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ABSTRACT 

The advent of the 32-bit microprocessor has sparked the 

manufacture of a number 32-bit single-board computers 

(SBCs). These SBCs rival performance of minicomputers for a 

fraction of the cost, and a number of them conform to 

standard 32-bit bus structures. A 32-bit multiprocessor 

computer system can be created by connecting two or more 

SBCs on a 32-bit bus. This computer system has the potential 

of providing many times the power as a single-processor 

computer system as well as a significant reduction in cost. 

The Multiprocessor Task Manager is designed to 

efficiently distribute software tasks, schedule their 

execution, and manage data flow between them, such that an 

effective and reliable multiprocessor is realized. 
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INTRODUCTION 

Background 

Simulators provide a relatively inexpensive means of 

training pi lots for a variety of vehicles, ranging from 

tanks to jet fighters. In most modern simulators, Computer 

Image Generation (CIG) is used for the visual portion of the 

simulator. A typical CIG system consists of a general­

purpose front-end processor, and special-purpose Image­

Generator (IG) hardware. 

The front-end processor is ref~rred to as the Frame 1 

subsystem. The IG consists of two subsystems, called Frame·2 

and Frame 3, respectively. The subsystems bear these names 

because their processing time is based on video frame time, 

or one thirtieth of a second (33.33 milliseconds). This is 

the rate at which a video projector or display must be 

updated in order for the human eye not to detect flickering. 

A frame time consists of two field times, each one sixtieth 

of a second (16.67 milliseconds). At the end of the first 

field time, the even raster lines (0, 2, 4, ••• , 1022) of 

the display are updated, and at the end of the second field 

time the odd lines (1, 3, 5, ••• , 1023) are updated. Figure 

1 shows a typical CIG system. 
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Basically, Frame l's job is to track the three­

dimensional position of objects moving through a geometric 

database. The database consists of the environment (fields, 

hills, trees, etc.) that is being flown or driven in, and 

resides on a disk pack whose drive is connected to Frame 1. 

In the case of tracking a pi lot's position, Frame 1 must 

calculate where the pi lot is in relation to the environment 

according to velocity, roll, pitch, and yaw inputs (usually 

from a joystick). From velocity and acceleration 

calculations, it must also predict where the pi lot is 

heading, and where he wi 11 be by the time the information is 

displayed at the output of Frame 3 (approximately 80 

milliseconds later). Frame 1 loads the database memory of 

Frame 2 from disk with the environmental data corresponding 

to the pi lot's current position, along with data 

corresponding to where he might be in some short time, based 

on his current velocity and acceleration. At that same 

time, Frame 1 also passes to Frame 2 the flight dynamics 

(roll, pitch and yaw) data and the three-dimensional 

position of the pi lot in relation to the environment. 

Frame 2 and Frame 3 are special-purpose parallel­

pipeline processors. Frame 2 does all the coordinate 

transformations required to map three-dimensional space into 

two-dimensional projector space. It also orders the faces 

(polygons which the database and moving models are composed 



of} in the pi lots field of view. The ordering is done in 

relation to the pi lot's position, and the direction he's 

facing. This data is passed on to Frame 3, which adds color 

and texture to the environment and moving-model data, and 

then displays the picture. All the action described above 

must be performed on a per field (16.67 millisecond} basis 

in each of the three subsystems. 
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The Cost of High Performance Systems 

Traditionally, Frame 1 functions have been performed by 

a single-processor von Neumann machine, typically a Gould 

SEL 32/9705 or a Digital Equipment Corporation VAX 11/780. 

The SEL is rated at approximately 3.2 million instructions 

per second (MIPS), 3.7 MIPS with a floating-point 

accelerator board, and the VAX is rated at approximately 1 

MIPS. The SEL costs about $300,000 and the VAX costs about 

$200,000. 

The advent of the 32-bit microprocessor has brought 

about the development of 32-bit single-board computers 

(SBCs) that rival, and even exceed in some cases, the 

processing power of the superminis described above. For 

example, the Motorola 32-bit 68020 microprocessor is rated 

at approximately 2.5 MIPS*. 

Motorola has also developed an extremely fast 

floating-point coprocessor (FPC) chip, the 68881, to be used 

with the 68020. The 68881 can operate concurrently with the 

68020, and provides double-precision floating-point 

multiplication in approximately 5 microseconds. The 68881 

also supports simultaneous sine and cosine calculations in 

approximately 30 microseconds*. 

* 16.67 MHz operation. 
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A third chip in this set is the 68851 memory-management 

unit coprocessor (MMUC), which enables a 68020-based board 

to operate as a 32-bit virtual machine (Beimes 1985). 

Single-board computers that incorporate the 68020, the 

68881, and 68851, along with 1 megabyte of main memory, have 

been developed at a customer cost of less than $5,000. 

Imagine a single-board computer with twice the processing 

power of the mighty VAX 11/780 for a fraction of the cost! 

These boards can support the UNIX[l] (System V or bsd4.2) 

operating system, for development applications, and a 

variety of real-time operating systems (VRTX, pSOS, and 

MTOS, to name a few) for real-time applications. 

The 32-bit SBCs described above have been, and are 

being, developed to interface with the prevailing 32-bit 

standard bus structures, Motorola's VMEbus and Intel's 

Multibus II.[2] These buses are designed with multiprocessor 

systems in mind. Both buses can support up to 20 SBCs. 

Each single-processor board communicates with the others 

over the main 32-bit bus (parallel system bus, or system 

bus). The philosophy is that processing power can be 

increased by plugging more of these cheap SBCs into the 

system bus, and having them process in parallel. For 

[l] UNIX is a trademark of Bell Laboratories. 
[2] Multibus is a trademark of Intel Corporation. 
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instance, by plugging 10 boards into a system, with each 

board rated at 2 MIPS and costing $5,000, a 20-MIPS machine 

can be obtained for less than $100,000. (Currently, a 20-MIP 

IBM costs about $16,000,000.) Of course, it is impossible 

for all SBCs to process concurrently at all times, and 

program distribution and communication over the system bus 

are not trivial. In fact, the development of multiprocessor 

systems is sti 11 in its infancy. However, because of the 

ever-increasing availability of inexpensive 32-bit hardware, 

the trend toward multiprocessor machines is gaining a great 

deal of popularity from both producers and consumers. 

Figure 2 shows a typical multiprocessor system. 
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The Frame 1 Multiprocessor 

The Frame 1 subsystem performs many tasks that could 

ideally be done in parallel. Because of the potential 

parallelism of these tasks, it was decided that the 

development of a multiprocessor general-purpose computer 

system could yield a high-performance low-cost Frame 1 

subsystem. This system could be used over the entire 

performance spectrum, with more power achieved by plugging 

in more boards. In order to develop the system in a timely 

fashion, it was decided that an off-the-shelf standard bus 

structure and a 32-bit SBC should be chosen. 

After many months of research and debate, the standard 

bus structure chosen was Intel's Multibus II (Ingraham and 

Bloomer 1985}. The heart of Multibus II multiprocessing 

capability is the Message Passing Coprocessor (MPC}, a 149-

pin grid array that resides on each SBC. The MPC is a 

hardware interface between the SBC and the system bus. It 

allows synchronous, high-speed 32-bit transfers of data 

(messages) over the system bus from one SBC to another, or 

one SBC to many, thus making global memory unnecessary for 

multiprocessing (Intel 1984)·. 

The 32-bit Motorola chips (68020, 68881, and 68851) 

where chosen as the basis for the SBC. 
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The Frame 1 multiprocessor is configured with at least 

one UNIX SBC, to act as an operator interface, and to 

perform other non-realtime functions, such as system 

initialization. All real-time processing is distributed 

over those SBCs running a real-time operating system. 

Figure 2 shows a typical Frame 1 multiprocessor 

configuration. 

Task Management 

In order to achieve a multiprocessor that operates 

efficiently and reliably, there must be a facility for 

distributing software program modules (tasks), scheduling 

their execution, and managing data-flow between them, 

whether they are on the same SBC or not. The Multiprocessor 

Task Manager is such a facility. 

The Frame 1 operating system 

means for transferring data from 

other SBCs over the system bus, for 

software provides the 

one SBC to one or more 

dynamically allocating 

memory on an SBC, and for generating various interrupts. 

Much of this software, especially that handling 

communication over the bus, is hardware specific. The Task 

Manager uses the facilities provided by the operating system 

software to get its job done. Theoretically, since it's 

shielded from hardware specifics, the Task Manager can be 

ported to another multiprocessor having entirely different 
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hardware, provided that the operating system facilities are 

similar. 

The Task Manager has both centralized and distributed 

properties. The "master" SBC contains software for queuing 

and distributing scheduling information to its own tasks, 

and to tasks on other SBCs in the multiprocessor. The 

"slave" SBCs contain a subset of this scheduling software. 

The Task Manager is divided into three major sections: 

Task Manager Setup, Task Sequencer, and System Event 

Monitor. 

The Task Manager Setup function resides on a UNIX SBC. 

It is responsible for distributing tasks over the real-time 

SBCs, figuring out data allocation requirements and task 

data connections, and for distributing the Task Sequencer 

and System Event Monitor functions. All its work is 

performed during system initialization. 

A Task Sequencer resides on every real-time board in 

the system. The Task Sequencer is respopsible for executing 

~asks in the proper order, and for managing data to and from 

tasks. It does this by traversing a linked group of data 

structures called a Task Control Graph, which is constructed 

by the Task Manager Setup for each board in the system. 
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The System Event Monitor is distributed over the real­

time boards in the system, and gives the Task Manager the 

"master/slave" flavor mentioned above. The System Event 

Monitor software on the slave SBCs responds to asynchronous 

events, and sends associated information to the master SBC. 

The System Event Monitor software on the master 

synchronously distributes event information to all real-time 

SBCs in the system. In this way it provides "dynamic" 

altering of task execution order, as will be detailed later. 

The Task Manager is being developed on a VAX 11/780 
/ 

under the ULTRIX operating system, using the C programming 

language. ULTRIX is almost identical to Berkeley UNIX 

(bsd4.2), but also has some VAX specific tools, such as 

DECNET copy (dcp). 



CHAPTER I, TASK MANAGER OVERVIEW 

Data-Flow Architecture 

Scheduling of Frame 1 task execution is performed using 

data-flow concepts. In a data-flow system, data is passed 

from a producer task to a consumer task when the producer 

generates the data. The consumer task does not request the 

data and does not begin execution until data arrives: data 

drives the processing. In a multiprocessor system, the 

data-flow approach precludes fetches to a global memory. On 

the other hand, the traditional demand-driven approach 

requires that the data is requested by the consumer task. 

In a multiprocessor system, this could require costly 

fetches to a global memory. A data-flow software 

architecture is thus conducive to multiprocessing. 

Program Abstraction 

Software in the multiprocessor is viewed in several 

levels of abstraction: system, application, process, and 

task. The system is at the highest abstraction level. It 

is composed of applications, which are at the next level of 

abstraction. Applications are composed of (related) 

processes, and processes are made up of groups of (related) 

tasks. Tasks are at the lowest level of abstraction, and 

perform all program execution in the multiprocessor. 

13 
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The abstraction philosophy provides an effective means 

of organizing Frame 1 software in a modular fashion. 

Program modules at higher levels of abstraction are 

constructed from modules at lower levels, as described 

above. The system is more manageable, since details in 

lower-level modules are hidden from higher-level modules. 

Levels of Abstraction, Levels of Precedence 

Within each level of abstraction, there are levels of 

precedence. Precedence levels are associated with order of 

execution, dictated by data-flow and timing constraints. 

Two program modules in the same abstraction level are at 

different precedence levels if the data produced by one is 

directly or indirectly consumed by another. They are at the. 

same precedence level if they could be executed in parallel; 

their order of processing by the same processor is 

arbitrary. 



CHAPTER II, TASK MANAGER SETUP 

A major goal in the design of the Frame 1 Task Manager 

is to do as much static (off-line) allocation and scheduling 

as possible. This approach reduces Frame 1 processing 

overhead. 

Data-Flow Graph 

A system Data-Flow Graph (DFG) is constructed off line 

during system initialization, using a 

Software Description, described below. 

complete map of possible program 

high-level System 

The DFG is a 

modules (systems, 

applications, processes, and tasks) that could be processed 

during on-line operation. It describes precedence and 

possible parallelism of these modules. Modules are 

represented by nodes, and the flow of data between them is 

represented by links between node structures. 

The System Software Description provides information 

about the organization of program units ·in the system. It 

defines groupings of program units within those at higher 

levels of abstraction. The System Software Description also 

describes the data relationships between program modules. 

Figure 3 shows a simple example of a System Software 

Description. The module on the right-hand side of the arrow 

is dependent on the data generated by the module on the 

15 
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left-hand side. Also shown in the figure is information 

about tokens. More wi 11 be said about tokens in the next 

chapter. Figure 4 shows a symbolic DFG constructed from the 

description in Figure 3. 



System: 
Applications: --> AppO.dataO 

App0.data4 
Appl.data9 

--> Appl.data4 
--> 

AppO: 
Tokens: 

0 VANILLA TRUE 
1 ONE SHOT FALSE 

Processes: 
Pro0.data2 
Prol.data4 

Proo: 
Tokens: 

2 VANILLA TRUE 
3 VANILLA TRUE 

Tasks: 
TasO.datal 
Tasl.data2 

Prol: 
Tokens: 

0 VANILLA TRUE 
Tasks: 

Tas2.data3 
Tas3.data4 

Appl: 
Tokens: 

NO TOKENS 
Processes: 

Pro2.data8 
Pro3.data9 

Pro2: 
Tokens: 

4 VANILLA TRUE 
Tasks: 

Tas4.data5 
Tas4.data6 
Tas5.data7 
Tas6.data8 

Pro3: 
Tokens: 

0 VANILLA TRUE 
4 VANILLA FALSE 

Tasks: 
Tas2.data9 

--> ProO.dataO 
--> Prol.data2 
--> 

--> TasO.dataO 
--> Tasl.datal 
--> 

--> Tas2.data2 
--> Tas3.data3 
--> 

--> Pro2.data4 
--> Pro3.data8 
--> 

--> Tas4.data4 
"."'"-> TasS.dataS 
--> Tas6.data6 
--> Tas6.data7 
--> 

--> Tas7.data8 
--> 

Figure 3. System Software Description. 

17 
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Figure 4. Symbolic Representation of DFG. 
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Lex and Yacc 

The UNIX tools Lex (a Lexical Analyzer Generator) and 

Yacc (Yet Another Compiler-Compiler) are used to parse the 

System Software Description and build the DFG data 

structures. Both Lex and Yacc are program generators. 

Although Lex and Yacc can generate code of several 

languages, they generate C code for this project. 

Lex generates programs that recognize input strings and 

partition the strings into matching expressions. When an 

expression is matched, a user-specified action is performed. 

All the Lex user needs to do is write a Lex specification 

that lists the expressions to be matched and, in C code, the 

action to be performed. There is an action for each 

expression (Lesk and Schmidt 1978). 

Yacc provides a way of imposing structure on program 

input. A Yacc specification is very similar to a Lex 

specification. In fact, Lex was developed specifically for 

use by Yacc (although it can be useful in its own right). 

Basically, Yacc specifies rules to be followed. When a rule 

is followed, the Yacc-generated code performs an action 

(Johnson 1978). 

Yacc uses Lex to match strings from a text file, such 

as the System Software Description. On matching a specified 

text sequence, Lex returns a token (not to be confused with 
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the tokens mentioned above). Yacc applies the token toward 

a rule. When all the tokens for a rule are gathered, Yacc 

performs an action, such as adding another member to a list 

of data structures. 

Other Setup Functions 

A System Resource Table (number and types of boards) is 

also compiled during system initialization. The DFG is 

applied to the Resource Table to produce a Task Control 

Graph (TCG) for each real-time board in the system. Task 

Sequencers assigned to each real-time board traverse the 

TCGs during Frame 1 on-line processing. The goal is to take 

advantage of parallel processing, while minimizing 

interprocessor communication. 

Another operation performed during system 

initialization is allocation of task data memory for the 

real-time boards. This operation requires knowledge of the 

system resources, the TCG, and the input/output (I/O) data 

information provided in the source code. 

Figure 5 shows an example of the I/O information 

embedded in the source code. Lex and Yacc are used to 

extract the information. Lex keys on the symbol "/*$" to 

start parsing. Upon matching this symbol, Lex returns the 

token CONTROL BEGIN to Yacc, which gets ready to start 

collecting the information into data structures. The task's 
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name is collected on Lex's matching of TASK_NAME, inputs are 

collected after IN_LIST, outputs after OUT_LIST, and include 

file names after IO_INCLUDE_LIST. Comments are preceded by 

" " . . . ' and parsing stops when "*/" is matched. Because the 

embedded information is between "/*" and "*/", it is 

completely ignored by the C compiler (Kernighan and Ritchie 

1978). 

The include files are used to learn structure size 

information for each input and output encountered. This 

enables proper allocation of data for each task in each TCG. 

The Appendix contains the Lex and Yacc specifications used 

to gather the embedded information into data structures. 



/*h- transatt.c 1816 asc 2-may-1986 10:16 am ingraham */ 
Transform_Attitude(inc, inp, cute, outp) 
/* Declare parameters, standard interface */ 

int inc, cute; 
int *inp[], *outp[]; 

/* TASK CONTROL INFORMATION */ 
/*$task_information ••• a "control" comment starts with/*$ 

*/ 

TASK NAME: Transform_Attitude; 

IN LIST: 
rpy packet, 
attitude, 

OUT LIST: 
rpy prime, 
altTtude, 

I/O lists must have unique names 
I/O data structure declarations 
are required to be in include files 

IO INCLUDE LIST: ••• assumes released software directory 
/usr/users/ingraham/include/RTUattitude.h, 

idef ine RPY PACKET 0 
1 tdef ine ATTITUDE PACKET 

#define RPY PRIME 
#define ALTITUDE 
r 
/* LOCAL DECLARATIONS */ 

struct RPY packet 
struct attitude packet 
struct RPYprime=packet 

/* BEGIN */ 

0 
1 

*pRPYpacket; 
*pAttitude; 
*pRPYprime; 

/* A f icticious but useful example of how a task 
works in the data-flow concept */ 

/* Process RPY data */ 
/* Get pointers */ 
pRPYpacket = (struct RPY packet*) inp[RPY PACKET]; 
pRPYprime = (struct RPYprime_packet *) outp[RPY_PRIME]; 

/* Do something useless */ 

22 

pRPYprime->roll = pRPYpacket->roll + pAttitude->jitter.roll; 
pRPYprime->ypw = pRPYpacket->yaw + pAttitude->jitter.yaw; 

/* Etc. */ 

Figure 5. Task I/O Information Embedded in Source Code. 



CHAPTER III, TASK CONTROL GRAPH AND TASK SEQUENCER 

TCG Traversal 

Effect of Tokens on Traversal 

Tokens provide a means of dynamically modifying 

traversal of a TCG by a Task Sequencer. Program modules 

that are not processed every field are assigned tokens to 

control whether or not they wi 11 be processed during a given 

field. These assignments are provided by the System 

Software Description, as shown in Figure 3. 

During Frame 1 processing, token changing events that 

occur during a field are queued on a "master" real-time 

microcomputer board. At the start of the next field these 

token changing events are distributed to all real-time 

boards in the system as Token Change Requests (TCRs). These 

TCRs cause the corresponding tokens in the Token Memory on 

each board to be changed. 

TCG Nodes 

Figure 6 illustrates TCQ nodes. There are 2 types of 

nodes in a TCG: those that represent systems, applications, 

and processes, and those that represent tasks. All nodes 

are associated with an ID number, which identifies the 

specific system, application, process, or task being 

processed. A system, application, or process node also has 

23 
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a reference to tokens, if tokens are assigned to it, and a 

link to the next level of abstraction. A task node, since 

it represents the only program module that actually executes 

code, has a reference to the executable image and a 

reference to data requirements. 

Pointers to Lists of Pointers 

Figures 7 and 8 should be helpful references to the 

text that follows. 

A pointer in each node references a list of pointers. 

The pointers in the list reference nodes at the next lower 

level of abstraction. Pointers that reference nodes at 

different levels of precedence are separated by a NULL 

pointer. The composite pointer list is terminated by 2 

consecutive NULLS. 
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Method of Traversal 

The TCG is traversed from higher levels of abstraction 

to lower levels of abstraction. TCG nodes are "processed" 

to determine the correct traversal path. Processing of 

system, application, and process nodes is similar, since 

their structures are the same. Task nodes require special 

processing, which includes passing data and control to the 

task's executable image. TCG traversal is performed by the 

Task Sequencer. Each TCG node, except for the system node, 

is referenced by a pointer in a pointer list, as described 

above. It is assumed in this paper that only one system 

node exists in each TCG. 

For each System, Application, 

encountered, the Task Sequencer 

follows. 

or Process (SAP) node 

performs processing as 

The node's token reference, or Token Set ID (TSID) is 

checked. If its value is NO_TOKEN, there is no token 

associated with the node, and processing continues 

immediately. If its value is zero, or some finite integer, 

it is used to index the Token Relationship Table (TRT). 

Each entry in the TRT consists of a list of indexes into the 

Token Memory (TM), followed by END_OF_LIST. 
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The TM entries are called tokens, and consist of two 

fields: a type field and a (binary) value field. The token 

type may be "vanilla" or "one_shot". A vanilla token must 

be deliberately reset. A one_shot token is reset by the 

Task Sequencer at the end of TCG traversal. 

The value of each token indexed by the TRT is checked. 

If a FALSE (logic 0) token is encountered, processing of the 

SAP node ceases. The token is said to be "guarding" the 

node. The Task Sequencer increments the pointer to the 

pointer list and repeats the above procedure. If a 11 the 

referenced tokens are TRUE, processing of the SAP node 

continues. 

In the next and final step of SAP node processing, the 

Task Sequencer obtains the pointer to the pointer list for 

the next level of abstraction. The system node points to an 

application node pointer list, each pointer in the list 

providing a reference to a node representing the 

applications assigned to this TCG. Each application node 

points to a list of process node pointers, ·and each process 

node points to a list of task node pointers. 

Tasks and Data 

The task node represents the lowest level of hierarchy 

in the tree. It is the only node type that has a reference 

to an executable image. Besides the image, the task node 
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also has a reference to the Data Requirements Table (DRT), 

shown in Figure 8. Each entry to the DRT contains a list of 

indexes (Data Set IDs - DSIDs) to the Data Set Index (DSI), 

followed by END OF LIST. Each entry in the DSI contains a 

Token Set ID (TSID), a flag field, a pointer to a location 

in the Data Set Memory (DSM), and an array of integers for 

off-board destination port IDs. 

The TSID provides a means for determining the validity 

of data produced by tasks in potentially guarded processes 

and applications. 

The flags in each entry to the DSI pertain mostly to 

off-board data. They include an "on-board" flag, a "source" 

flag, and a "ready" flag. The on-board flag, if logic 0, 

signals that the referenced data set going to or coming from 

the system bus. If it is logic 1, then the rest of the 

flags can be ignored. The source flag signals the off-board 

data direction: to the system bus if logic 1, or from the 

system bus if logic O. The ready flag, if logic 1, signals 

that an off-board input has arrived. 

In processing a task node, the Task Sequencer evaluates 

the data sets referenced by the node and attempts to execute 

the task. 
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If the data set is valid (there are no related tokens 

or all related tokens are TRUE) and ready, the pointer to 

the data set is collected into a task pointer vector. If 

the data set is invalid, the corresponding pointer in the 

pointer vector is assigned an "invalidity" value to signal 

the task that this pointer is invalid. 

The resultant pointer vector, along with control, is 

passed to the task's executable image. When execution is 

complete, the Task Sequencer increments the pointer to the 

task node pointer list, and initiates processing of the next 

task node. 

Off-Board Data Handling 

Movement of data from a task on one board to a task on 

another board is handled by the Task Sequencer using the 

operating system software message functions. They include 

"msg_pcreate," "msg_psend," and "msg_pget." 

Msg create creates a port on an SBC. It requires as 

arguments the port ID number, the home SBC number, and the 

number of messages allowed in the port queue. 

Msg_psend sends a port-to-port message over the system 

bus. It requires as arguments the destination port ID, a 

pointer to the message, and the size of the message in 

bytes. 
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Msg_pget gets the next port-to-port message, which the 

operating system's message facility places into dynamically 

allocated memory upon its arrival. Its input argument 

includes the port ID number, and a timeout value, indicating 

how long to wait for the message, in microseconds. Its 

output arguments include a pointer to the message data, a 

pointer to the size of this data. 

During Task Manger Setup, each Task Sequencer is 

assigned a port ID number corresponding to the slot number 

of the SBC to which it is assigned. Upon arriving at its 

destination SBC, each Task Sequencer uses msg_pcreate to 

create the assigned port. A Task Sequencer uses this port 

to pass data between tasks residing on different SBCs. 

Sending Data Off Board 

As the Task Sequencer processes a task node, it must 

check the Data Set Index (Figure 8) to determine the status 

of each data set for that task. As detailed above, each 

entry to the Data Set Index (DSI) consists of a Token Set 

ID, a field of flags, a pointer to the data set memory 

location, and an array of integers for off-board destination 

port IDs. If the Token Set ID is zero, or all related 

tokens are TRUE, then the data set is valid and the Task 

Sequencer proceeds to evaluate the DSI flags. If the data 

set is to go off board, the Task Sequencer sets the 

corresponding DSI ready flag, and adds the data set pointer 
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to the task pointer vector. 

When the task completes, the Task Sequencer checks the 

ready flags corresponding to each data set going off board. 

If ready is logic 1, the Task Sequencer passes the first 

destination port ID from the DSI and the data set pointer to 

msg_psend. The Task Sequencer indexes through the 

destination port ID array, passing each ID and the same data 

set pointer to msg_psend, unti 1 END_OF_ARRAY is reached. 

The above procedure is repeated for each off-board ·data 

set associated with this task. When finished with this 

task, the Task Sequencer increments the pointer to the task 

node pointer list and initiates processing of the next task 

node. 

Receiving Off-Board Data 

When the Task Sequencer finds that a valid data set is 

from off board, it must check the data set's ready flag. If 

the ready flag is logic 0, then the data set has not yet 

been linked to. The Task Sequencer must determine if the 

data set has arrived at the port yet. It passes its port ID 

and a timeout value of zero (the Task Sequencer doesn't want 

to wait) to msg_pget. If msg_pget times out, the Task 

Sequencer pushes the pointers to the task and process 

pointer lists onto the Process Queue, as detailed in the 

next section, and proceeds to the next process in the 



34 

process pointer list. Otherwise, msg_pget sets the pointer 

to the dynamic memory location of the data set. The Task 

Sequencer copies this pointer into the DSI pointer field and 

the task pointer vector, and sets the ready flag to logic 1. 

The above procedure is repeated for each off-board data 

set associated with this task. When finished with this 

task, the Task Sequencer increments the pointer to the task 

node pointer list and initiates processing of the next task 

node. 

Queues for Context Switching and More about TCG Traversal 

Queues are used to save the task and process pointers, 

and/or the application pointer, when the current task is 

waiting for off-board input data. The waiting task is thus 

queued while a ready task in another process in the current 

or another application is run. The result is better CPU 

utilization. 

As stated above, each system node structure, 

application node structure, and process node structure has a 

pointer into a list of pointers to nodes at the next level 

of abstraction. During processing, pointers to the lists 

are incremented to keep track of the current application, 

process, and task, and the precedence-level boundaries at 

the process and application levels of abstraction. 
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If a task is required to wait for data, and there is 

another process at the same level of precedence as the 

current process, the process and task pointers are pushed 

onto the Process Queue. The pointer to the list of process 

pointers is incremented, and processing of the next process 

begins. 

The above sequence is repeated until the last process 

at the current precedence level is handled (NULL is 

reached): the processes in which tasks are not waiting are 

processed, while the task and process pointers of those that 

have waiting tasks are pushed onto the Process Queue. If no 

processes at the current precedence level are queued, then 

processing of the first process at the next precedence level 

begins. 

If, at the end of the current process precedence level, 

there are queued processes, and there is another application 

at the same precedence level as the current application, the 

application pointer and the pointer to the process list 

precedence boundary are pushed onto the Application Queue. 

The pointer to the list of application pointers is 

incremented, and processing of the next application begins. 

For each application at the current precedence level, there 

is an associated Process Queue: the number of Process Queues 

is equal to the maximum number of applications at the same 

level of precedence. 
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Once all applications at the current precedence level 

have been either processed or queued, the Application Queue 

is checked. If it is empty, the first application at the 

next precedence level is processed. If the queue is not 

empty, the first application on the queue is selected. 

Processing begins for the waiting task in the first 

process on the selected application's Process Queue. If 

data is sti 11 not ready, the task and process pointers 

remain queued. If data is ready, the task runs, and the 

task and process pointers on the queue are invalidated. The 

pointer to the list of task pointers is then incremented, 

and processing of the next task begins. 

After all processes in the Process Queue for the 

current application have been processed, the corresponding 

pointer to the process list precedence boundary is 

incremented, and the first process in the next precedence 

level is processed. If processes in this level of 

precedence become queued, then the application pointer 

remains queued, and the old pointer to the process list 

precedence boundary is replaced by the current one. When 

the end of the process pointer list is reached, and the 

Process Queue is empty, the next application in the 

application queue is selected. When the Application Queue 

is exhausted, processing begins on the first application at 

the next level of precedence. 



CHAPTER IV, SYSTEM EVENT MONITOR 

The System Event Monitor (SEM) is a collection of interrupt 

service routines (ISRs) that handles all events in Frame 1. 

These events include device interrupts, message interrupts, 

and virtual interrupts. The SEM enables dynamic altering of 

TCG traversal by providing ISRs that convert Token Changing 

Events (TCEs) into TCG token changes. 

Because the SEM is distributed over the multiprocessor, 

it relies heavily on services provided by the operating 

system software. These services include a message facility 

for board to board communication over the system bus, which 

in Multibus II jargon is referred to as "message passing." 

The SEM ISRs, and their interaction with operating system 

services, are described below. 

Interrupts (Events and Exceptions) 

Processor Interrupts 

Device interrupts and message interrupts are hard 

interrupts; that is, they activate interrupt lines to the 

microprocessor unit (MPU)·. Most device interrupts are 

routed through a Counter/timer parallel I/O unit (CIO), from 

which the MPU can read a vector number. The vector number 

addresses the processor interrupt-vector table, which 

contains 256 interrupt vectors. Interrupt vectors are 

37 
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memory pointers used by the processor to fetch the starting 

addresses of various processor ISRs. Processor control is 

thus "vectored" to the appropriate ISR in response to an 

interrupt. Message interrupts are autovectored to the 

message ISR; that is, MPU internal logic generates the 

vector number, which is then used to 

interrupt-vector address. 

determine the 

Virtual Interrupts 

A virtual-interrupt mechanism, layered over the 

processor interrupt mechanism, is supported by operating 

system software. Virtual ISRs are invoked by processor ISRs 

either through a function call or using the vint_signal 

function provided by the operating system software. Virtual 

interrupts provide a way to "re-vector" a processor (hard or 

soft) interrupt. 

Virtual interrupts initiated using the vint signal 

function are message based and are directed or global. A 

directed virtual interrupt is "directed" to the message 

handler on the "master" microcomputer board. A global 

virtual interrupt is broadcast to the message handlers on 

all (real-time) boards in the system. Both direc~ed and 

global virtual interrupts require a virtual vector number as 

the vint_signal argument. 
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Many important SEM operations are performed by virtual 

ISRs. The virtual interrupt mechanism allows a processor 

ISR, such as the message ISR, to remain general purpose. An 

example of message ISR re-vectoring follows. 

A virtual-interrupt packet arrives at the MPC. The MPC 

interrupts the MPU and control is vectored to the message 

ISR. The message ISR determines the message type, and uses 

the virtual vector number to vector control to the 

corresponding virtual ISR. 

SEM ISRs and Their Operation 

The SEM provides mechanisms for distributing TCRs in 

response to Token Changing Events (TCEs), such as initiation 

of a special-effects sequence from a cockpit. A special­

effects sequence is a sequence of programs that run very 

seldomly, such as a sequence that shows the movement of a 

projectile fired from a tank toward a target, or a 

sequence that depicts the explosion upon impact of the 

projectile. 

All real-time boards in the system have a copy of the 

SEM, which may be different from board to board. The 

"master" board, which is connected to Frame 3 (IG) master 

timing syncs, contains SEM ISRs responsible for collecting 

and distributing TCRs. Figure 9 illustrates control and 

data flow between SEM ISRs on the master board. Figure 10 
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does the same for a typical slave board. SEM operation is 

outlined below. 

A hard interrupt is 

Token Changing Request 

Translator (TCET) ISR. 

translated into an Asynchronous 

(ATCR) by the Token Changing Event 

The TCET uses the vint_signal 

function to pass the ATCR, as a directed virtual interrupt, 

to the master real-time board. When the ATCR packet is 

received by the master's MPC, 

control to the ATCR receiver (AR). 

the message ISR vectors 

The AR stores the ATCR 

on the Event Queue. Control returns to the message ISR, and 

from from there, returns to the interrupted task or the Task 

Sequencer. Asimilar sequence takes place for all TCEs that 

occur during a field. 

On arrival of Field Sync (a hard interrupt) to the 

master real-time board, the contents of the Event Queue are 

distributed as Synchronous Token Changing Requests (STCRs) 

to all real-time boards in the system. This operation is 

performed by the STCR Distributor (SD) ISR, which uses a 

global virtual interrupt to handle distribution. The field 

count and the Commit Strobe are included as part of the STCR 

packet. The field count comes before the STCRs and the 

Commit Strobe comes after. 
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As the STCRs are received, the message ISR on each 

real-time board vectors control to the STCR Receiver (SR). 

The SR moves the STCRs into a Token Update Buffer (TUB). on 

finding the Commit Strobe at the end of the STCRs, the SR 

calls the TUB-to-Token-Memory Copy (TTMC) function, which 

translates the contents of the TUB into tokens and moves 

these new tokens into the appropriate locations in the Token 

Memory. 

Control is returned to the Task Sequencer, which will 

once more traverse the TCG. This time, perhaps, the process 

node(s) representing the special effects sequence initiated 

in the previous field wi 11 be unguarded, and the associated 

tasks wi 11 be executed. 
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CHAPTER V, CONCLUSIONS 

Simulator functions that have been traditionally performed 

by single-processor superminicomputers can be performed by a 

multiprocessor computer system at a tremendous cost savings 

and performance gain. 

The proliferation of 

microprocessors, standard 

board computers based on 

powerful, inexpensive 32-bit 

bus structures, and the single­

them, has spawned a growing 

interest in the construction of multiprocessor computer 

systems (multicomputers). 

Although multicomputer hardware is inexpensive and 

somewhat standard, integration problems exist that have 

never before confronted many computer architects. On a 

single-processor system, tasks are run sequentially to 

completion. Tasks that require data from other · tasks are 

simply run after those tasks. 

In order to achieve a multiprocessor that operates 

efficiently and reliably, there must be a facility for 

distributing tasks, scheduling their execution, and managing 

data flow between them, especially when they reside on 

different processors. The Multiprocessor Task Manager is 

such a facility. 

44 
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The Task Manager is efficient, reliable, and portable. 

Efficiency and reliability are achieved by performing most 

resource allocation, memory allocation, and task scheduling 

off-line during system initialization. This insures more 

reliable data connections and reduces on-line processing 

overhead. Portability is achieved through the Task 

Manager's use of hardware-specific facilities provided by 

the operating system software. Since it is shielded from 

hardware specifics, the Task Manager can be ported to 

another multiprocessor having entirely different hardware, 

provided the operating system facilities are functionally 

similar. 



APPENDIX, LEX AND YACC SPECIFICATIONS 

%{ 
#include "test.h" 
#include "y.tab.h" 

extern TASK *p_task; 

BOOL CONTROL = FALSE; 

STRING Add Member(); 
MEMBER *p_mem = NULL; 

STRING s_yyin = 
%} 

control_begin 
control end 
list member 
whitespace 
comment 

%% 
{control_begin} 

{control_end} 

TASK NAME: 
IN LlST: 
OUT LIST: 
IO lNCLUDE LIST: 
{ lT st_member} 

"stdin"; 

"/*$" 
"* /" 
[a-zA-Z0-7 ./]+/(,j;) 
[ ] -
" ... ". * 

{ 
CONTROL = TRUE; 
return(CONTROL_BEGIN); 

} 
{ 

} 

if (CONTROL) 
{ 

CONTROL = FALSE; 
return(CONTROL_END); 

} 

if (CONTROL) return(NAME KEY); 
if (CONTROL) return(IN KEY); 
if (CONTROL) return(OUT KEY); 
if (CONTROL) return(INC=KEY); 
{ 

if (CONTROL) 
{ 

yylval.member_name 
=Add Member(yytext); 

return(LIST_MEMBER); 
} 
else 
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} 
{comment} 

%% 

STRING Add Member(buffer) 
char buffer[]; 
/* Get member from stack or add member to it */ 
{ 

} 

MEMBER *p_tmp; 

/* initialize temporary pointer */ 
p_tmp = NULL; 

FOR ALL(p tmp, p mem) 
if (strcmp(p tmp -> s_name, buffer) -- 0) 

break; -

if (p tmp -- NULL) 
{ - /* a 11 ocate space for p_tmp *I 
p_tmp = (MEMBER*) malloc(sizeof(MEMBER)); 

p tmp -> s name = 
-(STRING)-malloc(strlen(buffer) + l); 

strcpy(p_tmp -> s_name, buffer); 

p_tmp -> p_next = p mem; 
p_mem = p_tmp; 

return(p tmp -> s_name); 
} -

else 
return(p_tmp -> s_name); 

yyerror(buffer) 
char *buffer; 
{ 

fprintf (stderr, "%s line %d: 
s yyin, yylineno, buffer); 

} 

yywrap() { return(l); } 
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%{ 
#include <ctype.h> 
#include "test.h" 

VOID Add List Struct(); 
TASK *p_task_tmp = NULL; 
LIST *p_list_tmp = NULL; 
MEMBER *p_mem_tmp = NULL; 
extern TASK *p task; 
extern TASK *p=task_list; 

char s error[512]; 
%} -

%start control 

%union 
{ 

} 

STRING member name; 
TASK *p_tsk; 

%token NAME KEY IN KEY OUT KEY INC KEY 
%token CONTROL BEGIN CONTROL END -
%token <member-name> LIST MEMBER 

%type <p_tsk> tasks task lists list 
%% 

contro 1 : tasks 
{ p_task_list = $1 -> p next; } . , 

tasks :task 
{ $$ = $1; } 

!tasks task 
{ $$ = $2; } . , 

task :CONTROL BEGIN lists CONTROL_END 
{ 

p task tmp = 
-(TASK*) malloc(sizeof(TASK)); 

p list tmp = 
-(LIST*) malloc(sizeof(LIST)); 

p mem tmp = 
-(MEMBER *)malloc(sizeof(MEMBER)); 

p_task_tmp -> p_next = p_task; 

p_task = p_task_tmp; 
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lists 

. , } 

p_task -> p_list = p_list_tmp; 
P_task -> p_list -> p_member = 

p_mem_tmp; 

$$ = p_task; 

:NAME KEY list 
{ -

. , 

} 
IN KEY 

T 

} 

p_task -> p_list -> keyword = 
"TASK NAME"• - , 

Add_List_Struct(); 
$$ = p_task; 

list 

p_task -> p_list -> keyword = 
"IN LIST"· "T"' , 

Add_L1st_Struct(); 
$$ = p_task; 

OUT KEY list 
{-

} 

p task -> p list -> keyword = 
-"OUT LIST"· - , 

Add List Struct(); 
$$ ;- p_task; 

INC KEY list 
{-

} 

p_task->p_list -> keyword = 
"IO INCLUDE LIST"; 

$$ = p_task; - · 

list :LIST MEMBER 
{ -

if (p task == NULL) 
{ -

p task tmp = 
-(TASK*) malloc(sizeof(TASK)); 

p list tmp = 
-(LIST*) malloc(sizeof(LIST)); 

p mem tmp = 
-(MEMBER *)malloc(sizeof(MEMBER)); 

p_task = p_ta~k_tmp; . . 
p_task -> p_l1st = p_l1st_tmp; 
p_task -> p_list -> p_member = 

p_mem_tmp; 
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%% 

} 
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} 
p_task -> p_list -> p member -> s name = 

$1; 
$$ = p_task; 

I list LIST MEMBER 
{ 

} 

p_mem_tmp = 
(MEMBER*) malloc(sizeof(MEMBER)); 

p mem tmp -> p next = p_task -> p_list 
--> p member;-

p task--> p list -> p member = p_mem_tmp; 
p=task -> p=list -> p=member -> s name 

=-$2; 
$$ = p_task; 

VOID Add List_Struct() 
{ 

p list trnp = (LIST*) malloc(sizeof(LIST)); 
p-mem tmp = (MEMBER *)malloc(sizeof(MEMBER)); - -
p_list_tmp -> p_next = p_task -> p_list; 

p_task -> p_list = p_list_tmp; 
p_task -> p_list -> p_member = p_mem_tmp; 

} 
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