in this section, with 

c =.6, the number of edges was reduced to 26.02. 

5.4.4. Channels with I.ow Aspect Ratios and Multipoint Nets 

In this example Rivest's algorithm is again used to generate the 

test channels but the aspect ratio (D / n) of the region is changed to 



120 

5.5. Observations on Algorithm Perlormance. 

The purpose of this chapter was to compare each routing 

algorithm over a variety of channels with different characteristics and 

evaluate the relative performance of each. The results show that, over 

every set of sample channels, the relative performance of the 

algorithms remained the same : the best performance was recorded by 

the LCP algorithm, followed by the Revised algorithm, the Greedy 

algorithm, the Dogleg algorithm, the DOF algorithm, and finally the 

Lee algorithm. 

The measurements also suggest that the new algorithms that 

evolved from the the application of Theorem 3.1 improved the number 

of tracks necessary to complete the routing by a factor ranging from 

2.74 to 20, depending on the characteristics of the channel, with an 

average improvement of 10. The measurements also demonstrate a 

consistent area penalty when the area routing techniques of the Lee 

and DOF algorithms are applied lo the channel routing problem. The 

number of tracks over the density required by the Lee and DOF 

algorithms ranged from 4.17 to 31.67 times the number of tracks 

required by the LCP algorithm with a mean of 18.32. This suggests 

that in channel routing problems, complex path shapes are not nearly 

as important as line segment alignment. The higher completion rates 

of the channel routing algorithms are even more impressive in light of 

the order of magnitude execution time penalties for area routers. 



CHAPTER 6 

Measurements of Algorithm Performance over Areas 

Chapter 4 described the MAM and its use in evaluating the 

performance of an algorithm. Smith effectively used this measure to 

compare the completion rates of the LUZ and Lee algorithm using 

randomly generated square areas with two point nets. However, 

routing regions found in custom integrated circuits are almost always 

rectangular shaped with some combination of two and multipoint nets. 

This chapter evaluates the effectiveness of area routing algorithms in 

this domain . 

Two important extensions were described in Chapter 4 to facilitate 

this comparison: the MAM was extended to multipoint nets. and the 

DOF algorithm was implemented that is functionally equivalent to the 

LUZ algorithm but is extensible to multipoint nets. 

This chapter compares the Lee algorithm to the DOF algorithm 

over areas with a variety of aspect ratios using areas that contain both 

two point and multipoint nets . The results will show that the DOF 

algorithm has higher completion rates than the Lee algorithm over 

each set of sample areas . The measurements also indicate that in 

each set of sample areas, the completion rates fall off as the MAM 

exceeds .3 and that when the MAM exceeds. 75, neither algorithm can 

successfully complete the routing. Is . 75 a "barrier" intrinsic in the 

area routing problems generated or ineffective routing algorithms? 

This section defines "density" in terms of the area routing problem 

and establishes a relationship between the MAM and the density of the 

121 
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region. This relationship defines improved upper bounds on algorithm 

completion rates . 

6.1. Generation of Sample Areas 

To compare area routing algorithms, sample areas are generated 

using an algorithm that is similar to the Alternate algorithm described 

in Chapter 5.3.2. The algorithm takes as input the following 

parameters : 

n - area width 
h - area height 
t - approximate number of terminals per net. If 

t=2, nets are restricted to two point nets . 
m - MAM for sample areas 
r 0 - initial random seed . 

The generation algorithm begins with a rectangular area with 

height h + 1 and width n + 1. The algorithm places the first and second 

terminals in random positions along the boundary of the rectangle. 

The corners of the rectangle are never selected as terminal positions. 

Additional terminals for the net are made with probability 1- (t ~l). 

After net 1 is completed, the process is repeated for nets 2, then 3, 

etc. until the MAM of the region exceeds the input parameter m. The 

MAM is computed using methods detailed in Chapter 4 and provides a 

lower bound on the number of grid points necessary to complete the 

area. 

Figure 6.1 illustrates a sample area generated .using the 

parameters n=40, h=20, t=2.5 and m=.6. The wiring was produced by 

the DOF algorithm. 
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Figure 6 .1. Sample area: (n=40, h=20, t=2.5, rn=.5) 

6.2. Comparison of the DOF and Lee Algorithms 

This section graphs the co_mpletion rate of each algorithm against 

MAM of the sample areas . Since differing aspect ratios and multipoint 

nets are common in area routing problems, these statistics will 

emphasize areas of this form. Each data point in the graph consists of 

a minimum of 50 randomly generated test cases . A complete 

summary of these routing results is found in Appendix 2. 

6.2.1. High Aspect Ratio (30x30) Regions with Two Point Nets 

Smith confined the comparison of the Lee and LUZ algorithms to 

square routing regions with two point nets. These test cases are used 
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to confirm his results . In Figure 4.16, his statistics comparing the Lee 

and LUZ algorithms were presented. Figure 6.2 graphs the completion 

rates of the Lee and DOF algorithms against the MAM. As Smith noted 

in his statistics, the measurements indicate that the completion rates 

of both algorithms falls off dramatically as the MAM exceeds .5. The 

statistics also indicate that the DOF algorithm has higher completion 

rates than the Lee . These results are hardly unexpected. Smith 

showed the LUZ algorithm had higher completion rates than the Lee 

algorithm for two point nets . Since the DOF algorithm is functionally 

equivalent to the more complicated LUZ algorithm, we expected 

similar completion rates . The Lee algorithm, however, had higher 

completion rates than Smith found in his studies. These disparities 

are probably the result of variations in the implementation of the two 

Lee algorithms . In our implementation, a variable cost Lee was used, 
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Figure 6 .2. Area(n=30, h=30, t=2.0) 



and very high costs were placed on via edges. This technique 

decreased the number of vias in the completed region and, hence, 

slightly increased completion rates . 

6. 2.2. High Aspect Ratio (30x30) with Multipoint Nets 
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Most area routing problems include some multipoint nets. The 

extensions in Chapter 4 allow the DOF algorithm to be extended to 

route areas with these types of nets. This section compares the effect 

of multipoint nets on the completion rates of the Lee and DOF 

algorithms using square regions . The difficulty of areas is computed 

using the revised definition of MAM that computes a lower bound on 

the number of grid points that must be used in the area divided by the 

total number of grid points using the lower bound on the rectilinear 

Steiner tree (Lemma 4 .1). Both the Lee algorithm and the DOF 

algorithm also make use of the Steiner tree heuristic described in 

Chapter 4. 

Figure 6. 3 graphs the completion rates of these area routing 

problems against the MAM. The results show that extending the DOF 

algorithm to multipoint nets did not have an adverse affect on overall 

completion rates: the relative positions of the Lee and DOF algorithms 

remain the same. 

6. 2.3. Moderate Aspect Ratio (20x40) Areas with :Multipoint Nets 

Most areas encountered after partitioning a custom integrated 

circuit are rectangular shaped. The following section decreases the 

aspect ratio of the sample areas to : or .5. The completion -rates for 

these areas are shown in Figure 6.4. The results show that the DOF 

algorithm again has higher completion rates than the Lee algorithm. 
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6.2.4. Low Aspect Areas (10x50) with multipoint nets 

In these examples , the aspect ratio of the areas is decreased to l.. 
5 

or .20. The results of this comparison are shown in Figure 6.5. Two 

characteristics are worth noting : first, the point at which completion 

rates decline is less than in other aspect ratios. Second, the 

difference between the LUZ and DOF completion rates is considerably 

narrower than with previous examples . 

6.3. Bounding Completion Rates 

The statistics generated in the previous section indicate that each 

algorithm's performance diminishes rapidly when the MAM of the 

region reaches .3 and rarely will either algorithm route an area that 

has a MAM greater than .55 . Is the reduction in completion rates due 
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to poor algorithm performance, or the mtrinsic difficulty of the areas 

attempted? 

This section examines the complexity as the MAM increases and 

determines whether the area has reached a point were no algorithm 

can complete the routing . The MAM forms a simple example of this 

idea. Since the MAM is defined as the number of grid points that must 

be used to complete the wiri~ in an area, if the MAM exceeds 1, the 

area can never be routed. Unfortunately, the decrease in completion 

rates for the sample areas occur long before the MAM exceeds 1.0, 

making the MAM a poor upper bound on completion rates. 

6.3.1. The Density of Area Routing Problems 

A more interesting upper bound can be developed based on the 

concept of density . The definition of density is similar to the one 

described in Chapter 3.1. for channel routing problems. This section 

assumes the area is oriented such that the aspect ratio is less than or 

equal to one . Let the interval A =[a,z Ji denote the set of columns 

crossed by net i between the leftmost terminal a and the rightmost 

terminal z in net i . Let the local density d; be the number of sets 

where j E:.P;. for l~i~m . Thus, ·as in the channel routing problem, dj 

represents the number of distinct nets that cross column j. Let the 

area density D represent the maximum value of d; for l~j-~n, where n 

is the number of columns . Since each distinct net must cross column 

i on a single layer, D represents a lower bound on the number of grid 

points that must be available in column j. 
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6. 3. 2. The Relationship Between Density and MAM 

Clearly the MA.Mand density of a region are related.· As the MAM 

increases, the number of nets crossing any column also increases. Let 

the density coefficient be defined as the density of the area divided by 

the number of horizontal tracks . For example, if the area is 10x20 and 

the density of the area is 8, the density coefficient is .8. Thus, 8 out of 

the 10 rows must be used to complete the wiring. Clearly any area 

with a density coefficient greater than 1 is impossible to complete, 

regardless of the choice of routing algorithm. Figure 6.6 graphs the 

density coefficient against the MAM for randomly generated areas with 

low aspect ratios( 1 0x50) and multipoint nets. The center line 

connects the mean densities for each value of MAM. Also graphed are 

the mean plus or minus the standard deviation and the range of 

densities for each value of MAM. Notice that as the MAM exceeds . 75, 

over 50% of the areas have density coefficients greater than 1. Thus, 

of the 50 test cases, less than 25 areas can be routed, regardless of 

the choice of routing algorithms. 
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This density information can be used as an upper bound on the 

completion rates of area routing algorithms. Consider Figure 6. 7. 

This graph repeats the area routing statistics from section 6.3; 

however, the graph has been augmented with a third line that maps 

the M..i\M to the percentage of areas where the density coefficient is 

less than 1. For example, when the MAM is .4, only .82 of the areas 

have density coefficients less than one. Thus, this line forms a upper 

bound on completion rates . The DOF algorithm is completing .4/ .82 = 

.49, or 49%, of these difficult areas. 
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The statistics indicate that in the case of low aspect ratio areas, 

the decrease in completion rates is a result of the difficulty of the 

problems attempted rather than poor algorithm performance. 

The augmented completion rate graphs for moderate and high 

aspect ratio areas with multipoint nets are shown in Figures 6.8 and 

6.9 . 

These statistics indicate that the bound provided by the density is 

strongest in areas with a low aspect ratios and weakest in areas with 

and aspect ratio of 1. However, even in these cases, the density 

provides a much stronger bound than the MAM . 

6.4. Implications of Routing Statistics 

The statistics generated in this chapter have several important 

applications. First, they can be used to estimate the area required to 

complete the wiring between two adjacent modules in the custom 
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routing problem. For example , to have a 90% chance of completing 

the routing in a square region with multipoint nets, enough area 

should be left between modules to reduce the MAM to less than .5. If 

the MAM of the current module placement exceeds .75, it would be 

wise to alter the placement of modules to reduce the complexity of 

the region. 

These statistics also show that the Lee and DOF algorithms 

perform equally well in areas up to some clearly defined threshold. 

For square regions, this threshold occurrs at a MAM of .5. This 

suggests that the added computation time required by the DOF 

algorithm is not necessary in such regions. In regions with MAM > .5, 

the improved completion rates outweigh the additional computation 

time . 



CHAPI'ER 7 

Conclusions and Suggestions for Further Study 

This dissertation analyzes the a~orithms used and performance 

of integrated circuit routing algorithms. This section analyzes the 

impact of this research on the custom routing problem. Most routing 

systems perform the following steps: 

( 1) Place the modules. 

(2) Partition the routing area into rectangular routing regions. Many 

routing systems attempt to partition the routing region into 

channels . While this is laudable goal, many placements do not 

lend themselves to this partitioning. Consider Figure 7. l(a). The 

only way to partition the region into channels is as shown. This 

partition has two disadvantages. First, the channel graph is 

----·- ··· ·- ----- --· -- - ·· 

M
4 

C
4 

·-------- --·- ·-

C:3 ___ ... 
~ 

(a) (b) 

Figure 7.1. Difficult Partitioning example 

1~4 
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cyclic, making it impossible to choose an order to route the 

channels . Second, it does not make use of the routing area in the 

center of the routing region. A more natural partition is shown in 

Figure 7. l(b) . Also, if the modules in the layout are not 

reclangular, it is rarely possible to partition the routing region 

into solely channels . Figure 7. l(c) gives an example. This analysis 

indicates that natural partitions make use of both channels and 

areas. The Building-Block(BBL) systemChHsKuBS, developed at U. 

C. Berkley, is an example of a routing system that uses such a 

partitioning . 

(:3) Perform global routing . Global routing takes a partitioned custom 

circuit and determines through which regions a net will travel. 

Consider Figure 7.2. There are two possible paths for net A: 

C1, C2 ,A 1, C3 or C1, C4 .A2, C3 . The choice of paths is_deter ifli.ned b the 

electr ical req_uirements of the net ._ combined witb the conge_stion 

along the path. 

½ A1 i,A 
·--

c; c. 

---

Figure 7.2. Global routing 



( 4) Route each reg ion. Channels are routed using channel routing 

algorithms while areas are routing using area routers . 

7.1. Conclusions 

This dissertation contributes to each phase of the custom area 

routing problem. 
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The placement of modules depends heavily on the estimate of the 

amoun t of area required to complete the wiring. In this capacity, the 

MAM, in conjunction with the aspect ratio of the region, provides an 

excellent estimate of the chances of successfully completing the 

routing region. 

The measure is also extremely important in the global routing 

phase of integrated circuit interconnection. If a low capacitance net 

is critical to the performance of the circuit, the shorter path is 

selected. Otherwise, a less-congested path that meets the electrical 

requirements is selected . If no path will meet these requirements, the 

regions must be expanded . In this context, the MAM provides an 

excellent estimate of the comparative difficulty of routing an 

additional net through the regions transversed by the two different 

paths . The MAM can also approximate whether or not the congestion 

of an area has reached a point that will make routing an additional net 

difficult or impossible . 

Once the global routing phase has been accomplished, regions are 

independently routed. To complete the channels, two new and highly 

effective channel routing algorithms were presented: the Revised and 

LCP algorithms . These algorithms were shown to improve 

performance over the Dogleg and Greedy channel routers by a factor 

2. 74 to 20 with an mean of 10. The new algorithms improved the 



137 

performance of the Lee and DOF area routing algorithms by a factor of 

4.17 to 31.67 times with a mean of 18.32. These statistics suggest that 

when "natural" channels are present in the routing region of a custom 

integrated circuit, area routing algorithms require significantly more 

area to complete the wiring than do good channel routing algorithms. 

This analysis further suggests that if, as in the PI routing system, each 

channel is made into an area by fixing the crossings, the reduced 

flexibility of the area routing algorithm not choosing the positions of 

the crossings will reduce the effectiveness of the algorithm beyond 

that of the previous statistics. 

To complete the areas, the MAM can be used to approximate the 

difficulty of the routing region. For very difficult regions with high or 

moderate aspect ratios, the DOF algorithm should be used to complete 

the wiring . For regions with low aspect ratios or moderate difficulty, 

the results show that the faster Lee algorithm will produce the same 

completion rates . 

7.2. Future Work 

This section offers a sampling of a few of the interesting problems 

that remain in integrated circuit routing. 

7.2.1. Applying Channel Routing Techniques to Areas 

The channel routing results of Chapter 5 indicate that the Lee and 

DOF algorithms are not as effective as the channel routing algorithms 

at routing channels. Since low aspect ratio areas have few fixed pins 

on the left and right sides of the channel and appear as channels in all 

other respects, we would expect that channel routing techniques 

would be effective in low aspect ratio channels. 
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To test this hypothesis, we developed a prototype area router 

based on the LCP algorithm. At present, the algorithm is only 

applicable to areas with an acyclic vertical constraint graph (created 

as in channels using the pins on the top and bottom edges of the 

area), two pin nets and only one pin from each net entering the left or 

right sides of the area. 

Two typical problems that make the application of channel routing 

techniques difficult to apply to areas are illustrated in Figure 7.:3. In 

the first case, net one must be place in track 1. Unfortunately, net 

one has ancestors in the vertical constraint graph and therefore 

cannot be placed until the ancestors have been placed. A similar 

situation occurs when a net could be placed in the current track but 

the fixed endpin position postpones it's placement until the track 

corresponding to the fixed endpin. If this net has ancestors in the 

vertical constraint graph, they too are postponed -- often with 

disastrous results . Figure 7.3(b) gives a typical example. 

To solve these problems, the Area LCP algorithm (ALCP) is gJyen a 

set of hueristics that are applied before each track is .routed. These 
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Figure 7.3. Problems with channel routing techniques 
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hueri~tics attempt to ensure that any_ nets_with fixed er:!d ins have no 

descendants in the vertical constraint graph, and thus are eligible for 

placement in !:h-e next track. Two techniques are used. First, the 

algorithm attempts to split the interval in "open~ column~ Figure 

7.4(a) gives an example . If_ this fails, _the line segment is extended as 

_shown_ in.Figure ?.4(b) . If both of these hueristics f_ail, the algo_!"ithm 

halts with failµre . A similar approach is used to break line segments 

that have no descendants in the vertical constraint graph, but whose 

fixed :2in position prevents the net from being placed on the current 

track. 

The ALCP algorithm was applied to randomly generated areas that 

flt the previous restrictions. The results are shown in Figure 7.5. As 

we hypothesized, in low aspect ratio areas, the new algorithm had 

better results that either the Lee of the DOF algorithm -- results that 

are very close to the upper bound for these channels. In addition to 

the increase in completion rates, the ALCP algorithm was 10 times 

faster than the Lee algorithm and 18 times faster than the 
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Figure 7.4. Segment breaking techniques. 
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DOF algorithm. A complete summary of the routing statistics is given 

in Appendix 3. 

The ALCP algorithm was also applied to areas with moderate and 

high aspect ratios . The results are shown in Figure 7.6. As expected, 

as the aspect ratio increases, the number of unfLxed line segments 

decreases and the completion. rates for the LCP based algorithm also 

decreases. 

These results indicate that area routing algorithms should use 

different criteria to select line segment positioning in low aspect 

areas . 

As encouraging as the results are, the new algorithm's utility is 

severly restricted by the types of areas it can be applied to. In latter 

versions, we hope to remove the restrictions. We believe this will 

result in a fast, high performance area router. The algorithm will be 
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Figure ? .6. ACLP results in moderate and high aspect ratio areas 



most effective in low aspect ratio areas, but will also be of use in 

higher aspect ration areas with a low value for the MAM. 

7. 2. 2. Soft Constraints and Pref erred Positions 
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Many routing systems partition the routing region into channels 

and attempt to route each channel independently. This strategy can 

lead to poor routing results . Consider Figure 7 .?(a) . Figure 7.?(b) 

shows a possible routing for channel C1 and Figure 7.7(c) shows the 
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Figure 7.7. Soft constraints and preferred positions 
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routing for channel C2. Had channel C1 been routed as shown in Figure 

7.?(d), channel C2 would have been able to complete the wiring in only 

two tracks, rather than four tracks required in Figure 7.?(c). The 

problem with this routing is that the channel router dJd pot 

judiciously choose the crossing points between the two regions: For 

tJiis reason, the PI system fixes all the crossing between the regions 

using a crossing placement algorithm. This approach, while solving 

the problem, unnecessarily removes fl.exability from the routing 

algorithm. 

PinterPiBl discusses optimal solutions to the problem of crossing 

placements for intersecting channels; however, his approach is lirt?).ted 

to channels with only two point nets with no vertical constraints in 

either channel. 

An approach worthy of further investigation is base on 

characterizing the crossings between regions. For exampl~, we can 

characterize the crossings in Figure 7.'7 as follows: 

(1) Preferred - a crossing has a preferred position if the placement 

of the endpin in this exact position places the next opposite the 

corresponding net in the adjacent channel. Net 2, for example, 

has track 4 as a pref erred position. 

(2) Constrained - Net 1, if placed above net 3, will decrease the 

density of C2• 

(3) Floating - Net 4 can be placed any free position. 

The addition of these additional constraints appears to existing 

channel routers appears to be fairly straightforward. We believe such 

characterizations have all the advantages of the PI system's crossing 
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placement, but still maintain a high degree of algorithm flexability in 

choosing the exact crossing positions. 

7.2.3. Klimioation of Vertical Constraint 1.Dops 

If the vertical constraint graph of a channel is cyclic, neither the 

Dogleg , Revised Dogleg , or LCP algorithms are capable of completing 

the routing . In gate arrays, the placement of components can usually 

be rearranged to eliminate vertical constraint loops. In custom 

circuits , the positions of components are more difficult to change. 

Vertical constraint loops are detectable by simply removing_all 

vertices with no descendants in the vertical constraint graph, 

continuing the process until either no vertices remain, or no more can 

be removed . If no vertices remain, the graph is acyclic . Otherwise, 

the vertices that remain are exactly those vertices that belong to 

constraint loops . We believe it is possible the examine this list of 

vertices and, using the segment breaking techniques of section 7.2.1, 

remove the vertical constraints loops . These techniques might also be 

applicable to removing long paths in the vertical constraint graph that 

might impede the channel routing algorithms . 

?.2.4. Metal Maximization 

Metal wires have superior electrical characteristics when 

compared to polysilicon wires. In the routing algorithms, achieving 

high completion rates dictated that we limit wires in the horizontal 

direction to one routing layer and wires in the vertical direction to the 

other layer. O~e the routing is completed, it would be useful to 

transform this wiring into one that maximizes the metal wirip.g_layer. 

For example, assume that in Figure 7.8(a), the metal layer is running 
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Figure 7.8. Metal layer maximizalion 

horizontally and the polysilicon layer is running vertically. Figure 

7.A(b) shows a poss ible transformation that increases the amount of 

metal wiring . An algorithm that will accomplish transformations of 

this type would be a valuable addition to any custom integrated circuit 

layout system . 

7.2.5. 45° Wiring Model 

In hand wired custom layouts, it is common practice to use 45° 

wires . Wires of this type are especially appropriate when routing 

groups of parallel wires . Consider Figure 7.9(a). Clearly manhattan 

wires would require much more area. 45° wires also have several uses 

in the context of channel routing . In Figure 7.10(b), the 45° wire 

reduces the density of the channel from 2 to 1 and eliminates the 

vertical constraint. ~ xploring_alg__orithms that can exploit diagonal 

wires could easily result in a set of algorithms with vastly imp.roved 

performance over traditional manhattan approaches. 
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Figure 7 .9. 45° wire example 

7.2.6. Other Topics 
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The previous examples are only a few of the interesting topics that 

remain lo be solved in cw;Lom inlegraLed circu.il routing . OLher 

interesting topics include non-gridded routing regions, tighter bounds 

on area routing problems, power and ground routing, and integration 

of the algorithms and philosophies presented into c1 design 

environment. 



APPENDIX A 

Channel Routing Statistics 

This appendix contains the raw data for the channel routing 

statistics . The following slalistics have been compliled: 

Density: 

Actual 

Eff. Coefficient: 

Polysilicon: 

Metal: 

Vias: 

Ranp;e-low: 

Range-high: 

Opt. Utilization: 

Utilization: 

Height: 

Edges: 

Nodes: 

Vias: 

The density of the channel. 

The mean number of tracks each algorithm used to 
complete the channels 

Actual -Density _
1 Density 

The mean length of polysilicon wire. 

The mean length of metal wire. 

The mean number of vias. 

The mean lower bound on the number of edges in 
the shortest path in the vertical constraint graph. 

The mean lower bound on the number of edges in 
the shortest path in the vertical constraint graph. 

The mean number of grid points necessary to 
complete the metal layer. 

The mean number of grid points used to complete 
in the metal layer. 

The number of edges in the average path in the 
vertical constraint graph. This average is computed 
by labeling each noae with the maximum distance to a 
root node. The labels on the leaf nodes are then 
summed and divided by the number of leaf nodes. 

The mean number of edges in the vertical constraint graph. 

The mean number of nodes in the .vertical constraint graph. 

The mean percentage of paths that were routed using 
0, 1, 2, etc. vias. 
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TABLE 7 
HJGHLY CONGESTED CHANNELS WlTH MULTIPOINT NETS 

GEN~RATED USlNG HJVES'l''S ALGORITHM 

Density 
Actual 
Eff. Coef. 
Poly. 
Melal 
Vias 
Range-low 
Range-high 
Opt. Util. 
Util. 
Height 
Edges 
Nodes 
0 Via paths 
1 Via paths 
2 Via paths 
3 Via paths 
4 Via paths 
5+ Via paths 

LCP 
20 

20. 18 
.009 

721.06 
789.12 
95.46 

.04 
3.0 

.7736 

.7663 
1.19 

57.32 
70.30 

Revised 
20 

20.34 
.017 

713.32 
789.12 

96.3 
.04 
3.0 

.7736 

.7598 
1.19 

57.32 
70-~6 

Greed 
20 

20.82 
.041 

636.9 
793.62 
109.06 

~o 
21.42 
.071 

734.9 
789. 12 
97.92 
.04 
3.0 

.7736 

.7209 
1.19 

57.32 
70.36 

DOF 
20 

22.42 
.1210 

612.74 
821.74 
92.10 

.0379 

.6023 

.3496 

.0054 

.0070 

.0009 

Lee 
20 

22.6 
.133 

622.B6 
828.44 
97.72 
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TABLE 8 
HIGHLY CONGESTED CID~NNELS ~1TH MULTIPOINT NETS 

GENERATED USING THE ALTERNATE ALGORITHM 

Density 
Actual 
Efl'. Coef. 
Poly. 
Metal 
Vias 
Range-low 
Range-high 
Opt. Ut.il. 
Util. 
Height 
Edges 
Nodes 
0 Via paths 
1 Via paths 
2 Via paths 
3 Via paths 
4 Via paths 
5+ Via paths 

LCP 
19.6 

19.68 
.004 

430.36 
446.04 
58.14 

.02 
2.92 

.7366 

.7338 
1.249 
37.12 
41.92 

Revised 
19.6 

19.78 
.0093 

437.12 
446.04 
60.18 

.02 
2.92 

.'"/366 

.7299 
1.249 
37.12 
41.92 

Greed 
19.6 
20.0 

.0221 
402.68 
448.38 
70.54 

19.6 
20.25 
.0341 

501.48 
446.04 
59.88 

.02 
2.92 

.7366 

.7128 
1.249 
37.12 
41.92 

DOF 
19.6 

21.34 
.0918 

362.62 
486.66 
55.78 

.O5B9 

.52B3 

.4010 

.0009 
.000 
.000 

Lee 
19.6 

21.24 
.0864 
365.4 

459.34 
60.02 

l.49 
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TABLE 9 
HIGHLY CONGESTED CHANNELS WITH TWO POINT NETS 

GENERATED USING RNEST'S ALGORITHM 

Density 
Actual 
Eff. Coef. 
Poly. 
Metal 
Vias 
Range-low 
Range-high 
Opt. Ut.il. 
Util. 
Height 
Euges 
Nodes 
0 Via paths 
1 Via paths 
2 Via paths 
3 Via paths 
4 Via paths 
5+ Via paths 

LCP 
20 

20.04 
.002 

628.9 
477.28 
84.46 

.04 
2.94 

.4679 

.4666 
1.147 
37.64 
54.34 

Revised 
20 

20.04 
.002 

609.74 
477.28 
84.46 

.04 
~.94 

.4679 

.4666 
1.147 
37.64 
54.34 

Greed 
20 

20.28 
.014 

529.24 
479.88 
100.5 

20 
20.4-8 
.024-0 

596.78 
477.28 
84.46 
.04 

2.94 
.4679 
.4541 
1.147 
37.64 
54.34 

DOF 
20 

20.46 
.230 

515.18 
477.48 
86.18 

.050 

.411 
.5285 
.005 
.000 
.000 

Lee 
20 

20.64 
.032 

518.38 
485.48 
90.34 

lf>O 
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TABLE 10 
HIGHLY CONGESTED CHANNELS WITH TWO POINT NETS 

GENERATED USING THE ALTERNATE ALGORITHM 

Density 
Actual 
Efl. Coef. 
Poly. 
Metal 
Vias 
Hange-low 
Range-high 
Opt. Ut.il. 
Util. 
Height 
Edges 
Nodes 
0 Via paths 
1 Via paths 
2 Via paths 
3 Via paths 
4 Via paths 
5+ Via paths 

LCP 
21.04 
21.10 
.0027 
434.1 

468.88 
52.12 

0 
2.7 

.?213 

.7194 
1.095 
22.96 
34.64 

Revised 
21.04 
21.14 
.005 

438.38 
468.88 
52.12 

0 
2.7 

.7213 

.7178 
1.095 
22.96 
34.64 

Greed 
21.04 
21.40 
.0229 

397.84 
471.52 
65.08 

21.04 
21.54 
.0249 

444.12 
468.88 
52.12 

0 
~.7 

.7213 

.7041 
1.095 
22.96 
34.64 

DOF 
21.04 
22.32 
.0619 

370.86 
469.2 
54.36 

.0549 

.4011 

.5183 

.0000 

.0206 

.0000 

Lee 
21.04 
22.7 

.0809 
360.76 
477.B 
57.6 

151 
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TABLE 11 
LlGHTLY CONGESTED CHANNELS WlTH MULTIPOINT NETS 

GENERATED USING RIVEST'S ALGORlTIIM 

Density 
Actual 
Eff. Coef. 
Poly. 
Metal 
Vias 
Range-low 
Range-high 
Opt.. Util . 
Util. 
Height 
Edges 
Nodes 
0 Via paths 
1 Via paths 
2 Via paths 
3 Via paths 
4 Via paths 
5+ Via paths 

LCP 
20 

20.06 
.003 

544.58 
856.24 
61.26 

0 
2.08 

.B395 

.B370 

.5696 
26.02 
53.98 

Revised 
20 

20.1 
.005 

542.24 
856.24 
63.62 

0 
~.08 

.8~95 

.8353 

.5696 
26.02 
53.98 

Greed 
20 

20.68 
.034 

442.22 
857.24 
73.60 

20 
21.22 
.061 

572.22 
856.24 
65.28 

0 
2 .08 

.8~95 

.7906 

.5696 
26.02 
53.98 

DOF 
20 

21.9 
.095 

416.0 
884.04 
62.52 

.0807 

.7104 

.1923 
.003 
.00 
.00 

Lee 
20 

21.58 
.079 

419.96 
876.7 
63.92 

l 52 
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Density 
Actual 
Eff. Cocf. 
Poly. 
Metal 
Vias 
Range-low 
Range-high 
Opt. Util. 
Util. 
Heighl 
Edges 
Nodes 
0 Via paths 
1 Via paths 
2 Via paths 
3 Via paths 
4 Via paths 

. 1 

o+ Via paths 

LCP 
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Err ectiveness coefficient 

TABLE 12 
HIGHLY CONGESTED, LOW ASPECT RATIO 

CHANNELS WITH MULTIPOINT NETS 
GENERATED USING RIVEST'S ALGORITHM 

LCP Revised Greed Do le DOF Lee 
10 10 10 10 10 10 

10.46 10.56 10.86 11.26 11. 72 12.10 
.046 .056 .086 .126 .192 .21 

361.38 362.98 351.22 373.0 344.8 355.24 
318.18 318.18 321.3 318. 18 366.5 339.48 
92.16 93.7 107.16 94.74 89.5 94.16 
.04 .04 .04 
3.14 3.14 3.14 

.6239 .6239 .6239 

.5937 .5881 .5515 
1.344 1.344 1.344 
56.02 56.02 56.02 
60.20 60.20 60.20 

.0386 

.3643 

.5890 

.0022 

.0068 
.00 



APPENDIX B 

Area Routing Statistics 

This appendix contains the raw data for the area routing 
statistics . The following statistics have been compliled: 
Completion rate: The percentage of areas that the algorithm completed 

for a given MAM value 

Polysilicon: 

Metal: 

Vias: 

DOF Vias 

The mean length of polysilicon wire 

The mean length of metal wire 

The mean number of vias 

The mean percentage of paths that were routed using 
0, 1,2, etc. vias 

1E>4 
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TABLE 13 
HIGH ASPECT RATIO AREAS WlTH TWO POINT NETS: 

DI!;GR~E OF lt'REEDOM ALGO}{lTHM 

MAM 
.45 .50 .55 .60 .65 

Comp. Rate l.O .98 .BB .64 .~o 
Poly silicon 428.8 4 76.24 524.2 577.7 635. 
Metal 424.8 469.7 525.0 569.47 607. 
Via!3 48.6 54.61 61.2 67.19 73.73 
0 via path .0077 .0077 .00B .010 .001 
1 via path .379 .365 .340 .350 .356 
2 via path .482 .478 .480 .457 .413 
3 via path .124 .142 .152 .162 .176 
4 via path .009 .007 .002 .017 .030 
5+ via path .000 .001 .000 .004 .007 

Jn5 

LO 

.70 

.02 
693. 
657. 
79 
0.0 

.523 

.273 

.159 

.023 

.000 
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TABLE 14 
HIGH ASPECT RATIO AREAS WITH TWO POINT NETS: 

LEE ALGORITHM 

MAM 
.45 .50 .55 .60 .65 

Comp. Rate 1.0 .94 .84 .40 0.0 
Polysilicon 437.0 487.4 545.8 582.5 0.0 
Metal 431.0 477. 539.34 597.45 0.0 
Vias 52.84 59.0 69.19 76.3 0.0 
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ManballllD Area Meuure 

TABLE 15 
HIGH ASPECT RATI O AREAS WITH MULTIPOINT NETS: 

DEGREE OF FREEDOM ALGORITHM 

MAM 
.45 .50 .55 .60 .65 .70 

Comp. Rate 1.0 .98 .B6 .58 .OB .02 
Polysilicon 456.BB 518.43 564.10 619.41 655 700 
Metal 457.B 516.33 563.14 615.03 663 658 
Vias 53.B2 62.16 6B 76.44 7B4 79 
0 via path .0109 .011 .010 .008 .01 0.02 
1 via path .524 .493 .477 .455 .449 .45 
~ via path .398 .4-08 .407 .412 .370 .39ti 
3 via path .056 .082 .098 .101 .133 .104 
4 via path .002 .0035 .005 .013 .026 .021 
5+ via path 0.0 .0014 .001 .009 .016 0.0 



TABLE 16 
HIGH ASPECT RATIO AREAS WlTH MULTIPOINT NETS: 

Comp. Rate 
Polysilicon 
Metal 
Vias 

.45 
1.0 

462.86 
463.16 

57.2 

LEE ALGORITHM 

.50 

.94 
524.89 
522.19 
67.02 

MAM 
.55 
.74 

573.86 
581.16 

75.B 

.60 

.lG 
621.62 
607.5 
81.37 

.65 

.02 
634 
596 
83 

70 
0.0 
0.0 
0.0 
0.0 
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Mllilhllllan Arell We11sure 

TABLE 17 

1.0 

MODERATE ASPECT RATIO AREAS VflTH MULTIPOINT NETS: 
DEGREE OF FREEDOM ALGORITHM 

MAM 
.40 .45 .50 .55 .60 .65 

Comp. Rate 1.0 .98 .78 .34 .04 .02 
Polysilicon 297.32 342.29 379.77 421.35 465.5 4B0.0 
Melo.I 427.54 4B1.B6 528.12 566.65 580.5 620.0 
Vias 43.96 50.39 57.28 63.29 65 68 
0 via path .0086 .009 .011 .01 .012 0.0 
1 via path .525 .500 .47B .484 .434 .42 
2 via path .419 .426 .426 .~o .410 .474 
3 via path .046 .057 .065 .079 .115 .05~ 
4 via path .002 .008 .015 .020 .029 .027 
5+ via path .000 .0011 .0061 .006 0.0 .026 

lf>9 



160 

TABLE 1A 
MODERATE ASPECT RATIO AREAS W1TH MULTIPOINT NETS: 

LEE ALGORJTHM 

MAM 
.40 .45 .50 .55 .60 .65 

Comp. Rate .98 .98 .76 .14 .02 0.0 
Polysilic on 302.41 349.41 396.79 439.43 517 0.0 
Metal 425.65 483.16 529.18 574.29 553 0.0 
Vias 45.31 53.75 62.94 70.85 75 0.0 
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TABLE 19 
LOW ASPECT RATIO AREAS VY1TH MULTIPOINT NETS: 

DEGREE OF FREEDOM ALGORITHM 

MAM 
.30 .35 .40 .45 .50 

Comp. Rate 1.0 .86 .62 .18 .02 
Polysilicon 94.88 113.93 131.29 144 134 
Metal 245.22 279.72 316.81 346.11 412 
Vias 22.96 27.11 31.51 34.44 37 
0 via path .005 .006 .007 .010 0.0 
1 via path .46 .455 .455 .450 .522 
~ via path .51 .n17 .4t.16 .470 .435 
3 via pat.h .009 .009 .027 .03'"1 .000 
4 via path .004 .011 .018 .018 .000 
5+ via path .001 .001 .004 .015 0043 
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TABLF. 20 
LOW ASPECT RATIO AREAS VflTH MULTIPOINT NETS: 

LEE ALGORJTHM 

MAM 
.30 .35 .40 .45 .50 

Comp. Rate 1.0 .88 .5G .14 0.0 
Polysilicon 95.6 115. 07 132.57 137 0.0 
Metal 244.6 279.14 315.61 345.0 0.0 
Vias 23.56 28.30 33.04 36.B6 0.0 



APPENDIX C 

ALCP Routing Results 

This appendix contains the raw data for the area routing statistics 

for the ALCP algorithm presented in the future work session of the 

dissertation. The following statistics have been compliled: 

Completion rate : 

Polysilicon: 

Metal: 

Vias : 

DOF Vias : 

Density: 

the percentage of areas that the algorithm 
completed for a given MAM value. 

the mean length of polysilicon wire. 

the mean length of metal wire. 

the mean number of vias. 

the mean percentage of paths that were routed 
using 0, 1,2, etc vias. 

the density of the area. The method of computation 
is given in Chapter 6. 

lfS3 
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TABLE 21 
ALCP COMP ARIS ON 

.9 

LOW ASPECT AAT1U AREAS WlTH TWO POINT NKI'S: 
DEGREE OF FREEDOM ALGORITHM 

MAM 
.30 .3[> .40 .4G .50 

Comp. Rate 1.0 .92 .62 .32 0.0 
Polysilicon 87.64 105.72 123 145 0.0 
Metal 231.46 265.33 30G 326 0.0 
Vias 20,4: 24.24 28 35 0.0 
0 via path .000 .01 .012 .007 0.0 
1 via path .299 .29 .296 .274 0.0 
2 via path .661 .66 .628 .576 0.0 
3 via path .026 .024 .031 .078 0.0 
4 via path .006 .014 .032 .056 0.0 
5+ via path 0.0 .001 .002 .007 0.0 
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TABLE 22 
ALCP COMP ARIS ON 

LOW ASPECT RATIO AREAS WITH TWO POlNT NETS: 

Comp. Rate 
Polysilicon 
Metal 
Vias 

LEE ALGORITHM 

MAM 
.30 .35 .40 
1.0 .94 .64 

88.16 107.74 128.5 
231.42 264.7 303 

20 .8 25.4 30.62 

TABLE 23 
ALCP COMP ARIS ON 

.45 .50 

.24 .02 
152 189 
321 368 
38 51 

LOW ASPECT RATIO AREAS WITH TWO POlNT NETS: 
ALCP ALGORITIIM 

MAM 
.30 .3fi .40 .4f1 .50 

Comp. Rate 1.0 .94 .76 .38 .06 
Density 7.~2 8.72 Y.8 10.52 11.0 
Polysilicon 106.74 122.78 14] 160 148 
Metal 231.42 264.87 303 325 368 
Vias 20.68 24.34 28 33 34 

l 65 



Com pl di on 
rale 

.9 

.B 

.7 

.6 

.5 

.4 

. 3 .. . 

• 2 .. . 

.1 

.1 .2 .3 .4 .5 .6 

TABLE 24 
ALCP COMP ARlSON 

1. ~1,cp 

·2. · ~.ee 

.3.. pc>F 

... . _, .. ... 

... . ... ---

.7 .B .9 

MODERATE ASPECT RATIO AREAS WITH TWO POINT NETS: 
DEGREE OF FREEDOM ALGORITHM 

.40 .45 .50 .55 60 
Comp. Rate 1.0 1.0 .94 .62 .16 
Polysilicon 280 318.22 357 39B.B 445 
Metal 391 441.32 4B7 525.3 445 
Vias 37 43.2 49 54.9 62 
0 via path .008 .0077 .007 .00B3 .010 
1 via path .447 .429 .41o .419 .419 
2 via pat.h .4~5 .422 .409 .401 .383 
3 via path .110 .134 .153 .144 .154 
4 via path .002 0.0 .011 .019 .011 
5+ via palh 0.0 .0007 .011 006 .021 

1.65 

1.0 



TABLE 25 
ALCP COMP ARIS ON 

MODERATE ASPECT RATIO AREAS WITH TWO POINT NETS: 

Comp. Rate 
Polysilicon 
Metal 
Vias 

LEE ALGORITHM 

MAM 
.40 .45 .50 
1.0 .96 .88 
285 327.23 370 
391 438.56 487 
39.3 45.85 54 

TABLE 26 
ALCP COMP ARIS ON 

.55 60 

.56 .08 
419.9 463 
524.21 575 
62.79 70 

MODERATE ASPECT RATJO AREAS WITH TWO POINT NETS: 
ACLP ALGORITHM 

MAM 
.40 .45 .50 .55 .60 

Comp. Rate .94 .92 .BO .52 .10 
Density 13.46 14.88 16.34 17.74 18.6 
Polysi1icon 340 372.5 410.8 441.88 473 
Metal 390 436.11 490 531.96 549 
Vias 39 44.69 51 56.46 62 
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TABLE 27 
HJGH ASPECT RATIO AREAS WITH TWO POINT NETS: 

DEGREE OF FREEDOM ALGORITHM 

MAM 
.35 .40 .45 .50 .55 .60 .65 

Comp. Rate LO LO 1.0 1.0 1.0 .84 .64 
Polysilicon 345.B 39 445.1 491 545.8 598 648.7 
Metal 302.5 349 392.4 436 481.2 527 574.81 
Vias 31.22 37 42.6 53 55.52 61 68.28 
0 via path .003 .003 .002 .002 .002 .001 .002 
1 via path .643 .626 .601 .583 .560 .538 .533 
2 via path .218 .2rn .~Ob .201 .192 .188 .175 
3 via pRth .136 .158 .191 .214 .244 .265 .271 
4 via path 0.0 0.0 0.0 0.0 .002 .003 .006 
5+ via. path 0.0 0.0 0.0 0.0 .001 .004 .013 
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.70 

.08 
682.5 
614 

68.75 
.006 
.534 
.194 
.243 
0.0 

.024 
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TABLE 28 
HIGH ASPECT RATIO AREAS WITH TWO POINT NETS: 

LEE ALGORITHM 

MAM 
.35 .40 .45 .50 .55 .60 .65 .70 

Comp. Rate 1.0 1.0 1.0 .9B 1.0 .58 .10 0.0 
Polysilicon 347.7 398 451.B 505 564.1 613 640.6 0.0 
Metal 303.58 352 396.32 444.7 501.5 553 592 0.0 
Vias 33.5 39 45.84 53 63.B 71 71.4 0.0 

TABLE 29 
HIGH ASPECT RATIO AREAS WITII TWO POINT NETS: 

ALCP ALGORITHM 

MAM 
.35 .40 .45 .50 .55 .60 .65 .70 

Comp. Rat e .9B .BB .56 .22 .04 .02 0.0 0.0 
Density 12.92 14.6 16.22 17.6 lB.06 18.32 22.74 
Polysilicon 401.1 448 509.4 536 546.5 597 0.0 0.0 
Metal 301.45 ~47 ~88.82 426 438 5~3 0.0 0.0 
Vias 33.55 40 43.86 47 45 53 0.0 
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