
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

A Task Manager for a Multiprocessor Computer System A Task Manager for a Multiprocessor Computer System

Peter J. Ingraham
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Ingraham, Peter J., "A Task Manager for a Multiprocessor Computer System" (1986). Retrospective
Theses and Dissertations. 4903.
https://stars.library.ucf.edu/rtd/4903

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Frtd%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4903?utm_source=stars.library.ucf.edu%2Frtd%2F4903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A TASK MANAGER
FOR A MULTIPROCESSOR COMPUTER SYSTEM

BY

PETER J. INGRAHAM
B.S.E.E., Northeastern University, 1983

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of the
College of Engineering

University of Central Florida
Orlando, Florida

Fa 11 Term
1986

ABSTRACT

The advent of the 32-bit microprocessor has sparked the

manufacture of a number 32-bit single-board computers

(SBCs). These SBCs rival performance of minicomputers for a

fraction of the cost, and a number of them conform to

standard 32-bit bus structures. A 32-bit multiprocessor

computer system can be created by connecting two or more

SBCs on a 32-bit bus. This computer system has the potential

of providing many times the power as a single-processor

computer system as well as a significant reduction in cost.

The Multiprocessor Task Manager is designed to

efficiently distribute software tasks, schedule their

execution, and manage data flow between them, such that an

effective and reliable multiprocessor is realized.

ACKNOWLEDGEMENTS

I wish to thank Paul Hardin and Ken Lambert of

Electric Company in Daytona Beach, FL for

contributions in the development of the Task Manager.

General

their

Paul

Hardin is also the author of the multiprocessor's operating

system software.

iii

TABLE OF CONTENTS

LIST OF FIGURES
INTRODUCTION • • • • • • • • . • • • • • • • • • •

Background • • • • • • • • • • • • • • • • • •
The Cost of High Performance Systems •••••••
The Frame 1 Multiprocessor ••••••
Task Management • • • • • • • • • • • • • • • •

CHAPTER I, TASK MANAGER OVERVIEW •••••••••
Data-Flow Architecture •••••••••
Program Abstraction ••••••••••••
Levels of Abstraction, Levels of Precedence ••

CHAPTER II, TASK MANAGER SETUP
Data-Flow Graph ••••••••••
Lex and Yacc • • • • • • •
Other Setup Functions •••••••

v

1
1
5
9

10

13
13
13
14

15
15
19
20

CHAPTER III, TASK CONTROL GRAPH AND TASK SEQUENCER • • 23
TCG Traversal • • • • • • . • • • • • • • • 23

Effect of Tokens on Traversal • • • 23
TCG Nodes • • • • • • • • • • • • • • • • • 23
Pointers to Lists of Pointers • • • • • • • 24
Method of Traversal • • • • • • • • • • • • • • 28

Tasks and Data • • • • • • • • • • • • 29
Off-Board Data Handling • • • • • • • • • • • • 31
Sending Data Off Board • • • • • • • • • • • • 32
Receiving Off-Board Data • • • • • 33

Queues for Context Switching and More about TCG
Traversal • 34

CHAPTER IV, SYSTEM EVENT MONITOR • • • • • • • • • 37
Interrupts (Events and Exceptions) • • • • • • • • 37

Processor Interrupts • • • • • • • • • • • • • 37
Virtual Interrupts • • • • • • • • • • • • • • 38

SEM ISRs and Their Operation • • • • • • • • • • • 39

CHAPTER V, CONCLUSIONS
APPENDIX, LEX AND YACC SPECIFICATIONS

REFERENCES

iv

.
.
.

44

46

51

\

LIST OF FIGURES

Figure 1. Block Diagram of Typical CIG System 4

Figure 2. A Typical Multiprocessor Computer
System 8

Figure 3. System Software Description 17

Figure 4. Symbolic Representation of DFG 18

Figure 5. Task I/O Information Embedded in Source
Code 22

Figure 6. Task Control Graph Node Types . . . 25

Figure 7. Task Control Graph Linkage • • 26

Figure 8. Task Control Graph Tables . . . 27

Figure 9. System Event Monitor - Master SBC 42

Figure 10. System Event Monitor - Typical Slave
SBC. 43

v

INTRODUCTION

Background

Simulators provide a relatively inexpensive means of

training pi lots for a variety of vehicles, ranging from

tanks to jet fighters. In most modern simulators, Computer

Image Generation (CIG) is used for the visual portion of the

simulator. A typical CIG system consists of a general­

purpose front-end processor, and special-purpose Image­

Generator (IG) hardware.

The front-end processor is ref~rred to as the Frame 1

subsystem. The IG consists of two subsystems, called Frame·2

and Frame 3, respectively. The subsystems bear these names

because their processing time is based on video frame time,

or one thirtieth of a second (33.33 milliseconds). This is

the rate at which a video projector or display must be

updated in order for the human eye not to detect flickering.

A frame time consists of two field times, each one sixtieth

of a second (16.67 milliseconds). At the end of the first

field time, the even raster lines (0, 2, 4, ••• , 1022) of

the display are updated, and at the end of the second field

time the odd lines (1, 3, 5, ••• , 1023) are updated. Figure

1 shows a typical CIG system.

2

Basically, Frame l's job is to track the three­

dimensional position of objects moving through a geometric

database. The database consists of the environment (fields,

hills, trees, etc.) that is being flown or driven in, and

resides on a disk pack whose drive is connected to Frame 1.

In the case of tracking a pi lot's position, Frame 1 must

calculate where the pi lot is in relation to the environment

according to velocity, roll, pitch, and yaw inputs (usually

from a joystick). From velocity and acceleration

calculations, it must also predict where the pi lot is

heading, and where he wi 11 be by the time the information is

displayed at the output of Frame 3 (approximately 80

milliseconds later). Frame 1 loads the database memory of

Frame 2 from disk with the environmental data corresponding

to the pi lot's current position, along with data

corresponding to where he might be in some short time, based

on his current velocity and acceleration. At that same

time, Frame 1 also passes to Frame 2 the flight dynamics

(roll, pitch and yaw) data and the three-dimensional

position of the pi lot in relation to the environment.

Frame 2 and Frame 3 are special-purpose parallel­

pipeline processors. Frame 2 does all the coordinate

transformations required to map three-dimensional space into

two-dimensional projector space. It also orders the faces

(polygons which the database and moving models are composed

of} in the pi lots field of view. The ordering is done in

relation to the pi lot's position, and the direction he's

facing. This data is passed on to Frame 3, which adds color

and texture to the environment and moving-model data, and

then displays the picture. All the action described above

must be performed on a per field (16.67 millisecond} basis

in each of the three subsystems.

Framg 1

proceseors

external hosts

high-speed bus
1nter.face/adaptQr8 u____.

Framg 2

geometry
.face/edge bu.f.fer

two-d11nens1onal data

environment
memory

three-d1mene1onat data

h1gh-~peed d1sk data transfer

Framg 3
area

processor

texture/fog
generator

duat .fU! Id
bu.f.fer

to
d1sp1ays

display
inter.face

Figure 1. A Typ1cal CIG Block Diagram.

~

5

The Cost of High Performance Systems

Traditionally, Frame 1 functions have been performed by

a single-processor von Neumann machine, typically a Gould

SEL 32/9705 or a Digital Equipment Corporation VAX 11/780.

The SEL is rated at approximately 3.2 million instructions

per second (MIPS), 3.7 MIPS with a floating-point

accelerator board, and the VAX is rated at approximately 1

MIPS. The SEL costs about $300,000 and the VAX costs about

$200,000.

The advent of the 32-bit microprocessor has brought

about the development of 32-bit single-board computers

(SBCs) that rival, and even exceed in some cases, the

processing power of the superminis described above. For

example, the Motorola 32-bit 68020 microprocessor is rated

at approximately 2.5 MIPS*.

Motorola has also developed an extremely fast

floating-point coprocessor (FPC) chip, the 68881, to be used

with the 68020. The 68881 can operate concurrently with the

68020, and provides double-precision floating-point

multiplication in approximately 5 microseconds. The 68881

also supports simultaneous sine and cosine calculations in

approximately 30 microseconds*.

* 16.67 MHz operation.

6

A third chip in this set is the 68851 memory-management

unit coprocessor (MMUC), which enables a 68020-based board

to operate as a 32-bit virtual machine (Beimes 1985).

Single-board computers that incorporate the 68020, the

68881, and 68851, along with 1 megabyte of main memory, have

been developed at a customer cost of less than $5,000.

Imagine a single-board computer with twice the processing

power of the mighty VAX 11/780 for a fraction of the cost!

These boards can support the UNIX[l] (System V or bsd4.2)

operating system, for development applications, and a

variety of real-time operating systems (VRTX, pSOS, and

MTOS, to name a few) for real-time applications.

The 32-bit SBCs described above have been, and are

being, developed to interface with the prevailing 32-bit

standard bus structures, Motorola's VMEbus and Intel's

Multibus II.[2] These buses are designed with multiprocessor

systems in mind. Both buses can support up to 20 SBCs.

Each single-processor board communicates with the others

over the main 32-bit bus (parallel system bus, or system

bus). The philosophy is that processing power can be

increased by plugging more of these cheap SBCs into the

system bus, and having them process in parallel. For

[l] UNIX is a trademark of Bell Laboratories.
[2] Multibus is a trademark of Intel Corporation.

7

instance, by plugging 10 boards into a system, with each

board rated at 2 MIPS and costing $5,000, a 20-MIPS machine

can be obtained for less than $100,000. (Currently, a 20-MIP

IBM costs about $16,000,000.) Of course, it is impossible

for all SBCs to process concurrently at all times, and

program distribution and communication over the system bus

are not trivial. In fact, the development of multiprocessor

systems is sti 11 in its infancy. However, because of the

ever-increasing availability of inexpensive 32-bit hardware,

the trend toward multiprocessor machines is gaining a great

deal of popularity from both producers and consumers.

Figure 2 shows a typical multiprocessor system.

~
PERIPHERALS

"-------/
,,~

UN IX

,,- -,
-~

F, gurP- 2.

REAL

TIME

REAL

TIME

/

l~EAL

TIME

]
SYSTEM BUS :>

/

,,

A Typ1cal Mult1procsssor Computgr SystQm.
CD

9

The Frame 1 Multiprocessor

The Frame 1 subsystem performs many tasks that could

ideally be done in parallel. Because of the potential

parallelism of these tasks, it was decided that the

development of a multiprocessor general-purpose computer

system could yield a high-performance low-cost Frame 1

subsystem. This system could be used over the entire

performance spectrum, with more power achieved by plugging

in more boards. In order to develop the system in a timely

fashion, it was decided that an off-the-shelf standard bus

structure and a 32-bit SBC should be chosen.

After many months of research and debate, the standard

bus structure chosen was Intel's Multibus II (Ingraham and

Bloomer 1985}. The heart of Multibus II multiprocessing

capability is the Message Passing Coprocessor (MPC}, a 149-

pin grid array that resides on each SBC. The MPC is a

hardware interface between the SBC and the system bus. It

allows synchronous, high-speed 32-bit transfers of data

(messages) over the system bus from one SBC to another, or

one SBC to many, thus making global memory unnecessary for

multiprocessing (Intel 1984)·.

The 32-bit Motorola chips (68020, 68881, and 68851)

where chosen as the basis for the SBC.

10

The Frame 1 multiprocessor is configured with at least

one UNIX SBC, to act as an operator interface, and to

perform other non-realtime functions, such as system

initialization. All real-time processing is distributed

over those SBCs running a real-time operating system.

Figure 2 shows a typical Frame 1 multiprocessor

configuration.

Task Management

In order to achieve a multiprocessor that operates

efficiently and reliably, there must be a facility for

distributing software program modules (tasks), scheduling

their execution, and managing data-flow between them,

whether they are on the same SBC or not. The Multiprocessor

Task Manager is such a facility.

The Frame 1 operating system

means for transferring data from

other SBCs over the system bus, for

software provides the

one SBC to one or more

dynamically allocating

memory on an SBC, and for generating various interrupts.

Much of this software, especially that handling

communication over the bus, is hardware specific. The Task

Manager uses the facilities provided by the operating system

software to get its job done. Theoretically, since it's

shielded from hardware specifics, the Task Manager can be

ported to another multiprocessor having entirely different

11

hardware, provided that the operating system facilities are

similar.

The Task Manager has both centralized and distributed

properties. The "master" SBC contains software for queuing

and distributing scheduling information to its own tasks,

and to tasks on other SBCs in the multiprocessor. The

"slave" SBCs contain a subset of this scheduling software.

The Task Manager is divided into three major sections:

Task Manager Setup, Task Sequencer, and System Event

Monitor.

The Task Manager Setup function resides on a UNIX SBC.

It is responsible for distributing tasks over the real-time

SBCs, figuring out data allocation requirements and task

data connections, and for distributing the Task Sequencer

and System Event Monitor functions. All its work is

performed during system initialization.

A Task Sequencer resides on every real-time board in

the system. The Task Sequencer is respopsible for executing

~asks in the proper order, and for managing data to and from

tasks. It does this by traversing a linked group of data

structures called a Task Control Graph, which is constructed

by the Task Manager Setup for each board in the system.

12

The System Event Monitor is distributed over the real­

time boards in the system, and gives the Task Manager the

"master/slave" flavor mentioned above. The System Event

Monitor software on the slave SBCs responds to asynchronous

events, and sends associated information to the master SBC.

The System Event Monitor software on the master

synchronously distributes event information to all real-time

SBCs in the system. In this way it provides "dynamic"

altering of task execution order, as will be detailed later.

The Task Manager is being developed on a VAX 11/780
/

under the ULTRIX operating system, using the C programming

language. ULTRIX is almost identical to Berkeley UNIX

(bsd4.2), but also has some VAX specific tools, such as

DECNET copy (dcp).

CHAPTER I, TASK MANAGER OVERVIEW

Data-Flow Architecture

Scheduling of Frame 1 task execution is performed using

data-flow concepts. In a data-flow system, data is passed

from a producer task to a consumer task when the producer

generates the data. The consumer task does not request the

data and does not begin execution until data arrives: data

drives the processing. In a multiprocessor system, the

data-flow approach precludes fetches to a global memory. On

the other hand, the traditional demand-driven approach

requires that the data is requested by the consumer task.

In a multiprocessor system, this could require costly

fetches to a global memory. A data-flow software

architecture is thus conducive to multiprocessing.

Program Abstraction

Software in the multiprocessor is viewed in several

levels of abstraction: system, application, process, and

task. The system is at the highest abstraction level. It

is composed of applications, which are at the next level of

abstraction. Applications are composed of (related)

processes, and processes are made up of groups of (related)

tasks. Tasks are at the lowest level of abstraction, and

perform all program execution in the multiprocessor.

13

14

The abstraction philosophy provides an effective means

of organizing Frame 1 software in a modular fashion.

Program modules at higher levels of abstraction are

constructed from modules at lower levels, as described

above. The system is more manageable, since details in

lower-level modules are hidden from higher-level modules.

Levels of Abstraction, Levels of Precedence

Within each level of abstraction, there are levels of

precedence. Precedence levels are associated with order of

execution, dictated by data-flow and timing constraints.

Two program modules in the same abstraction level are at

different precedence levels if the data produced by one is

directly or indirectly consumed by another. They are at the.

same precedence level if they could be executed in parallel;

their order of processing by the same processor is

arbitrary.

CHAPTER II, TASK MANAGER SETUP

A major goal in the design of the Frame 1 Task Manager

is to do as much static (off-line) allocation and scheduling

as possible. This approach reduces Frame 1 processing

overhead.

Data-Flow Graph

A system Data-Flow Graph (DFG) is constructed off line

during system initialization, using a

Software Description, described below.

complete map of possible program

high-level System

The DFG is a

modules (systems,

applications, processes, and tasks) that could be processed

during on-line operation. It describes precedence and

possible parallelism of these modules. Modules are

represented by nodes, and the flow of data between them is

represented by links between node structures.

The System Software Description provides information

about the organization of program units ·in the system. It

defines groupings of program units within those at higher

levels of abstraction. The System Software Description also

describes the data relationships between program modules.

Figure 3 shows a simple example of a System Software

Description. The module on the right-hand side of the arrow

is dependent on the data generated by the module on the

15

16

left-hand side. Also shown in the figure is information

about tokens. More wi 11 be said about tokens in the next

chapter. Figure 4 shows a symbolic DFG constructed from the

description in Figure 3.

System:
Applications: --> AppO.dataO

App0.data4
Appl.data9

--> Appl.data4
-->

AppO:
Tokens:

0 VANILLA TRUE
1 ONE SHOT FALSE

Processes:
Pro0.data2
Prol.data4

Proo:
Tokens:

2 VANILLA TRUE
3 VANILLA TRUE

Tasks:
TasO.datal
Tasl.data2

Prol:
Tokens:

0 VANILLA TRUE
Tasks:

Tas2.data3
Tas3.data4

Appl:
Tokens:

NO TOKENS
Processes:

Pro2.data8
Pro3.data9

Pro2:
Tokens:

4 VANILLA TRUE
Tasks:

Tas4.data5
Tas4.data6
Tas5.data7
Tas6.data8

Pro3:
Tokens:

0 VANILLA TRUE
4 VANILLA FALSE

Tasks:
Tas2.data9

--> ProO.dataO
--> Prol.data2
-->

--> TasO.dataO
--> Tasl.datal
-->

--> Tas2.data2
--> Tas3.data3
-->

--> Pro2.data4
--> Pro3.data8
-->

--> Tas4.data4
"."'"-> TasS.dataS
--> Tas6.data6
--> Tas6.data7
-->

--> Tas7.data8
-->

Figure 3. System Software Description.

17

18

Figure 4. Symbolic Representation of DFG.

19

Lex and Yacc

The UNIX tools Lex (a Lexical Analyzer Generator) and

Yacc (Yet Another Compiler-Compiler) are used to parse the

System Software Description and build the DFG data

structures. Both Lex and Yacc are program generators.

Although Lex and Yacc can generate code of several

languages, they generate C code for this project.

Lex generates programs that recognize input strings and

partition the strings into matching expressions. When an

expression is matched, a user-specified action is performed.

All the Lex user needs to do is write a Lex specification

that lists the expressions to be matched and, in C code, the

action to be performed. There is an action for each

expression (Lesk and Schmidt 1978).

Yacc provides a way of imposing structure on program

input. A Yacc specification is very similar to a Lex

specification. In fact, Lex was developed specifically for

use by Yacc (although it can be useful in its own right).

Basically, Yacc specifies rules to be followed. When a rule

is followed, the Yacc-generated code performs an action

(Johnson 1978).

Yacc uses Lex to match strings from a text file, such

as the System Software Description. On matching a specified

text sequence, Lex returns a token (not to be confused with

20

the tokens mentioned above). Yacc applies the token toward

a rule. When all the tokens for a rule are gathered, Yacc

performs an action, such as adding another member to a list

of data structures.

Other Setup Functions

A System Resource Table (number and types of boards) is

also compiled during system initialization. The DFG is

applied to the Resource Table to produce a Task Control

Graph (TCG) for each real-time board in the system. Task

Sequencers assigned to each real-time board traverse the

TCGs during Frame 1 on-line processing. The goal is to take

advantage of parallel processing, while minimizing

interprocessor communication.

Another operation performed during system

initialization is allocation of task data memory for the

real-time boards. This operation requires knowledge of the

system resources, the TCG, and the input/output (I/O) data

information provided in the source code.

Figure 5 shows an example of the I/O information

embedded in the source code. Lex and Yacc are used to

extract the information. Lex keys on the symbol "/*$" to

start parsing. Upon matching this symbol, Lex returns the

token CONTROL BEGIN to Yacc, which gets ready to start

collecting the information into data structures. The task's

21

name is collected on Lex's matching of TASK_NAME, inputs are

collected after IN_LIST, outputs after OUT_LIST, and include

file names after IO_INCLUDE_LIST. Comments are preceded by

" " . . . ' and parsing stops when "*/" is matched. Because the

embedded information is between "/*" and "*/", it is

completely ignored by the C compiler (Kernighan and Ritchie

1978).

The include files are used to learn structure size

information for each input and output encountered. This

enables proper allocation of data for each task in each TCG.

The Appendix contains the Lex and Yacc specifications used

to gather the embedded information into data structures.

/*h- transatt.c 1816 asc 2-may-1986 10:16 am ingraham */
Transform_Attitude(inc, inp, cute, outp)
/* Declare parameters, standard interface */

int inc, cute;
int *inp[], *outp[];

/* TASK CONTROL INFORMATION */
/*$task_information ••• a "control" comment starts with/*$

*/

TASK NAME: Transform_Attitude;

IN LIST:
rpy packet,
attitude,

OUT LIST:
rpy prime,
altTtude,

I/O lists must have unique names
I/O data structure declarations
are required to be in include files

IO INCLUDE LIST: ••• assumes released software directory
/usr/users/ingraham/include/RTUattitude.h,

idef ine RPY PACKET 0
1 tdef ine ATTITUDE PACKET

#define RPY PRIME
#define ALTITUDE
r
/* LOCAL DECLARATIONS */

struct RPY packet
struct attitude packet
struct RPYprime=packet

/* BEGIN */

0
1

*pRPYpacket;
*pAttitude;
*pRPYprime;

/* A f icticious but useful example of how a task
works in the data-flow concept */

/* Process RPY data */
/* Get pointers */
pRPYpacket = (struct RPY packet*) inp[RPY PACKET];
pRPYprime = (struct RPYprime_packet *) outp[RPY_PRIME];

/* Do something useless */

22

pRPYprime->roll = pRPYpacket->roll + pAttitude->jitter.roll;
pRPYprime->ypw = pRPYpacket->yaw + pAttitude->jitter.yaw;

/* Etc. */

Figure 5. Task I/O Information Embedded in Source Code.

CHAPTER III, TASK CONTROL GRAPH AND TASK SEQUENCER

TCG Traversal

Effect of Tokens on Traversal

Tokens provide a means of dynamically modifying

traversal of a TCG by a Task Sequencer. Program modules

that are not processed every field are assigned tokens to

control whether or not they wi 11 be processed during a given

field. These assignments are provided by the System

Software Description, as shown in Figure 3.

During Frame 1 processing, token changing events that

occur during a field are queued on a "master" real-time

microcomputer board. At the start of the next field these

token changing events are distributed to all real-time

boards in the system as Token Change Requests (TCRs). These

TCRs cause the corresponding tokens in the Token Memory on

each board to be changed.

TCG Nodes

Figure 6 illustrates TCQ nodes. There are 2 types of

nodes in a TCG: those that represent systems, applications,

and processes, and those that represent tasks. All nodes

are associated with an ID number, which identifies the

specific system, application, process, or task being

processed. A system, application, or process node also has

23

24

a reference to tokens, if tokens are assigned to it, and a

link to the next level of abstraction. A task node, since

it represents the only program module that actually executes

code, has a reference to the executable image and a

reference to data requirements.

Pointers to Lists of Pointers

Figures 7 and 8 should be helpful references to the

text that follows.

A pointer in each node references a list of pointers.

The pointers in the list reference nodes at the next lower

level of abstraction. Pointers that reference nodes at

different levels of precedence are separated by a NULL

pointer. The composite pointer list is terminated by 2

consecutive NULLS.

25

System

App I , cation Task

Indgx

__ ______....--...~

/// To kg~
Ir· · ~T"""· s · ~

('co~ rn I~•

----------/ '-....
/

Data

/'
" Image

Pointer

-

Figure 6. Task Control Graph Node Types.

~\
~ ~) ,,,!

I /

Ill.LL

•
•
•

~-\
NLiLJ.. Nl.Jl...L

NULL

Figure 7. Task Control Graph Linkage.

}
CJ

26

TSID f :~g~

I I I I
-/ \

I; /1--~~~~~---1

det~ ~et
ID:i

T@.____~ J
./

&,:1~tQm
FlipP. 1 , cet ~on

Pro cg~~

---r/

Tokgn ~~bl~,on~h1p

tokcan
~r.de:-:e~

Figure 8.

/
;

,/~ T I ~---+-~--+-+--+--+--+-~~

Tokwii ,..._rnory
value

Task Control Graph Tables.

27

28

Method of Traversal

The TCG is traversed from higher levels of abstraction

to lower levels of abstraction. TCG nodes are "processed"

to determine the correct traversal path. Processing of

system, application, and process nodes is similar, since

their structures are the same. Task nodes require special

processing, which includes passing data and control to the

task's executable image. TCG traversal is performed by the

Task Sequencer. Each TCG node, except for the system node,

is referenced by a pointer in a pointer list, as described

above. It is assumed in this paper that only one system

node exists in each TCG.

For each System, Application,

encountered, the Task Sequencer

follows.

or Process (SAP) node

performs processing as

The node's token reference, or Token Set ID (TSID) is

checked. If its value is NO_TOKEN, there is no token

associated with the node, and processing continues

immediately. If its value is zero, or some finite integer,

it is used to index the Token Relationship Table (TRT).

Each entry in the TRT consists of a list of indexes into the

Token Memory (TM), followed by END_OF_LIST.

29

The TM entries are called tokens, and consist of two

fields: a type field and a (binary) value field. The token

type may be "vanilla" or "one_shot". A vanilla token must

be deliberately reset. A one_shot token is reset by the

Task Sequencer at the end of TCG traversal.

The value of each token indexed by the TRT is checked.

If a FALSE (logic 0) token is encountered, processing of the

SAP node ceases. The token is said to be "guarding" the

node. The Task Sequencer increments the pointer to the

pointer list and repeats the above procedure. If a 11 the

referenced tokens are TRUE, processing of the SAP node

continues.

In the next and final step of SAP node processing, the

Task Sequencer obtains the pointer to the pointer list for

the next level of abstraction. The system node points to an

application node pointer list, each pointer in the list

providing a reference to a node representing the

applications assigned to this TCG. Each application node

points to a list of process node pointers, ·and each process

node points to a list of task node pointers.

Tasks and Data

The task node represents the lowest level of hierarchy

in the tree. It is the only node type that has a reference

to an executable image. Besides the image, the task node

30

also has a reference to the Data Requirements Table (DRT),

shown in Figure 8. Each entry to the DRT contains a list of

indexes (Data Set IDs - DSIDs) to the Data Set Index (DSI),

followed by END OF LIST. Each entry in the DSI contains a

Token Set ID (TSID), a flag field, a pointer to a location

in the Data Set Memory (DSM), and an array of integers for

off-board destination port IDs.

The TSID provides a means for determining the validity

of data produced by tasks in potentially guarded processes

and applications.

The flags in each entry to the DSI pertain mostly to

off-board data. They include an "on-board" flag, a "source"

flag, and a "ready" flag. The on-board flag, if logic 0,

signals that the referenced data set going to or coming from

the system bus. If it is logic 1, then the rest of the

flags can be ignored. The source flag signals the off-board

data direction: to the system bus if logic 1, or from the

system bus if logic O. The ready flag, if logic 1, signals

that an off-board input has arrived.

In processing a task node, the Task Sequencer evaluates

the data sets referenced by the node and attempts to execute

the task.

31

If the data set is valid (there are no related tokens

or all related tokens are TRUE) and ready, the pointer to

the data set is collected into a task pointer vector. If

the data set is invalid, the corresponding pointer in the

pointer vector is assigned an "invalidity" value to signal

the task that this pointer is invalid.

The resultant pointer vector, along with control, is

passed to the task's executable image. When execution is

complete, the Task Sequencer increments the pointer to the

task node pointer list, and initiates processing of the next

task node.

Off-Board Data Handling

Movement of data from a task on one board to a task on

another board is handled by the Task Sequencer using the

operating system software message functions. They include

"msg_pcreate," "msg_psend," and "msg_pget."

Msg create creates a port on an SBC. It requires as

arguments the port ID number, the home SBC number, and the

number of messages allowed in the port queue.

Msg_psend sends a port-to-port message over the system

bus. It requires as arguments the destination port ID, a

pointer to the message, and the size of the message in

bytes.

32

Msg_pget gets the next port-to-port message, which the

operating system's message facility places into dynamically

allocated memory upon its arrival. Its input argument

includes the port ID number, and a timeout value, indicating

how long to wait for the message, in microseconds. Its

output arguments include a pointer to the message data, a

pointer to the size of this data.

During Task Manger Setup, each Task Sequencer is

assigned a port ID number corresponding to the slot number

of the SBC to which it is assigned. Upon arriving at its

destination SBC, each Task Sequencer uses msg_pcreate to

create the assigned port. A Task Sequencer uses this port

to pass data between tasks residing on different SBCs.

Sending Data Off Board

As the Task Sequencer processes a task node, it must

check the Data Set Index (Figure 8) to determine the status

of each data set for that task. As detailed above, each

entry to the Data Set Index (DSI) consists of a Token Set

ID, a field of flags, a pointer to the data set memory

location, and an array of integers for off-board destination

port IDs. If the Token Set ID is zero, or all related

tokens are TRUE, then the data set is valid and the Task

Sequencer proceeds to evaluate the DSI flags. If the data

set is to go off board, the Task Sequencer sets the

corresponding DSI ready flag, and adds the data set pointer

33

to the task pointer vector.

When the task completes, the Task Sequencer checks the

ready flags corresponding to each data set going off board.

If ready is logic 1, the Task Sequencer passes the first

destination port ID from the DSI and the data set pointer to

msg_psend. The Task Sequencer indexes through the

destination port ID array, passing each ID and the same data

set pointer to msg_psend, unti 1 END_OF_ARRAY is reached.

The above procedure is repeated for each off-board ·data

set associated with this task. When finished with this

task, the Task Sequencer increments the pointer to the task

node pointer list and initiates processing of the next task

node.

Receiving Off-Board Data

When the Task Sequencer finds that a valid data set is

from off board, it must check the data set's ready flag. If

the ready flag is logic 0, then the data set has not yet

been linked to. The Task Sequencer must determine if the

data set has arrived at the port yet. It passes its port ID

and a timeout value of zero (the Task Sequencer doesn't want

to wait) to msg_pget. If msg_pget times out, the Task

Sequencer pushes the pointers to the task and process

pointer lists onto the Process Queue, as detailed in the

next section, and proceeds to the next process in the

34

process pointer list. Otherwise, msg_pget sets the pointer

to the dynamic memory location of the data set. The Task

Sequencer copies this pointer into the DSI pointer field and

the task pointer vector, and sets the ready flag to logic 1.

The above procedure is repeated for each off-board data

set associated with this task. When finished with this

task, the Task Sequencer increments the pointer to the task

node pointer list and initiates processing of the next task

node.

Queues for Context Switching and More about TCG Traversal

Queues are used to save the task and process pointers,

and/or the application pointer, when the current task is

waiting for off-board input data. The waiting task is thus

queued while a ready task in another process in the current

or another application is run. The result is better CPU

utilization.

As stated above, each system node structure,

application node structure, and process node structure has a

pointer into a list of pointers to nodes at the next level

of abstraction. During processing, pointers to the lists

are incremented to keep track of the current application,

process, and task, and the precedence-level boundaries at

the process and application levels of abstraction.

35

If a task is required to wait for data, and there is

another process at the same level of precedence as the

current process, the process and task pointers are pushed

onto the Process Queue. The pointer to the list of process

pointers is incremented, and processing of the next process

begins.

The above sequence is repeated until the last process

at the current precedence level is handled (NULL is

reached): the processes in which tasks are not waiting are

processed, while the task and process pointers of those that

have waiting tasks are pushed onto the Process Queue. If no

processes at the current precedence level are queued, then

processing of the first process at the next precedence level

begins.

If, at the end of the current process precedence level,

there are queued processes, and there is another application

at the same precedence level as the current application, the

application pointer and the pointer to the process list

precedence boundary are pushed onto the Application Queue.

The pointer to the list of application pointers is

incremented, and processing of the next application begins.

For each application at the current precedence level, there

is an associated Process Queue: the number of Process Queues

is equal to the maximum number of applications at the same

level of precedence.

36

Once all applications at the current precedence level

have been either processed or queued, the Application Queue

is checked. If it is empty, the first application at the

next precedence level is processed. If the queue is not

empty, the first application on the queue is selected.

Processing begins for the waiting task in the first

process on the selected application's Process Queue. If

data is sti 11 not ready, the task and process pointers

remain queued. If data is ready, the task runs, and the

task and process pointers on the queue are invalidated. The

pointer to the list of task pointers is then incremented,

and processing of the next task begins.

After all processes in the Process Queue for the

current application have been processed, the corresponding

pointer to the process list precedence boundary is

incremented, and the first process in the next precedence

level is processed. If processes in this level of

precedence become queued, then the application pointer

remains queued, and the old pointer to the process list

precedence boundary is replaced by the current one. When

the end of the process pointer list is reached, and the

Process Queue is empty, the next application in the

application queue is selected. When the Application Queue

is exhausted, processing begins on the first application at

the next level of precedence.

CHAPTER IV, SYSTEM EVENT MONITOR

The System Event Monitor (SEM) is a collection of interrupt

service routines (ISRs) that handles all events in Frame 1.

These events include device interrupts, message interrupts,

and virtual interrupts. The SEM enables dynamic altering of

TCG traversal by providing ISRs that convert Token Changing

Events (TCEs) into TCG token changes.

Because the SEM is distributed over the multiprocessor,

it relies heavily on services provided by the operating

system software. These services include a message facility

for board to board communication over the system bus, which

in Multibus II jargon is referred to as "message passing."

The SEM ISRs, and their interaction with operating system

services, are described below.

Interrupts (Events and Exceptions)

Processor Interrupts

Device interrupts and message interrupts are hard

interrupts; that is, they activate interrupt lines to the

microprocessor unit (MPU)·. Most device interrupts are

routed through a Counter/timer parallel I/O unit (CIO), from

which the MPU can read a vector number. The vector number

addresses the processor interrupt-vector table, which

contains 256 interrupt vectors. Interrupt vectors are

37

38

memory pointers used by the processor to fetch the starting

addresses of various processor ISRs. Processor control is

thus "vectored" to the appropriate ISR in response to an

interrupt. Message interrupts are autovectored to the

message ISR; that is, MPU internal logic generates the

vector number, which is then used to

interrupt-vector address.

determine the

Virtual Interrupts

A virtual-interrupt mechanism, layered over the

processor interrupt mechanism, is supported by operating

system software. Virtual ISRs are invoked by processor ISRs

either through a function call or using the vint_signal

function provided by the operating system software. Virtual

interrupts provide a way to "re-vector" a processor (hard or

soft) interrupt.

Virtual interrupts initiated using the vint signal

function are message based and are directed or global. A

directed virtual interrupt is "directed" to the message

handler on the "master" microcomputer board. A global

virtual interrupt is broadcast to the message handlers on

all (real-time) boards in the system. Both direc~ed and

global virtual interrupts require a virtual vector number as

the vint_signal argument.

39

Many important SEM operations are performed by virtual

ISRs. The virtual interrupt mechanism allows a processor

ISR, such as the message ISR, to remain general purpose. An

example of message ISR re-vectoring follows.

A virtual-interrupt packet arrives at the MPC. The MPC

interrupts the MPU and control is vectored to the message

ISR. The message ISR determines the message type, and uses

the virtual vector number to vector control to the

corresponding virtual ISR.

SEM ISRs and Their Operation

The SEM provides mechanisms for distributing TCRs in

response to Token Changing Events (TCEs), such as initiation

of a special-effects sequence from a cockpit. A special­

effects sequence is a sequence of programs that run very

seldomly, such as a sequence that shows the movement of a

projectile fired from a tank toward a target, or a

sequence that depicts the explosion upon impact of the

projectile.

All real-time boards in the system have a copy of the

SEM, which may be different from board to board. The

"master" board, which is connected to Frame 3 (IG) master

timing syncs, contains SEM ISRs responsible for collecting

and distributing TCRs. Figure 9 illustrates control and

data flow between SEM ISRs on the master board. Figure 10

40

does the same for a typical slave board. SEM operation is

outlined below.

A hard interrupt is

Token Changing Request

Translator (TCET) ISR.

translated into an Asynchronous

(ATCR) by the Token Changing Event

The TCET uses the vint_signal

function to pass the ATCR, as a directed virtual interrupt,

to the master real-time board. When the ATCR packet is

received by the master's MPC,

control to the ATCR receiver (AR).

the message ISR vectors

The AR stores the ATCR

on the Event Queue. Control returns to the message ISR, and

from from there, returns to the interrupted task or the Task

Sequencer. Asimilar sequence takes place for all TCEs that

occur during a field.

On arrival of Field Sync (a hard interrupt) to the

master real-time board, the contents of the Event Queue are

distributed as Synchronous Token Changing Requests (STCRs)

to all real-time boards in the system. This operation is

performed by the STCR Distributor (SD) ISR, which uses a

global virtual interrupt to handle distribution. The field

count and the Commit Strobe are included as part of the STCR

packet. The field count comes before the STCRs and the

Commit Strobe comes after.

41

As the STCRs are received, the message ISR on each

real-time board vectors control to the STCR Receiver (SR).

The SR moves the STCRs into a Token Update Buffer (TUB). on

finding the Commit Strobe at the end of the STCRs, the SR

calls the TUB-to-Token-Memory Copy (TTMC) function, which

translates the contents of the TUB into tokens and moves

these new tokens into the appropriate locations in the Token

Memory.

Control is returned to the Task Sequencer, which will

once more traverse the TCG. This time, perhaps, the process

node(s) representing the special effects sequence initiated

in the previous field wi 11 be unguarded, and the associated

tasks wi 11 be executed.

l
/

Tr­•'-'
H:rd

l!"'lte!'"rupi:e

\

\

•

•

e

,,----~ ------.........
S~:t~~ ~vEnt Mo~:to~

/'\
I TCE:T '

--------·

legend:

- Coiitrol

42

-.-Ji. to eiavw boar d&
~ i.:1a

Pe!'"el IEI S~:ta~ Bu~

)

Toki:ii
Updt:t;;
EwHi!r

Tckwn

Figure 9. System Event Monitor - Master SBC.

43

Pa:-a I I is I ~!!St;;;;-, e...s

iuke::

Tak;an

,l
Mamory

•

\ •

TCG

_ Co:.t:-ol

Figure 10. System Event Monitor Typical Slave SBC.

CHAPTER V, CONCLUSIONS

Simulator functions that have been traditionally performed

by single-processor superminicomputers can be performed by a

multiprocessor computer system at a tremendous cost savings

and performance gain.

The proliferation of

microprocessors, standard

board computers based on

powerful, inexpensive 32-bit

bus structures, and the single­

them, has spawned a growing

interest in the construction of multiprocessor computer

systems (multicomputers).

Although multicomputer hardware is inexpensive and

somewhat standard, integration problems exist that have

never before confronted many computer architects. On a

single-processor system, tasks are run sequentially to

completion. Tasks that require data from other · tasks are

simply run after those tasks.

In order to achieve a multiprocessor that operates

efficiently and reliably, there must be a facility for

distributing tasks, scheduling their execution, and managing

data flow between them, especially when they reside on

different processors. The Multiprocessor Task Manager is

such a facility.

44

45

The Task Manager is efficient, reliable, and portable.

Efficiency and reliability are achieved by performing most

resource allocation, memory allocation, and task scheduling

off-line during system initialization. This insures more

reliable data connections and reduces on-line processing

overhead. Portability is achieved through the Task

Manager's use of hardware-specific facilities provided by

the operating system software. Since it is shielded from

hardware specifics, the Task Manager can be ported to

another multiprocessor having entirely different hardware,

provided the operating system facilities are functionally

similar.

APPENDIX, LEX AND YACC SPECIFICATIONS

%{
#include "test.h"
#include "y.tab.h"

extern TASK *p_task;

BOOL CONTROL = FALSE;

STRING Add Member();
MEMBER *p_mem = NULL;

STRING s_yyin =
%}

control_begin
control end
list member
whitespace
comment

%%
{control_begin}

{control_end}

TASK NAME:
IN LlST:
OUT LIST:
IO lNCLUDE LIST:
{ lT st_member}

"stdin";

"/*$"
"* /"
[a-zA-Z0-7 ./]+/(,j;)
[] -
" ... ". *

{
CONTROL = TRUE;
return(CONTROL_BEGIN);

}
{

}

if (CONTROL)
{

CONTROL = FALSE;
return(CONTROL_END);

}

if (CONTROL) return(NAME KEY);
if (CONTROL) return(IN KEY);
if (CONTROL) return(OUT KEY);
if (CONTROL) return(INC=KEY);
{

if (CONTROL)
{

yylval.member_name
=Add Member(yytext);

return(LIST_MEMBER);
}
else

46

}
{comment}

%%

STRING Add Member(buffer)
char buffer[];
/* Get member from stack or add member to it */
{

}

MEMBER *p_tmp;

/* initialize temporary pointer */
p_tmp = NULL;

FOR ALL(p tmp, p mem)
if (strcmp(p tmp -> s_name, buffer) -- 0)

break; -

if (p tmp -- NULL)
{ - /* a 11 ocate space for p_tmp *I
p_tmp = (MEMBER*) malloc(sizeof(MEMBER));

p tmp -> s name =
-(STRING)-malloc(strlen(buffer) + l);

strcpy(p_tmp -> s_name, buffer);

p_tmp -> p_next = p mem;
p_mem = p_tmp;

return(p tmp -> s_name);
} -

else
return(p_tmp -> s_name);

yyerror(buffer)
char *buffer;
{

fprintf (stderr, "%s line %d:
s yyin, yylineno, buffer);

}

yywrap() { return(l); }

47

%{
#include <ctype.h>
#include "test.h"

VOID Add List Struct();
TASK *p_task_tmp = NULL;
LIST *p_list_tmp = NULL;
MEMBER *p_mem_tmp = NULL;
extern TASK *p task;
extern TASK *p=task_list;

char s error[512];
%} -

%start control

%union
{

}

STRING member name;
TASK *p_tsk;

%token NAME KEY IN KEY OUT KEY INC KEY
%token CONTROL BEGIN CONTROL END -
%token <member-name> LIST MEMBER

%type <p_tsk> tasks task lists list
%%

contro 1 : tasks
{ p_task_list = $1 -> p next; } . ,

tasks :task
{ $$ = $1; }

!tasks task
{ $$ = $2; } . ,

task :CONTROL BEGIN lists CONTROL_END
{

p task tmp =
-(TASK*) malloc(sizeof(TASK));

p list tmp =
-(LIST*) malloc(sizeof(LIST));

p mem tmp =
-(MEMBER *)malloc(sizeof(MEMBER));

p_task_tmp -> p_next = p_task;

p_task = p_task_tmp;

48

lists

. , }

p_task -> p_list = p_list_tmp;
P_task -> p_list -> p_member =

p_mem_tmp;

$$ = p_task;

:NAME KEY list
{ -

. ,

}
IN KEY

T

}

p_task -> p_list -> keyword =
"TASK NAME"• - ,

Add_List_Struct();
$$ = p_task;

list

p_task -> p_list -> keyword =
"IN LIST"· "T"' ,

Add_L1st_Struct();
$$ = p_task;

OUT KEY list
{-

}

p task -> p list -> keyword =
-"OUT LIST"· - ,

Add List Struct();
$$;- p_task;

INC KEY list
{-

}

p_task->p_list -> keyword =
"IO INCLUDE LIST";

$$ = p_task; - ·

list :LIST MEMBER
{ -

if (p task == NULL)
{ -

p task tmp =
-(TASK*) malloc(sizeof(TASK));

p list tmp =
-(LIST*) malloc(sizeof(LIST));

p mem tmp =
-(MEMBER *)malloc(sizeof(MEMBER));

p_task = p_ta~k_tmp; . .
p_task -> p_l1st = p_l1st_tmp;
p_task -> p_list -> p_member =

p_mem_tmp;

49

%%

}

50

}
p_task -> p_list -> p member -> s name =

$1;
$$ = p_task;

I list LIST MEMBER
{

}

p_mem_tmp =
(MEMBER*) malloc(sizeof(MEMBER));

p mem tmp -> p next = p_task -> p_list
--> p member;-

p task--> p list -> p member = p_mem_tmp;
p=task -> p=list -> p=member -> s name

=-$2;
$$ = p_task;

VOID Add List_Struct()
{

p list trnp = (LIST*) malloc(sizeof(LIST));
p-mem tmp = (MEMBER *)malloc(sizeof(MEMBER)); - -
p_list_tmp -> p_next = p_task -> p_list;

p_task -> p_list = p_list_tmp;
p_task -> p_list -> p_member = p_mem_tmp;

}

REFERENCES

Beimes, Robert. M68000 Family .•• The Performance
Standard for Microprocessors. Motorola High-Technology
Seminar Series, 1985.

Ingraham, Peter, and Bloomer, John. System Bus Evaluation,
Multibus II versus VMEbus. Daytona Beach, FL: General
Electric, . S1mulat1on and Control Systems Department,
1985.

Intel. Multibus II Bus Architecture Specification Handbook.
Santa Ana, California: Literature Department, Intel
Corporation, 1984.

Johnson, Stephen C. Yacc: Yet Another Compiler-Compiler.
Murray Hi 11, NJ: Holt, Rinehart and Winston, 1978.

Kernighan, Brian w., and Ritchie, Dennis M. The C
Programming Language. Englewood Cliffs, NJ: Prentice­
Ha 11, Inc., 1978.

Lesk, M. E., and Schmidt, E. Lex - A Lexical Analyzer
Generator. Murray Hi 11, NJ: Holt, Rinehart and
Winston, 1978.

51

	A Task Manager for a Multiprocessor Computer System
	STARS Citation

	TITLE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv

	LIST OF FIGURES
	v

	INTRODUCTION
	Background
	01
	02
	03
	04

	The Cost of High Performance Systems
	05
	06
	07
	08

	The Frame 1 Multiprocessor
	09

	Task Management
	10
	11
	12

	CHAPTER I, TASK MANAGER OVERVIEW
	Data-Flow Architecture
	Program Abstraction
	13

	Levels of Abstraction, Levels of Precedence
	14

	CHAPTER II, TASK MANAGER SETUP
	Data-Flow Graph
	15
	16
	17
	18

	Lex and Yacc
	19

	Other Setup Functions
	20
	21
	22

	CHAPTER III, TASK CONTROL GRAPH AND TASK SEQUENCER
	TCG Traversal
	Effect of Tokens on Traversal
	TCG Nodes
	23

	Pointers to Lists of Pointers
	24
	25
	26
	27

	Method of Traversal
	28

	Tasks and Data
	29
	30
	Off-Board Data Handling
	31

	Sending Data Off Board
	32

	Receiving Off-Board Data
	33

	Queues for Context Switching and More about TCF Traversal
	34
	35
	36

	CHAPTER IV, SYSTEM EVENT MONITER
	Interrupts (Events and Exceptions)
	Processor Interrups
	37

	Virtual Interrupts
	38

	SEM ISRs and Their Operation
	39
	40
	41
	42
	43

	CHAPTER V, CONCLUSIONS
	44
	45

	APPENDIX, LEX AND YACC SPECIFICATIONS
	46
	47
	48
	49
	50

	REFERENCES
	51

