
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

Fall 1980

A Real Time Microprocessor Based Digital Filter Implementation A Real Time Microprocessor Based Digital Filter Implementation

Mark H. Shaver
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Shaver, Mark H., "A Real Time Microprocessor Based Digital Filter Implementation" (1980). Retrospective
Theses and Dissertations. 518.
https://stars.library.ucf.edu/rtd/518

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/518?utm_source=stars.library.ucf.edu%2Frtd%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A REAL TIME MICROPROCESSOR BASED
DIGITAL FILTER !}1PLEMENTATION -

BY

~.ARK HAROLD SHAVER
B.S., Purdue University, 1973

RESE.~CH REPORT

Submitted in ?a=tial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program of the College of Engineering
at the University of Central Florida at Orlando, Florida

Fall Quarter
1980

A REAL TIME MICROPROCESSOR BASED
DIGITAL FILTER IMPLEMENTATION

BY

MARK H. SHAVER

ABSTRACT

A major break-through in the real-ttme digital

simulation of dynamic models has occurred with the intro-

duction of the Intel 2920 digital signal processing chip.

rne problems and potentials for this new device are

demonstrated by implementing an elliptic function digital

low pass filter via the bilinear z-transform approach.

The software implementation is presented. Debugging

and software verification are accomplished via manufac

turer's simulation software tools. The hardware perfor-

mance is verified in the laooratory.

The results of these efforts point to much promise

for wide scale applications, however, problems associated

with performance indicate early version chip problems.

ACKNOWLEDGMENT

This paper was made possible by continued support

from Dr. Herbert C. Towle in the use of the Intel Develop

ment systems. I thank Dr. Towle also for the introduction

to personnel at the Naval Training Equipment Center in

Orlando, Florida, who kindly gave me access to test hard

ware and allowed use of their development system. Final

ly, I owe a great debt of gratitude to Dr. Fred 0. Simons

Jr. for his support, enthusiasm, and outstanding example

of excellence he set for me.

iii

PREFACE

This paper attempts to determine a practical hard

wa~e digital filter ~plementation example using an

INTEL 2920 digital signal processing chip. The empha

sis here is no~ on the choice and design of the filter,

but is en the practical steps anc the use of available

development aids to arrive at the software for the

final hardware PROM resident on the 2920.

The pape= assumes a kn~Tledge of digital filter

terminology and techniques. The software is developed

with the aid of a programmable HP-29C calculator and an

INTEL microprocessor development system, hence, fre

quently the details of the design require knowledge of

these systems.

Chapter I is a demonstration of how to arrive at

a set of coefficients for the digital filter. Included

are techniques for testing the frequency response and

predict±ng the response to step, pulse, sinewave, and

squarewave inputs.

Chapter II is a demonstration of how to convert

the coefficients to a base two representation which is

opti~al in the sense that it will minimize the number

of steps required for a multiplication. There follows

a discu~sion of sensitivity to coefficient variation

1v

and a practical method of estimating the precision to which

the coefficients must be specified. Precision is obtained

at the expense of memory and time and therefore should not

be overspecified.

Chapter III is an illustration of the development of

software using development aids. It is not intended to

be a comprehensive discussion of the use of the INTEL

systems or assembly language, or to replace the available

manuals. The purpose is to illustrate the sequence of

events necessary to create a source program, debug it,

and simulate the filter's response.

v

TABLE OF CONTEh'TS

PREFACE
LIST OF TABLES .

LIST OF FIGURES

rnTRODUCTION

.

CHAPTER I. DIGITAL FILTER COEFFICIENTS .

CP~TER II. OPTIMUM BINARY REPRESENTATION . .

CHAPTER III. SOFTWARE DEVELOPMENT AIDS

CHAPTER IV. HARDWARE CONSIDERATIONS
AND PERFORMANCE

iv

· vii

viii

1

4

8

18

23

CHAPTER V. CONCLUSION 33

APPENDIX A .

APPENDIX B .

APPENDIX C .

.

. .
LIST OF REFERENCES

v1

35

41

44

55

1.

2.

LIST OF TABLES

DIGITAL FILTER COEFFICIENTS 5

PREDICTED ANALOG FREQUENCY RESPONSE
OF THE DIGITAL FILTER

3. PREDICTED STEP AND PULSE RESPONSE OF

I • e • • 6

DIGITAL FILTER 7

4. APPROXIMATE REPRESENTATION FOR
FILTER COEFFICIENTS

5. ESTD1ATED SENSITIVITY AND VARIANCE
OF RESPONSE TO COEFFICIENTS

6. CONFIDENCE FACTOR AND CORRESPONDING
Nu~ER OF STANDARD DEVIATIONS

7 . SENSITIVITY DATA
8. LIST OF TEST EQUIPMENT
9. LIST OF HP-29C PROGRAM STEPS FOR

FREQUENCY RESPONSE
10. HP-29C COEFFICIENT STORAGE LOCATIONS

FOR FREQUENCY RESPONSE

. .
. .
. .

. .

. .
11. HP-29C STORAGE LOCATIONS FOR COEFFICIENTS

. . . 13

0 • • 14

. . . 15

. 16

. . . 32

. . . 35

. 36

AND TEST DATA FOR SIMULATION 37

12. PROGRAM STEPS FOR SIMULATION ON HP-29C . . 39

v11

1.

2.

3.

4 .

5.

LIST OF FIGURES

DIGITAL FILTER BLOCK DIAGRAM 3

GRAPH OF MINIMUM REQUIRED BITS
VERSUS 6.Mmax WITH CONFIDENCE FACTOR
(y) AS A PARAMETER · · · · ·

SCHEM..A..TIC DIAGRAM OF 2920 TEST BOARD •

DIGITAL FILTER TEST SETUP .. .•
PREDICTED AND MEASURED FREQUENCY RESPONSE

. 17

. 26

27

29

6. PREDICTED AND MEASURED RESPONSE TO CHANGE
OF INPUT POLARITY (1 VOLT D.C.) 30

v111

INTRODUCTION

A complete digital filter in the sense used in this

paper consists of all the hardware ~id software necessary

tc perform an analog filtering fu..T'lction with digital cir

cuits rather than analog components. Figure 1 illustrates

the processing of the major components in a digital fil

ter. An analog component circuit can be replaced by an

analog to digital converter, a digital processor, and a

digital to analog converter. Some of the benefits which

can be realized by doing this are:

1. A high speed processor could actually process
a number of multiplexed signals, performing analog
processing functions on a number of independent
channels.

2. The processing function is permanent in soft
ware, unless deliberately changed, and will not
drift with age.

3. The processing function can be change~ without
changing components, merely by changing software.

4. Accuracy can be made very high and can be
changed merely by changing software.

5. Processing, which previously required large
components such as inductors in low frequency
filters, can now be performed by very small
digital circuits.

The type of processor chosen to implement this

example was an INTEL 2920 digital signal processing chip.

It combines on a single chip the analog to digital con

verter, multiplexers, digital processor, digital to analog

converter, read only memory for program storage, and

2

access memory for scratch pad calculations. The conver-

sion processes and the multiplexing can all be controlled

by software.

A/D
CONVERTER

t

3

DIGITAL
PROCESSOR

x(nT)
~

D/A
CONVERTER

y(nT)

Figure 1. Digital filter block diagram.

I. DIGITAL FILTER COEFFICIENTS

In this chapter, the process for converting an analog

p~ocotype function into a set of digital filter coeffi

cients will be demonstrated. Then the techniques for

testing a~d predicting the response of the digital filter

will be de~onstrated.

This part of the implementation process can be

broken down into the following major steps.

A. Determine the desired analog transfer function.

B. Determine the sample frequency.

C. ApFlY the bilinear Z transform.

D. Predict the response of the filter.

Determining the analog transfer function would con

sist of using design tables and graphs to decide on an

appropriate approximation function. This function should

be fac~ored into single real poles and zeroes, and pairs

of complex conjugate poles and zeroes so that it may be

implemented as first and second order sections to reduce

quantization errors. An elliptic function prototype was

chosen to test the feasability of implementing the pure

imaginary zeroes despite roundoff and quantization errors.

The prototype Laplace transfer function selected was

H (s) =

5

0.083974(s 2 + 17.48528)

s 2 + 1.35715s + 1.55532

and was taken from Daryanani (1).

A sample frequency of 12 KHz was chosen for the

first calculation. It was decided to force the pure

imaginary zeroes to correspond to a frequency of 2 KHz.

The final transfer function of the digital filter second

order section is of the form

ao + alz-1 + a2z-2
H(z) =

1 + b1z-l + b 2z-2

According to the procedure given by Stanley (2), the

coefficients were found and are listed in Table 1. The

interesting relationship between the numerator coefficients

is due to the frequency of the zeroes being chosen as

exactly one third of the folding frequency and was

discovered entirely by accident.

TABLE 1

DIGITAL FILTER COEFFICIENTS

Coefficient Value

ao 0.092001558

al -0.092001558

a2 0.092001558

bl -1.594733202

b2 0.692054049

The correctness of the transformation can be verified

6

by testing the frequency response. This is done by

replacing z in H(z) by ej 2nfT where T is the reciprocal

of the sampling frequency. and evaluating the magnitude

of the transfer function at desired frequencies. This

was done on an HP-29C calculator. The program is

listed in Appendix A. The resultant frequency response

is listed in Table 2. For purposes of debugging the

TABLE 2

PREDICTED ANALOG FREQUENCY RESPONSE OF
THE DIGITAL FILTER

Frequency
In Hertz Gain 20Log(Gain)

0 0.94534 -0.488
400 0.99998 -0.000
800 0.56582 -4.946

1600 0.06031 -10 -24.39
2000 1.64 xlO -195.7
6000 0.08397 -21.52

the software, it is desirable to predict the transient

response to a few basic waveforms such as step and pulse

waveforms. A program which will predict such responses

using an HP-29C Calculator is listed in Appendix A. The

responses are listed in Table 3. The primary usage of

the predicted response to these two inputs was in deter

mining the input scaling necessary to avoid saturation

in the actual filter.

7

TABLE 3

PREDICTED STEP AND PULSE
RESPONSE OF DIGITAL FILTER

Step Response Response
Number To Step To Pulse

0 0.0 0.0
1 0.092 0.092
2 0.147 0.055
3 0.262 0.116
4 0.409 0.146
5 0.562 0.154
6 0.706 0.144
7 0.829 0.123
8 0.925 0. 096
9 0.993 0.069

10 1.036 0.043
11 1.057 0. 021
12 1.061 0.004
13 1.052 -0.009
14 1.035 -0.016
15 1.015 -0.020
20 0.938 0.009
25 0.934 0.0023
30 0.945 0.0016
35 0.947 -0.0002

II. OPTIMUM BINP~Y REPRESENTATION

In this chapter the coefficients will be expressed

as sums and differences of powers of two. Using this

method, one can minimize the number of steps required for

a multiplication of the contents of a register by a

coefficient. The coefficients can be converted with as

much precision as desired, but at the expense of time and

memory, hence, a method of investigating the tradeoffs is

considered.

The multiplies are of the form

x(n) = a0 •W(n-l)

where x(n) and w(n-1) are register contents and a0 is

a coefficient. Standard conditional add routines are

possible on the INTEL 2920 but require that every bit

in a register be tested out to the required precision

was~ing instruction cycles on bits which are zero. A

different method was used which exploits the zero bits

by eliminating cycles corresponding to them and by allow

ing subtraction as well as addition. The result is a

much faster multiply which is important in real t~e

applications. This method is only possible if the

coefficients are constant and known at the time of pro

gr~ing. This method is discussed in Intel's 2920

Assembly Language Manual (3). As an example, the

9

coefficient a0 can be approximated as 2- 3 - 2-S - 2-9

+ 2- 12 - z- 15 - 2- 17 - z- 20 , which would evaluate to

0.092001915. This ~ou1d be implemented in software as a

series o£ ad~ition and subtraction with shift operations.

Multiplying a binary number by 2-n corresponds to shift

ing right by n bits. A few of the steps would appear as:

Shift w(n-1) right 3 bits and store in x(n)

Shift w(n-1) right 5 bits ~d subtract from x(n)

Shift w(n-1) right 9 bits ~d subtract from x(n)

Shift w(n-1) right 12 bits and add to x(n)

Etc.

The advantage of this method is that the powers of two

which are not used do not use any program steps or memory

and the use of subtraction as well as addition allows the

approximation to converge on the desired value in fewer

steps. A program for use on an HP-29C to find the binary

representation of the coefficients is listed in Appendix

A. The assembly language manual for the INTEL 2920 (3)

also has an algorithm which yields the same results. The

approximations for the coefficients are listed in Table 4.

The coefficients in Table 4 were specified to at least

-20 -6 1 2 which is less than 10 . The digital to ana og

conversion process consists of sending the nine most

significant bits of the desired register to an analog

to digital converter. The most significant bit is the

sign bit, therefore, the output can be resolved to 2- 8

10

or 0.00390625. In deciding how many bits to use for a

constant several factors must be considered, as even the

least significant bit can affect the ninth bit of the

result by a series of carries. The specification of a

constant therefore involves the probability of affecting

the least significant bit of the result.

The method illustrated here for determining the

required coefficient precision is taken from Crochiere (4)

and modified. The first step is to determine the maximum

allowable shifc in the amplitude response of the filter,

referred to as ~~x· For example, suppose 2.6 KHz is

the frequency where the least margin between the require-

ments and the approximation function exists. Further,

suppose that the filter requirements are to have a loss of

27.5 dB at 2.6 KHz and that the actual loss is 27.53 dB.

~M is 1.454 x 10- 4 in this case. max
The second step is to define the sensitivities of the

response to variations in the coefficients. These sensi-

tivities are found by taking partial derivitives of the

response function with respect to the coefficients. These

derivitives would be tedious to take. The sensitivities

were actually estimated by allowing a coefficient to vary

slightly and calculating the change in the response. The

ratio of change in response to the change in the coeffi

cient is then an estimate of the sensitivity. This rela-

tionship is

s c.
1.

11

= A~(ej wT)

_.6Ci

where Sci is the estimate of the sensitivity, and ci is

one of the coefficients. The advantage of estimating the

sensitivity is that since the response was already pro

gramed it was a simple matter to let the coefficient of

interest vary slightly and to calculate the resultant

change in response. Once the sensitivities are found,

define a variance,

The sensitivity estimates and variance estimates are tabu-

lated in Table 5.

The next step is to define a confidence factor (y),

as the probability that the response will not exceed the

requirements. Using standard normal distribution tables

find x 1 from the relationship that y is the probability

that the unit normally distributed variable x is between

positive and negative x 1 . Some useful confidence factors

and their corresponding value of x 1 are shown in Table 6.

12

The largest allowable quantization step can now be

found from

vu~M
q~ m~

xlsr

q = 2-k

where k = positive integer

The coefficients must be specified to the kth bit beyond

the radix. Some data calculated to investigate the

tradeoffs between precision, confidence factor, and

allowable shift in response are tabulated in Table 7.

A graph of the required number of bits beyond the

radix versus the allowable response change is shown in

Figure 2 with confidence factor as a parameter. The

designer could now inspect his approximation function for

the least margin, and tradeoff probability of remaining

within this margin against program length. It is

suggested here that this result could actually be

decreased for the coefficients which have the least sensi-

tivity at the least margin frequencies. It would not

make sense to waste memory on coefficients which hardly

affect the response.

C
o

e
ff

ic
ie

n
t

TA
BL

E
4

A
PP

R
O

X
IM

A
TE

R

EP
R

ES
EN

TA
TI

O
N

FO

R
FI

L
T

E
R

C

O
E

FF
IC

IE
N

T
S

B
in

ar
y

 A
p

p
ro

x
im

at
io

n

2-3

_
2-

s
_

2-9

+

2-1
2

_

2-1
s

_
2-1

7

_
2-z

o

_ 2
-3

+

 2
-s

 +
 2

-9

_
2-

1
2

+

 2
-1

5

+

 2
-1

7

+
 2

-z
o

S
am

e
a
s

a
0

b
1

_
21

~
2-1

_

2-3
 +

 2-
s

_
2-1

0

_
2-1

8

_
2-1

9

_
2

-2
0

b
z

2-
1

+

 2
-3

 +
 2

-4
 +

 2
-s

 +
 2

-1
1

+

· 2
-1

3

+

2-
1

s
+

 2
-1

1

_
2-

2
1

14

..

TABLE 5

ESTIMATED SENSITIVITY AND VARIANCE

OF RESPONSE TO COEFFICIENTS

Coefficient
(C.)

~

ao
al
a2
bo
bl

Totals
(Variance)

(Sc.) 2 at 2.0 KHz
~

1.583058
1.583058
1.583058 -20
3. 78 X 10_ 11 1.08 X 10

(S)2 at 2.6 KHz
c.
~

0.026316
0.611389
0.026316
0.001020
0.000202

2 ST = 0.66524

15

TABLE 6

CONFIDENCE FACTOR AND CORRESPONDING
NUMBER OF STANDARD DEVIATIONS

Confidence
Factor (y)

0.950
0.980
0.997

Number of Standard
Deviations (x1)

1.96
2.33
3.00

TA
BL

E
7

SE
N

SI
T

IV
IT

Y

DA
TA

A
ss

um
ed

H

y
p

o
th

e
ti

c
a
l

A
tt

e
n

u
a
ti

o
n

O

f
C

o
n

fi
d

e
n

c
e

F
re

q
u

en
cy

D

e
si

re
d

C

h
o

se
n

 A
p

p
ro

x
im

a
ti

o
n

F

a
c
to

r
M

in
im

um

B

it
s

O
f

L
\M

A

tt
e
n

u
a
ti

o
n

F

u
n

c
ti

o
n

(y

)
B

ey
o

n
d

R

ad
ix

m

ax

2
.0

K

hz

15
0

dB

In
fi

n
it

e

.9
5

2

6

.9
8

26

.9

9
7

26

2
.0

K

H
z

10
0

dB

In
fi

n
it

e

.9
5

17

.9

8

18

.9
9

7

18

t-
l

2
.6

 K
H

z
25

dB

2

7
.5

3

dB

.9
5

6

"'
.9

8

6
.9

9
7

6

2
.6

K

H
z

27

dB

2
7

.5
3

dB

.9

5

8
.9

8

8
.9

9
7

9

2
.6

K

H
z

2
7

.5
 d

B
2

7
.5

3

dB

.9
5

14

.9

8

14

.9
9

7

15

Minimum
Required
B:..ts Beyond
Radix

30

20

10

17

.997

Allowable Response
Change ~)

max

Figure 2. Graph of minimum required bits beyond

radix versus ' 'M with confidence factor (y) as
~max

a parameter.

III. SOFTw~~E DEVELOPMENT AIDS

This chapter is devoted to a description of the

~se of the software development aids to prcduce the

:inal version of the software which will be put into

ROM fo~ ~se by the digital filte~ microprocessor.

To cold start the development system and enter

ISIS mode (5);
, Tu~n on the power switches on the disk drive

and the display unit.

Insert an ISIS disk (any disk which has all

the ISIS files on it) into drive zero, (the drive

on the right side) and close the door.

3. Push the reset button. After a few seconds,

the display should read, "ISIS II VERSION 4.0"

To pre?are a disk for use on the development system;

1. Insert a fresh disk into drive one.

2. Type, "FORMA.T :Fl: (na~e) S"

(name) can be any six letters except ISIS commands.

It will take the system a few minutes to format the

ne\'" disk. It will prompt for a new connnand when

finished, by typing a hyphen.

3. Copy all 2920 software files onto the new disk.

19

".Lo do this first type, "DIR 0 I"
I

This will copy a directory of the disk in drive

zero on~o the conscle. Any file name which deals

~ith the 2920 must be copied to your disk. One

such file is S:t--~2920. SFT. To copy this, type,

"CO?Y : FO: 5}12920. SFT TO : Fl: SM2920. SFT"

Repeat this for all 2920 files. Now obtain a

di:--ectory of your disk by typing, "DIR 1 I" and

verify that all 2920 files have been copied to your

~ . ' G.l Sr:. To obtain a permanent record of your direc-

to!""y, type, "DIR 1 I TO :LP:" Turn on the line

printer and press the select burron. The disk in

d=ive zero can now be removed and the newly for-

mat:ec disk inserted there. This is not necessary,

but if done, file names do not need to be preceded

T."'"-i ._ h • t:' /l •
" .I.. 1.. 11 • t as the computer will assume a file is

located i~ drive zero if not preceded with a drive

number. This means less typing for the operator.

To create an assembly le~guage source file for use by

the 2920:

1. Type, "EDIT (name)"

(name) is the name o~ the program to be created such

as DIGF.SRC. The computer should respond by typing,

"ISIS II 7EXT EDITOR VERSION (If)" This is an inter-

acLive p=ogra~ which has a number of commands of its

o~~. which allow the operator to type in new text,

20

make corrections, and save the new or edited program

on disk. To exit back to ISIS, type, "EXIT"

2. Copy your ne~ source program to the line printe~

by typing, "COPY (name) TO : LP:"

To assemble the program invoke the assembler by typing,

''hS2920 (name) (controls) 11 (name) is your program name.

and (~ontrols) are additional commands which tell the

assembler ~hat t)~e, for~t, and name of files to create

during :he assembly process and where to put them (3).

The two end results of interest are a list file and an

b
. ..., o Ject r:.. ... e. The list file is a copy of your source

program line for line, with the associated hexadecimal

object code generated during assembly. It also includes

error messages. Use the ISIS Copy command to copy the

list file to the line printer. The hexadecimal object

code file is the actual code which must be put into 2920

ROM. These two files are created automatically during

assembly and stored on your disk. See (3) for an explana-

tion of the naoes for these two files. If errors were

made, they can be corrected by going back to the text

editor or during the simulation phase. A typical assem

bler listing is included in Appendix B.

It is desirable to simulate the execution of the

2920 software for debugging purposes and to predict the

~espo~se of the filter.

1. To load the simulator program and your object

21

.;·1 ,_J. e; L;tpe, "SM2920.SFT" This calls the simula-

tor program (6). All commands to the simulator

must be terminated with the ESC key.

2. If a record of the simulation session is

desired, type, "LIST (device)" (device) is either

a line printer, disk file, or the consolet and the

listing device may be changed any number of times.

Exam?les~ "LIST:LP:., "LIST "Fl"DIGF.SIM" "LIST :CO:"

3. To load your object program type, "LOAD (name)"

Examples, n~OAD DIGF.HEX" "LOAD :Fl: DIGF.HEX"

4. RO~! a:1d RA....l-1 contents may be e>:amined and

modified at this point.

5. To get ready for simulation, set the input

functio:1s by typing, 11 INf. = (function)" Examples,

"INl = 1" "INl = SIN(TPI*200*T)" The second

example sets the input value ac input one to

.s in (2 rr 2 0 0 t) .

6. Se;: program duration by typing, 11TPROG = (#)"

TPROG is related to clock frequency by;

1 = TPROG 4 X (PROG~~ LENGTH)

~bere fc is the clock frequency and PROGRAM LENGTH

is the number of steps in the program.

7. Set the breakpoint. This tells the computer

when to stop simulation. Typet "B = (CONDITION)"

Examples, "B =NEVER" nB == T GT .004" (stops

22

~hen time is greater than .004 seconds.)

"B = PC = 50" (stops when the program counter

reaches 50.)

8. ~nitialize ~~~locations and DAR to any

desired initial conditions.

9. Set trace. This tells the computer what data

to collect. Type, "TRACE = (string)" (string) is

c string o: variables, expressions, RAM contents,

or nea:rly· anything imaginable which the operator

wants to be recorded. Example, "TRACE = T, RAMO,

INl, RAMS, T/TINST, OUT1 11

10. Set the qualifier. This tells the computer

ta1hen to collect trace. Type, "Q = (condition)"

Examples, "Q = ALWAYS'' (Trace is collected after

each prog::-am step is executed.) 11Q =PC= 8 AND

DAR GT .5° (Collect trace if program counter is

equal to eight and DAR contents exceed 0.5.)

11. To begin. simulation, Type, "S FROM 0" This

resets simulation time to zero.

Or, type, "S" This starts simulation with simu

lation time equal to the time at which simulation

was last stopped. To stop simulation, press the

ESC key. A typical simulation session is listed

in Appendix C.

IV. HARD~~..tillE CONSIDERATIONS A.l® PERFORHANCE

In this chapter, the actual hardwa~e and software

used for the digital filter and the equipment used to

test the response are discussed. There are a number of

considerations to be included in the final software ver

sion which will not be found ciscussed in sufficient

detail in ~ost literature.

In the INTEL Component Data Catalog (1980) it is

mentioned that after a CVTS instruction, the software

must immediately include ADD DAR,KM2,CND6 followed by

two analog NOP instructions (7). This is not mentioned

in the assembly languag~ manual.

It is necessary to include at least two analog NOP

instructions after each CVT instruction. Four or five

consecutive IN or OUT instructions are needed when

accepting input data or sending output data.

The EOP instruction which should reset the program

counter to zero after executing the following three steps

would not acco~lish its purpose in any location except

188, fixing overall program length at 192 steps. The

signal generator used would produce a reasonably good

clock signal only up to about 2.5 MHz. These two unfor

seen circumstances would reduce the sampling rate con

siderably. Four clock cycles are used per instruction.

24

At 2.5 ~ffiz, and 192 steps per program Pass, the

sampling frequency would be about 3.255 KHz. Since the

processing algorithm only occupies 60 program steps it

was possible to replicate the algorithm three times in

192 steps. This raised the sample frequency by a fac

tor of three to about 9.766 KHz. The original sample

frequency used in deriving the coefficients was 12 KHz.

The effect of reducing the sample frequency should be a

do~~ward shift of the passband in the frequency domain

by a facto~ of 0.81380. This was verified by simulation.

The final sof:ware used is listed in Appendix C.

To program the chip, an INTEL Universal Prom Pro-

grammer was used. The procedure is discussed in the

U~iversal P~om Programmer Manual (8), and uses a micro-

processo~ development syscem. The procedure consists

of:

1. Erasing the 2920 EPROM with an ultra-violet
EPRO~ erasez-.
2. On the development system, call the PROM
prog~a~~ing prog~am.

3. Read ~he 2920 hexadecimal coded file into the
development system memory.
4. Read the code from development system memory
into 2920 EPROM.

""" 11 th PROM . type 11 T.JPM." ~o ca e . programm~ng program, -

The program will ask for a device number. The version

of the program available did not recognize the 2920.

Instead, an adapter board ~-1as used which adapts the pins

aud programming of the 2920 to the 2716. The user then

25

.... y~ e s "') ... ,1 o" n
..._) t"- ' L • Now the user types the command, !tREAD

FILE filename Il\TTO 0''. This reads the code from

rr~gnetic disk into development system memory. Lastly,

the user types the cormnand, 1tPROGRAM FROM 0 TO 47FH

START 0 11
• This reads the code from development system

memory into 2920 EPROM.

The test board used to interface to the processor

for response testing is shown schematically in Figure 3.

The board p~ovides an adjustable reference voltage, and

a sample-hold capacitance of about 490 pF. The user

must p~ovide the board with positive five volts, nega-

tive five volts, each at about 70 mA., and a TTL com-

patable offset squarewave signal for the clock. The

signal used was about -0.2 volts on the negative portion

of the cycle, and about +2.0 volts on the postive por-

tion of the cycle.

The setup used to test the response is illustrated

in Figure 4. The list of equipment used appears in

Table 8. The setup was calibrated by checking the gain

or loss of the low pass filter at the measurement fre-

quencies by comparing input and output amplitudes on the

oscilloscope. The digital filter was inserted, the input

and output amplitudes again compared and corrected for

the low pass filter. rieasured and simulated frequency

responses are graphed in Figure 5.

The response to a sudden change or D.C. input

26

lOOK

INPliT

lOK -

5K

100 p F

2.7K ~

~ -- .l,PF -=-

10

-

-=-

100 fL F
_rl

rl
- .. lp F

lOK
lOK

lOK

1 fl F

10

Figure 3. Schematic diagram of 2920 test board.

27

I r"'f I.

1SIGNAL ,_....J ::::J-

GEN
CLOCK 2920 LOW

TEST PASS
INPUT BOARD FILTER

!SIGNAL
GEN ~ - 1 -

·~

5V -=- sv -
j_ j_
- ':-

Figure 4. Digital filter test setup.

28

polarity was measured by using a low frequency squa~e-

wave input of 2.0 vp-p. The predicted and measured

res?onses are graphed in Figure 6.

As seen in Figure 5, the frequency response falls

o=f a little more rapidly than predicted, but it never

falls completely to zero as it should. No null fre

quency or even a dip in gain occured near the zero

frequency. Simulation with identical software shows

that if the processor receives the correct samples and

it is correctly processing them, then the output ampli

tude should be driven to zero at one sixth of the sam

pling frequency. There are either problems in the

conversion processes or in the processor itself. The

shape of the frequency response was improved slightly

by adding additional NOP instructions after each CVT

instruction, however, the gain would still not drop

below the value shown in Figure 5.

For large amplitude, low frequency sinwaves, the

output \vas a good reproduction of the input. It was

noted tha~ there were values of voltage which seemed

to confuse the processor. The output would drastically

overshoot the proper output and then get back on

track a few samples later.

Comparing the predicted and measured responses

to change of input polarity, two discrepancies are

evident. The first output sample efter the polarity

0.5

0.4

0.3

Gain
0.2

0.1

0

' ' '
~

\

500

29

A---APredicted By Simulation

~ Measured

' 'A
'
'~ ..

_____ ...£

1000 1500 2000

Frequency In Hertz

Figure 5. Predicted and measured frequency response.

0.6

11/
I

I

30

/

~4
~ ~IJ.

tl
..... ~

- 4 -A-A-A-~-A

0.4
Output
(Volts)

0.2

0

-0.2

i
I

I

I

I

I

A

t1
I

I

,'0. 5
1:1.

I ,

I
I

I

~
I

I

I

I
I

I

1.0 1.5 2~0
Time in msec

~-----4 Predicted By Simulation

~ Measured

Figure 6. Predicted and measured response to change
of input polarity. (1 volt D.C.)

2.5

31

change is much too high. Also the t~e constant is

longer than predicted. The longer time constant and

the higher passband ripple suggest that the poles of

H(z) have moved toward the unit circle. The too large

first sample would seem to suggest that the numerator

coefficient (a0) is dominating. This means that the

output is not a properly weighted sum of the sample

reg~sters. This could also account for the apparent

disappearance of the zeroes.

There are indications that both the analog and

digital p~ocessing portions of the chip have some bugs

which either need to be worked out or quantized so

as to be accounted and corrected for when designing

systems with the 2920 chip.

32

TABLE 8

LIST OF TEST EQUIPMENT

Clock Generator:

Signal Generator:

Low Pass Filter:

D.C. Supplies:

Oscilloscope:

Exact Model 129 Function Generator
2.5 MHz Squarewave
2.2 Volts p-p
0.9 Volts D.C. Offset

Tektronix FG504 Function Generator

Krohn-Hite Model 3200 Filter

Postive And Negative 5 Volts D.C.

Tektronix Model 561 Mainfr~e
3B3 Time Base
3AG Dual Trace Amplifier

V. CONCLUSION

The purpose of this paper was to illustrate the design

a~d implementation of a real time digital filter. The

coefficients were chosen based upon an approximation func

tion and a sampling rate. The chosen sample rate could

not be attained. O~dinarily, this would mean deriving a

new set of coefficients. In this case the resultant fre

quency response was predicted and the experiment continued.

The coefficients were converted to a binary approximation

form which minimized required memory space and program

steps. A method of estimating the required precision to

which the coefficients must be specified was investigated.

Software was chen created for the 2920 using development

aids. The software was then debugged using a simulator

program. The response of the filter was predicted for

a variety of input waveforms. The software was programed

into the 2920 chip and the response of the chip was

~easured in the laboratory.

The derivation of the coefficients follows standard

procedures, and presented no problems. The major item

of co~cern is the chance of error in calculating the

coefficients. Hence, there is great need to verify

the frequency response before creating software.

34

Writing the software requires a bit of forethought

in arranging the multiplication steps to avoid satura

tion. Also, the assembly language manual does not

include several software requirements.

The simulator program is a tremendous asset, both

in the initial software debugging, and in predicting the

response changes due to a parameter change such as chang

ing the sample frequency.

The 2920 chip could be used as a programable feed

back compensator where gain and time response are required.

With its present performance characteristics it is not

suited to an application where adherance to a tight

frequency response specification in the stop band is

required. To use it in any application will require

further investigation into how to account for the dis

crepancies between the predicted and actual responses in

the design of software.

The digital filter will continue to invade areas

~~hich were formerly strictly analog. Chips such as the

2920 will undoubtedly become commonplace in extensive

applica~ions. As the quality and performance of these

chips improves, the benefits of digital filtering will

begin to manifest themselves even in real time systems,

and eventually out-perform analog systems.

35

APPENDIX A

This section contains programs for use on an HP-29C

calculator. Included are the program steps and the

instructions for use.

This

the form

PROGRAM FOR CALCULATING THE
STEADY STATE FREQUENCY RESPONSE

program assumes a second order section

+ a z-l -2
H(z)

ao 1 + a 2z
=

+ b z-l -2 1 + b 2 z 1

The program steps are listed in Table 9

TABLE 9

of

LIST OF HP29C PROGRM1 STEPS FOR FREQUENCY RESPONSE

g LEL 0
g x2 g RAD f SIN + 2 RCL .0 STO 4 RCL .1 g X

X RCL 3 X RCL 5
gr, 2 RCL 3 +
X X 2 RCL 4
2 f cos X .
X RCL 0 f SIN g 1/x
STO 3 X + 2

f-yr-

f SIN STO 5 g X
RCL 1 RCL 3 STO 5 R/S
X : cos RCL 3 f Log
STO 4 RCL 1 2 2
RCL 3 X X 0
2 RCL 2 f cos X
v + RCL 3 R/S
'~
f SIN RCL 5 f cos GTO 0
RCL 0 + 2 RCL .1
X g X X
RCL 4 STO + 4 +
+ RCL 3 RCL . 2

36

To initialize, store the coefficients in the locations

given in Table 10, along with the saople time (T).

To use,

1.
2.
3.

4 .

5 .

TABLE 10

HP-29C COEFFICIEh~ STORAGE LOCATIONS
FOR FREQUENCY RESPONSE

Quantity

follow these steps:

Key in g/RTN.

Storage Register

0
1
2
. 1
. 2

. 0

Key in desired cyclic frequency.
Kev in R/S.
Wh~n execution stops, the display
will be the gain at the frequency
specified in step 2.
Key in R/S.
When execution stops, the display
will be the gain in decibels.
For new data, go to step 2.

37

PROGPJili TO CHECK THE RESPONSE TO STEP,

PULSE, SQUARE-vJAVE, AND SINEWAVE INPUTS

This program generates input test functions and

implements the digital filter, displaying the output

samples. It can be used to predict the filter's response

for pu=poses of debugging the software.

To get the program ready for use, store the indicated

data in the appropriate locations listed in Table 11.

TABLE 11

HP-29C STORAGE LOCATIONS FOR COEFFICIENTS
AND TEST DATA FOR SIMULATION

Quantity

ao
al
a2
bl
bz

Frequency of
Test Function

Amplitude of
Test Function

Storage Register

. 0
1
2
3
4

.2

.3

To initialize at the oth sample, key in the following

strokes:

0
STO 5
STO 6
STO 7
STO 8

38

To use the program follow these steps:

1. Store in register 0 the following values accord-

ing to the test function desired.

(1) if sinewave is desired

(2) if step function is desired

(3) if pulse is desired

(4) if square wave is desired

2. Key in g RTN

3. Key in R/S
\men processing stops, the output sample will be
displayed.

4. For next output sample, go to step 3.

5. Fo~ ne~ test function, or new coefficients, go

to the appropriate data entering sequence.

The program steps are listed in Table 12.

39

TABLE 12

PROGRAM STEPS FOR

SIMULATION ON HP-29C

g LBL 0 RCL 5 RCL .3 +
GSB i STO 6 STO 5 f INT
RCL 7 RCL .0 g RTN 1
RCL 4 X g LBL 3 CHS
CHS STO + 8 0 X~~
X g LBL 1 STO 5 f y
STO + 5 RCL 9 RCL 9 RCL . 3
RCL 6 RCL .1 g X 0 X
RCL 3 X g RTN STO 5
CHS RCL . 2 RCL .3 g RTN
X X STO 5
STO + 5 2 g RTN
RCL 7 X g LBL 4
RCL 2 g;r RCL 9
X X RCL .1
STO 8 f SIN X
RCL 6 RCL .3 RCL .2
STO 7 X X
RCL 1 STO 5 g FRAC
X g RTN .
STO + 8 g LBL 2 5

40
\ :

Program to Calculate Binary Constant

Progra~ steps:

g LBL 0
RCL 0
RCL 1

R/S
ENTER
2
x--v
f -yx
X~ y
g X> 0
GTO 2
x~y

STO - 1
GTO 3
g LBL 2
X~ y
STO + 1
g LBL 3
RCL 1
R/S
GTO 0

From Decimal Constant

To initialize:

1. Store decimal constant in
register 0.

2. Initialize register 1
at zero.

To use:

1. Key in g RTN.
2. Key in R/S.

When execution stops, the dis
play will be the error between
the binary approximation and
the desired coefficient.

3. From a table of powers of two.
pick an integer n such that
2n is closest to the absolute
value of the error.

4. Write down the sign of the
error and 2n.

5. Key in the value of n.
6. Key in R/S.

wnen execution stops, the dis
play will be the current value
of the binary approximation.

7. Go to step 2 and check to see
if the error is small enough.
If not, continue.

APPENDIX B

An assembler listing is automatically created when

the source program is assembled. It can be printed by

typing the command, "COPY DGFLTR·. LST TO : LP:" (DGFLTR..

LST was the name of the list. file created in the assembly

process in this example.) The assember listing that

resulted in this case is:

IS I S-1 I 2m ftSSEJfl.ER '11.. 8

R5581UR ItNG<ED ~: RS292e DG=l TR. SRC DEEUi flfAGINj

Lite LOC OOJECT 5ClRCE STATEJSIT

1 ; 292e DIGITfl. FILTER ~
2 ; THIS 15 A SEC(Kl ~ FIL iER
3 ; Hft8£NTRTICtl IS DIRECT Feet 1
4
5 ; CCEFFICIENTS fE f6 FCUCilS
6 i AS=. 992981.558
7 ;A1=-R8
8 i R2=ff5
9 ; B1 =-1. S947n282

18 ; 82= . 692854849
11
12 i THIS GI'/5 ~ Bl.IPTIC FILTER WilH
D ; ZERl£5 AT 2tliZ
14
15 ; FORHAT IS AS Ftl.L(l6
if ; LqaEJ..: OPCOOE DESTINAil~J SO!.RCS SHIFT~ fffLOO

u 42
iS
!.9 e 9eOOEF c~JT 1
2e 1 9e'382f' LI>M m ~ ~~. cur1
21 2 ~ sus m wn n5J OUT1
22] ~ :liB m WtL R?-...., OUT1
2J
24
25
26

j tfM: ftJOED Ei:TRA tfl>'S, IN'$, OUT Is TO ALLOW
i SlFFIC I 00 SETr ~ING THE fK) TO PREVENT CROSSiFLK.

27 4 4898EF rG
28 5 4eflEF P«)p

29 6 4eeeEF ~
38 ? 1eeeEF IN1
l1 8 1eeeEF IN1
32 9 1aeeEF INi
n 1~ ieesct' Fro m ~ '..8L I Hi
34 u 1.0084 c A:."' m ~ ~11 f(1

12 ~ LDA IDPI WN. ill
13 42888t fl)O m l'BP; ~

; lfi(GE SHIFT ~OOIRES 00 STEPS JS
~
J7
39

ifU.TI?l"Y ~ ~ fm ST~ IN~

J9
48
41
42
43
44
45
46
47
4S
49
~
51
52
5J

; PlL TIPL V -B2 * 1.Pt1 Ftl> FDO TO >Of
14 ~ LDR IDFI~R13
1s ~ 9..S m ~ ReL C\'TS
16 EBE6ED FCliJ DAR, K£ ReS, CH)6 i NOT PalTIOtED IN
1? 4eeeEF N:f ; ~IP«J tHlR. fliT
1B 4eeeEF P«P ; REOOI~ <TI£.SE J STEPS)

S4

iS 42984A Ste m ifij, RS3
2e 7l886A SU3 m ~ R94, c:fl7
2i 4eeeEF PIP
22 4~ stB m tftl.., R8S
23 638848 ~ m WHL ~ CVT6
24 428888 s..ra m lftL R13
t5 4~ SJ.E m IDf, R92 ; lfi(GE SHIFT

55
5t

; lt.l TIPt.. 'f R2 * ~ fH) STCRE IN ~
2€ SJ184E LDA ~ ~ Rn CVT5

Si' Z? 4aeE£F fl.f
ss 28 421~ sua YM, WHL ReS
SS 29 4 31EQ1 Sl.E 'itt WHL ReS, CVT 4
68 3S 4eeeEF ~
61 31 421860 fttl m~R12
62 32 :meeaF LDA IDlP, YNs ~ cvn
6J 33 42182A 5JJ3 ~ ID'fl Re2
64 J4 4~88R stS YNJ IDf I R8S ;00 ~SHIFTS
6S
66
S7
68

.i I'll. TIPl'r' P.1 • WN ~ fl'O TO 'T'N
35 2!188C ADD YN.. ~. R£t5, CVT2

69 36 4~ ~DP

?g 37 ~18-iP. Sl:C '"'-· ~ R83
-:--~ ;.s: .11 ~8~V F;r.; ·~ .. ~ .. ~9. C~'!i

72 ~ 4tn.~·;:: SUE· 'T'H} ~; lli2
74 41 85~S'ff !.DR I:Jf'J Hr-L. RDJ C\:-18
?5 4~ 421B~'C ®) 'fti., TE.WF~ Re2
76 4 3 4 2180C roo vt<. TBf~ R'tt5
. ...,
{ I

43

.: nr. ~ SHIFTS

79 ~ ~ ~ m ~ Re5 i tfiYE ~TUD li-f\JT B'f 1/12 TJ AVOID 0\of.RFLCJl
88 ; ~ WN ~ aJftETE FW ~!DING IN ~
8:!.
82 i rtlTI~ ... Y Ae * !'N fKl AOO TO ~
sz ~5 ~194C F«· ~~ m Re:?
B4 46 4ei~ ~ ~v >'Ji., Re5
~ 47 4!1 ~ S'~ ~ ~11) R89
~ 48 4ei~'t' ~ YN. :z:.'t R12
87 ~9 ~ L~ iE~,)t1{. R13

ss se ~21~ ~'9 YN.. 78'J'J R82
89 51 4.?!8&'1 5tB lf.i TB"?, ReS
98
~ 52 411ffiF LDA ·~} ~ ~ ~lJ? i sal.ING B'r' 16

:4
?5 .: SMI~ P..L REGISTERS
96 54 ~ LOO J.llL ~ R98
97 S5 43((ff LM ~ >>L R98
~ 56 ~te=' EO?
QC ~ 400i£.F ~
i~ 5S 4(~ Nr.F
1~ 59 ~ ... ~.: Hi.f'
182 8¥..>

SVlSJL: 'M.LE:

AS~ Y CQPft£TE
~ = e
~!W'JS = a
Rf-!'5 I Z:: = 5
R~!~ = 6e

APPENDIX C

Simulation Session

*; TOORY'S DATE IS 7 OCTCSER l..98e
•
•

* *;nus IS ft(EXfffU: Cf A SI!tl.ATI~ SESSI~

•
*.: 11£ SHU.ATOR WAS I~ BY TWI~ •St'292e. SFT'

*
*; TI£ ~IL£ PF~ CREATED DlRitli RSSEPB... Y WILl

*L(fiP G...ITCH. I£X

•
*; THAT TOOY. A9lJT 45 SE~

•
*; Tl£ ROf1 LOCATIONS Cfti tE L()XED AT
*ROP1 8 ~ 5
RO~ eee = LDA . :«,. m Ree~ NCf
ROM 891 = L.DP. . >Ot. . m R88~ tiP
~ 002 = LDA. m. XN..Ree~NF
ROM 003 = LDA . :xli, . m R881 t«f
ROM ~ = LDA . m . m Ree~ OOT1

•; TH! S PRINTED ruT 1l£ FIRST FIYE RC\'1 LOCATIONS

•
*
*
~ e LEN LQ2 ; THIS Will. PRINT OOT flL 192 Ret! CONTENTS
~ eee = LDA . m.)Ot R88~ P«JP
~ ee1 = LDA .m.mRee~~
~ 002 = LDA . m . m Rae~ NCf
ROM BfG = LDA . XN.. . m Ree~ HOP
ROf1 004 = LDA . ~ .. :«. Re81 fJJT1
ROM BBS = LDf1 . m . l-fi, RiB} M1
ROr'l Bl36 = SL~ . XN. .. l.Jl-L ReS~ OUTi
RO~~ B€t7 = SUE . Xfi, . rst. Re!... OUTi
RO~ 0(18 = LDP. . ~:N) . XN_, ROO .. NOP
ROt~ ~t3? = LDR . ~11 ... :l-L Rae) h{lP

45

R':!M 818 ::: LOR . XH. .. m ROO,~
~ f11! = !..Df! . m . m Rae, INi
ROf!i e-<...2 = LDA . m . m. Ree, INi
ROfil Bi3 = L!JA . >X . »L Ree, INi
~ 814 = fl)[) . m. ~ LeL IH1
~ 815 = fi)D . m . ilL RSJ, IN1
~ 816 = LOA . IDf, . j,~t R13J t-lP
ro1 817 = FOO . m . T£Pif, ReS~ NJP
~ 918 : LDA . T8f' L WNL PJ3., f(f

~ ~-.9 = 9-B . m. ~ R91.,CVTS
RCfi 829 = FOO ~ 00 Rae, 01>6
Ret! 82i = LDA . m . m Rea, NF
~ 822 = LDR . XN.. . m P.ee, NP
~ 823 = 9.£ . m. WNL R83, NCP
RCI1 824 = SUB . m . WNi, R94, CVT7
ROt1 825 = LDA . m . m Ree, t«J>
~ 826 =SUB .m.~ReS~NJP
~ 827 = SlE . xtt, . lflL W.., CVT6
~ 828 = StE .m.~R11NF
~ 829 = StB .m. ~~~t«F
~ 8l8 = lDA . lr% . lfiL R8:1 CVTS
RDf!t BJi = LDA . m . m Ree, MF
~ 832 = StE. ~.lflL ReS,~
R(J1 en = SlS . YN.. . WNL R89, CYT 4
~ 834 = LDA . m . m Re& NCP
~ eJS = fl)() . 'r'tt . ~ R12 N:P
~ 836 = LDA . ~~. ~ R13, CVT3
~ 937 : 9._8 . YN, . ~I R82_, tiP
Rt1t 838 = ~ . YN,. IDP, ~ NF
R01 8J9 = fi)D . 'r% . ~ R95, CVT2
~ 948 = LDA .m.mR98,NCP
~ 841 = SI..B . ytt. ~ Rel, tlP
RCI1 842 = f[)[l . 'itt . 1ft R89, M1
R{lll 843 = LDA . m. m Ree, ~
Rtl1 8« = sta . ~'H, . 1ft R12, P(f

R01 945 = LDA . T8f> I • ~ R13, M8
ROf1 946 = ADO . YN, . T81P I ~ PfJP
~ 947 = fi>O. ~- IDP .. ~HCf
Rtl1 948 = FOO . >at ~ R85, NF
R01 949 = fl'D . ~. m R81 NF
~ ese = StJ3 . m., . XN.. ReS, NF
RDf1 es1 = Sle . m. m rm, P«F
ROf1 852 = fi>D . YtL . m R12 N:f
~ 853 = LDA . IDP~. m Rfi NP
~ 854 = gj8. ~- TEf>,~~

~ ass = SJ..e • YN, . T81P~ ReS, P¥JP
ROf1 856 = LDA. ""-'. vtLL~~
ROf1 857 = LDA ~ . 1'L L82, NCf
ROf1 ess = LDA . ~ . wtt ReB, ~"lP
ROr1 859 = LDA . WN. •. m Ree .. NOP

46

ROM 068 = LDA . m 0 X1-L ROO~ OOP
ROM 961 = LDA 0 m 0 m Rae~ ~
ROM 962 = LDA . m . m ReB~ NCP
ROf1 963 = LDR . >:~~ 0 ~. Rae~ ~
ROf!f 964 = LDA . ;«, . m Reed[IP
RCf1 865 = LDA . m, . m Ree~ t(rP

~ ~6 = LDA . m . m ROO, tiP
~ e67 = lM 0 m 0 m Ree, ro:>
R!J1 068 = LDA . XN, . m Rea, OUT1
~ 969 = LDA . m . IlL Riel OOT1
RCf1 87e = SLe . :XX, • ~ ~ OOT1
Ref! B71 = st.e . m . J.Jt Rei, OOT 1
Ref! en = LDA . m . m Ree~ NJP
RtJt en = LDR . »t . m Rae~ MJP
~ e74 = LDA. m. mRee~t«P
~ e?S = LDA. m. mRee~ INi
~ 976 = LDA. m. ~ReS~ oo.
rrn1 en = LOA . m . m Ree~ Dt1.
RCI1 878 = fttO . m . WPt LBL Ht1
~ m = fi>D . m. Jll, Re~ IN1
ro. 888 = l.DA . IDF I • 1ft R13 .. t«F
~ 9S1 = FOO. m. IDP~ ReS~ tiP
R01 882 = lDA . ID1PI . ~ R12 t«F
~ 982 = SlE . m . lftL R8L CVTS
R(J1 884 = F£tO DfR, 00 ROO~ 006
~ 885 = LDA . m. m Ree, f(}P

~ ea6 = LDA .m.mRee .. NP
~ 887 = Sl9 . XN, . lfH... R83 .. t(f

R(J1 888 = SUB . :xlt . ~ R94~ CVT7
ROI1 889 = LDA . m . m R881 fo(JP

RCff 998 = SlJB .)elL • ~ R9S .. tiF
ROt1 891 = SlB . m . ~ pjj_. CVT6
Ra1 892 = SJ.B . m.~w~~

RCt1 893 = St£ . m . IDP~ m ttY
~ 894 = LDA . 'r% . lft1, RBJ.. cvrs
~ 895 = LDA . m . m Ree~ t«:f
~ 896 = Sle . ~ ... ~ReS~ NF
~ 997 = SlE . ~- j.M_, R89,CVT4
~ 898 = LDA . m . m Ree, HCf
~ 899 = fl)() . 'T't . ~ Ri2 tiP
ro. 188 = LDA . ref>, . YN, R13 .. CVT3
R(Jt 181 = Sl6 . 'r'tt . TEJ!FI ~ t(JP

~ 1.92 : SlE . ~ . 'T'eP1 ReS.. t«P
~ 193 = fOO . '1% . l-It R851 CVT2
R01 194 = LDA . XH.. . m R98, NCP
~ 1e5 = SUB . 'r'tL . j.gt Re1 r«P
ROJ1 186 = ADD . 't't-L . W!'L R89~ M 1
ROM 197 = LDA . XN.. . Xlt Rae .. HOP
~ 188 = SUE . 'r~ 0 wtL R12 ~
ROM 189 = LDA . IDf I • lrtL Ri.J, CVT8

47

""ROM 1.i B = AOO . YH, . TFfP) R€2 l'l1P
RO!'! ill = ~ . YN... IDf .. ReS~~
~~ !.12 = ~ . ~Ji, Off.:.. Re5} HCf
~ ill = FOO . ~ . m Re3 .. NCP
~ 1!4 = SUB . \%. m Res, t«P
ROI-1 us = sua . 'r% . m R99~ NP
~ 116 = f[IO. ~- »tR12tlf
Rr!1 117 = LDA . mf~ . m w~ P«F
R{Jt 118 : Sle . Yft , TE1? I R92., ..:lP
Ret! 1i9 = SlB . Ytt . 'IDP, R8S1 NP
R01 12e = LOA . Ytt . YtL L82., ~
~ 121 = LDA ~ . 'r% L~ flP
~ 122 = LDA . WNL . WPt Rae~ tO'
RCf1 123 = LDA . ~J. m Reel Kf
Ra1124 = LDR. m. m~t«F
~ L?S = LDA . m . m Reel M:P
~ 126 = LDA . m . m ReS .. t(f
~ 127 = LDA. m. mR98~tlf
R{JI! L?S = LDA . m . m Rae~ t«P
Rai 129-= LDA. m. m~P«.P
~ 138 = LDA. m. m Ree~Nt:F
ROP1 131 = LOA . >aL . m R98, t«lP
RrJ1 132 = LDA . m . m Ree~ oor1
ReP! 133 = LDA . m . ~ Rie~ oor1
~ 134 = stB . m . WPL ~ oor1
RCJ1 135 = 5U3 • m . WPL ReL oor1
Rn'1 136 = LDA . m . m R98, NF
Rtl1 137 = LDA . m . m Ree~ Plf
~ 138 = LDA .m.mRee,NP
~ 139 =LOA. m. mR99 .. IH1
~ 1~ = LDA . m. m Ree, INi
~ 141 = LDA . m. m Ree, IN1
Ra1 142 = fDD . m . 1ft L8L Itt!.
~ 143 = fOO . :«,. WN.. Rel1 IN1
~ 144 = LDA . TEJIF 1 . ~ R1J1 tlJP
R01 145 = fi>O . m . T'EJif, ReS, MJP .
ROM 146 = L.£:;fl • iEJIP I • lrfH... R131 N:f
~ 147 = s:IA3 . m .llfL RBL C'flS
Rfll 148 = fOO ~ 00 Reel 006
Ra1149 = LDA. m. mR88~ ~
~ 158 = LDA .m.mR88,~
R(Jit 151 = SL~ . m . ~ RaJ, NCf
R(J! 152 = SlS . ~ . ~ RS4, M7
m! 153 = LDA . m. :4tReedlP
ROt1 154 = StE . m . lftL ReS, tlf
RCfi 155 = StB . m . WHL R11., CVT 6
Rtl1 156 = st~ . m . lftL RE~ ta
RCfl 157 = SJ..e . m . IDfl J R82.. NCP
~ 158 = LDA . ypt. ~ Re3J CVT5
~ 159 = LDA. m .. m~t«P

48

F:~ 168 = 9JE' . \'tL . J.tl1: Res~ t-«JP
Pt)f i61 = 9..18 . 'r~. ~ Re9~ CVT4
RrJM 162 = LDA . m. ~Rea~ P«F
ROP1 163 = ADD . m . WNL Ri2 HCf
ROX 164 = LDA . ~~. ~ R13J CVT3
~ 165 = StE . ypt . IDPI R82.. NF
~ 166 = Sle . ~. TBFI RBSI N(p

~ 167 = fi>O. ~. ~~CVT2
ROM i6B = LDft . m . m ReB~ tfP
~ 169 = Sle . 'r'N, . lriL Rel} NJP
ROM 178 = ftlO . ~.lit. R99~ CVT1
RDt1 171 = LDA . m . m Ree, N:f
RCI1 172 = SUB . Ytt . hK R12 t{P

~ 173 = LDA . T8f' 1 • lit R!J, M8
~ 174 = FOO. m. IDf,~~
~ 175 = f{)O . ~. TEJ1P, Re51 tlf
ro1 176 = fi>D . m ~ ReS, tiP
~ 177 = ~ . 'r'N.. . m ReJ~ ta
ROM 1?8 = SlS . YPL . m ReS~~
~ 179 = StE. ~- m Re9,P«f
RaP! 188 = FOO . '1% . m R12 tf:f
Fn1 181 = LDP. . IDf ~ . m w~ tlP
ro. 182 = SUB . '1% • IDf~ ~ ~
ROf1 183 = ~ . YN, • TEMP 1 R8S1 t«P
RCI1 184 = LDA . ~ . 'Mt L~ tiP
RrJ1 185 = LDA ~. lr% L~ MF
Ref! 186 = LDA . ~ . !It R881 NP
RCI1 187 = LDA . ~-R . m Ree, OOP
~ 1.88 = LDA. m. mRee~ E<P
~ !.89 = LDA . m . ~ ReS, tiP .
RQtlt L~ = LOA . m . m Ree~ ta
RaPt L~ = LDA . m. m R881 Plf

*
*
*
•; WILL ~ SET I~ AT 1 F~ STEP RESro6E

•
•IPH. = 1
*
*i f£XT 1l£ ~ lX.RATI CJl WILL BE SET
*; TIHS WILL DETIR!1Il£ n£ Sflfl..E FREllECV
*; THE CLOCK FREQlENCV IS 2. 5 rtiZ
•; LQ2 STEPS PER ~ PASS
*; FOOR O..OCK tlQES PER STEP
•; PROGRAt1 Dl.Fl1TION IS 2. 5 ftiZ/(4 X 192)

*
•TPROG = 2Se00ael< 4*LQ2)

*TPROG ; THIS WILL ~'ERIFY

TPROG = 12552082£+3

49

•
_..; Mi tHST~ ~ THAT lri1S THE PROORftt-t FP..EQI..el.~.

* * TF'ROG = 4*1_qz;:-'5e0008
*~ ; YERIF'r'
T?ROO = e. 00938?28
*E't'fl.IJ1TE 1/TPROG ; .,{R IFY

3. 2SS2882E.,. J I 2552882E+ J 1 2552982E+ l

*i fCTUfL S?.f>LE FR£gacy IS Tim Tlf£5 AS FRST
*i BECP.'JSE THERE f9.E 1WH Sff1PlES TFf(EN PER PASS

*
t.: EVfllfHE 3/TPROO
~LfiTE 3/iPROG

9. 765624SE+3 9. 7656248E+3 9. 7656248E+3

•; n£ SfrtDf..£ FffQlEHCY IS 9. 7656248 KHZ

•
*; 11£ ~!NT WILL Pf)i BE SET. THIS TEll5 Tit
•. CCtf'UTER wt-9 TO STCf SHtlRTHii
*
*S = PEV£R i SII1llATI~ WILL Hal CGIT!Nl£ OOIL THE USER PRESSES
* ; TI£ ESCAPE KEV.
*B
-~AKPOHt"i = f£\Q

•; Tl£ !HITIFL C(HllTiflo:S ttJST BE SET
*Rfif18T05=9
*RFm e ~ 5 ; 'fERIFV INITlFLIZRTION AT ZERO
Rfl1 ~ = e.~
~ 81 = e. eeeeeeee
~ 62 = e. eeeeeeee
~83= 8.~

Rffi 94 = e.~
•
~ = 8 i lNITlftlZE ~ AT ZERO

*
*
*i SETTING TRfCE TEllS TtE crn-f',.rrER ~T DATA TO cru.ECT .

•
* TRfn: = T J C.Uri ; TI£ CH.. Y DATA cru.ECTED Fm PRINlED
* ; WILL BE TH£ FH> OOTPUT

*
t; SETiit«l THE (lfLIFIER TELLS THE CflPt.JliR t.JEN TO CCllECT DATA

*
*G = PC = 7 OR PC = 71 OR PC = n5

* * i TRACE WILL BE COL!.ECTED AT n£ 00 OF E.'1CH ct.ITPUT SE~

*
*i ALL REHDY FOR SII1l.ILRT!ON

*S ~ B;
T

SIJUI..RTI~ BEW4
8. eae81128
e. 0094...1368
e. 9f$821698
8. ~11848
8. ~{.8813
e.~'8

e.~

e. aeensee
e.eooa~
e. 00893288
8. ~8:?52e
e. 8B1.137te
e. ed124898
8. e813424e
8. 88144488
e. 99154?2e
8. ee164968
e. ~75288
8. 88185448
a eeLQ5688
8. ee285929
e. Be216168
e. ee226488
e. 882J664e
8. 86246888
8. e8257129
8. 98267l68
8. 88277688
e. 98287848
8.~

8 89398328
B.Beli856B
aee~

e. ee32984e
e. 98349289
8. ~359528
e. 88369768
e. ~Jseeee
e. 8339624e

PROLESING ~TED

50

CUT1

8.~
· a 84296875

e. 8783125e
a. i28986Z5
e. 28Ji2Sff3
e.~

8. 3515625e
8.41486258
e. 46893750
9. 49699375
8.51~~
e. 52734375
8.52734375
8.5234J?Se
e. 51~
e.se~~
e. 49689375
e. ~37588
e. 47~
e. 4726$25 ·
e. 4687See8
e.~J?S

a. 46484375
e. 46484:r?S
8. 46484375
8. 46484375
8. 464S4J7S
8. 46S7S888
e. 46875eee
e. 46875eee
a 4726$25
e. 47265625
e. 472656Zj

e. 472656...'5
8. 47265625
8.~

e. 47265625
8. 47265625
8.4~"5

w.cP.N C6: t-a.t£ER ~T BETWEEN -i fH) +1

51

•INi = -i i CHfH3E PCLARITV
~eros=e
*DAR = a
.s FRtJt e

T
Sif1t.UITI~ BE~
e.~

8. 9981136e
B. eee216ee
8.88831848
8.~2888
e. 998S2J29
8. eee62568
e. eeensee
e. eeesJ94e
8. eee93288
8. 89183528
e. 881.13768
e. 88124898
e. 88134248
8. 8e144488
e. ee154728
e. 88164968
e. 88175288
e. 88185448
e. 881SS688
e. 99285928

.e.Be216168
e. 88226488
8. 88236648
e. B824688e
e. 98257128
e. 88267368
8. 98277689
e. 88287848
8. 98298888
8. 88388329
8. 88318568
8. 88328899
8. 98339848
8. 88349288

PROCESS I N3 ,.,.,.ABOP.~. TED

•
*
*
•
*
*RAf'l e ro s = e

OOT1

8.
-e.~....ee

-8.87421875
~.13281258
-8. 28783125
-e. 28125eee
-e. JSS46875
~. 41486258
-e. 46e9J758
-e.4969937S
-i3.5~125

-8. 52734375
-e. 531.25998
-e. S27J437S
-e. S19Sl12S
-a S87812S8
~- 49699375
-e. 48828125
-a 48846875
-9.4~
-6.468~
-e. 46484l7S
-e. 46484l7S
-e. 46484375
-e. 46484375
-e. 4687S888
-8.468~

-e. 4687seee
-e. 47265625
-9.4~"'5

-8.47265625
-9.4~

-e. 47265625
·-e.4~

-8.47265625

52

*
*; THIS WILL SH<1I TRANS I 00 fWD STEADY STATE RESPONSE

*
* -s~ e

T
SitU..ATI~ BEGJf

8. eeee1129
e.~

8.~688
e. fBJ3181t8
8. 88942888
e. ee852J28
e. 88962568
e. eeensee
e. 8888384e
e. eeemse
8. 89183528
8. 88113768
8. 98124888
e. 9813424e
e. 88144488
8. 88154728
8. 88164968
8. 881?S298
8. 88185448
e. 89195688
8.~Q2@

8. 88216168
8. 88226488
8. 982l6648
e. 88246888
8.~
e.~
8. 88277688
e. 88287848
8. 88298888
8. 98388328
8. 88318568
e. 89328888
8. 983l9948
B. 88l492S8
e. 88359529
8.98369768
e. 98388900
8.9939e248
8. 8e4ee48e
8. 88419728
e. 89429968

OOT1

a.eeeeeeae
8. tf3399625
8.83515625
8.87931259
e. 11718758
8.16496258
8.1875Em!
8.17968758
e. 13671875
e. 86648625

-e. 91171875
-e. 87421.875
-e. 18156258
-a 88984375
-e. 8429687'5
8.81171875
e. esesrns
8. 87421875
8. e54687S8
8. 88781258

-e. 84687S88
-8. 88S9l7'58
.a 88984175
-e.~
-9. 98781258
8. 84687S98
e. ess9l7S8
8. 88984l7S
8.85859375
e. 88399625

-e. 85878125
-e. 8859~
-e. 88593759
-e. 85878125

8. 88399625
e. e54687S8
8.88593758
e. 9829l12S
e. 94296875

-8.81171875
-e.9625888e
-8.88984375

e. Be4JL?Be
e. e&«i44e
e. 98451688
8. 9946L028
e. 884721.68
e. 994824ee
e. 96492648
8. 885e2888
8. 98513128
e. 88S2n68
8. 885ll68e
e. 98543848
e. 88554888
B. 88564328
9. ees74568
9. 98584888
8. 885.,Q5948

8. 88685288
PROCESS!~~ l'!l"t.~TED~

•
• •

53

-e. BS2e3125
~- e~"'Se

8. 81562598
8. e6648625
B. 98984375
e. 87812588
e. 83125(93

-e. 8234J?Se
-e. 87421875
-e. 88984J7S
-e. 87421875
-e.82734l7S

8. 83L?S888
e. 87421875
8. 88984375
a~

e. 9195l125
-e. 8l9e625e

-•IN1- = SIN<TPI*1627. ~f)- -~FREQtECV a:: ·ItFUT IS 16276 KHZ
* j TI£ ClJTPUT srmD [)R(f TO ZERO AT THIS
•
~ 9 TO 5 = 8
~=e

•
•
-s FD e

T
SIIURTI~ SEa..

8. 88881129
9. 98811368
8.~
9. 88831848
e. 88&42888
e. eeesme
e. 88862568
8. 88872888
9. 99883948
8. 88893288
e. 8818~'9
8.88113768
e. 88124898
e. 88jJ424e
e. 89144488
e. 00154728
e. e8164968
e. eei?S2ee

; FRECl.e£V .

ruTi

e.
e. 89781258
8. 85878125
8. 87831L~
e. 8S28312S
a e7S12598
e. 87831258
8. 95468758
8. 84296875
B. 82734J7S
8. 815625e8
e. ee398625

-8.88398625
-a.ee781258
-e. 91171875
-e. 91171875
~- 81171875
-e. 91171875

e. 8818544e
8. eeLOS688
e. ee28592e
e. 88216168
8. 88226488
e.~

e. 88246888
8. 882S7128
8. 8e257368
8. 98277688
e. 98287848
e. 98298888
B. 98388328
e. ee318568
8. ~328888
8. 89339848
8. ee349288
e. ee359528

PROCESS INi FBRTED
-tXIT

54

-e. t¥3781258
-e. e878125e
-9. 00398625
~.eel98625
8.
e.eeeeeeee
e. eeeeeeee
8.89lQ3898
a. eeeeeeee
e.~
8.~
8.~
e.eeeeeeea
8. 00000000
e. ooeeoooo
e.~
e.E8Xm3e
e.eeeeeeee

55

LIST OF REFERENCES

1. Daryanani, G. Princinles of Active Network
Svnthesis and Design. New York: Wiley, 1976,
113.

2. Stanley, W. D. Digital Signal Processing. Reston,
Virginia: Reston Publishing Company, 1975,
168-176.

3. 2920 Assembly Language Manual. Santa Clara, Califor
nia: Intel Corporation, 1980.

~- C~ochiere, R. E. "A New Statistical Approach to the
Coefficient Word/Length Problem for Digital
Filters." IEEE Transactions on Circuits and
Systems CAS-22 (March 1975): 190-191.

5. ISIS II System User's Guide. Santa Clara, California:
Intel Corporation, 1977.

6. 2920 Simulator Vser's Guide. Santa Clara, California:
Intel Corpo~at~on, 1979.

7. Intel Component Data Cat~log,(l980). Santa Clara,
California: Intel Corporat~on, 1980.

8. Universal Prom Programer Manual. Santa Clara,
Cal~forn~a: Intel Corporation, 1980.

	A Real Time Microprocessor Based Digital Filter Implementation
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENT
	iii

	PREFACE
	iv
	v

	TABLE OF CONTENTS
	vi

	LIST OF TABLES
	vii

	LIST OF FIGURES
	viii

	INTRODUCTION
	01
	02
	03

	CHAPTER I. DIGITAL FILTER COEFFICIENTS
	04
	05
	06
	07

	CHAPTER II. OPTIMUM BINARY REPRESENTATION
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17

	CHAPTER III. SOFTWARE DEVELOPMENT AIDS
	18
	19
	20
	21
	22

	CHAPTER IV. HARDWARE CONSIDERATIONS AND PERFORMANCE
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

	CHAPTER V. CONCLUSIONS
	33
	34

	APPENDIX A
	35
	36
	37
	38
	39
	40

	APPENDIX B
	41
	42
	43

	APPENDIX C
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54

	LIST OF REFERENCES
	55

