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ABSTRACT 

This paper architecturally describes the switching portion of a 

digital communications system that is dedicated to conferencing. The 

basic ideas and methods of circuit switching and packet switching are 

introduced. The conferencing function is described, and some resultin~ 

design considerations are discussed. The architecture of the switch is 

then presented. Circuit switching techniques are used throughout the 

architecture of the switch, coupled with arithmetic processing to 

accomplish the conferencing function. The architecture is developed in 

such a way that it is expandable in all directions to meet a given set 

of requirements. The requirements include the number of users the 

system supports and the number of conference channels provided. The 

processing stages of the switch can be sized based on these require-

ments and the chosen component speeds. The basic timing of each stage 

is given to describe its operation and establish the critical delay 

paths. The resulting switching architecture is then examined in terms 

of the circuit switching methods first introduced. The switch is also 

tested to see if it fits the criteria for being a distributed proces-

sing system. It is concluded that if the provision for dyna~ic recon-

figuration is added, the switch fits the criteria. Finally, further 

topics of study are suggested. 

DR~i~ E!Jt~fo 
Director of Thesis 
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CHAPTER I 

INTRODUCTION 

Telecommunication is often thought of in terms of the telephone 

system. Two people can communicate with each other over a large 

distance. The feature of conferencing allows several people in dif

ferent locations to speak as if they were in the same room. 

Conferencing is a popular feature of a private branch exchange 

(PBX). The PBX is effectively a small telephone system that provides 

service to one user organization. In the long run, it becomes cheaper 

for an organization to purchase such a system than to rent the service 

from the local telephone utility. An example of a modern PBX is the 

ROLM Corporation's CBX (Computerized Branch Exchange). The system can 

support 150 simultaneous two-way conversations (Kasson, 1979). 

An organization such as the Kennedy Space Center (KSC) has a need 

for such an exchange. KSC desires a conferencing capability of at 

least 500 conferences to take place simultaneously, with no restriction 

on the number of users that have the potential to speak in or hear a 

conference. The space center also desires the feature of a user being 

able to hear more than one conference at once. The degree of con

ferencing required by KSC is far beyond any device that is on the 

market (MacDonald, 1982). For example, the ROLM CBX only supports 8 

conferences with 8 users in each conference. 
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The motivation for the development of the architecture for such a 

conferencing system came from KSC's needs. Chapter II of this paper 

provides an overview of switching methods and strategies. Chapter III 

is an introduction to the conferencing situation. Chapters IV and V 

present some design considerations and the architecture of the switch 

portion of the conferencing system. Chapter VI discusses conclusions 

about the developed architecture and suggests further areas of study. 



CHAPTER II 

DIGITAL SWITCHING 

Circuit Switching 

A circuit switch is a device which provides for the exchange of 

messages (Joel, 1977). The messages can be voice, video, or electronic 

data. The exchange takes place between an input port (the message 

sender) and an output port (the message receiver). The circuit switch 

sets up the communication path, which may be a set of lines, by con

trolling the interconnection circuits. The communication path, once 

set up, is a dedicated connection for the duration of the message 

transmission. The most familiar example of a circuit switch is the 

telephone exchange. The input and output ports are together in one 

device (the telephone), and all telephones are ultimately connected to 

the system that sets up the talk paths between the users. 

An ideal circuit switch has the capability of connecting all 

input ports and output ports in any arbitrary pattern. Row completely 

arbitrary the connections between ports can be accomplished depends on 

the complexity of the network. Anyone who has had difficulty in making 

a long distance phone call on Christmas Day is aware that the phone 

company's circuit switch is not ideal. Most circuit switches have a 

saturation point where all possible communication paths are in use and 

any request for a message transmission by an input port will be 
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refused. The structure of the switch determines where, of if, this 

point is reached. 

If a structure allows the ideal of all input/output ports in use 

with any connection pattern, the structure is said to be a non-blocking 

network. Figure 1 shows such a structure. N ports are connected by 

N*(N-1)/2 lines. Each line is a two-way path, and the switching opera

tions take place at or near each port. Disadvantages with this network 

are that the number of lines increases as the square of N, and the 

switching function is not centralized in one location. The structure 

as shown does not easily expand to service more ports, and has applica

tion only when N is small. 

Figure 2 shows an improvement on the first structure. N ports 

are connected by N-1 Lines, and all the connections can be performed at 

a central location. This network is also non-blocking, a s all possible 

connection combinations can be accomplished. 

Each interconnection point where a line could potentially be con

nected to a port is called a crosspoint. The crosspoint a are con

trolled by the switching network to create the desired communicat ion 

paths. The network in Figure 2 has N*(N-1)/2 crosspoints. The network 

in Figure 1 has twice as many: N-1 crosspoints at each port, for a 

total of N*(N-1) crosspoints. 

The network of Figure 3 has less crosspoints, and the intercon

nection paths have been lengthened. Each circular path is called e 

link, and one link is required for two ports to be connected. When 

there are less links (L) than N/2 ports, all ports cannot be in use 

simultaneously. Note that in Figure 3, N=B and 1=3. This configuration 
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P = port 

Figure 1. Non-blocking switching network. 
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~ = crosspoint P = port 

Figure 2. Centralized non-blocking network. 



)( = crosspoint 

P = port 

Figure 3. Centralized blocking network. 

7 
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is thus known as a blocking network. When 21 users are connected, the 

remaining N-2L users are blocked from being serviced and must await 

free links. How many simultaneous communication paths are required will 

determine L. 

The networks considered have been all examples of space division 

multiplexing (SDM). A place in space (a circuit) was dedicated to one 

message transmission for the entire message time. Two other methods of 

sharing a communication medium exist: frequency division multiplexing 

(FDM) and time division multiplexing (TDM). 

FDM involves dedicating a specific band of frequencies to one 

message. Many messages can then be simultaneously transmitted over a 

broad band medium. The most familiar examples are radio and tele

vision. Signals that share the same bandwidth (video and audio infor

mation) are all transmitted through the air at once. The radio or 

television receiver selectively tunes in on one and effectively ignores 

the rest. FDM has been investigated for switching but is more 

expensive than TDM. 

TDM involves dedicating the medium to the message for a specific 

amount of time. Communication sampling theory states that if a signal 

is sampled at the Nyquist frequency or higher, the original signal can 

be reconstructed from the samples at the receiver. The switching and 

samplin~ can take place in an analog fashion, where source and destina

tion ports are actually connected for a moment. Most recently, with 

the advances in digital electronics, the time samples are digitally 

encoded and stored in a memory. Each sample can then later be trans

mitted over the medium, when the proper time comes. The proper time is 
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called a time slot. Each message source's sample arrives at the switch 

at some previously agreed time, or a sample has some source identifica

tion with it. The samples are then stored in the central switche' s 

memory. Then the samples can be read out of memory and sent to the 

proper destination. The switching function can occur 1) where an 

incoming sample is stored, 2) where an outgoing sample is retrieved 

from, or 3) both. By "shuffling" the sample data in terms of what time 

slot it ends up in, communication switching can occur. This method of 

TD:t-f switching is called time slot interchange (TSI). 

If there are many users, not enough time may exist to process all 

the samples before the users need to be sampled again (because of band

width requirements). The switch can be split up, with parts of it dedi

cated to certain users. Or the switch can be constructed so that one 

memory is filling with samples and another is sending out samples that 

were taken in on the last frame time. "Frame time" means a period in 

time between when all senders must be sampled. New samples to be 

processed are presented to the switch each frame time. Sections of the 

switch can process a frame of data (samples) and pass it on to the next 

section for further processing. The routing required here is simply to 

read out the samples in such a way as to properly swap the time slots 

to establish the right communication paths. Flow through the switch is 

then maintained, with the bandwidth requirements of the message met. A 

delay is introduced from input to output depending on how many routing 

steps are involved. The idea is that the structure can be changed to 

accommodate the amount of routing that must be done. To handle more 

users, the system can expand by duplicating routing and sampling 
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functions and having them operate in parallel. 

Another time division idea arises when a space division system i~ 

time switched. Then many more users can be serviced than with a TSI 

system since there is more than one common transmission medium. This 

switched SDM system is called a time multiplexed switching (TMS) 

network. 

TMS and TSI systems that use memory staging as previously dis

cussed will generate a delayed transmission path. Both systems come 

under the broader term of store and forward switching. The storage 

action is what causes the delay. Different types of store and forward 

networks require memory for different reasons. They are: 

1. The transmitter may be in use when a message arrives. 

2. Multiple transmissions of the same message are required. 

3. The called unit is busy. 

4. The speed of the transmitter or medium is less than the received 

rate. 

5. The format or coding of a received message differs from how it is 

transmitted. 

These reasons come into play when networks are not required to handle a 

steady flow of information. When computers transmit data to other com

puters, the message is sent in a large block at a high speed. Then the 

connection is idle for a very long time until another block is sent. A 

SDM system would be wasting a line if the connected devices communi

cated only intermittently. A TDM system would be wasting a time slot 

if it had to sample a silent device. A receiver could contain a buffer 

memory and accept messages at any time, whether the computer it was 
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connected to was busy or not. How often the computer is transmitted to 

is one factor that determines how large the buffer needs to be. Packet 

switching takes advantage of a device's idle time and only transmits 

messages when specifically asked to. 

Packet Switching 

As suggested by one author (Kleinrock, 1978), our privately owned 

cars are a waste of money. They sit parked most of the time, not in 

use. The value of the convenience seems to outweigh the cost of the 

use efficiency we get out of it. There is some point where the cost of 

the idle time is too high (few of us own a private jet) or where the 

cost is so low we are almost forced to pay for the convenience (we all 

own idle pencils). 

Communication devices exhibit the same kind of idleness. Consider 

a computer listening to a set of time shared terminals. The amount of 

time that passes between a user's keystrokes is large compared to the 

amount of time it takes for the computer to process a keystroke. A 

system like this could use TDM of sorts, where the computer would poll 

each device for new data. But time would be wasted if a device had no 

data. A more efficient use of time would be accomplished if the 

computer was connected to a terminal only if the terminal had new data. 

For terminals that are close to the host computer, each could interrupt 

the host when a key was hit. 

Now consider a group of computers (hosts) separated by miles. 

The hosts desire communication with each other with blocks of data. As 

with a time sharing network, the ratio of peak demands to average 

demands is very high, that is, the hosts are "bursty" and work among 
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themselves most of the time. Because of the distance between them, a 

dedicated network of lines connecting each pair would be costly. If 

hosts were connected such that a message could be sent to any other 

host provided there always was a path through intermediate hosts, com

munication could be accomplished by packet switching . Such a network 

might look like Figure 4. 

The idea of packet switching involves a set of bursty (usually 

idle) transmitters (hosts) connected together. Each host is connected 

to the network through a packet switch. Suppose a host wants to send a 

block of data to another. The block of data and the destination host's 

address is given to the packet switch tied to the sending host. The 

packet switch divides that block into smaller messages, usually of uni

form size. The packet switch knows how the hosts are interconnected, so 

it starts sending the message packets towards the destination host. If 

there is an intermediate packet switch, that switch receives the packet 

and forwards it on again until the packet reaches the destination. Each 

message packet must have a destination identification along with the 

data. The packet switches act like a virtual channel between hosts. 

The packet switch can also have a certain amount of smartness to 

improve on transmission speed. If more than one possible route exists 

from source host to destination host, packet switches could route the 

data along paths that had less traffic than others. A measure of the 

traffic a packet sees is how full the message buffers are at the other 

packet switches along the possible routes. Each switch could broadcast 

its status from time to time, to update the other's routing tables. A 

packet in this case might need source information also, to prevent 
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looping around a "low-use" path. 

A packet switch might not be able to process a packet fast enough 

before another comes in. Thus, there is a buffer memory in a packet 

switch on the receiving end. A buffer is needed to save the part of the 

message that has not been divided and sent out yet from the connected 

host. A buffer on the transmitter side is needed also if retransmission 

is required because of an error flagged at the receiver. Once an 

acknowledgement is sent, the sending packet switch can discard the 

message. Note that a packet switch could simply be a minicomputer with 

special software. 

One advantage of breaking up the data block into packets is that 

each message sees a relatively uniform waiting time. Delays are shared 

by all users rather than short messages waiting on long ones. Each 

packet's addressing directs it completely independent of another 

through the network. The size of the packets as well as a measure of 

overall traffic density impact the packet buffer size. Packet switching 

allows complete asynchronous use of transmission resources. Again, 

packet switching becomes feasible when messages are bursty and switch

ing functions (done by a minicomputer) are cheap compared to a network 

of lines. 

Routing and flow control are very important ideas in packet 

switching. To take advantage of the host's idle time, the system must 

be able to deliver the packets to their proper destinations effi

ciently. For reliability, the switches must know if the packets 

arrived correctly at the destination. Flow control and routing 

algorithms, as well as error checking schemes are the "smarts" that 
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allow the simple scheme of packet switching to function. These sub

jects all come under the broader heading of protocols (Pouzin and 

Zimmerman, 1978). 

The classic example of a network of computers connected by packet 

switches is the ARPANET. The ARPANET uses minicomputers interconnected 

by 50 kbit/ s leased lines in a distributed network. ARPANET became 

operational in late 1969 with 4 hosts and as of 1977, 111 hosts were 

supported (Roberts, 1978). 

Packet switching could be applied to voice communication although 

the advantage is not as great as with computer communication. Speech 

requires more constant attention than true bursty flow. In normal 

speech, the ratio of active voice to silence is from 50% (Barberis and 

Pazzaglia, 1980) to 33% (Roberts, 1978). Such a system would require an 

"intelligent" design using speech detectors and a packet voice 

receiver. The detector would indicate when a silent period had 

occurred, and then the previously gathered packet of active voice could 

be transmitted. In computer communications, every bit of data is 

considered essential, but a voice system that occasionally lost a few 

voice samples would be tolerated. The human mind can easily interpret 

less than perfect speech (such as a phone conversation), where a 

computer cannot guess missing pieces of data. It has been suggested 

(Dally, Gold and Seneff, 1980) that a packet voice system could detect 

traffic variations and handle a system overload by dropping overall 

voice quality. The disadvantage is that it would take time to detect 

the overload and broadcast the commands to change the flow protocols. 

The flow control commands could be lost in a near-saturated system. 
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The difficulty with a packet voice switch is that the packet 

delays through the system are a function of how heavily loaded the 

system is. Unguaranteed delays could upset the conversations between 

the users. Given a set of users, the degree of interconnection required 

to guarantee a minimum delay would probably approach that of a circuit 

switch. There is a high cost assumed with the use of packet voice 

receivers. Inefficiency of the transmission medium exists in that 

speech samples would have to have address routing information accom

panying them. A collection of speech devices would also tend to be in 

a much denser layout than computers using packet switches are. 



CHAPTER III 

CONFERENCING INTRODUCTION 

The usual extent of voice telecommunication is two individuals 

talking to each other. Existing switching systems are two-user inten

sive and provide for only a limited degree of a conferencing function. 

Conferencing allows several users, each connected to the system through 

telephone devices, to talk to each other. The conferencing function 

allows people in different locations to speak as if they were in the 

same room. A vendor survey done by the MITRE Corporation indicates 

that any existing systems must be extensively modified to handle a 

large conferencing structure such as the one present at the Kennedy 

Space Center (MacDonald, 1982). The space center also has the require

ment of a user to be able to listen to more than one conference at a 

time. 

Packet switching and circuit switching were described in Chapter 

II. Because of the difficulties associated when packet switching i s 

applied to voice communication, circuit switching has been chosen as 

the basic method of switching for the conferencing system. 

As discussed before, a circuit switch sets up a path between the 

users who desire communication. The path may be digital in nature, 

where a user's voice sample is stored in memory locations until it is 

delivered to the receiver. There is a section of the circuit switch 

that controls the addressing of the voice data memories, and thus, 



18 

controls the set up of the talk paths. This section of the switch will 

be referred to as the master control unit. Master control has other 

functions that will be identified later. 

Figure 5 shows the division of the signalling data and the voice 

data that arrive from each user. All users deliver to the system 

digital voice and signal data. The data is multiplexed and the signal 

data is stripped off to be sent on to master control. Voice data is 

sent to the switch. The switch processes and routes the user voice 

samples as directed by master control. The output of the switch is 

recombined with any signaling data that may be required for output 

functions (e.g., dial tones). The digital output is then demultiplexed 

back to the receivers. 

The scope of the remainder of this paper is to architecturally 

design the switch portion of the conference communication system. 

Functions required by master control and the nature of the switch's 

voice data input and output will be specified. The structure will be 

described parametrically, where the user specifications and hardware 

speeds will size the switch's processing stages. The goal of this 

paper is to present an architecture that can provide a non-blocking 

conferencing function for any number of users. The flexibility of the 

architecture to handle any range of specifications will rely on a great 

deal of parallelism in processing. The architecture will expand as 

required by duplicating its parts and having them operate at the same 

time. 
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CHAPTER IV 

STRUCTURE INTRODUCTION 

Structure Outline 

As implied before, multiplexed digital data arrives at the 

switch, and multiplexed digital data leaves the switch. The input and 

output formats will be the same. All the user's voices will be time 

sampled periodically, and converted into a digital word of B bits. The 

code used for the conversion does not have to be linear. For example, a 

typical device used for voice sampling is a Codec. The Codec uses an 8 

bit nonlinear code (MacDonald, 1982). The switch will convert it to a 

linear code to allow for easy arithmetic manipulation. As required by 

sampling theory, a user presents a new digital sample every T seconds. 

Note that the users will not all be sampled at the same time, but every 

user will be sampled periodically. Data arriving at the switch will be 

further multiplexed, in that C sets of I user's digital voice samples 

will arrive at the switch after every T seconds. The digital words will 

arrive in parallel on C sets of B bit lines. Data in each set will 

arrive at the same time as another set. The digital words will arrive 

in an order known to master control, such that a voice sample's arrival 

time and which set contains it will identify that user. The total 

number of users processed by the system, TU, is C*I. 

The purpose of the switch is to allow conferencing. As the ear 

adds up many voices in a room, the switch must add up the voice data of 
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user's speaking on the same channel. If a user is listening to more 

than one channel, those channels must be added and the digital total 

delivered to the user. The most commercially available hardware 

addition is done on linear codes, so the B bit word will be converted 

on a L bit linear code by the switch. L is a direct function of the 

input code format. 

The data input to the switch will be processed in stages. Each 

of the C sets of the TU users will be processed at the same time. 

Speed of the components of the system will determine how many users a 

set C will contain (I). Each stage of the switch will receive new 

digital voice information every T se·conds. Thus, each stage must 

finish its processing before the next time period T. Note that T 

corresponds to a frame time. At the end of each frame time, the 

processed data will be passed on to the next section for processing. 

Data will pass through the stages until the voice sample that each user 

is scheduled to hear has been computed and routed. 

There will be four processing stages in the architecture to be 

described. Master control will influence the operation. of all of them. 

The first processing stage is accomplished by a concentrator. C con

centrators will be in the switch. Each concentrator receives I digital 

voice samples every period of T seconds. A user's sample arrival time 

identifies that user to master control. Which conference the user is 

speaking to is then known, and then that sample can be added to that 

conference total that is being accumulated during that sample period. 

A specific conference that is taking place will be constructed each 

sample period in a place called a channel. Channels in the switch are 
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digital locations in memory. All of the digital samples of all the 

people speaking on the same channel will ultimately be added and stored 

in one location in memory. A concentrator accomplishes part of this 

addition. All users being processed by a specific concentrator and who 

are speaking on the same channel will have their voice samples added to 

a memory location in the concentrator. At the end of the current 

sample period, each of the C concentrators has a partial sum of each 

channel. These partial sums are passed to the next stage for 

processing. The concentrators then begin the addition function on the 

new set of incoming digital voice samples from the next sample period. 

The second processing stage is accomplished by the pipeline 

adder. The pipeline adder must finish the task of adding all the voice 

samples destined for one channel to one specific memory location. What 

it has to start with is all the partial sums of each channel that were 

formed by the concentrators. The pipeline adder gets its name from the 

method by which the channel sums are completed. Let the conferencing 

system be capable of handling CH channels. Then the pipeline adder must 

be able to perform CH*(C-1) additions in a sample period. The speed 

that is implied requires fast hardware if the system supports a reason

able number of users and conference channels (such as 16,000 users and 

2,000 channels). Rather than driving C-1 2-input adders with C partial 

sums of a channel and waiting for the digital sum to propagate to the 

end, sums can be buffered at each adder, forming a controlled flow 

pipeline. The operation of the pipeline adder will be described in more 

detail later. ~~en the sample period is finished, all the voice samples 

on the same channel have been added and stored in one memory location. 
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The third processing stage is done by a deconcentrator. A decon

centrator accomplishes the task of adding up those channels a user 

wishes to hear. There will be D deconcentrators serving 0 users each. 

Note that D*O=TU. Master control knows which channels a user is 

listening to, and controls the channel additions. A volume adjustment 

is performed on each channel before it is added to the user's final 

sum. Volume adjust data is part of the signal data that is stripped 

off and routed to master control. The architecture is flexible enough 

so that any number of channels may be added to form a user's final sum. 

The fourth processing step is simply an output buffering stage 

that passes the completed sums to the users served by the deconcen

trator. No processing is performed, other than converting the channel 

sums from a linear format to the output format of B bits, to match the 

input format. The stage introduces another delay of T seconds from the 

input of the switch to the output. The buffering stage resulted from 

the architecture of the deconcentrator and the method of how the stages 

pass data to the subsequent sections. 

Considerations 

The four processing stages of the switch will introduce a delay 

of 3T seconds from when a user's voice sample is entered and when it 

exits as part of a channel summation. Since a user will normally 

listen to the channel he is speaking on, he will hear his own voice. 

MITRE studies found that the psychological effect on a user hearing his 

own voice delayed was a function of the amount of delay (MacDonald, 

1982). Reactions of test subjects ranged from complete tolerance to 

annoyance and even nausea. However, the delays that caused the undesir-
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able affects on the test subjects are much longer than those expected 

to be encountered here. MITRE judged a delay of SO ms or more was 

undesirable. A typical voice sample rate is 8 kHz, implying a delay of 

.375 ms through the switch portion of the communications system. If 

the delay of the entire system approaches the undesirable delay, the 

structure described here would have to be modified. Each user's voice 

sample would have to be saved until the sum he was to hear was created. 

Then his sample would be subtracted from that sum. Since the user's 

sample is available four sample periods before the sum he is to hear is 

finished, additional memory acting as a buffer would be required. The 

structure presented here will result in a user hearing his own voice. 

When sizing the components of the four processing stages, the 

classic "cocktail party" problem arises: How many separate, distinct 

voices can a user distinguish between? If V digital binary numbers are 

to be added, each encoded in L bits (sign and magnitude), the answer 

will require at most W bits (sign and magnitude), where W is given by 

the integer part of 

[ 1] 

The number of simultaneous voices that must be heard distinctly will be 

V. V will partially determine internal dimensions such as memory size, 

internal buses and hardware adder widths. If more than V voices could 

be ultimately summed and delivered to a user (perhaps in a period of 

emergency or during a loud argument), the switch architecture could 

handle the situation in different ways. One is to test if the sum will 

overflow, and then just not add in the sample(s) that would produce the 

overflow. Since voice samples are both positive and negative, the 
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order of addition would be a factor in what final sum resulted. If 

many negative samples were added, the negative limit would be reached, 

causing the system to discard further negative samples. These samples 

might have been added if some positive samples had been added first. 

To best implement such a scheme, the samples would have to be sorted so 

they would be added in the order of ascending magnitude, with a secon

dary requirement of a maximum arrangement of sign changes in the sorted 

list. The specially sorted list of samples could then be added in 

order with a minimum amount of samples discarded. However, the implica

tions of such a scheme demand a large overhead in terms of hardware and 

processing time. An acceptable alternative would be to simply perform 

the addition in any order. Then simple overflow hardware logic would 

become a part of each adder. Again, extra time would be required for 

the overflow signal of the adder to control what answer was saved. 

Another way to handle the problem of overflow is to ignore it. 

Then the question arises, what does a digitally "rolled over" signal 

sound like? The sound of an analog amplifier distorting as it satur

ates is familiar, but a digital number being fed to a digital-to-analog 

converter does not cause saturation of the amplified signal. Since 

human beings have adapted to interpreting voice from a saturated analog 

device, perhaps users of the conferencing system would become accus

tomed to interpreting a singal that resulted from digital overflow. 

The architecture presented for the switch network relies on that 

premise. If more than V voices occur simultaneously within the same 

channel summation and a digital sum overflows, it will go undetected 

through the system. The switch architecture only guarantees undis-
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torted delivery of V simultaneous voices. Tests would have to be 

performed to justify the additional hardware to make digital addition 

overflow behave like analog saturation. The tests would have to show 

that listeners could not adapt to the sound produced by digital over 

flow. 



CHAPTER V 

PROCESSING SECTION DETAILS 

Data Transfer Between Sections 

As described earlier, a concentrator stores channel partial sums 

in its memory. At the end of a frame time, all the concentrators pass 

those sums to the pipeline adder. Likewise, the pipeline adder passes 

all of the completed channel sums to the deconcentrators at the end of 

each frame time. The way a large block of data is passed to another 

processing stage . is with a structure known as a ping-pong or A-B 

memory. Suppose a concentrator is filling a memory with partial 

channel sums during frame i. Then the pipeline adder will be pro

cessing the partial channel sums of frame i-1. That data is in an 

identical memory as that of the concentrator. At the end of the frame, 

the concentrator has completed all of its channel partial sums and the 

pipeline adder has finished processing the channel partial su'D's from 

the previous frame. If the memories could change places, both pro

cessing sections would be ready to work on the next frame of data. 

Figure 6 shows how the memories can effectively change places by 

changing which processing stage controls the address and data lines.The 

control line PING determines the address and data connections.vfuen PING 

is low, memory A is connected to system 0 and memory B is connected to 

system 1 When PING is high, the opposite is true. The tri-state outputs 

on the data input multiplexers were needed because it is assumed that 
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the memory devices have bidirectional input/output lines. The direction-

ality of the memory data lines is controlled by write enable (WE) which 

is typically active low. When a new frame time passes, the logic state 

of PING will toggle. The memories will effectively change positions , 

and the action will be transparent to the different processing stages. 

Note that the components in Figure 6 allow for the worst case of 

a ping-pong memory: read and write operations can occur in both systems. 

If system 1 only read data and system 0 only wrote data, the multiplex

ers connected to OUTPUT 0 and the INPUT lines could be eliminated. Both 

of the inputs to the tri-state drivers would be connected to INPUT 0. 

The requirements of the two systems will determine the minimum amount 

of extra parts to make two memories into a single ping-pong memory. 

The processing stages will see only one memory, with separa t e 

input and output lines, a set of address lines, and an active high 

write enable line. During a write cycle, the output lines will show the 

data being fed to the input lines. The read and write delays will be a 

function of the memory delay and the multiplexing delay. Typically, t he 

memory delay will be significantly larger than the multiplex:J.ng de l ays . 

The delay of such a ping-pong memory will be understood to account f or 

the extra switching involved. Further on in this paper, a ping-pong 

memory will appear as in Figure 7, without the extra detail of Figure 

6. It will be assumed that the PING line will change state each f rame 

time, unless otherwise noted. 

Switch Processing Stages / 

Figure 8 shows the interconnection of all the processing sta ges 

for clarity. C concentrators each receive I digital samples of B bits 
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each during a frame time. The concentrators pass their CH partial chan-

nel sums to the pipeline adder. The pipeline adder broadcasts the CH 

channel totals to the deconcentrators. Each of the D deconcentrators 

passes 0 user sums (sums of channels) to an output buffer. Each output 

buffer sends its 0 sums out, each made up of B bits. Data enters and 

leaves the switch in a parallel sequence. A new digital sample appears 

on the input lines every T/I seconds. Likewise, a digital output of B 

bits occurs every T/0 seconds. Data is passed from the output of a con-

centrator to the input of an output buffer via sets of ping-pong 

memories. 

The Concentrator 

Figure 9 shows the internal architecture of a concentrator. The 

devices and their functions are described as follows: 

CNTR: A K bit counter (where 2K>I) who's binary count will indi-

CR: 

TA: 

cate which of the I user's voice data is present at the 

parallel input. A low to high transition on line COUNT will 

advance the counter after a delay of CNTRdel seconds. 

A K bit register. The register stores the count on a low to 

high transition on line CLOAD. The output is valid after 

CRdel seconds. 

K M A 2 x(H+l) (where 2 .2;CH) ping-pong memory. The talk address 

memory maps a user's count to the channel number that he is 

active on. The TA' s ping line is not toggled each frame 

time; it is changed by master control. The memory has a 

delay of TAdel seconds. The extra bit is low if a user is 

the first of the I users to be speaking on his channel. 
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CMEM: 
M 

A 2 xW (Where W is given by [ 1]) ping-pong channel memory 

that stores the partial channel sums as they are accumu-

lated. A high signal on line WRITE will cause the data on 

the input lines to be fed to the output lines (because of 

the ping-pong memory structure) and to be written to memory. 

CMEM has a delay of CMEMdel seconds. 

AJID: Wand gates. The and gates will pass either a zero or CMElf's 

output to the adder. They each have a delay of ANDdel seconds. 

SUM: A W bit adder. The adder adds the linearized incoming voice 

sample and the previous channel partial sum after a delay of 

SUMdel seconds. 

SREG: A W bit register. A low to high transition on line LOADSR 

will cause the output of SUM to be stored after a delay of 

SREGdel. The register is needed to isolate the input and the 

output of CMEM, since the output lines will change when a 

write is occurring. 

TOLIN: A decoder that inputs the B bit voice sample code and 

outputs the L bit linear equivalent. Realizations could use 

combinational logic or a ROM (read only memory) look-up 

table. It has a delay of TOLINdel seconds. 

As implied in the description of CMEM, V distinct voices are to 

be able to be added to one memory location ¥7ithout overflow. The 

required word size is W bits, given by Equation [1] as a function of L 

and V. 

Among the incoming I users, those speaking on the same channel 

will be accumulated in one location in CMEl-1. When the frame of data has 
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completely finished, the channel partial sums will be ping-ponged to 

the pipeline adder. The pipeline adder only reads those partial sums, 

so the same sums are switched back to the concentrator after two frame 

times. The and gates are needed for when a new sum is being started in 

a location, and thus, a zero will be switched to the adder. The first 

accumulated sum will be exactly the first user's data who is on that 

channel. 

The talk address map (TA) is a ping-pong memory so new routing 

information can be switched into the system periodically. Master 

control processes incoming signalling information by updating one of 

its own tables. That table (or a portion of it) is periodically loaded 

into the pong side of TA. The loading occurs separately for each 

concentrator, since the map's contents will differ for each set of 

users. The TA memory is ping-ponged after this operation to switch i n 

the updated talk paths. 

The sequence of events during the time a user's voice sampJe is 

valid on the input lines is described by the timing diagram of Figure 

10. Of course, the user's voice sample must be linearized, added to 

and stored in memory in T/I seconds. Therefore, the time described by 

the critical time given by 

TC = CRdel+TAdel+CMEMdel+ANDdel+SUMdel+SREGdel+CMEMdel [2] 

is less than or equal to T/I. When actual parts are chosen, slack might 

have to be added in to account for the set up time of the registers, 

recovery time of the memory, bus speeds and any other delays not 

accounted for in the architectural description. Equation [2] can easily 

be modified to account for additional delays. Also, a system clock will 
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generate the load and write signals. The signals can only occur on 

edges in step with the clock signal edges. Extra time may have to be 

allowed for to take care of these "quantization" errors. In other 

words, the control signal transitions have been shown in Figure 10 to 

take place at the optimum times. Once the clock rate is set, these 

transitions will shift, so they will take place after a clock edge. 

There are two assumptions implied by the timing of Figure 10. One is 

that TOLINdel is smaller than the time from when CLOAD occurs and when 

the. addition starts taking place. The other is that CNTRdel will be 

smaller than the critical time. Both assumptions are valid because 

TOLINdel should be close to a memory delay at most (depending on 

TOLIN's realization), and CNTRdel should be comparable to an addition 

delay. If, after an actual parts selection is made and these assump

tions are invalid, a new timing diagram will yield the correct values 

for I and C. 

The events described by Figure 10 occur I times during a frame 

period T. CNTR is upcounted, anticipating the next user coming in. The 

count is loaded into CR so CNTR may be upcounted as soon as possible. 

The CR register was added because typically CNTRdel~CRdel. The count in 

CR addresses the talk address map (TA). TA addresses the channel memory 

(CMEN) with the channel address the particular user is speaking on. An 

extra bit in the TA map either passes or zeroes the channel partial sum 

read out of CMEM. If the user is the first in his set to speak on that 

channel, the extra bit will be low, causing zero to be added to his 

sample. After the adder sums the linear equivalent of the user's voice 

and the partial channel sum, the result is loaded into SREG. Then the 
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result is stored back in CMEM. The cycle repeats for the next user. At 

the end of a frame, the new TA map could be switched in (if master 

control has finished updating it) and the counter will be reset. 

Note that a user's data is added to a channel regardless of 

whether he is actually speaking or not. Ideally, his voice sample would 

be zero if he was not speaking. Since microphones will pick up non-zero 

background noise, all users should have a press-to-talk (PTT) type 

switch that must be activated in order for the user to be heard. A 

voice operated switch (VOX) is also a possible solution of eliminating 

background noise, but the VOX tends to clip off the beginning of a 

user's conversation. The idea is that there must be a device to keep 

the user's background noise out of the system if he is not speaking. 

When the switch system is to be sized, the total number of users 

(TU), the total number of conference channels (CH) and the number of 

distinct voices to be heard (V) will determine the number of concen-

trators (C) and their internal size. V and B will determine some of 

the hardware delays, by setting W. SUMdel will then be known once an 

actual part is chosen, for example. A delay that is not known yet is 

CNTRdel, because the number of users serviced by a concentrator (and 

thus K) is not known. However, TC can still be found; a close estimate 

of TAdel can be made even though the length of TA is not known. Then 

once C and K are found from TC, the counter delay assumption can be 

K checked. Also, the length of TA is kno~m (2 ), so its actual delay can 

replace the one assumed, which will generate a new TC. When the value 

of C does not change after an iteration, the concentrator has been 

sized. 
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The concentrator structure is then flexible to handle any rea

sonable requirements of operation. The structure is non-blocking to 

this point because all users can be serviced, whether they are us ing 

the system or not. 

The Pipeline Adder 

Figure 11 shows the internal architecture of the pipeline adder. 

Note that the pipeline adder is spread across the entire switch; a 

chain of adders are on the side of the concentrators, and a bus broad

casts to all the deconcentrators. The devices and their functions are 

described as follows: 

CHCNT: 

CNTREG: 

CMEM: 

CHREG: 

A M bit counter who's binary count indicates which channel 

partial sum is about to be introduced into the pipeline.Line 

CHCOUNT advances CHCNT after a delay of CHCNTdel seconds. 

A M bit register that stores the channel count. CNTREG adds 

the same kind of timing margin that register CR did in the 

concentrator. ~Then line CNLOAD is raised, the input is 

stored after CNTREGdel seconds. 

The pong side of the ping-pong memory in each concentrator , 

with identical dimensions and delays. The channel partial 

sums are stored here. 

A W bit register that stores the channel partial sum that i s 

about to be sunnned into the pipeline. When line CRLOAD i s 

raised, the input is stored after CHREGdel seconds. 

ADD: A W bit adder that forms the sum of the previous concen-

trators' total of partial sums and the local concentrator' s 

partial sum. ADD has a delay of ADDdel seconds. 
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DMEM: 

DREG: 

DCNT: 
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A W bit register that stores the channel partial sum from 

all the previous concentrators. When line SLOAD is raised, 

the input is stored after SREGdel seconds. 

A ping-pong memory with identical dimensions as that of 

CMEM. D~f stores the final channel sums. It has a delay 

of DMEMdel seconds. Line DWRITE controls the write cycle. 

Note that the pong side of DMEM is part of a deconcentrator, 

and a deconcentrator may have one or more identical DMEM' s 

each. 

A M bit register with the same purpose as CNTREG. The input 

is stored after a delay of DREGdel seconds when clocked by 

DLOAD. 

A M bit counter who's count indicates which channel's final 

sum is coming off the pipeline. It upcounts after a delay 

of DCNTdel seconds when clocked by line DCOUNT. 

The function of the pipeline adder is to total all the partial 

channel sums from all the concentrators and broadcast those totals to 

all the deconcentrators. The broadcasting is done by the long bus on 

the right of Figure 11. At the end of the frame period, the deconcen

trators receive the final sums as DMEM ping-pongs. 

The registers around the adders in the pipeline are to allow a 

large time savings. Without them, C-1 addition delays would have to 

pass before each channel total was ready to be written. When the 

registers are included, the time between when totals are completed is 

just a single add delay and a register delay. The sums are created in a 

pipeline fashion, and the clocking of the registers around the adders 
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control the flow. The timing of Figure 12 shows how the pipe flow is 

built up. There is an overhead in terms of the delay that occurs while 

DMEM is awaiting the first sum. Afterwards, the pipeline delivers the 

remaining channel sums in sequence with an add delay and a register 

delay separating them. Note that assumptions are implied again, as only 

relative times have been estimated. Parts with the same operation have 

been shown to have similar delays. Register delays have been shown to 

be shorter than memory delays and memory delays are shorter than 

addition delays. An actual parts selection will verify the assumptions. 

The first two sources of partial sums (the pong side of c1 and 

c
2

) are clocked together, such that the channel counters are upcounted 

at the same time and the channel partial sums are fed to the first 

adder at the same time. The third source of partial sums (the pong side 

of c
3

) is started at a point in time where its partial channel sums are 

loaded into CHREG
3 

at the same time as SREG2 is loaded. After another 

addition delay, SREG
2 

is loaded with the partial sum of the first 

channel from the first three concentrators. At the same time, SREG1 is 

loaded with the partial sum of the second channel from concentrators 1 

and 2. The partial sum sources are started in sequence until finally 

the last source drives ADDC_ 1 with its first channel partial sum. At 

this time, SREGC_2 holds the channel partial sum of the first channel 

from all the other sources. After an add delay, the complete channel 

sum is loaded into SREGC_1• SREGC_1 drives the broadcast bus with the 

channel total. It is then written to DMEM in the channel location 

indicated by DREG. While DMEM is being written to, ADDC_ 1 is forming 

the final sum of the second channel. The process continues until the 
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last channel total is written into DMEM. The frame period then ends and 

the channel totals are switched to the deconcentrators. 

The timing of Figure 12 illustrates the sequence of events. Only 

the critical timing has been shown for clarity. Because of the regis

ters that store the channel counts, the counters can be upcounted as 

soon as their old counts have been stored. The same idea prevails here 

as in the concentrator; typically the counter delay is more than a 

register loading delay, but less than a memory delay and a register 

delay. As with the concentrator, when actual parts and a clock rate are 

chosen, another timing diagram must be drawn to absolutely size the 

pipeline adder. 

The timing is bounded by the fact that all the channel totals 

must be stored before the frame period T is over. Thus, the con

straining Equation is 

T ~ CNTREGdel+CMEMdel+CHREGdel+(C-l)*(ADDdel+SREGdel) 

+(CH-l)*(ADDdel+SREGdel)+DMEMdel. [3] 

The derivation of Equation [ 3] appears in appendix B. Since C is 

already known from when the concentrator was sized, parts can be chosen 

and the Equation can be checked. 

As with the concentrators, any other delays (such as bus delay) 

would have to be added to the timing in Figure 12. If the total number 

of conference channels (CH) is large, Equation [3] may not be satis

fied. If so, CMEM could be divided into P pages and the structure of 

the pipeline adder would be repeated P times. DMEM would also have to 

be divided into P pages. All counters could drive the memory pages at 

once. The hardware that would be duplicated are the adders and partial 
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sum registers. Each pipeline adder would work on its own page of all 

the CMEMS and create CH/P channel totals. The timing would be the same, 

as the page sections would all be running together. Equation [3] would 

change to 

T ~ CNTREGdel+CMEMdel+CHREGdel+(C-l)*(ADDdel+SREGdel) 

+[(CH/P)-l]*(ADDdel+SREGdel)+DMEMdel. [4] 

If the number of users processed by the system forces C to be so 

large that Equation [3] cannot be satisfied, the structure will have to 

be modified. The concentrators can be split into G groups with C/G 

concentrators in each group. G pipeline adders can process the channel 

addition, with one per group. Instead of storing what will again be 

channel partial sums in DMEM, the partial sums will be stored in G 

intermediate ping-pong memories (IM). Figure 13 shows basically how 

the structure must be expanded, where G=2 and C=3. The pong sides of 

the intermediate memories will be processed by another pipeline adder 

that will store the final sums into the deconcentrator memories. Since 

another ping-pong memory stage has been added, an additional frame 

period delay has been added to the switch. Equation [3] can be changed 

to show the affect of dividing the concentrators into groups: 

T ~ CNTREGdel+CMEMdel+CHREGdel+[(C/G)-l]*(ADDdel+SREGdel) 

+(CH-l)*(ADDdel+SREGdel)+DMEMdel. [5] 

If the number of concentrators is so large that the number of 

intermediate memories is too large for one pipeline adder, the pong 

side of the IMs can be divided further. Then more than one pipeline 

adder would run in parallel, driving a second set of intermediate 

memories. The idea can expand in this direction, adding more delay to 
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the switch until the channels can finally be totalled. 

Thus, the structure of the pipeline adder can expand in either 

direction to accommodate more channels or more users or both. Finally, 

Equation [3] can include the possibility of expansion in both direc

tions: 

T ~ CNTREGdel+CMEMdel+CHREGdel+[(C/G)-l]*(ADDdel+SREGdel) 

+[(CH/P)-l]*(ADDdel+SREGdel)+DMEMdel. [6] 

the switch delay will be longer if more users are processed, but delay 

is assumed not to be significant as mentioned earlier. The switch is 

still non-blocking as all channel partial sums from all the concen

trators have been added to one location. 

The Deconcentrator 

A discussion of the deconcentrator is needed before the architec

ture is presented. The function of the deconcentrator is to create 

user sums which will be the sums of the channels a user is listening 

to. The channel total sums are passed to the deconcentrators from the 

pipeline adder. As with the concentrator, each deconcentrator will 

service a group of users. Each user has sent signalling information to 

the system, informing master control which channels he desires to hear. 

He sends additional information so master control can determine what 

relative volume level each of these channels has before they are added 

together. 

The volume adjustment must be done on a linearly encoded digital 

word of W bits. Since the possibility of no adjustment exists, the 

result of the adjusted word must have at least W bits. To amplify a 

voltage level represented by a digital word and maintain the same quan-
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tization levels, the word size would have to increase. The basic word 

size, W, was already set based on how many "full volume" voices couJd 

be added to one memory location. It seems reasonable then that the 

volume adjustment should only involve an attenuation of the digital 

word. Then the basic bus width (W) would stay the same. Since analog 

amplification will be available at the output device, the volume adjust 

done here should be all relative level adjustments of each channel with 

respect to the others. Thus, the volume adjust function will take in W 

bits and VC volume control bits and produce W adjusted bits. With VC 

control bits, a maximum of 2VC different levels are possible. 

One possible realization of the volume adjust function is with a 

W+VC 
2 xW ROM look-up table. However, as an example, the Codec 8 bit code 

mentioned earlier has a 14 bit (sign and magnitude) linear equivalent 

(MacDonald, 1982). If 4 voices are allowed to occur at once, then 

Equation [1] gives W=16. With only one volume control bit, the ROM 

dimensions would be 128K words long and 16 bits wide, which is imprac-

tical. 

An alternative to the ROM realization of volume adjust is to 

shift the digital word. Shifting the word S positions to the right 

corresponds to a division by 25• Since the voice samples are in two' s 

compliment notation, the shift will allow the sign bit to extend over 

to the most significant positions. Shifting can be done with multi-

plexers. A W bit volume adjust on W bits with VC control bits would 

vc require W-1 2 -to-1 multiplexers. The multiplexing realization of the 

volume adjust is more reasonable than the ROM realization because of 

component size and lower typical delay. Note that since a voltage 
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signal is being divided in half, there will be a 6 dB drop in the 

signal with each shift. 

Once the volume adjustment is performed, the channel can be added 

to the other adjusted channels that a user is going to hear. The user 

totals (sums of channels) could be constructed as the user partial sums 

were created in a concentrator. A location in memory would be added 

to, channel by channel. Assuming an approximate timing of a concen

trator, a deconcentrator could perform I sums in a frame period T. If 

each user could listen to H channels, each deconcentrator would service 

I/H users and there would be C*H deconcentrators in the switch system. 

A typical conferencing net might allow a user to listen to another 

channel besides his own. If one person wanted to be able to be heard 

by all users, he could speak on a channel that would be added to all 

user's channels. With this limited example, the user would be hearing 

3 channels, resulting in 3C deconcent~ators in the system. The archi

tectural approach will be referred to as the accumulator-type deconcen

trator. 

The deconcentrator structure of such a general organization where 

every user could listen to H channels could be done another way. The 

channel memory (DMEM) could be repeated B times in each deconcentrator. 

Then a tree of adders could perform the sum all at once. The tree 

would have H-1 adders and have a delay of 

LOG2 (H)*(W bit addition delay), [7] 

where the "LOG"() function is rounded up to the next highest integer. 

Such a structure with tree addition is shown in Figure 14. The 

devices and their functions are as follows: 
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A X bit counter (where 2X~O) who's count will indicate which 

user's sum is being constructed. UNCT is upcounted by 

UCOUNT after trnCTdel seconds. 

A X bit register. UREG stores the input count UREGdel 

seconds after a leading edge on ULOAD. UREG provides a 

timing margin like CR does in the concentrator. 

A 2XxH*(M+VC) ping-pong memory. The listen address memory 

indicates the addresses of the H channels the current user 

wants to hear along with VC volume adjust bits for each. 

The LA's ping line is not toggled each frame time. As with 

the talk address map in the concentrator, master control 

determines when the pong side of LA is to be loaded and 

switched in. LA has a delay of LAdel seconds. 

The pong side of ping-pong memory DMEM with identical 

dimensions and delay. The channel total sums are stored 

here. 

Volume adjust unit. As discussed above, the VA takes the 

channel's W bit total and provides a W bit output adjusted 

according to the VC adjust bits. VA has a delay of VAdel 

seconds. 

A W bit adder that helps construct the user's total. Each 

CADD has a delay of CADDdel seconds. The entire tree has a 

delay of TREEdel seconds, given by Equation [7]. 

X A 2 xW ping-pong memory. OMEM stores the user totals when 

they are completed by the adder tree. OWRITE controls the 

write cycle of the memory. OMEM's delay is OMEMdel seconds. 



52 

The timing of Figure 15 shows the sequence of events. UREG 

stores UCNT' s output and addresses OMEM and LA. All the DMEMs are 

addressed at once. The channel contents are then volume adjusted 

according to the adjust bits in LA. The adjusted channels are then 

passed to the tree of adders. When the sum is completed, it is stored 

in OMEM. 

The user's sum must be created and stored in T/0 seconds. The 

deconcentrator critical time is given by 

TD = UREGdel+LAdel+DMEMdel+VAdel+TREEdel+OMEMdel, [8] 

which :f_s less than or equal to T/0. As before, slack might have to be 

added in to account for delays not explicitly shown. As with the 

concentrator, X is not known, but the register and memory delays can be 

estimated. When TD is found, X will be known (from 0) and TD can be 

checked when the actual delays are then known. Again, when actual parts 

are chosen, another timing diagram should be drawn to verify time TD. 

The sequence of events in Figure 15 occurs 0 times in the period 

T, for each of the D deconcentrators. Note again that D*O=TU. At the 

end of each frame period, the counter is reset and OMEM, full of the 

linear user sums, is ping-ponged to the output buffer. If master con

trol has completed updating the LA map, nevJ listening paths can be 

switched in also. This architectural approach is a parallel-type 

deconcentrator. 

As can be seen, the architecture in Figure 14 gets quite large if 

H is large because of the H sets of DMEM' s that each deconcentrator 

has. However, the conferencing structure may not require H to be large 

for all users. Imagine groups of users on different channels. They 
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might only need to hear the channel they are speaking on, the channel 

their supervisor is on and perhaps a broadcast channel that is normally 

quiet. Then for most of the users, H=3. There may be a small group of 

"super users" that can listen to a large number of channels. They might 

be able to be handled by the accumulator-type of deconcentrator. Since 

the pipeline adder broadcasts the channel total sums over a bus, more 

deconcentrators could be added easily. A complete system could be mad e 

up of a few of the accumulator-type deconcentrators serving the "super 

users" and many of the parallel-type deconcentrators serving the other 

users. Note that even though a user may only speak on one channel, two 

users could converse while being active (speaking) on. different chan

nels. Both user's could be listening to each other's active channel. 

The idea continues on to allow conversation between H users on H 

different channels. Note also that in the way the architecture has been 

set up, a user does not have to hear the channel he speaks into. The 

channels a user hears are solely determined by how the listen addresses 

are stored in the memory map (LA). Master control could easily cause a 

user to hear a sum of channels that did not include his active channel, 

if the need arises. 

The switch is still expandable to this point since the number of 

deconcentrators can increase to handle more channels being listened to 

by a user. The system is still non-blocking because each user can hear 

all the channels that are desired. 

The Output Buffer 

The structure of the output buffer is shown in Figure 16 . The 

components and their functions are as follows: 
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A X bit counter. The output count is of the user who's 

final sum is to be sent out of the switch. OCNT is upcounted 

by line OCOUNT after OCNTdel seconds. 

The pong side of ping-pong memory OMEM, with the identical 

size and delay. The user totals are stored here. 

A function block that converts a W bit linearly encoded 

voice sample back to the original input format of B bits. 

It has a delay of TONONLdel seconds. Possible realizations 

w are combinational logic or A 2 xB ROM. The logic or the 

ROM's contents will be a function of the input code format. 

TONONL will handle the overflow that might occur if the 

number encoded in the W input bits is larger than the 

maximum allowed by L bits. 

The sequence of events is described by the timing of Figure 17. 

The output user counter addresses the output memory. The output memory 

reads out the user's total and sends it to the format converter. The W 

bit user sum is changed to the B bit format (identical to the input) 

and that B bit code leaves the switch portion of the system. As 

described in Figure 5, the voice code will be recombined with signal 

data, and then the entire data frame will be demultiplexed to the users 

connected to the specific deconcentrator and output buffer. The output 

of the switch may be latched externally after the memory and format 

conversion delays occur. After the output code leaves the system, the 

counter is upcounted to address the next user total. At the end of a 

frame period, the counter is reset and OMEM ping-pongs in a new block 

of 0 user totals. 
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The sequence of events occurs 0 times within a frame period T. 

The timing of Figure 17 must then adhere to the Equation 

T/0 ~ OMEMdel+TONONLdel+OCNTdel. [9) 

Since 0 was fixed when the deconcentrator timing was done, this Equa

tion should check. The basic delay of a deconcentrator was three 

memory delays and a long addition delay. If slower parts are chosen, 

the output buffer may be slower than the speed implied by Equation [9]. 

If so, OMEM can be divided into OP pages that the user totals will be 

read from and converted at the same time. The switch would then 

1 effectively have OP*D outputs and C inputs, each of B bits. Since it 

is expected that the paging of OMEM should not be needed, a register 

between OCNT and OMEM was not included. When actual parts are chosen 

and a detailed timing analysis is done, a register at that location 

could provide an extra margin. No memory map is needed here since the 

user's output order is known by master control and the LA map in the 

deconcentrator was loaded accordingly. 

The output buffer delivers user totals to all the users connected 

to it, so the switch is still non-blocking. The output buffer dimen-

sions are controlled by how the deconcentrator is sized. If slower 

components than in the deconcentrator are chosen for the output buffer, 

the structure can still expand to handle the timing. 

Sunnnary 

The switch portion of the conferencing digital communications 

system is now architecturally complete. The system parameters (B, CH, 

H, T, TU, V, VC) and the chosen component delays will determine the 

size of the four processing stages. The necessary function of master 
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control to support this architectural description is to process the 

user signal data in order to update the talk and listen address maps in 

the concentrator and deconcentrator. The system should be investigated 

and sized in the order that it was presented, as the system parameters 

affect each stage in turn. 



CHAPTER VI 

CONCLUSIONS AND FURTHER STUDY 

Conclusions 

Chapter II described the different general schemes of circuit and 

packet switching. The conferencing switch architecture as presented 

was made totally from circuit switching ideas. The stages of the 

switch also act like a distributed processing system. First, the 

switching methods used will be analyzed and then the label "distributed 

processor" will be investigated. 

Certainly, the conferencing switch is a circuit switch. A dedi

cated connection is set up from the message transmitter to the receiver 

for the duration of the transmission. The connection is made through a 

pathway in digital memories and logic switching. The receiver is a 

particular user of the system. The transmitter(s) are all the users 

that are communicating with the receiver, either on the same channel as 

he is, or one of the other H-1 channels he will hear. All of these 

channels (and thus users) are delivered to him at once as a total. 

The C sets of lines coming into the switch and the 0 sets of 

lines leaving the switch (each set has B bits) have data on them that 

is time division multiplexed. A dedicated place in time is devoted to 

each user having information pass over those lines. A specific time 

slot on a specific incoming or outgoing B bit bus is dedicated to only 

one user. Because of that dedication, the switch is not a time multi-
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plexed switched system. For the switch to act as a TMS system, memory 

sizes would remain the same, but the processing stages would have to 

work at least twice as fast. Suppose the total number of users were to 

triple after a system was sized. Then during a period T, three frames 

of data would arrive and leave the switch. The PING lines on the 

channel ping-pong memories would toggle three times during a period T. 

The switch would have to process at three times the rate discussed in§ 

Chapter V, with the added requirement of the memory maps being readied 

and switched in three times in a frame period. The maps would have to 

be switched that often since three patterns of switching are defined 

for the three groups of users that would be switched, by the same 

network. Even then, the three groups of users would be totally iso

lated from each other in their conferencing nets since each group is 

processed separately. Using TMS ideas to simply expand the total number 

of users on the same conferencing net just does not apply to the 

architecture done here. 

Suppose that users connected to the conferencing switch are 

speaking in such a manner so that every user hears only a single voice. 

Then, just based on the inputs and outputs, the TDM switch appears to 

be using simple time slot interchange to achieve the talk paths. But 

when two users speak so that both voices are heard by one user, some

thing more is going on. That something looks somewhat like distributed 

processing. 

The conferencing digital switch clearly does arithmetic pro

cessing on voice data that passes through it. The processing sections 

are divided and repeated, with parallel parts performing the same task. 



62 

The processing sections are clearly distributed; they interact between 

each other with ping-pong memories. The stages are autonomous; they 

work alone during each frame period. There is a high level operating 

system (master control) that influences the entire operation of the 

network. Each processing section has its own operating system (done in 

terms of hardware controllers). The system is transparent, in that a 

user does not need to know which concentrator he is connected to. In 

the case where two types of deconcentrators are used to provide for a 

small group of "super users", a "super user" will only have to know 

where his special end communication device is. He will not be con

cerned which of the specific deconcentrators he is being serviced by. 

These five criteria (multiplicity of components, distribution, 

processing autonomy, a high level master control and system tran

sparency) almost fit the requirements for a system to be described as a 

distributed processing system (Enslow, 1978). The quality that is 

missing is that the processing stages are not dynamically recon

figurable. A concentrator could not be switched out of the system and 

another switched into its place. This feature could be added, with the 

cost of hardware delays to allow the switching to take place. Such a 

feature would be highly useful in the environment of communication 

where reliability is a major concern. If the flexibility of dynamic 

reconfiguration was added, the conferencing communications system could 

be viewed as a time slot interchange conferencing switch implemented 

with distributed processing. 

Further Study 

This paper has presented an expandable architecture that accom

plishes the switching tasks of a non-blocking digital voice communica-
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tions system. Ideal timing diagrams were presented as a guide to each 

processing stage's operation and constraining delay paths. Based on 

the constraining timing Equations, means of hardware replication and 

alternate structures were suggested to allow the switch to expand to 

handle any range of the system parameters (TU, CH, etc.). 

}'f..any tasks remain if the discussion here is further studied, and 

further steps are taken towards an actual implementation of such a 

communications system. Some are: 

1. The possible affects or improvements on the architecture if 

dynamic reconfigurability is planned for. 

2. Specific system parameters will cause a set of components to be 

chosen, requiring a detailed timing analysis to size the system. 

3. When the system is sized, a physical size estimate is needed to 

check timing estimations such as bus delay, and assumptions about 

timing synchronization between physically separate sections. 

4. How fast master control must act on a user's new signaling 

information and the size of the system will impact how master 

control is implemented fwith dedicated hardware or with a general 

purpose processor). 

5. Schemes on how the users are encoded, multiplexed and transmitted 

to the switch need investigation. Signal capture techniques 

would then have to be studied. 

6. As discussed in Chapter IV, the question of what digital overflow 

sounds like (versus analog saturation) needs study. 
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APPENDIX A 

VARIABLE DEFINITIONS 

The input and output voice data word size. 

The number of concentrators in the switch. 

The number of conference channels supported by the switch. 

The number of deconcentrators and output buffers in the switch. 

Any variable with this suffix means the component delay in 

seconds of the part that is so suffixed. 

G: The number of groups of concentrators that each drive different 

pipeline adders. 

H: The number of channels that will be added together that a user 

will hear. 

I: The number of users input to a single concentrator. 

K: The integer that indicates the power of two that is just 

greater than I. 

1: The number of bits in the linear equivalent of the B bit input 

voice code. 

M: The integer that indicates the power of two that is just 

greater than CH. 

0: The number of users processed by a deconcentrator and output by 

an output buffer. 

OP: The number of equally sized pages that the output buffer memory 

(OMEM) is divided into. 
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P: The number of equally sized pages that the input channel memory 

(CMEM) is divided into. 

T: The voice sampling period in seconds. 

TC: The critical time of one cycle of operation of a concentrator 

in seconds. TC is given by Equation [2]. 

TD: The critical time of one cycle of operation of a deconcentrator 

in seconds. TD is given by Equation [8]. 

V: The number of simultaneous voices speaking to one user that is 

guaranteed not to produce distortion. 

Vc Th b f 1 d . bi h · 1 2vc 1 · 1 : e num er o vo ume a JUSt ts t at 1mp y re at1ve vo ume 

level adjustments a user can make on a channel he hears. 

W: The number of bits required to guarantee that V simultaneous 

voice samples can be added to one memory location without 

overflow. W is given by Equation [1]. 

X: The integer that indicates the power of two that is just 

greater than 0. 



APPENDIX B 

DERIVATION OF EQUATION [3] 

Referring to Figure 12, CH occurrences of the DWRITE signal must 

happen to store all of the final channel sums in the period T. Th e 

leading edge of the first DWRITE signal occurs 

CNTREGdel 1+CMEMdel 1+CHREGdel 1+ADDdel1+SREGdel 1+ADDdel2+SREGdel
2 

+ADDdel3+SREGdel3+ •.• +ADDdelC-l+SREGdelC_1 

seconds after the period T starts. This time can be rewritten as 

CNTREGdel+CMEMdel+CHREGdel+(C-l)*(ADDdel+SREGdel). 

The leading edges of the DWRITE signals occur 

ADDdel+SREGdel 

seconds apart, so the last leading edge occurs 

CNTREGdel+CMEMdel+CHREGdel+(C-l)*(ADDdel+SREGdel) 

+(CH-l)*(ADDdel+SREGdel) 

seconds after the period T starts. The last channel must then be 

written, and all the channels must be written within the peri od T. 

This restriction implies 

T ~ CNTREGdel+CMEMdel+CHREGdel+(C-1)*(ADDdel+SREGdel) 

+(CH-l)*(ADDdel+SREGdel)+DMEMdel, 

which is identical to Equation [3]. 
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