
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

Separation Plane Priority in Computer Image Generation Separation Plane Priority in Computer Image Generation

Keith A. Stump
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Stump, Keith A., "Separation Plane Priority in Computer Image Generation" (1986). Retrospective Theses
and Dissertations. 4931.
https://stars.library.ucf.edu/rtd/4931

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4931&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4931?utm_source=stars.library.ucf.edu%2Frtd%2F4931&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

SEPARATION PLANE PRIORITY
IN COMPUTER IMAGE GENERATION

BY

KEITH A. STUMP
B.S.E., University of Central Florida, 1983

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of the College of Engineering
University of Central Florida

Orlando, Florida

Spring Term

1986

ABSTRACT

Flight simula t ors are devices in which air crews can be trained

without the use of actual aircraft. Potentially dangerous maneuvers,

such as air-to-air refueling, and destructive exercises, such as evasive

action from weaponry or aerial dogfights, can be practiced repeatedly

with no risk to pilot or crew. Flight simulators are cost effective

since the fuel costs associated with training pilots in actual aircraft

can be excessive. Flight simulators offer an alternate training method

with reduced cost.

The task of a visual flight simulator is to present the trainee

with scenes representative of those that would be seen if the actual

mission being trained for were fl own. Scenes produced by a Computer

Image Generation device must be of sufficient content, fidelity, resolu­

tion, brightness and field of view to allow the trainees to improve

the i r s k il l s . If one of these facto rs fa 11 s be 1 ow the th res h o 1 d of

acceptability, the training value of the device is diminished, if not

lost altogether.

One of the most challenging problems in Computer Image Generation

is the removal of hidden parts from images of so 1 id objects. In rea 1

life, the opaque material of these objects obstructs the light rays from

hidden parts and prevents us from seeing them. In the computer genera­

tion of an image no such automatic elimination takes place. Instead,

all parts of every object, including parts that should be hidden are

displayed. In order to remove these parts and create a more realistic

image, a hidden-line or hidden-surface algorithm must be applied to the

set of objects. When more than a single object is in the scene another

problem arises; which of the objects block the view of the others. This

is an occultation problem.

This paper presents a "separation plane" priority algorithm used in

Computer Image Generation to solve this occultation problem. The

algorithm uses a binary search technique to generate a 11 listable set"; a

set of planes that yield proper object priority for any viewpoint in the

data base.

LIST OF FIGURES

Chapter
I . INTRODUCTION

IL OCCULTATION . .
Priority Methods .
Back-Facing
Separation Planes
Clusters
Priority Processor

III. LISTABILITY . . .

TABLE OF CONTENTS

. . . .
and Resolver .

Non-1 istable Set . .
Binary Search Algorithm
Limitations

IV. BINARY SEARCH PROGRAM
Test Case One
Test Case Two
Test Case Three

Vo CONCLUSION

APPENDIX

REFERENCES

iv

v

1

4
5
8
9

13
13

15
22
25
28

30
30
35
39

45

46

67

LIST OF FIGURES

Figure

1. Ambiguities Can Arise from Hire-Frame Drawings

2. Separating Planes

3. Separating Plane Tree

4. Separating Planes

5. Coordinate System

6. Two Object Model

7. Four Object Model

8. Single Cube Object

9. Two Object Model Test Case

10. Program Output for Two Object Model Test Case

11. Two Object Model Separation Plane

12. Four Object Model Test Case

13. Program Output for Four Object Model Test Case

14. Four Object Model with Separation Planes

15. First Subset Candidate Separation Planes

16. Five Object Model Test Case

17. Program Output for Five Object Model Test Case

18. Five Object Model with Separation Planes

v

7

10

11

12

16

19

23

31

32

33

34

36

37

38

40

41

43

44

INTRODUCTION

The use of simulation for operator training and engineering re­

search has become widely accepted in connection with aircraft, space­

craft, tanks, automobiles and ships. In many applications, simulation

is an economic necessity. Traditionally, operators of large equipment

or special-purpose vehicles had to be trained using actual equipment.

~Jith the trend of increased vehicle complexity, this tended to be ex­

tremely costly in fuel, operating costs and equipment costs. The cost

of operating a given simulator is far less than the corresponding cost

of operating the vehicle that it simulates for equivalent training

effectiveness.

In other cases, s imu 1 a ti on may be the on 1 y way to accomp 1 is h a

particular task. The training of astronauts to land on the moon or the

evaluation of the dynamics of a new airplane design before it is built

would be impossible without simulation. In most cases, intangible

benefits add greatly to the acceptance of simulators. In particular,

the ability to conduct intensive emergency procedure training in a

simulator without endangering the operator, the instructor, the vehicle,

or innocent bystanders allows more effective training than could be ac­

complished in the actual vehicle, regardless of economic considerations.

Today's highly sophisticated simulators use real-time computer-

generated imagery for visuals and numerical processes that rival that of

the most sophisticated hardware. These Computer Image Generation

Systems (CIG) simulate the visual environment external to a vehicle as

2

it would be seen by an observer inside the vehicle looking out through a

window. As the trainer maneuvers his vehicle these views change so as to

maintain an accurate impression of the vehicle's motion. The environ­

ment is represented by the combined use of unbounded plane surfaces and

solid objects. The unbounded surfaces are described by a nested

hierarchy of stylized texture patterns, and the solid objects, which are

convex polyhedra, are described numerically in terms of their size,

shape, location and color.

The CIG requires inputs describing the attitude and position of the

observer with respect to the environment. Based on these inputs and the

stored numerical model of the environment, the CIG computes the per­

spective transformation of the environmental model onto a bounded plane

that represents the observer's window. The transformation is presented

to the observer as synthetic video by means of a raster-scan color

display. The image must be updated at a rate such that continuous,

jitter-free motion is achieved. This rate is usually greater than 30

frames or updates per second (Steiner 1985; Schachter 1983).

The particular uses to which the CIG is applied place heavy em­

phasis on dynamic fide 1 i ty, fl ex i b il i ty in scene content, and proper

perception of solid objects. These three requirements, within the

context of available digital devices, dictate the particular approach

and hardware organization used in the CIG to generate perspective images

of solid objects. Special purpose computers must be designed to handle

the large computational requirements and high data rates needed. A

typical simulator can cost anywhere from $1 million to $100 million

(Steiner 1985).

3

To simplify the graphics algorithms as much as possible, surfaces

are modeled with polygons. Higher order parametric equations which

describe a surface are much more expensive in terms of computer time

than linear equations that describe polygons.

Solid-object display is the most analytical branch of computer

graphics and over the years has inspired some of the most original

research work. This paper will discuss one concept that provides proper

occul ta ti on (the determination of which objects conceal one another)

when more than one solid object is present in the environment. Chapter

II discusses occultation in more detail and discusses the algorithm used

most widely in Computer Image Generation. Chapter III discusses the

algorithm this writer developed to calculate the minimum number of

separation planes used in the occultation technique. Chapter IV gives

examples of a program's use of the algorithm and Chapter V discusses

conclusions made.

OCCULTATION

If the environment contains more than one object, provisions must

be made in the image generator to al low objects to occult one another

properly. In conventional computer graphics terminology, this is a

hidden-line or hidden-surface problem. The reader will notice, however,

that there is a significant difference between the hidden-line problem

and the occultation problem.

When the determination is made as to which parts of the object will

be concealed, as they will be if they face away from the observer or are

obscured by other parts of the object; this is called the hidden-surface

problem and is one of the classic problems of computer graphics (Newman

and Sproul 1 1979). When it mu st be determined which parts of many di f­

ferent objects will be seen from various viewpoints, this is an occul­

tation problem.

In the early 1960s, when the first hidden-line algorithm was de­

veloped, displays were exclusively line-drawing devices. The earliest

such algorithms, of which Roberts' was the most prominent, were ex­

tremely slow (Newman and Sproull 1979). When raster displays became

available, attention shifted to hidden-surface removal and many tech­

niques, both hardware and software, were developed.

In general, visibility problems can be attacked either in the

object space or in the image space. A solution in the object space

focuses on geometric relations among the parts of the objects in order

to decide what is visible and what is not. A solution in the image

4

5

space traverses the area of the picture and examines the projections as

they occur (Pavilidis 1982).

An object-space algorithm performs geometric calculations with as

much precision as possible, usually the precision available in floating­

point hardware of the computer. Since the precision of the solution is

much greater than that of a display device, the image can be displayed

enlarged many times without 1 os i ng accuracy. By contrast, image-space

algorithms perfonn calculations with only enough precision to match the

resolution of the display screen used to present the image. These

algorithms simply calculate an intensity for each of the 250,000 or 1

million distinct dots on the screen (Newman and Sproull 1979).

In an excellent survey paper by Sutherland, Sproull, and Schumacker,

the authors discuss and categorize ten hidden-surface algorithms

developed through 1972 (Foley and Van Dam 1982). Additional algorithms

have been developed since 1972. Despite the existence of many algor­

ithms, there is no sing 1 e answer to the hidden-surface prob 1 em and no

best algorithm. Many of the differences between algorithms stem from

different requirements; the a 1 gori thms operate on different kinds of

scene models, generate different fonns of output, or cater for images of

different complexities.

Priority Methods

The objective here is not to discuss hidden-surface algorithms, but

rather give an overview of the visibility algorithms used for CIG simula­

tion. Most CIG algorithms use priority methods, which are probably the

most frequently used of the available hidden-surface algorithms (Giloi

6

1978). The selection of this method is based on the high computational

rate required for visual simulation.

The idea of the priority algorithm is to arrange all polygons in

the scene in priority order based on their depth. Polygons nearer the

viewpoint will have higher priority than those far away. After priority

has been determined, polyhedrons are scan-converted one at a time into a

frame buffer, starting with the polyhedrons of lowest priority. This

procedure will generate a correct hidden-surface view provided the

priority order is properly computed. To explain the determination of the

priority order we begin the discussion with a single simple polyhedron.

A single wire-frame polyhedron can be drawn very simply if hidden

lines are not to be eliminated; that is all polygonal faces are simply

drawn in any order. This, however, does not provide an adequate depth

cue and ambiguities can arise. As shown in Figure 1, different percep­

tions of the same object can be made. This is not adequate for simula­

tion application, which requires extreme realism.

A daylight flight simulator that uses computer-generated images of

the view from the cockpit must generate very realistic pictures. Pilots

seem to depend on subtle visual cues for depth perception, such as skid

marks on a runway. The relative depth of objects in a scene is readily

apparent if the lines that are hidden from view by opaque objects are

removed from the image. This technique requires considerable computa­

tion but is nevertheless required for producing finished pictures of a

scene.

7

(a)

(c)
(b)

Figure 1. Mibiguities Can Arise from Wire-Frame Drawings.
The Object (a) Can Be Either (b) or (c).

8

Back-Facing

One way of eliminating hidden-surfaces is to identify back faces;

polygons that cannot possibly be visible because they lie on the side of

an object facing away from the viewpoint. If back faces are to be elimi­

nated, face normals must first be computed. Then, the angle between a

face nonnal and the line of sight is inspected. If this angle is ob­

tuse, the face is hidden from the observer's view and can be deleted.

Thi s tee h n i q u e , ca 1 1 ed ba c k- face el i mi n at i on , a s imp 1 e use of obj ec t

coherence, typically halves the number of polygons that need consid­

eration during the generation of a hidden-surface image.

In some cases, e 1 i mi na ting back faces so 1 ves the hidden-surface

problem immediately. If the scene consists of exactly one convex poly­

hedron, the elimination of back faces eliminates all the hidden sur­

faces. A cube, for example, can be displayed realistically by simply

removing back faces. This is an extreme examp 1 e of object coherence

that makes processing convex polyhedra particulary easy.

When groups of polyhedra are to be drawn, a much more formidable

problem immediately arises; detennining which portions of each poly­

hedron are occulted by other polyhedra. Much effort has been expended

on this problem in recent years and several solutions now exist

(Bennett 1983). Back-facing faces of all polyhedra can be identified

with the simple face nonnal test, so that if the data base is composed

of only convex polyhedra, which it is, the occultation problem is only

that of determining which polyhedra are in front of which others. A

method devised by Schumacker allows a large part of the work of hidden­

surface elimination to be done off-line and incorporated into the data

base (Schachter 1983).

9

Separation Planes

The priority order is determined by a set of invisible "separating

planes," which fonn pockets containing the objects. An example is shown

in Figure 2. First, a single major plane is passed through the col lec­

tion of polyhedra, dividing it in two, without cutting through any

polyhedron. (It may be necessary to predivide a polyhedron in two to

satisfy this last requirement.) In each of the resulting halves of the

space, a plane is drawn dividing the polyhedra into two groups. This

process is repeated until each pocket has only one polyhedron. This

structure is stored as a binary tree, 1 ike the one shown in Figure 3,

with the major plane at the top, and the polyhedra, as leaves, at the

bottom. The coefficients for the equation of each plane are stored with

the record for this plane. In real time the eyepoint is known, and this

structure is operated upon to detennine on which side of each plane the

eye is on. The polyhedra on the same side of the plane as the viewpoint

will have the highest priority. A tree-search algorithm yields a list

of polyhedra, ordered outward from the observer's eye. An additional

example can be seen in Figure 4 where separating planes X and Y divide

space into four regions. If the viewpoint is in region A, the polyhedra

priority order is 1, 2, 3, 4; in region 0, it is 3, 4, 1, 2, etc. Once

separation planes have been located, the priority calculation is

straight forward.

10

+ + +

D
2 DJ 3

~
Eyepoint

Figure 2. Separating Planes.

11

Highest B

A

F

E

D

+
Lowest c

Priority
I ist

c D E F

Figure 3.. Separating Plane Tree. Numbers Denote Separating
Planes and Letters Denote Objects.

c

x
- +

A

B

12

y

Figure 4. Separating Planes. Two Separating Planes, X and Y,
are Used to Determine the Priority Order of Objects
from the Viewpoint Location.

13

Clusters

This method of calculating priority can be further enhanced by

building the scene with a collection of parts localized well enough in

space to allow planes to separate them. This is the principle of

"clusters" proposed by Schumacker in which the order of faces within a

cluster relative to the eye is unchanged, no matter where the eye is,

and only the order of clusters themselves must be determined in real

time (Schachter 1983). This algorithm is sometimes called the priority

list approach. For this algorithm, during data-base development, entire

groups of faces or clusters are identified for which the occulted order

within a group is totally independent of eye position. This priority

order is stored in the data-base for each cluster along with the planes

separating the clusters.

Priority Processor And Resolver

Generating images in real time requires an efficient algorithm, in

addition to special-purpose hardware to implement it. The earliest

equipment of this sort was built by General Electric for NASA's Manned

Spacecraft Center in 1968 (Newman and Sproull 1979). The hardware was

based on a priority algorithm that concurrently scan converted a large

number of polygons, se 1 ect i ng the one with the highest priority for

display. This technique is still used today.

A priority processor constructs a list containing a unique priority

number for each face, based upon viewpoint, active data lists, separa­

tion planes and relative priority data obtained from the data base

(Schachter 1983). The stages of operation are as follows. Viewpoint

and moving model positions are received at the start of each raster

14

period. Using these data, the priority processor establishes the rela­

tive priorities of the coordinate systems, producing a top-level

priority list containing a single entry for each coordinate system.

Then, for each entry in the top-level priority list, the priority

processor constructs a priority list with a single entry for each model

of each coordinate system. (A model is defined by General Electric as

any collection of object faces for which relative priorities have been

determined and stored during off-1 ine during data-base development.)

Next, the priority processor creates a separate priority 1 is t for each

active model .. These lists have a single entry for each object of a

model. In the final stage, the individual object priority lists are

combined in model priority list order to obtain a complete active-object

priority list. The priority numbers of ground plane faces are then

combined with the priority numbers of object faces to fonn the final

list. (Objects always have priority over the ground surface.)

Final hidden-surface calculations are performed by a priority

resolver which receives the priority list and an ordered edge list.

Priority re so 1 uti on is essentially a convex-object-oriented function.

When the left element of an object is received for a channel, the object

i denti fica ti on is entered in a 1 is t. When the right edge of an object

is received, the object identification is removed. Thus, at any moment,

the priority list contains the identities of all objects pierced by a

ray from the viewpoint, through the raster e 1 ement being computed, into

the 3-D environment. The priority resolver uses the available priority

infonnation to detennine which of these pierced faces is closest to the

viewpoint (Schachter 1983).

LI STABILITY

General Electric visual systems are based almost entirely on the

use of separation planes to resolve priority and fonn an ordered list of

faces in priority order. ~Jhen a set of planes can correctly yield this

priority for any viewpoint in the data base, the set is called a 11 list­

able set." There is an anomaly, however, that occurs quite frequently

which is referred to as a "non-1istab1 e set. 11 This means that for some

viewpoint the data provided with the separation planes is not sufficient

to fonn the priority list. In these cases, operator intervention is

required, which can be quite costly in time and money. Unfortunately,

this is usually the nonn rather than the exception.

A new algorithm was required that generated the required planes;

one that would always fonn a listable set. This is what was developed,

but before proceeding directly into the new algorithm an overview of the

situation wi 11 be presented. In this presentation an example of a

non-listable set will also be given.

For purposes of explanation, it is helpful to first define a co­

ordinate system as shown in Figure 5. Figure 5 shows a viewpoint

origin!i an environment origin and a model origin. The observer's line

of sight, or boresight, is along the u axis. Models refer to a single

object or object cluster.

The coordinate system at the observer's eye will be referred to as

the viewpoint coordinate system.. It is a left-handed system. The

15

16

Viewpoint

u

v

w

T
z

s y

x
Environment Model

Figure 5. Coordinate SystemG

17

coordinate system in which the scene is modeled will be referred to as

the environment coordinate system. A transformation matrix can be used

to transform all points defined in the environment coordinate system to

points defined in the viewpoint coordinate system (Newman and Sproull

1979).. As the observer and correspondingly the viewpoint coordinate

system change position relative to the environment coordinate system,

the transformation matrix is calculated and used to transfer all points

(and additional vector information) from the environment coordinate

system into the viewpoint coordinate system.

The third coordinate system used is the model coordinate system.

The model coordinate system is a right-handed system and is parallel to

the environment coordinate system.

planes of the objects are based on.

This coordinate system is what the

This is so the models can be placed

at different locations in the environment system without a recalculation

of the object planes. A simple translation matrix can be used to make

the planes relative to the environmental origin. Since any point in the

model coordinate system can be quickly converted to the viewpoint coordi­

nate system, the separation planes are described along with objects in

the mode 1 coordinate sys tern. Therefore, this paper wi 11 be concerned

only with the model coordinate system.

Instead of using x,y,z locations to describe the separation planes,

the CIG hardware uses the unit normal of the plane and the perpendicular

di stance, ca 11 ed directed distance, a 1 ong the norma 1 to the origin.

Included with each plane is a list of objects that are resolved by the

plane. In order to label the sides of the separation plane, the normal

is directed towards the "TRUE" side, the other being labeled the "FALSE"

18

side. So for the trivial case shown in Figure 6, the condition resolved

is

and

NS = 1, 0 ,0'

d = +4.0 s

TRUE/FALSE = A/B,

(1)

(2)

(3)

where Ns is the unit normal of the plane surface and ds is the directed

distance.

In order to calculate the separation plane unit normal, it is

necessary to refer to vector algebra. First, note that the vector cross-

product of two vectors yields a vector perpendicular to the two vectors.

The direction of the resulting vector is obtained by using the right­

hand or left-hand rule. In this case the right hand rule applies since

the model coordinate system is a right-handed system.

Three consecutive edges of an element define two vectors if the two

edge node coordinates are subtracted from one another. The geometric

interpretation is that both vectors define a plane which is parallel to

the separation plane and · passing through the origin. Therefore any

vector perpendicular to this plane is also perpendicular to the separa­

tion plane, which will be the separation planes normal.

Referring to Figure 6, the coordinates of nodes 1, 2 and 3 are (x 1,

Yl' z1), (x 2, y2, z2) and (x 3, y3, z3), respectively. The two vectors

parallel to the plane will be,

a = node 1 - node 2, (4)

19

y
A

x

Figure 6. Two Object Modelo

and

= (xl-x2' Y1-Y2' zl-z2)'

= (ax, ay, az),

b = node 3 - node 2,

= X3-X2, Y3-Y2' Z3-Z2,

= (bx, by, bz) •

Now the two vector cross-product to obtain the normal will be,

-~ = r x ~ = (Xn, Yn, Zn),

where

Xn = ay * bz- az * by ~

Yn = az * bx - ax * bz ,

and

Zn = ax * by - ay * bx G

20

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

The unit normal is this normal divided by its magnitude, where the

magnitude of a vector is defined as the 1 ength of the vector, expressed

mathematically as,

IN/ =SQRT (Xn 2
+ Yn 2

+ zn 2). (14)

The unit normal of a separation plane is therefore

'N = N' s
(15)

IN I

During visual generation the on-line priority processor rrust

determine the relationship of the viewpoint to each of the separation

planes. Clearly, if the viewpoint is on the 11 TRUE" side of the plane,

then object A has priority over B in Figure 6. Suppose the viewpoint is

1 oca ted at

R = (7, 1, 10),
p

then the directed distance to the viewpoint is

RP . NS = +7

21

The viewpoint is further from the origin than the plane, along Ns, so it

is on the "TRUE" side. This is expressed with the mathematical equations,

if R N - d > 0 then TRUE p s s--

else

i f RP . N s - d s < 0 then FALSE .

The "TRUE/FALSE" indicates whether the "TRUE" objects or "FALSE" objects

have priority. For the case shown, object A has priority over object B.

For rea 1 mode 1 s, there a re considerably more than two objects to

resolve., The separation planes are selected such that each pair of

objects is resolvable. For N objects there will be

object pairs.,

N(N-1)
2

For examp 1 e, suppose there is a four object mode 1 with objects (A,

B, C, D) then associated with the separation plane data there must be

six object pairs in the TRUE/FALSE data., They are as follows,

A I B
A I C
A I D
B I C
B I D
C I Do

The priority processor uses this information as follows:

(a) For each separation, determine the view-

point "TRUE 11 or 11 FALSE" l oca ti on;

(b) A counter is maintained for each object

which is incremented by one if the object is on the

opposite side of the separation plane than the

viewpoint. Only the objects that are listed in the

TRUE/FALSE data for this separation plane are incre-

mented. Since every object pair is used, the

counter reflects the number of objects with priority

over this object;

(c) The output priority list is obtained from

the counters. The highest priority object has no

objects with priority over it so it would have a

count of zero;

(d) One constraint which relates to listability

is that each object has a unique count.

22

For four objects the counters would read (0, 1, 2, 3) for a total of

six 5 the number of object pairs .. A count of (1, 1, 1, 3) is not

allowed, even if the objects are not in priority conflict. This is a

non-listable set and would result in an incorrect priority order for

some viewpoints ..

Non-Listable Set

Although the case shown is not typical of the configurations found

in normal data bases, it does demonstrate the non-listable set. Figure

7 shows a four object set. The object pairs for the separation planes

are as follows:

PLANE
1

2

3

TRUE
-C-

D
B
c
B
D

FALSE
B
A
D
A
A
c .

23

Figure 7G Four Object Modelo

24

The viewpont location is shown with a cross and is on the "FALSE" side

of all three separation planes. Using the counters, the first plane

yields the counts

OBJECT

A
B
c
D

COUNT

0
0
1
1

The second separation plane adds to the counters to yield

Object

A
B
c
D

The final plane yields the result.

Object

A
B
c
D

Count

0
1
2
1 0

Count

0
2
2
2 •

Since each object count is not unique, this is a non-listable set.

Close examination of the data will show how the problem occurred. Plane

1 yields B over C. Plane 3 yields Cover D. This i~plies B over D, but

Plane 2 yields Dover B. In listability this condition is called a

11 ci rcui to 11

Notice, using Figure 7, the same separation planes but different

TRUE/FALSE assignments yield the listable set

PLANE TRUE FALSE
1 c A

c B
2 D A

D B
3 B A

D c

25

Given the object pairs for the same viewpoint, the counts would be

Object Count

A a
B 1
c 2
D 3

This is a listable set. The output priority list would be A over B over

C over D.

There are several off-line programs that calculate the required

separation planes. The programs are very complex and unfortunately will

not always find a listable set, depending on whether the objects contain

circuits. If all subsets are free of circuits then the entire set is

listable.

Binary Search Algorithm

A listability algorithm was needed which would generate a model's

TRUE/FALSE list that would be valid from all viewpoints. The algorithm

deve 1 oped uses a binary search form of 1 og i c. A 1 i sting of the program

is given in the Appendix. The following is a description of the

algorithm.

First, a list of candidate separation planes is required. This

list is obtained by using, as an initial guess, the faces of the objects

to be ordered. In most cases this is a sufficient set but there are

occurrences where no 1istab1 e set exists in this data. Therefore, a

provision has been added where the operator can also add possible candi­

date separation planes.

26

Each object is tagged with plus for a "TRUE" side object and minus

for a 11 FALSE 11 side object. For the examp 1 e shown in Figure 7 the data

would be (using letters instead of numbers for objects):

Plane Objects

1 -A -B +C +D
2 -A +B +C -0
3 -A +B -C +D.

From this form the TRUE/FALSE pairs are easily constructed. There

are a large number of planes and TRUE/FALSE candidates available at this

point and in most cases a sizable number of usable correct listable

sets.. Any 1istab1 e set will work, so the purpose is to identify one;

preferably the one with the least number of separation planes.

The algorithm attempts to subdivide the set down into successive

disjoint sets. The first step, given 11 N11 objects, is to identify those

planes containing all 11 N11 objects, be they "TRUE" or "FALSE" or a mix-

ture. These planes, and thus far there have been several, are the candi-

dates for the first plane to be used.

The cri te ri a for se 1 ect i ng one is to form a count of the number of

plus objects (Np) and a count of the number of minus objects (Nm).

Given that no separation plane divides an object, it will always hold

that

N = Np + Nm.

Therefore, for each plane candidate compute the relative difference

N = /N -N /. c p m
The selected plane is the one with the minimum Nc. This resolves the

prob 1 em into two sets, one which has the "TRUE 11 objects from above and

27

the other the "FALSE." For each subset, again find the separation

planes containing those objects and test for the best plane. This

continues until every object occurs in a subset by itself; this is then

a listable set.

Using the case shown in Figure 7 as an example, the TRUE/FALSE

tagging is:

Plane

1
2
3

Objects

-A -B +C +D
-A +B +C -0
-A +B -C +D.

For plane 1 the counts would be

N = 2, N = 2, and Nc = Oo p m

For plane 2 the counts would be

Np = 2, Nm = 2, and Nc = Oe

Finally, for plane 3 the counts would again be

N = 2 N = 2 and Nc = 0. p , m

Since all Ne are zero, each plane is equally as good, and the first will

be chosenc This plane yields the TRUE/FALSE pairs:

C/A, C/B, D/A, and D/B.

Thi s plane also forms the two sets;

set 1 = Object A, B

and

set 2 = Object C, Do

Testing the planes yields that both Plane 2 and 3 qualifyo After using

plane 1 it is deleted from further useo

28

For plane 2, set 1 yields

Np = 1 Nm = 1 and Nc = 0.

For plane 3, set 1 yields

Np = 1, Nm = 1 and NC = 0.

Therefore, use plane 2 with the TRUE/FALSE pair B/A.

The same test using set number 2 yi e 1 ds p 1 ane 2 again with the

TRUE/FALSE pair C/D. The final TRUE/FALSE pairs are:

plane 1 C/A, C/B, D/A, D/B

and

plane 2 B/A, C/D ..

This is listable and all four objects, in a subset by themselves, are

listable ..

Limitations

Up to now no formal mention has been made about what happens if the

separation planes intersect one of the objects of the model. The quick

answer would be that this would generate a non-listable seL This is

not always the result.

In order for the algorithm to work there must always be at least

one plane that will separate the initial set into two complete groups.

Otherwise, proper binary determination cannot be made.. After this first

initial cut, this requirement then moves to the subsetso For each

subset there again rrust be a separation plane that will divide the

subset into two complete groups .. If at the same time this plane inter­

sects one of the objects of another subset, no ha rm is done o The on 1 Y

area of interest is the subset currently being worked on ..

. 29

In order to handle the situation of a plane intersecting one of the

objects, a zero is added to the list of possible outcomes. Each object

is thus tagged plus for a "TRUE" side object, minus for a "FALSE" side

object and zero for an intersected object.

BINARY SEARCH PROGRAM

A program was written to test the effectiveness of the binary

search algorithm developed. Many test cases were investigated, but only

three will be presented here.

Each test case consists of a model made up of varying amounts and

arrangements of cube objects 1 i ke the one shown in Figure 8. The ver­

tices of the object were ordered so that all face normals would point

away from the faces of the objects.

Test Case One

The first case presented is a model consisting of only two objects.

The orientation of the objects is shown in Figure 9. For this case, a

solution of a single separation plane should be obtained. Since the

algorithm uses the object faces to generate the candidate separation

planes, only two possible solutions exist. One is a separation plane at

x=lO and the other is a separation plane at x=20. These are the only

two separation planes that will divide the model into two subsets, in

which case, each object will be in its own subset. Since each of these

two planes are equally as good, the program uses the first one found.

The output of the program is shown in Figure 10. The unit normal,

directed distance, and TRUE/FALSE pair for the separation plane are

given. This information would generate the plane shown in Figure 11.

This separation plane divides the area that the viewpoint can be in into

two regions; one on the true side of the p 1 ane, and one on the fa 1 se

30

·31

10 x

Figure 8. Single Cube Object.

·32

y

20

10 _...,.. ____ ..

1 2

1 0 20 30 x

Figure 9. Two Object Model Test Caseo

NUMER OF SEPARATION PLANES REQUIRED = 1

FOR PLANE NUMBER 1
fHE UNIT NORMAL IS: 1.0 0.0 O.O
AND THE DIRECTED DISTANCE IS: 10.0
rHE fRUE/FALSE PAIRS FOR THIS PLANE ARE: fRUE

.2

33

FALSE

1

Figure 10., Program Output for Two Object Model Test Case 0

34

20

--"s
VP2 VP1

10 -----111

1 2

-- d5 ___ 10 20 30

Figure 11. Two Object Model with Separation Plane.

side. These are labeled VPl and VP2, respectively, in Figure 11. For

VPl the object counts would be (1, 0). For VP2 the object counts would

be (0, 1). Si nee each object has its own unique count for a 11 poss i b 1 e

viewpoints, a listable set has been obtained.

It may have been noted that no mention has been made as to what

occurs when the viewpoint is along one of the separation planes. This

is because for these instances, no priority prob 1 em between the objects

can exist, and the viewpoint is assumed to be on the true side of the

plane.

Test Case Two

The second test case consists of a model containing four objects as

shown in Figure 12. This is the test case of Figure 7. In addition to

the ca nd i date p 1 an es of the object faces, three add it i ona 1 ca nd i date

planes have been added.. These planes are shown as the dashed 1 ines in

Figure 12 ..

The output of the program for this test case is shown in Figure 13.

Only two separation planes are required to yield a listable set. The

two planes required are shown in Figure 14. These two planes divide the

possible areas of viewpoint location into four regions. These regions

are labeled VPl, VP2, VP3 and VP4 in Figure 14.. The counts for these

viewpoints are:

VIEWPOINT OBJECT
REGION 1 2 3 4

VPl 2 3 0 1
VP2 3 2 1 0
VP3 1 0 3 2
VP4 0 1 2 3.

36

80 G/
I

40
I /
I /
v

" /I
20 '<' N1

/ I
/ I

3 "
4

~N3

/20

"
40 80 80

~-
/ N2 "' I

-20

" I
/ "I ~
-40 " I "' I @", -so

' J

Figure 12. Four Object Model Test Case.

37

NUMER OF SEPARATION PLANES REQUIRED = 2

FOR PLANE NUMBER l
THE UNIT NORMAL IS: -1.0 o.o o.o
AND THE DIRECTED DISfANCE IS:-60.0
fHE rRUE/FALSE PA.IRS FOR fHIS PLANE ARE: fRUE FALSE

------ -------
3 1
3 2
4 1
4 2

FOR PLANE NUMBER 2
f HE UNIT NORMAL IS: 0.7 0.7 o.o
AND THE DIRECTED DISfANCE IS: l4cl
THE TRUE/FALSE PAIRS' FOR THIS PLANE ARE: fRUE FALSE

_c-=- ___ ...c» --------
4 3
2 1

Figure l3o Program Output for Four Object Model Test Caseo

_38

60

2

40

VP2 VP3

3 4

40 0 80

VP1

1
-so

Figure l4o Four Object Model with Separation Planeso

39

Since each object has a unique count for each possibility, a listable

set has been obtained.

The two p 1 an es were obtained as fo 11 ows. For the first separation

there exist five (5) possible candidates out of the twenty-seven (27)

given. Since each candidate is as good as another, the first plane found

is used. The next step is to divide each of the remaining subsets until

each object of the model is in its own subset. The first subset dealt

with contains objects 1 and 2. There are six possible ways to divide

these two objects. These planes are shown in Figure 15. Here the selec­

tion of the correct plane is crucial in order to minimize the final

number of required planes. A wrong choice here and three planes may be

required as opposed to two.

The decision as to which plane to use is made on information ob­

tained earlier when a 11 the objects were compared. The p 1 ane that

divides the most objects will be used as the subset separation plane.

There exist two planes that are equal in this regard, plane 5 and plane

6~ so the first one is arbitrarily chosen.

The next step of the a 1 gori thm is to di vi de the 1 ast subset, ob­

jects 3 and 4. Note, however, that these two objects have already been

divided by the selection of the second plane. Therefore, only two

planes are required.

Test Case Three

The final test case consists of separation planes that intersect

some of the objects. For this case a model containing five objects is

used. The orientation of the objects is shown in Figure 16.

40

80

2 2

40

-i---~~----~-A----.---------------------4
3 4 3

40 60 80

1

1
-so

Figure 15. First Subset Candidate Separation Planeso

41

4

30

5

2

3

1 r-t------

1

0 10 20 30 40 x

Figure 16. Five Object Model Test Case.

42

The output of the program for this test case is shown in Figure 17.

This model requires four separation planes. The required planes are

shown in Figure 18. These four planes divide the viewpoint area into

nine regions. The counts for these regions are:

VIEWPOINT OBJECT
REGION 1 2 3 4 5

VPl 0 1 2 3 4
VP2 1 0 2 3 4
VP3 2 1 3 0 4
VP4 3 2 1 0 4
VP5 4 3 2 1 0
VP6 3 2 1 4 0
VP? 2 3 1 4 0
VP8 1 2 0 3 4
VP9 2 1 0 3 4.

As can be seen this is a listable seL

43

NUMER OF SEPARATION PLANES REQUIRED = 4

FOR PLANE NUMBER 1
THE UNIT NORMAL IS: 1.0 o.o o.o
AND THE DIRECTED DISTANCE IS: 25.0
THE TRUE/FALSE PAIRS FOR THIS PLANE ARE: TRUE FALSE

,_,c=--~~-

,_, ______
5 1
5 2
5 3
5 4

FOR PLANE NUMBER 2
THE UNIT NORMAL IS: o.o 1 .. 0 0 .. 0
AND THE DIRECTED DISTANCE IS: 25.0
THE TRUE/FALSE PAIRS FOR THIS PLANE ARE: TRUE FALSE

-------- -------
4 1
4 2
4 3

FOR PLANE NUMBER 3
THE UNIT NORMAL IS: l.,0 o.o o.o
AND THE DIRECTED DISTANCE IS: 10.0
THE TRUE/FALSE PAIRS FOR rHIS PLANE ARE: TRUE FALSE

---~--

_____ _._

3 1
3 2

FOR PLANE NUMBER 4
THE UNIT NORMAL IS: o.o 1.0 o.o
AND THE DIRECTED DISTANCE IS: 10.0
THE TRUE/FALSE PA.IRS FOR THIS PLANE ARE~ TRUE FALSE

~------ -------
2 1

Figure 17. Program Output for Five Object Model Test Case 0

44

VP5

VP3
4

VP4

30

N2 5

2 VP9

VP2 VP6

3 N1

1
N4

VP1 1
N3 VPS VP7

1 20 30 40 x

Figure 180 Five Object Model with Separation Planeso

CONCLUSION

Many different types of algorithms are available that determine the

proper priority of objects that occu 1 t one another. Many of these

algorithms, however, require large amounts of processing time or addi­

tional user interaction. Some algorithms generate large amounts of data

that must be stored to insure proper operation. The final algorithm

used must be computationally efficient for real time requirements needed

in flight simulation. It must be a compromise between fidelity and

computing cost (Steiner 1985).

The method described in this report uses separation planes to

determine priority. Separating planes can be determined manually using

the geometry of the model. This technique has the downfall of requiring

a large amount of information stored in the CIG hardware.

The a 1 go ri thm deve 1 oped eva 1 ua tes the mini mum number of separating

p 1 an es required to yi e 1 d the correct priority. The computer program

written to exercise this algorithm and various examples have been given

in order to demonstrate its capabilities. This program is in use at

General Electric Simulation and Control Systems Department, and as of

the date of this report has yet to generate an incorrect set of p 1 an es.

45

APPENDIX
C>>>
c
C ROUTINE NAME: SEPPLN
c
c
c
c
c
c
c

AUfHOR: KEifH A. STUMP
GENERAL ELECTRIC (SCSD)
DAYTONA BEACH, FL

DA!E CREA!ED: 12/4/85

C>--
C
c
c
c
c
c
c
c

ENTRY POINT: SEPPLN

CALLING ROU!INES: NONE

CALLED ROUTINES: LOAD(OBJCNT,OSEPCNT,SYSERR)
fRUE_FALSE(OBJCNT,IPLNCO,EDGPNI,ICODE)

C>--
C
c
c
c
c
c
c
c
c
c
c
c
c

FUNCTIONAL DESCRIP!ION:

This routine is the main code for the separation plane
function. It is responsible for gathering all the potential
separation planes and loading the true/false data table with
the plane information. All faces are assumed to be potential
separation planes along with any planes supplied by the user.
Errors are issued if any two objects are unable to be
separated from each other. A listable set of separation planes
is determined and the required plane information is displayed
to the user.

C>--
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

VARIABLE DEFINITIONS:

NAME

CNDPNf
CURNC
FOUND
I
ICAND
IEDGCN I
IEDGPNT
IFAC
I FACE
IFACCNI
IFACPNf
I FALSE
IFLCNT
IFLPN r
I NEED
IOBJ
IOBJECf
IPLNCO
IPLNPT
ISEL
ISEr
ISPMAP
ISUB
I fRCN f

TYPE

INfEGER
INfEGER
LOGICAL
INfEGER
LOGICAL
INfEGER
INfEGER
IN !EGER
INTEGER
INIEGER
INTEGER
INfEGER
INfEGER
INrEGER
INfEGER
INfEGER
INTEGER
INTEGER
INfEGER
IN fEGER
INTEGER
INTEGER
INfEGER
INfEGER

DESCRIPfION

CANDIDAfE PLANE POINTER
CURRENT PLUS/MINUS DIFFERENCE
PLANE LISI FOUND FLAG
INDEX VARIABLE
CANDIDA!E PLANE FLAG
FACE EDGE COUNf
FACE EDGE POINTER
FACE INDEX
FACE EDGE COUNT ARRAY
OBJECI FACE COUNf
OBJECf FACE POINIER
PLANE FALSE ARRAY
FALSE ELEMENT COUNT
FALSE ELEMENf POINfER
NECESSARY PLANE ARRAY
OBJECT INDEX COUNf
OBJECI FACE ARRAY
POfENfIAL SEP. PLANE COUNf
CURRENT PLANE POINTER
SELECTED PLANE POINfER
SEf/SUBSEf OBJECf ARRAY
OBJECf PAIR SEPARAfION MAP
SEf/SUBSEf COUNf ARRAY
fRUE ELEMENT COUNf

46

USE

LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
COMMON
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOC.a.L
COMMON
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL

c IfRPNf INfEGER fRUE ELEMENf POINTER LOCAL
c !!RUE INfEGER PLANE TRUE ARRAY LOCAL
c J INIEGER INDEX VARIABLE LOCAL
c K HHEGER INDEX VARIABLE LOCAL
c KOBJ INTEGER SUBSEr OBJECr NUMBER LOCAL
c KsE·r INTEGER SUBS Er PO UHER LOCAL
c KSfOP INTEGER SUBSEr SfOP POINrER LOCAL
c KSUB INfEGER PRESENT SUBSEf POINfER LOCAL
c LFALSE INTEGER FALSE ELEMENT LIST LOCAL
c LfRUE INTEGER fRUE ELEMENr LISr LOCAL
c MXOBJ INTEGER MAXIMUM NUMBER OF OBJECTS PARAMETER
c NC INfEGER SUBSET PLUS/MINUS DIFFERENCE LOCAL
c NCNEW INTEGER SUBSE! NEW DIFFERENCE LOCAL
c NCOLD INfEGER SUBSEf OLD DIFFERENCE LOCAL
c NEEDCO INTEGER NUMBER Of' SEP. PLANES NEEDED LOCAL
c NELE INfEGER NUMBER OF ELEMEN!S IN SUBSET LOCAL
c NM INTEGER NUMBER OF MINUS OBJECfS LOCAL
c NMALL INfEGER NUMBER OF MINUS ALL OBJECrs LOCAL
c NMSEL INfEGER SELECTED PLANE MINUS OBJECfS LOCAL
c NP INfEGER NUMBER OF PLUS OBJEC!S LOCAL
c NP ALL INTEGER NUMBER OF PLUS ALL OBJECrs LOCAL
c NPSEL INfEGER SELEC!ED PLANE PLUS OBJECfS LOCAL
c NSE! INTEGER rorAL SUBSEr COUNT LOCAL
c OBJCNf INTEGER OBJECf COUNT PASSED
c OSEPCNT INfEGER SUPPLIED SEPARA!ION PLANE COUNT PASSED
c OVER!EX INfEGER SUPPLIED VERfEX NUMBER ARRAY COMMON
c SYSERR LOGICAL SYSTEM ERROR FLAG PASSED
c rFCNI INfEGER !RUE/FALSE PLANE COUNT LOCAL
c fRUFLS INTEGER !RUE/FALSE DATA ARRAY COMMON
c
C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
c

PROGRAM SEPPLN
c

IMPLICif NONE
c
C >- OBJECf/MODEL IN!ERFACE COMMON
c

INTEGER IEDGE,IFACE,IOBJECf,OVER!EX,TRUFLS
REAL DIST,NORMAL,XVER!,YVERf ,ZVERf
COMMON /MODEL/ IEDGE(200),IFACE(l00),IOBJEC!(l0),0VERfEX(l0),

+ XVERf(lOO),YVERI(lOO),ZVERT(lOO),
+ DIS!(l00),NORMAL(3,100),TRUFLS(l0,100)

c
C >- SEI LOCAL VARIABLE fYPES
c

c

IN!EGER CNDPNT,CURNC,I,IEDGCNI,IEDGPNI,IFAC,IFACCNT,IFACPNr
IN rEGER I FCNI' I FLCNT, I FLPN r, I'fRCNI, I fRPN T, !OBJ, IPLNCO, I PLNPI
INfEGER ISEL,J,K,KOBJ,KSEI,KSTOP,KSUB,MXOBJ,NC,NCOLD,NCNEW
IN!EGER NEEDCO,NELE,NM,NP,NMALL,NPALL,NPSEL,NMSEL,NSE!,OBJCNI
INfEGER OSEPCNT,TFCNT,IFALSE(l00,100),IfRUE(l00,100),INEED(2,100)
INfEGER ISET(l00),ISUB(l00),LFALSE(l00),LfRUE(l001
LOGICAL FOUND,ICANO,SYSERR

C >- OB!AIN OBJECf COUNT AND OPERATOR SUPPLIED
C >- SEPARAfION PLANE COUNTS. MODULE LOAD ALSO LOADS
c >- rHE OBJECT INFORMATION IN fHE IN·rERFACE COMMON.
c

CALL LOAD(OBJCNT,OSEPCNT,SYSERR)
c

· C >- IF !HERE IS MORE !HAN ONE OBJECf AND NO ERROR HAS OCCUREO
c

IF (OBJCNT.GT.l.ANO •• NOT.SYSERR) THEN

47

c
c >- LOAD fHE fRUE/FALSE TABLE WITH !HE SrArE OF EACH OBJECr WITH
c >- RESPECr ro A GIVEN PLANE.
c >-
c >- 1 • OBJECr ON rRUE SIDE OF PLANE
C >- -1 • OBJECT ON FALSE SIDE OF PLANE
C >- 0 • PLANE IN!ERSEC!S OBJEC!
c >-
c >- USE ALL FACES WHICH SEPARATE ANY TWO OR MORE OBJECrs AS
C >- POSSIBLE SEPARA!ION PLANES. ALSO USE ANY SEPARATION PLANES
C >- OBfAINEO FROM OTHER OBJEC!S OR MANUALLY INPUT BY fHE USER
C >- AS POTENTIAL SEPARAfION PLANES.
c >-
c >- INifIALIZE POfENfIAL SEPARATION PLANE COUNT
c

IPLNCO = 0
c
C >- INITIALIZE FACE ANO EDGE POINTERS
c

c

IFACPNT = l
IFACCNT = 0
IEOGPNT = 1
IEOGCNT = 0

c >- STEP rHROUGH ALL FACES OF ALL fHE OBJECrs
c

DO IOBJ = l,OBJCNT
c
C >- SET FACE COUNTS ANO POINTERS FOR CURRENT OBJECf
c

c

IFACPNT = IFACPNf + IFACCNT
IFACCNT = IOBJECf(IOBJ)

C >- STEP fHROUGH EACH FACE OF AN OBJECT
c

DO IFAC = IFACPNT, IFACPNT + IFACCNT - l
c
C >- INCREMENT POfENTIAL PLANE COUNTER
c

IPLNCO = IPLNCO + l
c
C >- SET EDGE COUNTS AND POINfERS FOR CURRENf FACE
c

c
c >-
c >-
c

100
+
+

c
c >-
c >-
c

IEDGPN! = IEOGPNT + IEOGCNT
IEOGCNT = IFACE(IFAC)

CHECK ro MAKE SURE !HE FACE HAS Ar LEAS! THREE
VERfICES. IF NO! NOfIFY OPERAfOR ANO EXIT.

IF (IEDGCNT.Lf.3) THEN
WRITE(6,100)
FORMAf(lH ,-FACE FOUND WifH LESS !HAN THREE-,

- VER!ICES.-,;,- CHECK INPUT DATA-,/,
- PROGRAM EXIfING •. o-)

SYSERR = .!RUE.
ELSE

LOAD fHE FACE NORMAL, DIRECfED DISfANCE AND TRUE/FALSE
TABLE FOR !HIS PLANE.

CALL fRUE FALSE(OBJCNf,IPLNCO,IEDGPNT,l)
ENDIF

ENDDO

-48

c
c

END DO

C >- CHECK FOR SYSTEM ERROR
c

IF (.NOT.SYSERR) fHEN
c
C >- NEXT USE ANY USER INPUT SEPARATION PLANES
C >- AS PO!ENTIAL PLANES.
c

DO I • l,OSEPCNf
c
C >- INCREMENI POTENTIAL PLANE COUNT
c

IPLNCO = IPLNCO + 1
c
C >- GET LOCA!ION OF FIRS! VERfEX
c

IEDGPNT = OVERfEX(I)
c
C >- LOAD THE FACE NORMAL, DIRECfED DISTANCE AND TRUE/FALSE
C >- fABLE FOR fHIS PLANE.
c

CALL !RUE FALSE(OBJCNT,IPLNCO,IEDGPNT,2)
ENDDO -

c
C >- IF NO ERROR HAVE OCCURRED, !HEN DO THE LISfABILITY ROUrINE
c

IF (.NOT.SYSERR) THEN
c
C >- INITIALIZE THE NUMBER OF NECESSARY PLANES
c

NEEDCO = 0
c
C >- INITIALIZE THE SEf COUNTS
c

c

DO I :s 1,0BJCNT
ISET(I) s I

ENDDO

C >- INITIALIZE TOTAL SUBSE! COUNT, FIRST SUBSEf COUNT
C >- AND PRESENT SUBSEf POIN!ER.
c

c

NSEf = 1
ISUB(l) = OBJCNT
KSUB = 0

C >- STAR! !HE BINARY DIVISION LISrABILITY LOOP
C >- LOOP UNfIL ALL OBJECfS HAVE BEEN DIVIDED INIO
C >- A SUBSET BY THEMSELVES OR IN A LISIABLE SUBSEf
c

DO WHILE (KSUB.LT.NSEf)
c
C >- INCREMENT !HE PRESENf SUBSEf POINTER
c

KSUB = KSUB + l
c
C >- OBIAIN THE NUMBER OF ELEMENTS IN fHE PRESENf SUBSEf
c >- FROM !HE SUBSET COUN r LIS r
c

NELE = ISUB(KSUB)
c
C >- IF THE PRESENT SUBSEf CONfAINS MORE THAN ONE ELEMENT

49

C >- IT MUSI BE BROKEN DOWN INTO SMALLER GROUPS
c

IF (NELE.GT.l) THEN
c
C >- INITIALIZE SELECTED PLANE POINTER, SUBSEf SIZE
C >- DIFFERENCE AND CANDIDArE PLANE POINfER
c

ISEL • 0
NC • 999999
CNDPN! a 0

c
c >- SEARCH fHRU rHE TRUE/FALSE DA'fA fABLE ro FIND
C >- A PLANE WHICH SEPARAfES fHE PRESENr SUBSET INTO
c >- THE rwo LARGEST GROUPS
c

DO WHILE (CNDPNT.Lf.IPLNCO)
c
C >- INCREMENT fHE CANDIDA!E PLANE POINTER
c

CNDPNr s CNDPNr + 1
c
C >- INITIALIZE !HE NUMBER OF PLUS OBJECTS,
C >- !HE NUMBER OF MINUS OBJECTS AND CANDIDATE
C >- PLANE FLAG.
c

c

NP
NM
I CANO

0
0
.TRUE.

C >- INITIALIZE SUBSEf POINfER AND
c >- SUBSEr sro·p POIN!ER WifHIN ISET ARRAY
c

KSEr = KSUB - l
KSTOP = KSUB + NELE - 1

c
C >- SEARCH THRU THE PLANE DAIA IN THE fRUE/FALSE
C >- DATA TABLE AND DEIERMINE 'fHE NUMBER OF ELEMENTS
C >- ON THE TRUE SIDE AND FALSE SIDE. IF IHE PLANE
c >- INIERSECTS AND ELEMENI OF IHE SUBSEr rHEN REJECT
C >- !HIS PLANE AS A CANDIDATE.
c

DO WHILE ((KSET.Lf.KSTOP)oAND.(ICAND))
c
C >- INCREMENT SUBSEI POINTER
c

KSEf = KSEf + 1
c
C >- PULL OUT SUBSE! OBJECI NUMBER FROM !HE
C >- ORDERED SEI Of OBJECT NUMBERS
c

KOBJ = ISEf(KSEr)
c
C >- IF !HE OBJECI IS ON THE TRUE OR FALSE SIDE OF
C >- rHE PLANE THEN INCREMEN r IHE PLUS/MINUS COUN fERS ·
C >- IF !HE PLANE INfERSECfS IHE PARIIfION fHEN DISCARD
C >- Ir AS A POTEN!IAL PLANE.
c

IF (fRUFLS(KOBJ,CNDPNf).EQ.1) !HEN
c
C >- IHE OBJECT IS ON !HE fRUE SIDE, INCREMENf fHE
C >- PLUS COUNr.
c

NP = NP + 1

50

c

c
c >­
c >­
c

c

c
c >­
c >­
c

c

c

ELSEIF

THE OBJECr IS ON !HE
MINUS COUN r.

NM =
ELSE

THE OBJECT INrERSECfS
A CANDIDA!E PLANE.

ICAND

ENDIF
END DO

(TRUFLS(KOBJ,CNDPNI).EQ.~l)

FALSE SIDE, INCREMENT THE

NM + 1

THE PLANE. FLAG If AS NOT

= .FALSE.

c >- IF !HIS IS A SEPARATION PLAN THEN CHECK ro
c >- SEE IF Ir DIVIDES £HE SUBSET INro THE LARGES!
C >- GROUP FOUND SO FAR. IF IT DOES fHEN SAVE IT
C >~ AS THE SELECTED DIVIDING PLANE.
c

THEN

IF ((ICAND).AND.(NP.NE.0).AND.(NM.NEoO)) !HEN
c
C >- COMPUTE CURRENT PLUS/MINUS DIFFERENCE
c

CURNC = IABS(NP - NM)
c
C >- IF £HIS NEW DIFFERENCE IS LESS £HAN fHE OLD DIFFERENCE
C >- SAVE THE DIFFERENCE, THE PLANE NUMBER, fHE
C >- NUMBER OF ELEMENTS ON THE fRUE SIDE, AND
C >- THE NUMBER OF ELEMENTS ON '!HE FALSE SIDE.
c

c

IF (CURNC.LT.NC) THEN
NC = CURNC
ISEL a CNDPNf
NPSEL = NP
NMSEL = NM

C >- CALCULA!E PLANE COUNf FOR ALL THE OBJECfS
c

c

NPALL = 0
NMALL = 0
DO I = l,OBJCNI

IF (fRUFLS(I,CNDPNf).EQ.l) THEN
NPALL = NPALL + 1

ELSEIF (fRUFLS(I,CNDPNf).EQ.-1) THEN
NMALL = NMALL + 1

ENDIF
END DO

C >- SAVE COUNT IN NCOLD FOR LA!TER COMPARISON
c

NCOLD = IABS(NPALL - NMALL)
c
C >- IF fHEY ARE EQUAL, IHEN CHECK TO SEE WHICH ONE DIVIDES
c >- rHE MOST OBJECrs.
c

ELSEIF (CURNC.EQ.NC) THEN
c
C >- CALCULA!E IHE PLANE COUNT FOR !HE NEW PLANE
c

51

c

NPALL • 0
NMALL • 0
DO I • l,OBJCNf

IF (TRUFLS(I,CNDPNI).EO.l) THEN
NPALL • NPALL + 1

ELSEIF (TRUFLS(IqCNDPN!).EQ.-1) THEN
NMALL • NMALL + l

ENDIF
END DO
NCNEW • IABS(NPALL - NMALL)

C >- IF !HE NEW ONE DIVIDES MORE OBJECTS, USE Ir.
c

c

IF (NCNEWoLToNCOLD) fHEN
= CURNC

NCNEW
CNDPNT
NP

NC
NCOLD •
ISEL •
NPSEL =
NMSEL = NM

ENDIF
ENDIF

ENDIF
END DO

c >- IF A CONDIDATE PLANE COULD Nor BE FOUND TO DIVIDE
c >- !HE SUBSET INfO TWO GROUPS BY THE BINARY DIVISION
C >- METHOD !HEN NOfIFY THE OPERAfOR AND EXIf.
c

200

c

IF (ISEL.E0.0) THEN
WRifE(6,200)
FORMA!(lH ,-SEPARATION PLANES COULD NOT BE FOUND.-)
KSUB = NSEf
SYSERR = .TRUE.

ELSE

C >- CHECK THE NECESSARY PLANE LISI TO SEE IF fHIS
C >- PLANE WAS ALREADY SELECTED.
c

c

c

I = 0
FOUND = .FALSE.

DO WHILE ((.NOT.FOUND).AND.(I.Lf.NEEDCO))
I = I + l
IF (!NEED(1, I). EO. ISEL) fHEN

FOUND= .fRUE.
ENDIF

END DO

C >- IF IHE PLANE WAS ALREADY SELECfED fHEN SET fHE
C >- PLANE POINTER AND fHE !RUE/FALSE PAIR COUNf SO
c >- fHAT THE NEW DATA WILL BE ADDED ro fHE EXISfING
C >- - DATA.
c

c

IF (FOUND) !HEN
IPLNPT I
fFCNf INEED(2,I)

ELSE

c >- THIS IS A NEW PLANE AND NEEDS ro BE ADDED ro fHE
c >- NECESSARY PLANE LISr. SEr IHE PLANE POINTER AND
C >- THE !RUE/FALSE PLANE COUNT FOR A NEW PLANE. ALSO
C >- INCREMENT THE NECESSARY PLANE COUNT.
c

-52

c

NEEDCO • NEEDCO + l
IPL.NP! • NEEDCO
TFCNT • 0

ENDIF

C >- INITIALIZE THE fRUE COUNI ANO THE FALSE COUNT
C >- ANO !HE fRUE/FALSE PLANE COUNT.
c

c

t ·rRCNT • 0
IFLCNT s 0

C >- LOOP IHRU IHE ELEMEN!S OF !HE SUBSEf TO FIND
C >- AN ELEMENf ON !HE fRUE SIDE OF THE PLANE
c

DO I = KSUB, KSUB + NELE - 1
c
c >- SET THE !RUE POINTER ro rHE PROPER VALUE
c

I!RPNT = ISE!(I)
c
C >- IF THE ELEMENT DISIGNAIED BY THE !RUE POINTER
c >- IS IN FACr ON rHE !RUE SIDE OF rHE PLANE THEN
C >- SEARCH IHRU !HE TRUE/FALSE DArA f ABLE FOR THIS
C >- SUBSET AND FIND fHE ELEMENfS ON IHE FALSE SIDE
C >- GENERAf!NG A TRUE/FALSE PAIR.
c

IF (fRUFLS(IfRPN!,ISEL).EQ.l) THEN
c
C >- SAVE !HE ELEMENT NUMBER AND INCREMENI
c >- rHE !RUE ELEMENr COUNr.
c

c

ITRCN! = IfRCNI + 1
LTRUE(IfRCNT) = IfRPNT

C >- SEARCH THRU SUBSEI OF fRUE/FALSE DATA !ABLE
c >- ro FIND FALSE ELEMENfS AND GENERA!E TRUE/FALSE
C >- PAIRS.
c

DO J = KSUB, KSUB + NELE - 1
c
c >- SEr !HE FALSE POINTER ro !HE PROPER VALUE
c

IFLPNT ISET(J)
c
C >- CHECK FOR A FALSE ELEMENT
c

IF (fRUFLS(IFLPNf,ISEL).EQ.-1) THEN
c
C >- INCREMENf fHE fRUE/FALSE PAIR COUNT
C >- AND S!ORE IHE fRUE FALSE PAIR.
c

c

!FCNT = fFCNf + 1
IfRUE(IPLNPT,fFCNT) = IfRPN!
IFALSE(IPLNPT,TFCN!) = IFLPNT

ENDIF
END DO

c >- IF !HE !RUE POINTER DOES Nor POINT ro
C >- AN ELEMENT ON !HE !RUE SIDE OF THE PLANE
c >- !HEN srORE Ir AS A FALSE ELEMENT AND
C >- INCREMEN! !HE FALSE ELEMENf COUNT.
c

ELSEIF(fRUFLS(IIRPNT,ISEL).EQ.-1) THEN

53

c

c
c >-
c >-
c >-
c >-
c

c
c >-
c

c

c

IFLCNI = IFLCNT + l
LFALSE(IFLCNT) • IfRPNf

ENDIF
ENO DO

SAVE THE SELECfED PALNE NUMBER AND THE NUMBER OF
TRUE/FALSE PAIRS ASSOCIAfED WI!H !HIS PLANE INro
THE NECESSARY PLANE ARRAY AND INCREMENT THE
NUMBER OF NECESSARY PLANES.

INEED(l,IPLNPT) = ISEL
INEED(2,IPLNPT) fFCNr

SOR! IHE SUBSEr INro A !RUE GROUP AND A FALSE GROUP.

00 I 2 1, I fRCNT
K = KSUB + I - 1
ISET(K) = L!RUE(I)

END DO

DO I = l,IFLCNT
K = K + 1
ISEf(K) = LFALSE(I)

ENO DO

c >- PLACE !HE NEW SUBSEr COUNTS INfO fHE SUVET COURNT LISr
c

c

J = NSEr - KSUB + 1
DO I = l ,J

K=NSET + 1 - I
ISUB(K+l) = ISUB(K)

ENDDO
ISUB(KSUB) = NPSEL
ISUB(KSUB+l) = NMSEL

c >- RESEr fHE SUBSEr POIN!ER
c

KSUB = KSUB - 1
c
c >- INCREMENT rorAL NUMBER OF SE!S
c

c

NSEf = NSEI + 1
ENDIF

ENOIF
EN ODO

ENDIF

C >- IF A "LISTABLE" SEf OF SEPARATION PLANES COULD BE FOUND fHEN
C >- WRifE fHE INFORMAfION FOR fHE USER.
c

IF (.NOT.SYSERR) !HEN
WRITE(6,300) NEEDCO

300 FORMAT(lH , .. NUMER OF SEPARA!ION PLANES ~QUIRED = .. ,I3,/)
DO I = 1, NEEDCO

J = INEED(l,I)
WRITE(6, 325) I ,NORMAL(l ,J), NORMAL(2 ,J), NORMAL(3 ,J),

+ DIST(J)
325 FORMAT(lH , .. FOR PLANE NUMBER .. ,13,/,

+ .. fHE UNI! NORMAL IS: .. ,3FS.l,/,
+ .. AND fHE DIREC!ED DISfANCE rs:-,F5.l)

WRirE(6,350)
350 FORMAI(lH , .. THE fRUE/FALSE PAIRS FOR fHIS PLANE .. ,

_54

375

400

c

"" ARE:

rFCNT • INEED(2,I)
DO J • 1,TFCN"f

TRUE F'ALSE-p/,X,f45,
--------)

WRI!E(6,375) IfRUE(I,J),IFALSECiuJ)
FORMA!(X,T46,I3,7X,I3)

ENDDO
ENO DO
WRifE(6,400)
FORMATClH , -NORMAL rERMINArioN->

ENDIF

ENDIF ·
ENDIF

END

55

C>>>
c
C ROUrINE NAME: LOAD
c
c
c
c
c
c
c
c
c

AUfHOR: KE! fH A .. S fUMP
GENERAL ELECfRIC
SIMULATION AND CONTROL
SYSfEMS DEPAR!MEN! (SCSD)
DAYTONA BEACH, FL

DAfE CREAfED: 12/4/85

C>--
C
c
c
c
c
c
c

ENfRY POINI: LOAD(OBJCNT,OSEPCNT,SYSERR)

CALLING ROUfINES: SEPPLN

CALLED ROUTINES: NONE

C>--
C
c
c
c
c
c
c
c

FUNCTIONAL DESCRIPfION:

rhis routine is the main code that gathers the objects
of the model. This routine also gathers the user supplied
separation planes. All the required plane information is
loaded into the model interface common.

C>--
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

VARIABLE DEFINifIONS:

NAME

CRDfYP

CROSS
FOUND
HAVOBJ
I
II
I BUFFER
I EDGE
IEDGPNT
I FACE
IFACPNT
IOBJEC!
IVNUM
JFACP~f

LOOP
NODES
OBJCNf
OSEPCNf
OSfAR!
OVERfEX
SYS ERR
VERCNI
XPOSl
XPOS2

rYPE

IN!EGER

IN fEGER
LOGICAL
LOGICAL
INfEGER
INfEGER
INfEGER
INfEGER
I!HEGER
IN!EGER
IN fEGER
INfEGER
INIEGER
INfEGER
LOGICAL
IN fEGER
INfEGER
INfEGER
INTEGER
IN !EGER
LOGICAL
INfEGER
REAL
REAL

DESCRI P rION

CARD fYPE
V - VERfEX CARD
F - FACE CARD
S - SEPARA!ION PLANE CARD
E - END OF DAf A CARD

VERfEX CROSS-REFERENCE ARRAY
VERfEX FOUND FLAG
VERfEX / FACE OBJECT MAfCH FLAG
INDEX VARIABLE
INDEX VARIABLE
CARD INPUf BUFFER
VERIEX LIST FOR FACE EDGES
FACE EDGE POINfER
NUMBER OF VERfICES IN FACE
FACE POINTER
OBJECf FACE ARRAY
VERfEX NUMBER
PREVIOUS FACE POINfER
CARD LOOP FLAG
FACE VERTEX NODE NUMBERS
MODEL OBJECf COUNT
SUPPLIED SEPARAfION PLANE COUNf
OBJECT STARI VERf EX
SUPPLIED VERTEX NUMBER ARRAY
SYSfEM ERROR FLAG
VERfEX COUNT
X VERfEX POSif!ON l
X VERIEX POSifION 2

USE

LOCAL

LOCAL
LOC.A.L
LOCAL
LOCAL
LOCAL
LOC.A.L
COMMON
LOCAL
COMMON
LOCAL
COMMON
LOCAL
LOCAL
LOCAL
LOCAL
PASSED
PASSED
LOCAL
COMMON
PASSED
LOCAL
LOCAL
LOCAL

56

c XPOS3 REAL x VERfEX POSI rION 3 LOCAL
c XVERf REAL x VERIEX ARRAY COMMON
c YPOSl REAL y VE Rf EX POS I rION l LOCAL
c YPOS2 REAL y VERIEX POSirION 2 LOCAL
c YPOS3 REAL y VER!EX POSI fION 3 LOCAL
c YVERf REAL '{ VERTEX ARRAY COMMON
c ZPOSl REAL z VERfEX POS I rION l LOCAL
c ZPOS2 REAL z VERfEX POSI ·fION 2 LOCAL
c ZPOS3 REAL z VER!EX POSifION 3 LOCAL
c ZVERf REAL z VER I EX ARRAY COMMON
C ·
C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
c

SUBROUfINE LOAD(OBJCNT,OSEPCNT,SYSERR)
c

IMPLICif NONE
c
C >~ DECLARE OBJEC!/MODEL INfERFACE COMMON
c

INTEGER I EDGE, I FACE' IOBJECr ,OVERfEX f rRUFLS
REAL DISI,NORMAL,XVERT,YVERf ,ZVERf
COMMON/MODEL/ IEDGE(200),IFACE(l00),IOBJECT(l0) ,OVER!EX(lO),

+ XVERT(l00),YVER!(l00),ZVERf(l00),
+ OIST(l00),NORMAL(3,100),TRUFLS(l0,100)

c
C >- DECLARE LOCAL VARIABLE fYPES
c

c

INTEGER CRDfYP,I,II,IEDGCNT,IEDGPNT,IFACPNI,IVNUM,JFACPNf
INfEGER OBJCNf ,OSEPCNT,OSIARI,VERCNT
IN!EGER CROSS(l00),IBUFFER(20),NODES(10)
REAL XPOSl,YPOSl,ZPOSl,XPOS2,YPOS2,ZPOS2,XPOS3,YPOS3,ZPOS3
LOGICAL FOUND,HAVOBJ,LOOP,SYSERR

C >- OPEN !HE DAIA FILE
c

OPEN(UNIT=ll, TYPE=""OLO ... , FILE=""OBJECf.DATA ... ,
+ FORM=-FORMATfED-, ERR=990)

c
C >- INITIALIZE LOCAL VARIABLES
c

c

OSEPCNT = 0
VERCNT = 0
OSfARf = 0
IEDGPNT = 0
OBJCN! = -1
JFACPNT = 0
SYSERR = oF.&.LSE.
HAVOBJ = • !RUE.

C >- READ UNTIL ENO OF FILE
c

c
c >­
c

100
c
c >­
c

E:.OOP = • TRUE.
DO WHILE (LOOP)

READ fHE RECORD FROM fHE FILE

READ(ll,100,ERR=999) IBUFFER
FORMAT (20A4)

DECODE CARD TYPE

DECODE(2,200,IBUFFER,ERR=980) CRDfYP
200 FORMAI(A2)

57

c
C >- CHECK FOR A VER!EX CARD
c

IF (CRDfYPoEo.-v -) THEN
c
C >- SE! fHE POIN!ERS FOR fHE OBJ£Cf
c

c

IF (HAVOBJ) fHEN
HAVOBJ • .FALSE.
osrARf • VERCNr + l
OBJCNT • OBJCNT + l

c >- srORE fHE FACE COUNT FOR !HIS OBJECr
c

c-
c >-
c

300
c
c >-
c

c
c >-
c

c
c >-
c

c
c >-
c >-
c

350
+

c

IF (OBJCN!.GEol) !HEN
IOBJECT(OBJCNT) = IFACPNI - JFACPNT
JFACPNT = IFACPNT

END IF
ENDIF

DECODE !HE RESf OF fHE VER!EX INFORMA!ION

DECODE(31,300,IBUFFER,ERR=980) IVNUM,XPOSl,YPOSl,ZPOSl
FO RMA r (2 X ·, I 3 , 3 F 8 o 2)

INCREMENf !HE VER!EX COUNT AND CHECK FOR ERROR

VERCNr = VERCNr + l
IF (VERCNT.LE.100) fHEN

SfORE !HE VERfEX VALUES IN !HE OBJECr COMMON

XVERf (VERCNf) XPOSl
YVERI(VERCNT) = YPOSl
ZVERf(VERCNr) = ZPOSl

SEr !HE CROSS-REFERENCE ARRAY FOR fHE OBJECr

CROSS(VERCN!) = IVNUM
ELSE

CURREN! ARRAY LIMITS EXCEEDED. NOrIFY OPERAfOR
AND EXIT

WRifE(6,350)
FORMA!(lH ,-VER!EX ARRAY LIMIT EXCEEDED.-,/,

- PROGRAM EXIfING •.• -)
SYSERR = .TRUE.

ENDIF

C >- CHECK FOR A FACE CARD
c

ELSEIF (CRDfYP.EQ.-F -} fHEN
c
c >- CHECK ro MAKE SURE VERf ICES FOR fHE FACE
C >- HAVE BEEN GIVEN.
c

IF ((VERCNr - OSTARr}.GI.O) THEN
c
C >- DECODE fHE EDGE INFORMATION FOR fHE FACE.
c >- fHE FACES HAVE BEEN LIMifED ro TEN VERfICES.
c

DECODE(32,400,IBUFFER,ERR=980) (NODES(I) ,I=l,10)

58

400
c
c >­
c >­
c >­
c

c

FORMAT(2X, 1013)

STORE fHE EDGE INFORMA!ION IN THE EDGE ARRAY.
USE THE CROSS-REFERENCE ARRAY ro OB!AIN !HE
CURREN! LOCAfION OF !HE VERfEX.

I x 1
DO WHILE (NODES(I).NE.0)

C >- CHECK ONLY !HE VER~ICES FOR THIS OBJECT
c >- THE VARIABLE FOUND IS USED ro MAKE SURE A
C >- VERfEX IS FOUND
c

c

FOUND = .FALSE.
DO II = OS!AR!, VERCNr

IF (NODES(I).EQ.CROSS(II)) THEN
FOUND= .fRUE.
IEDGPNI = IEDGPNT + 1

C >- CHECK FOR ARRAY OVERFLOW. IF SO NOTIFY OPERAfOR.
c

IF (IEDGPNT.GT.200) THEN
NODES(! + l) = 0
SYSERR = oTRUE.
WR IT E (6 o 4 l 5)

415 FORMAT(lH ,-EDGE ARRAY LIMir EXCEEDED.-,/,

c

+ - PROGRAM EXIfING ••• -)
ELSE

IEDGE(IEDGPNT) = II
ENDIF

ENDIF
END DO

C >- IF FOUND IS S!ILL FALSE AN ERROR HAS OCCUREDo
C >- NO!IFY OPERAfOR AND EXIT.
c

c

IF (.NOT.FOUND) fHEN
NODES(!) = 0
SYSERR = .TRUE.
WRirE(6,425)

425 FORMAT(lH ,-VER!EX FOR FACE Nor FOUND.-,/o
+ - PROGRAM EXIfINGooo-)

ELSE

C >- INCREMENf COUNfER AND CONfINUE
c

c
c >-
c

c
c >-
c

c
c >-
c >-
c

I = I + 1
ENDIF

END DO

STORE fHE EDGE COUNT IN THE FACE ARRAY

IFACPNr = IFACPNr + 1
IFACE(IFACPNT) = I - 1

SET HAVE OBJECf FLAG

HAVOBJ = .!RUE.
ELSE

NO VERfICES WERE FOUND FOR FACE.
NO rI FY OPERATOR AND EXIT·

59

WRIIE(6,450)
450 FORMAT(lH ,-No VERf!CES FOR FACE WERE GIVEN.-,/ 6

+ - PROGRAM EXITING ••• -)
SYSERR a .TRUE.

ENDIF
c
C >- CHECK FOR OPERA'IOR INPUT SEPARArION PLANES
c

c
c >­
c

500
c

+

c >­
c

c
c >-
c

c
c >-
c

c
c >-
c >-
c

c

ELSEIF (CRD!YP.EQ.·s -) !HEN

DECODE PLANE INFORMATION

DECODE(74,SOO,IBUFFER,ERR=980) XPOSl,YPOSl,ZPOSl,
XPOS2,YPOS2,ZPOS2,XPOS3,YPOS3,ZPOS3

FORMA!(2X,9F8o2)

LOAD VER!EX INFORMATION

IF ((VERCN!+3).LE.100) THEN
XVERT(VERCNT + l) = XPOSl
YVERf(VERCNf + 1) s YPOSl
ZVERT(VERCNT + l) a ZPOSl
XVERf (VERCNT + 2) = XPOS2
YVERf(VERCNI + 2) = YPOS2
ZVERT(VERCNf + 2) = ZPOS2
XVERI(VERCNT + 3) XPOS3
YVERf(VERCNr + 3) = YPOS3
ZVERf(VERCNT + 3) = ZPOS3

SET VERfEX SfARI LOCAfION

OSEPCNT = OSEPCNr + 1
OVERTEX(OSEPCNT) = VERCNT + l

INCREMENT VERfEX COUNT BY 3

VERCNT = VERCNI + 3
ELSE

CURREN! ARRAY LIMITS EXCEEDED.
NOfIFY OPERAfOR AND EXIr.

WRifE(6,350)
SYSERR = .fRUE.

ENDIF

C >- CHECK FOR END OF DAfA CARD
c

ELSEIF (CRDfYP.EQ.-E -) fHEN
c
c >- SET LOOP FLAG FALSE TO sroP
c

LOOP = .FALSE.
c
c >- IF CARD fYPE HAS Nor BEEN FOUND fHEN A
C >- ERROR CONDifION EXISTS. NOfIFY OPERA!OR.
c

ELSE
WR Ir E (6 , 6 0 0)

600 FORMAT(lH ,-INVALID CARD rYPE. CHECK INPUr FILE.-)
ENDIF

c
C >- IF SYSfEM ERROR, THEN EXIT LOOP.

60

c
IF (SYSERR) LOOP • .FALSE.

ENDDO
c
c >- ADJUSr OBJECI COUNT, AND SKIP ro ENO.
c

c
c
c

c

980

700

990

750

999

800

OBJCNf • OBJCNT + l
IOBJECT(OBJCNI) • IFACPNf - JFACPNT
GOTO 1000

>- !ESI FOR OPERAIION ERRORS

CONTINUE
WRI!E(6,700)
FORMA!(lH ,-ERROR DURING CARD DECODE-,/,

+ - PROGRAM EXITING ••• -)
SYSERR = .TRUE.
GOTO 1000
CON!INUE
WRITE(6,750)
FORMAT(lH ,-ERROR DURING FILE OPEN-,/ 0

+ - PROGRAM EXITING ••• .,,)
SYSERR = .TRUE.
GOIO 1000
CONTINUE
WRITE(6,800)
FORMAI(lH ,-ERROR DURING FILE READ-,/,

+ - PROGRAM EXIfING ..• -)
SYSERR == .TRUE.
Gora lOOO

1000 CONTINUE
CLOSE (UNIT2 ll)
RE!URN
END

6_1

C>>>
c
C ROUTINE NAME: !RUE FALSE
c -
C AUfHOR: KEITH A. STUMP
C GENERAL ELECTRIC (SCSD)
C DAYTONA BEACH, FL
c
c
c

DATE CREA!ED: 12/4/85

C>--C .

c
c
c
c
c
c

ENfRY POINT: TRUE_FALSE(OBJCNT,IPLNCO,EDGPNf,ICODE)

CALLING ROU!INES: SEPPLN

CALLED ROUTINES: NONE

C>--
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

FUNCTIONAL DESCRIPfION:

This routine loads the True/False state table
which shows the state of all objects with a given separation
planee This routine checks the used vertices of an object
to see if those vertices lie on the true or false side of the
plane.

rhe True/False state table contains an entry for each
potential plane which shows for each object whether that object
is on the true side, false side, or is intersected by the plane.
The information is stored in the table as:

and

-1 = False side;
1 = True side:
0 = intersected by.

C>--
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

VARIABLE DEFINifIONS:

NAME

Drsr
EDGPN I
FIRS!
I CODE

IEDGCNT
I EDGE
IEDGPNI
IFAC
IFACCNf
!FACE
IFACPN!
INTER
!OBJ
IOBJECf
IPLNCO
IVER!
NORM
NORMAL
OBJCN f

f YPE

REAL
INIEGER
LOGICAL
INfEGER

IN!EGER
INfEGER
IN!EGER
INfEGER
INfEGER
IN !EGER
IN!EGER
LOGICAL
INfEGER
INfEGER
INfEGER
INIEGER
REAL
REAL
INfEGER

DESCRIPrION

DIRECfED DISTANCE
EDGE POIN fER
FIRSf VERfEX FLAG
INPUT rYPE CODE

l = OBJECT VER!EX LISf
2 = SEPARAfION PLANE LISI

FACE EDGE COUNT
OBJECf EDGE ARRAY
FACE EDGE POINTER
FACE INDEX
OBJECT FACE COUNT
FACE EDGE COUNf ARRAY
OBJECT FACE POINIER
INfERSECfION FLAG
OBJECf INDEX COUNI
OBJEC! FACE ARRAY
SEPARA!ION PLANE COUNT
VERfEX INDEX
FACE NORMAL
FACE NORMAL ARRAY
OBJECf COUNf

USE

COMMON
PASSED
LOCAL
PASSED

LOCAL
COMMON
LOCAL
LOCAL
LOCAL
COMMON
LOCAL
LOCAL
LOCAL
COMMON
PASSED
LOCAL
LOCAL
COMMON
PASSED

62

c osrArE IN!EGER OLD VERfEX !RUE/FALSE srArE LOCAL
c PLNDST REAL PLANE DIRECTED DISTANCE LOCAL
c SfA!E IN fEGER VER!EX TRUE/FALSE srArE LOCAL
c fRUFLS INfEGER OBJECT fRUE/FALSE ARRAY LOCAL
c VOST REAL VERTEX DIRECfED DISTANCE LOCAL
c VECA REAL VECTOR A LOCAL
c \IECB REAL VECfOR B LOCAL
c VMAG REAL VECTOR MAGNITUDE LOCAL
c XSAVE REAL FIRST NODE X LOCA!ION LOCAL
c XVERI REAL NODE X VERIEX ARRAY COMMON
c YSAVE REAL FIRSf NODE 'l LOCATION LOCAL
c YVERI REAL NODE Y VERIEX ARRAY COMMON
c ZSAVE REAL FIRST NODE Z LOCAfION LOCAL
c ZVERf REAL NODE Z VERfEX ARRAY COMMON
c
C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<·<<<<<<
c

SUBROUTINE IRUE_FALSE(OBJCNI,IPLNCO,EOGPNI,ICOOE)
c

IMPLICif NONE
c
C >- OBJEC!/MOOEL INfERFACE COMMON
c

INIEGER IEOGE,IFACE,IOBJECf,OVERIEX,fRUFLS
REAL DIST,NORMAL,XVERI,YVERr,zvERr
COMMON /MOO~L/ IEDGE(200),IFACE(l00),IOBJECr(l0),0VERrEX(l0),

+ XVERT(100) I '!VERT(100) I ZVERI(100),
+ DISI(l00),NORMAL(3,100),IRUFLS(l0,100)

c
C >- DECLARE LOCAL VARIABLE !YPES
c

c
c
c
c

c
c
c

c

>-
>-

+

+

+

>-

+

+

+

~

INTEGER EDGPNT,I,ICODE,IEDGCNT,IEDGPNT,IFAC,IFACCNT,IFACPNr
INTEGER IOBJ,IPLNCO,IVERT,OBJCNT,OSIA!E,SfAIE
REAL PLNDSr,vosr,VMAG
REAL NORH(3),VECA(3),VECB(3),XSAVE,YSAVE,ZSAVE
LOGICAL FIRSI,INIER

USE THREE VERTICES ro CALCULA-rE FACE NORMAL.
CALCULA!E VECIOR A, NODE 1 - NODE 2.

IF (ICODE.EQ.l) THEN
VECA(l) XVERI(IEDGE(EDGPNI))

- XVERf(IEDGE(EDGPNf + 1))

VECA(2) YVERf(IEOGE(EOGPNT))
- YVERf(IEDGE(EDGPNT + 1))

VECA(3) ZVERT(IEDGE(EOGPNT))
- ZVERI(IEDGE{EOGPNT + 1))

CALCULAIE VECfOR B, NOOE 3 - NODE 2

VECB(l) XVERf(IEDGE(EDGPNT + 2))
- XVERf(IEDGE(EOGPNI + 1))

VECB(2) YVERf(IEDGE(EOGPNT + 2))
- YVERf(IEOGE(EDGPNT + 1))

VECB(3) ZVERI(IEDGE(EOGPNr + 2))
- ZVERf{IEDGE(EOGPNT + l))

XSAVE XVERf(IEOGE(EDGPNT))
YSAVE YVERI{IEDGE(EOGPNT))
ZS AVE ZVERT(IEDGE(EOGPNT))

ELSE
VECA(l) XVERf(EDGPNT)

- XVER!{EDGPNT + 1)

63

VECA(2) = YVERI(EDGPN!)
+ - YVERf(EDGPNT + l)

VECA(3) • ZVERf(EDGPNT)
+ - ZVERf(EDGPN! + 1)

c
C >- CALCULA·fE VECTOR B, NODE 3 - NODE 2
c

VECB(l) • XVERf(EDGPNf + 2)
+ - XVERf(EDGPNT + 1)

VECB(2) • YVERf(EOGPNT + 2)
+ - YVER!(EDGPN! + 1)

VECB(3) = ZVERf(EDGPN! + 2)
+ - ZVER! (EDGPNT + l)

c
XSAVE = XVERf(EDGPNr)
YSAVE = YVERT (EDGPN r)
ZSAVE = ZVERT(EDGPN!)

ENDIF
c
c >- CROSS VECTORS ro FORM NORMAL
c

c

NORM(l) = VECA(2) * VECB(3) ~ VECB(2) ~ VECA(3)
NORM(2) = VECB(l) * VECA(3) ~ VECA(l) ~ VECB(3)
NORM(J) = VECA(l) * VECB(2) - VECB(l) ~ VECA(2)

C >- FIND MAGNITUDE OF FACE NORMAL
c

VHAG = SQRf(NORM(l) * NORM(l) +
+ NORM(2) * NORM(2) +
+ NORM (3) * NORM (3))

c
C >- NORMALIZE FACE NORMAL
c

c

NORM(l) = NORM(l) / VMAG
NORM(2) = NORM(2) / VHAG
NORM(3) = NORM(3) / VMAG

C >- CALCULATE DIRECIED DISfANCE OF PLANEo
c >- !HIS IS DONE USING rHE FIRSr VERTEX.
c

PLNDSf = (NORM(l) * XSAVE +
+ NORM(2) * YSAVE +
+ NORM(3) * ZSAVE)

c
c >- LOAD rHE UNir NORMALS AND DIREC!ED DISfANCE FOR fHIS
C >- PLANE.
c

c

NORMAL(l,IPLNCO) = NORM(l)
NORMAL(2,IPLNCO) = NORM(2)
NORMAL(J,IPLNCO) = NORM(3)
DISf(IPLNCO) = PLNDST

C >- INITIALIZE FACE AND EDGE POINTERS
c

c

IFACPNr 1
IFACCN! 0
IEDGPNT = l
IEDGCNT 0

c >- LOOP rHRU ALL OBJECfS ro CHECK SEPARATION
c

DO !OBJ = l,OBJCNf
c

64

c >- SEr FACE COUNfS AND POINTERS FOR CURREN! OBJECr
c

c

IFACPNT • IFACPNT + lFACCNf
IFACCN! • IOBJECI(IOBJ)

c >- STEP fHRU EACH FACE OF !HE OBJECr UNrIL DONE
C >- OR A IN!ERSECTION IS FOUND. INTIALIZE FACE POIN!ER
C >- ANO INfERSECfION FLAG.
c

c

c

IFAC • _ IFACPNT - l
INTER • .FALSEo

DO WHILE (IFAC. Lr. (I FACPNT+I FACCNT-1))

C >- INCREMEN! FACE POIN!ER
c

IFAC = IFAC + 1
c
C >- SET EDGE COUN!S AND POINTERS FOR CURRENT FACE
c

c

IEDGPNT = IEDGPNT + IEDGCNT
IEDGCNT = IFACE(IFAC)

c >- srE~ fHRU EACH VERfEX UNTIL DONE OR A
C >- INfERSECfION IS FOUND. INITIALIZE VERfEX POINTER
C >- AND FIRSr VERfEX FLAG
c

c

IVERf = IEDGPN! - 1
FIRST = • fRUEo
DO WHILE ((IVERf. Lr. (IEDGPNT+IEDGCN!-1)) .AND. (. NOf. INTER))

C >- INCREMEN! VERfEX POIN!ER
c

IVERI = IVERf + 1
c
C >- DE!ERMINE WHETHER A VERfEX IS ON fHE fRUE SIDE,
c >- ON THE FALSE SIDE OR INfERSECrs THE PLANE
C >- BEING ANALYZED.
C >- COMPUfE !HE DIFFERENCE BEfWEEN !HE PERPENDICULAR
c >- DISfANCE FROM !HE VERTEX ro !HE PLANE.
c

vosr = (NORM(1) * XVERf(!EDGE(IVERf)) +
+ NORM(2) * YVERf(IEDGE(IVERT)) +
+ ~ORM(3) * ZVERf(IEDGE(IVERf))) -
+ PLNDS!

c
C >- DEfERMINE !HE VALUE OF SfATE BASED ON THE
C >- VALUE OF VOST
c

c

IF (ABS(VDSf).Lf •• 001) THEN
srArE = o

ELSEIF cvosr.Lr.0.0) THEN
srArE -1

ELSE
SIAfE = 1

ENDIF

c >- CHECK S!ARES ro SEE IF fHEY HAVE SWAPPED,
C >- MEANING AN INfERSECfION. If !HE VERfEX IS ON !HE
c >- PLANE fHEN fHIS PRODUCES A oow·r CARE SI fUATION.
c

If (SfAfE.NE.0) THEN
c

65

c

c

c

c

IF (FIRSf) !HEN

FIRSf • .FALSE.
OS!AfE a SrArE

ELSEIF (OSTAfE.NE.SrArE) THEN

INfER a • rRUE.
ENOIF

ENO IF
EN ODO

ENO DO

C >- LOAD THE fRUE/FALSE DATA TABLE WITH fHE OBJECf SfAfE
C >- FOR fHIS PLANE.
c

c

c

IF (!NIER) !HEN
rRUFLS(IOBJ,IPLNCO) = 0

ELSE
fRUFLS(IOBJ,IPLNCO) OSIAIE

ENDIF

EN ODO

REfURN
ENO

66

REFERENCES

Bennett, Wil 1 i am S. "Computer-Generated Graphics. 11 In Computer Image
Generation, pp. 9-26. Edited by Bruce J. Schachter. New York:
John Wiley & Sons, 1983.

Foley, James 0., and Van Dam, Andries. Fundamentals of Interactive
Computer Graphics. Reading, Massachusetts: Addison-Wesley Pub-
1 ishing Co., 1982.

Giloi, Wolfgang K. Interactive Computer Graphics. Princeton, New
Jersey: Prentice-Hall, Inco, 1978.

Newman, William M., and Sproull, Robert F. Principles of Interactive
Computer Graphics. New York: McGraw-Hill Book Co., 1979.

Pav il i d i s , Theo .
Rockvi 11 e,

Algorithms for Graphics and Image Processing.
Maryland: Computer Science Press, 1982.

Schachter, Bruce J., ed. Computer Image Generation. New York: John
Wiley & Sons, 1983.

Steiner, Walter R. "Survey of Texture and Shading Techniques for Visual
Flight Simulation." Masters thesis, University of Central Florida,
1985.

67

	Separation Plane Priority in Computer Image Generation
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii
	iii

	TABLE OF CONTENTS
	iv

	LIST OF FIGURES
	v

	CHAPTER I. INTRODUCTION
	01
	02
	03

	CHAPTER II. OCCULATION
	04
	Priority Methods
	05
	06
	07

	Back-Facing
	08

	Separation Planes
	09
	10
	11
	12

	Clusters
	Priority Processor And Revolver
	13
	14

	CHAPTER III. LISTABILITY
	15
	16
	17
	18
	19
	20
	21
	Non-Listable Set
	22
	23
	24

	Binary Search Algorithm
	25
	26
	27

	Limitations
	28
	29

	CHAPTER IV. BINARY SEARCH PROGRAM
	Test Case One
	30
	31
	32
	33
	34

	Test Case Two
	35
	36
	37
	38

	Test Case Three
	39
	40
	41
	42
	43
	44

	CHAPTER V. CONCLUSION
	45

	APPENDIX
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66

	REFERENCES
	67

