
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1986

The Gate Array Implementation of an Area Calculation Pipeline The Gate Array Implementation of an Area Calculation Pipeline

Edward J. Janssen
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Janssen, Edward J., "The Gate Array Implementation of an Area Calculation Pipeline" (1986).
Retrospective Theses and Dissertations. 4973.
https://stars.library.ucf.edu/rtd/4973

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4973?utm_source=stars.library.ucf.edu%2Frtd%2F4973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

THE GATE ARRAY IMPLEMENTATION
OF AN AREA CALCULATION PIPELINE

BY

EDWARD JOSEPH JANSSEN
B.S.E.E., University of Florida, 1980

RESEARCH REPORT

Submitted in partial fulfillment of the requirements
for the Master of Science degree in Engineering

in the Graduate Studies Program
of the College of Engineering
University of Central Florida

Orlando, Florida

Summer Term
1986

ABSTRACT

A gate array is a semi-custom designed integrated cir

cuit. The integrated circuit is designed by a customer and

then turned over to a vendor to be manufactured. A single

gate array is capable of replacing a full board or more of

SSI and MSI components.

An area calculation path of a special purpose computer

was designed into a gate array. LSI Logic Corporation was

used as the vendor. The gate array was designed and then

simulated with the Tegas Description Language. The simu

lation revealed a worst case timing problem which was cor

rected by adding an additional stage in the pipeline. The

additional stage increased the time a first result is avail

able at the output of the pipeline, but did not effect the

rate at which successive results are available. The simu

lation and actual gate array prototype were proven with a

calculated set of test vectors.

The benefit of using gate arrays comes from reduced

costs and increased reliability.

TABLE OF CONTENTS

LIST OF TABLES .

LIST OF FIGURES

INTRODUCTION . . .

Chapter
I. THE DESIGN

II.

Choosing a Vendor
Definition of a Pipeline
The Area Calculation Pipeline to

Implemented
Pipeline Section l
Pipeline Section 2
Layout of the Gate Array Design

DESIGN SIMULATION .
Simulation Using TDL
Design Verification

be

iv

v

l

4
4
5

7
9

l9
26

29
29
3l

III. TESTING THE GATE ARRAY 37
Testing Before Prototype Fabrication 37
Testing the Gate Array Prototypes JS

IV. BENEFITS OF USING A GATE ARRAY INSTEAD OF
SSI AND MSI DEVICES 4l

v. SUMMARY

BIBLIOGRAPHY . .

iii

43

44

LIST OF TABLES

l. Calculation Pipeline Inputs . ll

2. Calculation Pipeline Outputs 12

3. Selection of Area Values in the AREAMUX
Sub-Module 15

4. Conditions Governing Values of Areas A, B and C . 22

iv

LIST OF FIGURES

l. Fictional System
2. Fictional System With Pipeline Registers .

3. Time Function Diagram of the Fictional System

4. Block Diagram of the Area Calculation
Pipeline (ACF)

5. Block Diagram of Area AI Calculation

6. AHPL Description of AREAMUX

7. AHPL Description of DELTA

8. AHPL Description of NDELTA ...

9. AHPL Description of NAREA

lO. AHPL Description of AI Calculation

ll. Block Diagram of CALC

l2. AHPL Description of CALC .

l3. Time Function Diagram of the ACF

l4. Design Breakdown of ACF into Sub-modules

l5. Network Skeleton File

l6. Verification Output

l7. Block Diagram of CALC With Output Pipeline
Registers

6

6

8

lO

l4

l6

l7

l8

20

2l

23

24

25

27

30

JJ

J4

l8. Time Function Diagram of ACF With Modified CALC. . 35

AHPL Description of CALC With Additional
Pipeline Register

v

INTRODUCTION

Gate arrays have been around since the mid 60's. But

because of a lack of standardization in design, simulation,

and test in those years, gate array usage did not become

widespread until recent years (Hartmann l980).

A gate array is a semi-custom integrated circuit .

Wafers are produced in large quantities as a cellular ar

rangement of logic elements. At this point, the gate array

is 70% complete . It is the final metalizing state of the

gate array which creates the semi-custom design. Gate ar

rays are available with densities from several hundred to

l0 , 000 gates ; a gate being most commonly defined as the

equivalent of a two-input NAND or NOR gate (Hartmann l980).

The high density capabilities on a single chip enable

a gate array to replace a full board of standard family com-

ponents . As a result, gate array usage can result in cost

savings by lowering both inventory and spare requirements .

Another positive aspect of gate arrays is -the increase in

reliability by reducing component quantity (Pitts l98l).

But on the negative side, the semi - custom design as

pect of gate arrays result in large initial non-recurring

engineering (NRE) costs. In order for the use of a gate

array to be practical from a cost standpoint, the customer

must plan on purchasing a large enough quantity of gate ar

rays to offset these NRE costs. Depending upon the appli

cation, gate arrays may begin showing savings after l,000

pieces (Pitts 1981).

A boom in the gate array industry took place in 1978

when IBM used gate array technology in their 4300 series

computers. This use along with others proved gate arrays

to be practical from a reliability standpoint.

With proven reliability and the potential of cost

savings, gate array use has increased. Estimates show that

gate array use was 1% of the bipolar digital market in 1980

and 4% in 1984 (Hartmann 1980).

In an effort to stay on top of advancing technology

and reduce production costs, gate arrays have become an

important part of present day logic systems. One such

system, a special purpose computer (SPC), which had prev

iously been designed with TTL technology, was investigated

for possible gate array applications. The number of these

special purpose computers to be produced was estimated at

300. Therefore any gate array application which was to

show a savings would have to be one of multiple use.

2

A calculation pipeline which is used eight times per

system was found to be a good candidate for the gate array

application. The purpose of this report is to describe the

design, simulation, testing, and benefits of a pipeline

algorithm gate array using the SPC calculation pipeline as

an example.

3

CHAPTER I

THE DESIGN

Choosing a Vendor

The first step in the design process was to choose a

vendor. This step was important before beginning the de

sign, because most vendors now have their own logic li

braries of predesigned functional elements, usually called

macrocells or macrofunctions, which are used as building

blocks to create a design. Switching between two vendors'

libraries may not be an easy task.

Three vendors were considered; General Electric,

Motorola, and LSI Logic Corporation (LSI). The first im

portant point considered was that of education in gate ar

ray design. All three vendors offered gate array design

courses to educate the first time gate array designer.

When the gate array pipeline design began, General Electric

did not source a gate array containing enough gates to meet

the expected density of the design, and was ruled out.

Motorola and LSI both had gate arrays with enough density;

so their macrocell libraries were considered next.

LSI Logic Corporation has an extensive library of

functional elements which closely resemble the TTL 7400

series family and LSI has an impressive success rate of

4

5

first time working designs. Motorola's library did not re

semble the 7400 series as closely as LSI. Thus, LSI Logic

Corporation was chosen as the vendor.

The LSI Logic Corporation gate array used, was the

LL5240. The LL5240 is a three micron CMOS chip with a max

imum of 4,200 usable gates. The LL5240 has TTL compatible

input and output buffers which this design required (LSI

1983) .

Definition of a Pipeline

A pipeline can be described as an array or string of

registers that contain arguments for which computations are

in various stages of completion (Hill 1978). A pipeline is

formed by using pipeline registers to split a system into

smaller functional sections. This can result in increased

system speed. For example consider the fictional system

shown in Figure 1.

The total time (Ttotal) through this fictional system

is 100 nanoseconds (ns) from "data in" to "data out." Be

cause of the different time required by each function, no

new data may be input until the present set of data has

been completely processed. (i.e., the input operation re-

quires lOns; but if a new set of inputs were introduced at

the end of the lOns, the first set of data being processed

by function 1, which takes JOns, would be destroyed before

Data Input Function Function Output Data
In Out Operation ' 1 ' 2 ' Operation ' / / / /

0 10 40 60 100

Figure 1. Fictional System

Data Pipe- Input Pipe- Ftmc- Pipe- Fune- Pipe- Output Data
In line line line line Out

Reg- Oper- Reg- ti on Reg- ti on Reg- Op er-
ister a ti on ister 1 ister 2 ister a ti on

R Rl R2 R

0 10 70 80 100 120 160

Figure 2. Fictional System With Pipeline Registers

its processing had finished). Therefore, "data out" is

only valid every lOOns. Now consider the fictional system

of Figure 2, which is the same system as shown in Figure l,

but to which pipeline registers have been added. As can be

seen in Figure 2, the pipeline registers act as buffers be-

tween the functional areas; therefore, if data is input

every clock time (40ns), at the end of each clock time

valid data is present at the output of each functional

area, or stage. Since the slowest function (T) of this slow
system is the output operation, the shortest system clock

period allowed is 40ns. If data is input every 40ns, the

first set of data through the system takes l60ns, but every

subsequent set of data will be valid every 40ns. The ef

fective speedup, Tt t l/T l , is four . This is shown o a s ow
graphically in Figure 3 (Siewiorek l982).

7

For the fictional system described, the pipeline sys

tem clock rate was determined by the slowest functional

area. Pipelines may also be designed to fit required clock

rates. The clock rate of the area calculation pipeline will

be 8.JJMHz or a period of l20ns. Since this pipeline has

already been designed with TTL logic, the required position

of pipeline registers is known.

The Area Calculation Pipeline to be Implemented

Each clock time, the SPC calculated, in parallel, four

sequential sets of data. One area calculation pipeline (ACP)

Functional Area

Input Operation

Function 1

Function 2

Output Operation

Data Valid

Time(ns)

Data Data
1 2

I RO I

Rl

0 40

Data
J

RO

Rl Rl

R2 R2

RJ

Data Data Data
1 2 J

80 120 160 200 240

Figure J. Time Function Diagram of the Fictional System.

8

9

is part of the overall calculation pipeline for each set

of data. The sets of data are accumulated for 250 clock

times so that a total of lOOO sequential sets of data are

calculated. The lOOO accumulated sets then become a lOOO

pixel raster line for a video display.

The purpose of the ACP is to calculate the values of

three areas, A, B, and C, from preliminary information about

areas A and B. The ACP is primarily a series of multiplex-

ing and addition operations based upon control inputs. The

control inputs to each ACP depend upon which of the four

sets of data is being calculated by that ACP. The deter

mination of these control inputs occur before the ACP and

will not be discussed in this report. The calculation is

done in two steps. The ACP is therefore broken into two

sections as shown in Figure 4. The first step, or section,

is the parallel calculation of the intermediate values AI

and BI of areas A and B. The second section calculates the

final values of A, B, and c. The symbols for the inputs to

the ACP are described by Table l, and the symbols for the

outputs are described by Table 2.

Pipeline Section l

As was previously stated, section l performs the par-

allel calculation of AI and BI. These two calculations are

functionally identical; so for the present, only the calcu-

lation of AI will be discussed. The calculation of AI can

AS

AA

DAJ

ABF

MXZI
ALUS¢
ALUS2
MSA
MSB
MSD

BS

BA

DBJ

--

-
-

-

-

--

-

-

,---------1
1 (PIPELINE SECTION 1)1

I
I
I

I BlOJ I

I 5' (CALCULATIO~ I
I OF 5 I I

I AREA AI)
I

I 15 I I
I I .
I I

I ;--:- I

I I
I I

I I

I
I

I '-- Bl OJ I

I I (CALCULATIO~
I

I OF
I AREA BI) I I I 5

I
I

I 5
I i

I

I 15
I I
L ___ _ _____ J

PXA0

PX Al ' ~
'

ABFI
I

8
AI CALC

l

(PIPELINE SECTION ~
,

8 8
BI

I

/ 8 '8

PXB~

PXBl .I
~

Figure 4. Block Diagram of the Area Calculation Pipeline (ACP).

AO --

BO
~

co --

INPUT

AS

AA

DAJ

BS

BA

DBJ

ABF

ALUS¢

ALUS2

MSA

MSB

MSD

TABLE 1

CALCULATION PIPELINE INPUTS

DESCRIPTION

First possible initial value of area A

Second possible initial value of area A

Incremental change in area A

First possible initial value of area B

Second possible initial value of area B

Incremental change in area B

Area priority flag

Control used to calculate multiples of
DAJ and DBJ

Control used to calculate multiples of
DAJ and DBJ

Mux control used between AS, a new AA,

11

an old AA, or the last value of area A

Mux control used between AS, a new AA,
an old AA, or the last value of area A

Mux control used to select old or new
value of DAJ and DBJ

12

TABLE 2

CALCULATION PIPELINE OUTPUTS

OUTPUT DESCRIPTION

AO The resulting area of A

BO The resulting area of B

co The resulting area of c

PXAO Set to one if AO is zero, otherwise set to
zero

PX Al Set to one if AO is equal to .FF16' otherwise
set to zero

PXBO Set to one if BO is zero, otherwise set to
zero

PX Bl Set to one if BO is equal to .FFl6' otherwise
set to zero

be broken into four functional areas as shown in Figure 5.

AHFL will be used to describe these functions (Hill l978).

The first function, AREANIUX, is basically a four-to

one mux. One of the four values, AS, AA, registered AA

(AAR), or SA, is selected based on the values of control

inputs MSAR and MSBR, as shown in Table 3. An AHFL des

cription of AREANIUX is given in Figure 6.

l3

The second functional area, DELTA, selects a value,

DS, from a two-to-one mux choosing between the values of

DAJ and registered DAJ (DAJR). This selection is based on

control input MSDR. DELTA also registers some control sig

nals used throughout the ACF. An AHFL description of DELTA

is shown in Figure 7.

The third functional area is NDELTA. NDELTA first

calculates multiples of 1, 2, 3, and 4 times the value se

lected by DELTA and then performs a four-to-one mux oper

ation of these multiples based on the values of control in

puts ALUS~R and ALUS2R. The selection of the multiples de

pends upon which one of the four sequential data sets the

particular ACF is calculating. An AHFL description of NDELTA

is given in Figure 8.

The final functional area of the first pipeline sec

tion is NAREA. NAREA performs a summation of the outputs of

MSD

/

AREAMUX NAREA
, SA ,

...- -
l2 STOR- 4 : 1 ..,___ __ AM--.-.' -----~0IPELINE A L w

: 51AA ~~~- ~ MUX 'it'. REGISTER- D 0 8 ,- AI_
~ D G PXA¢ _

E ~ I
_ /AS or I
• I D J. PEL NE R c PXAl -

5 MSAR I ' REGISTER -

MSBR

DELTA

ABFS !PIPELINE I ABFI _
- --+--+--ii REG ISTER.J_

MSA STORAGE MSAR
MSB - I I MSBR NDELTA
ALUS¢ '5 REGISTER 4 ALUS¢R
ALUS2 f , ALUS2R .---L~ 4x

DAJ =- / STOR- ---- DS 0 2x
15 AGE .. 2: 1 \ G

REG . MUX I 3x
ABFS I ("1

-- l.-..\.4.- lx
ALUS¢R

ABF -~T-....... ,..____...
....__.. __ --

MSDR ALUS2R

4 : 1
MUX L/'

I

--+-------'

Figure 5. Block Diagram of Area AI Calculation.

TABLE 3

SELECTION OF AREA VALUES IN THE AREAMUX SUB-MODULE

INPUTS AREA SELECTED

MSAR MSBR

0

0

l

l

0

l

0

l

SA

AA Registered

AA

AS

l5

MODULE: AREAMUX
MEMORY:
INPUTS:

OUTPUTS:

AR [5]
AS [5J ; AA [5]
MSAR: MSBR

AM[8]

SA [l~

1. AR~AA;
AM= (SA!(AR,7T¢)!(AA,?T¢)!(AS,7T¢))*DCD(MSAR,MSBR)

END SEQUENCE
END

Figure 6. AHPL Description of AREAMUX.

16

MODULE: DELTA
MEMORY: MSAR; MSBR; ALUS¢R; ALUS2R; MSDR;

DAJR (1_5] ; ABFR
INPUTS: MSD; MSA; MSB; ALUS¢; ALUS2; DAJ[j_5];

ABF

17

OUTPUTS: MSAR; MSBR; ALUS¢R; ALUS2R; ABFS; DS ~5-J

1. MSDR ~ MSD; MSAR ~ MSA; MSBR 4-- MSB; ALUS,0R ~ ALUS¢;
ALUS2R~ ALUS2; ABFR ~ABF; DAJR +-DAJ;
ABFS = (ABFR!ABF)*(MSDR, MSDR); DS = (DAJRtDAJ) *
(MSDR, MSDR)

END SEQUENCE
END

Figure 7. AHPL Description of DELTA.

MODULE: NDELTA
INPUTS:
OUTPUTS:

ALUS¢R; ALUS2R; DS [lS]
D [l5]

l. D = (DS!(DSl:l4 ,o)!(ADD(DS;DSl:l4 ,o))!(DS2 :l4 ,2TO))*
DCD(ALUS¢R,ALUS2)

END SEQUENCE
END

l8

Comment: The values of DS times two and four are created by
shifting DS one and two times respectively. The
value of three times DS is created by adding DS to
two times DS.

Figure 8. AHPL Description of NDELTA.

AREAMUX and NDELTA. If the resulting sum is negative, the

sum is clamped to zero. If the sum is greater than one, it

will be clamped to an eight bit binary fractional represen

tation of one (.111111112); if between zero and a fractional

one value, the sum will be unchanged. Two other outputs of

NAREA are PXA¢ and PXAl. PXA¢ is set to one if the sum is

zero otherwise it is clamped to zero. PXAl is set to one if

the sum is a fractional one. An AHPL description of NAREA

is shown in Figure 9.

A complete AHPL description of the calculation of AI is

given in Figure lO.

pipeline section 1.

One pipeline register is required by

CALC.

Pipeline Section 2

AI, BI, and ABFI are the inputs to pipeline section 2,

CALC determines the values of areas A, B, and C. The

sum of A, B, and C is required to equal an eight-bit binary

fractional one (.llllllll2 or .FF16). This is because the

three areas will be used to determine the color of the pix

els of the 1000 raster line. Each pixel has a unity value.

The values of A, B, and C are calculated based on AI, BI,

and the state of the control flag, ABFI, as shown in Table

4. The block diagram of CALC in Figure 11 shows the use of

one pipeline register stage. The AHPL code which describes

CALC is shown in Figure 12. A time function diagram of the

ACP is shown in Figure lJ. Notice in Figure 13, that there

MODULE: NAREA
MEMORY: AMR [l~ ; DR ~51 ; ABFSR
INPUTS: AM tl?J .. ; D (i_5; ; ABFS
OUTPUTS: AI ~J; PXA¢; PXAl; ABFI;
BUS: SA Q_~ ;

1. AMR +-AM; DR +-D; ABFSR +-ABFS;
SA = ADD(AMR;DRO:ll); AI =SAO:?; PXAl =A/AI;

PXA¢ = V/AI; ABFI = ABFSR

END SEQUENCE
END

Figure 9. AHPL Description of NAREA.

20

21

MODULE: AI CALCULATION
MEMORY: AR 5 ; MSAR; MSBR; ALUS¢R; ALUS2R; MSDR;

DAJR [15] ; ABFR; AMR [12] ; DR (15] ; ABFSR
INPUTS : AA (5] ; AS [5] ; MSD; MSA; MSB; ALUS¢, ALUS2;

DAJ [15] ; ABF
OUTPUTS: AI [8] ; PXA¢; PXAl; ABFI
BUSES : AM [12] ; ABFS ; DS [15= ; D (15] ; SA [12]

1. AR~ AA; MSDR~ MSD; MSAR~ MSA; MSBR~MSB;
ALUS¢R ~ ALUS,¢; ALUS2R ~ ALUS2; ABFR~ ABF; DAJR~ DAJ;
AM= (SA!(AR,7T,¢)~(AA,7T,¢)!(AS,7T¢))*DCD(MSAR,MSBR);

ABFS = (ABFR!ABF)*(MSDR,MSDR);

DS = (DAJR!DAJ)*(MSDR,MSDR);

D = (DS!DS 1 : 14 ,o)~(ADD(DS;DS 1 : 14 ,o))!(DS2 : 14 ,2T¢))*
DCD(ALUS,¢R,ALUS2R);

AMR~AM; DR~D; ABFSR~ABFS;

SA= ADD(AMR;DRO:ll); AI= SAO:?; PXAl =/\/AI;
PXA,¢ ~ V/AI; ABFI ~ ABFSR

END SEQUENCE
END

Figure 10. AHPL Description of AI Calculation.

22

TABLE 4

CONDITIONS GOVERNING VALUES OF AREAS A, B, AND C

CONDITIONS VALUE OF AREAS

AI + BI< .FFl6 A = AI
B - BI -
c - .FF16 (AI -+ BI) -

AI + BI 2= .FFl6' A = AI
ABFI - 0 B = .FFl6 AI -

c = 0

> A = .FF16 - BI AI + BI . FF l6' B = BI ABFI - l - c = 0

2:1 A
MUX 8

AI
8

PIPELINE 2:1 B
BI REGISTER MUX 8

8
8 2:1 c -ABFI GND MUX 8

ABFI 8

ADDER

OVB

ov
OVA

Figure 11. Block Diagram of CALC.

MODULE: CALC
MEMORY: AIR [8]; BI~[8]; ABFIR
INPUTS: AI LB] ; BI [8] ; ABFI
OUTPUTS: A [8] ; B [8j ; C [8]
BUSES : CI [9j

1. AIR ~AI; BIR <::--BI; ABFIR +- ABFI;
CI= ADD(¢,AIR; ¢,BIR); A= (AIR!BIR) * ((ABFIRACI 0),

(ABFIR ACI 0)) ;

B - (BIR!AIR) * ((_A_B_F-IR-~DI 0), (ABFIRvCI
0
));

c = (Cil:8!8T¢) * (Cia,Cio)

END SEQUENCE
END

Figure 12. AHPL Description of CALC.

24

Functional Area

Pipeline Register
of Stage Before ACP

AREAMUX } DELTA
NDELTA

Pipeline Register

NAREA

Pipeline Register

CALC

Data Valid to Stage
After ACP

Time(ns)

Data
1

RO

0

Data
2

RO

Rl

120

Data
3

RO

Rl Rl

240
325

R2

360
445

480
565

Figure 13. Time Function Diagram of the ACP.

25

26

is an estimated 85ns between the output of the pipeline reg

ister of CALC to the time the data is valid for the stage

following ACP. This time was estimated using TTL technology.

This is the estimated time to complete CALC function. This

time is also part of the 120ns set-up time for the following

stage.

Layout of the Gate Array Design

The first step in laying out a gate array is to break

the design into small functional areas or modules. This

step becomes important when testing the gate array. It is

much easier to debug a gate array test simulation if the

overall simulation is composed of smaller functional simu

lations which can be tested independently. The ACF was

first broken into the two major pipeline sections previ-

ously discussed. Section 1 was broken into two modules,

called BlOJ, to calculate AI and BI. The modules which cal

culate AI and BI are functionally identical. The only dif

ference is that ABFI is not used in the BI calculation

module. BlOJ was further broken down into the functional

sub-modules; AREAMUX, DELTA, NDELTA, and NAREA. Section 2

was considered basic enough and not broken into sub-modules.

The design breakdown is shown in Figure 14.

The next gate array design step is to design each sub

module with macrocells. As stated before, LSI was used as

--A DATA
AND CON TROLS

-B DATA
AND CON TROLS

-·
"'REAIVIUX NAREA

BlOJ I
-- DELTA i- NDELTA ~

AI

ABFI CALC

BI

------ .. -,_ __ ~·-

AREAMUX - NAREA

I Bl03
l
.\
I
(

~ NDELTA t~~-LTA - ABFI (NC)
VPAC

Figure 14. Design Breakdown of ACF Into Sub-modules.

PXA¢ _
PXAl _ -

A -
B --
c --

PXB¢ _ -PXBl ---..

the vendor. LSI's macrocell library, which closely resem

bles the TTL 7400 series logic family, is described by

their CMOS Macrocell Manual (LSI 1983).

28

CHAPTER II

DESIGN SIMULATION

Under the LDS system of LSI Logic Corporation, the

simulation of a gate array begins by describing the array

using the Tegas Description Language (TDL). The design is

then verified by a Design Verification Program before test

ing begins.

Simulation Using TDL

Each module of the design must be described with a

Network Description File (NET File). A skeleton example of

the NET File is shown in Figure 15. The NET File describes

the module in terms of inputs, outputs, bidirectional sig

nals, wireand signals, a brief module description, and net-

work interconnection description. The input, output, bi

direct and wireand sections are just listings of the signals

of each type. The network interconnection description is

accomplished by using a TDL statement to describe each

macrocell which makes up the module. The basic macrocell

description statement is

Macrocell Name = Macrocell Type
(list of inputs)$ (LSI 1983).

The macrocell name is determined by the designer.

29

COMPILE
DIRECTORY
OPTIONS

MODULE
$

INPUTS
$

OUTPUTS
$

BIDIRECT
$

DESCRIPTION
$

LEVEL

USE

,WIREDAND

$

WIRED

DEFINE

END
END
END

MASTER
REPLACE, XREF * $

30

"l: -- ENTER MODULE NAME WITH USER ID -------"

"2: -- ENTER INPUTS, SEPARATED BY COMMAS

"3: -- ENTER OUTPUTS, SEPARATED BY COMMAS

"4: -- ENTER BIDIRECTS, SEPARATED BY COMMAS

"5: -- ENTER MODULE DESCRIPTION

FUNCTION

"6: -- ENTER MACROCELLS, MACROFUNCTIONS USED

=WAND (2,l ~ TRISTATE, SETZZ)

USE WIREDAND $

"7:

MODULE
COMPILE
TDL

ENTER NETWORK INTERCONNECT

Figure l5. Network Skeleton File.

"

"

"

"

"

"

31

NET Files are first written for each sub-module, and

then using these sub-module NET Files much like sub-routines

NET Files are written for the major modules. The major mod

ules are then pulled together by one final NET File which

describes the entire gate array. In the case of the ACP,

the final NET File was called VPAC.

The next step is to compile the NET Files. The com

piling of the NET Files will check for any syntax or naming

errors which might occur in the NET File. Obviously the NET

Files for the sub-modules AREAMUX, DELTA, NDELTA, and NAREA

must compile correctly before Bl03 will compile. Likewise,

the NET Files for Bl03 and CALC must compile correctly be

fore the VPAC NET File will compile.

Design Verification

Once the complete NET File design compiles, it will be

verified. The verification is accomplished by use of the

LDS Design Verification Program. The verification program

uses estimated wire lengths to check propagation delay times

between macrocells, number of gates used, number of input/

output pins used, percentage of wiring which can be accom

plished by automatic layout and provides a connection cross

reference list for the gate array. The results of the VPAC

verification showed a use of 2,683 gates for design and 588

gates for routing, for a total of 3,271 or 78% of the maxi

mum 4,200 usable gates. LSI Logic Corporation recommends

'

32

using no more than 75% to 85% to avoid routing difficulties.

VPAC required 60 input, 28 output, 4 grounds, and 4 power

(-5Vdc) pins for a total of 96. This meant that the stan

dard 101 pin grid package could be used. The verification

output for VPAC is shown in Figure 16.

The use of the estimated propagation delay times

pointed out a timing problem. Because CMOS is slower than

TTL , the outputs of VPAC were not fast enough. The outputs

of the ACF feed several other levels of combinational logic

in the special purpose computer before being registered.

The slower output of the ACP gate array combined with the

propagation delay of the logic following the ACF would not

meet the l20ns clock period requirement. This problem was

solved by adding another stage in the ACF. A pipeline reg

ister was added to the output of CALC. The block diagram

changed from that shown in Figure 12 to that of Figure 17.

The time diagram of the new ACF is shown in Figure 18 and

the new AHPL description is given in Figure 19. The sig

nificance of adding this additional pipeline register is that

Ttotal is now J60ns instead of J25ns, as shown in Figure 13,

and CALC ends with a complete stage instead of in the mid-

dle of a stage. This means there is a full clock period

set-up time between the output of CALC and the pipeline reg-

ister of the next stage.

configuration is three.

The effective speedup of the final

T
1

is still l20ns.
s ow

33

LDS-II DESIGN VERIFIER NETWORK SUlYIIVIARY

Project ID:
Array Name:
Array Type:

Current Date:
Date 'CNET VPAc·:
CMOS5K Library Date:

LIA0605
VPAC
LSI5420

03/14/84
02/22/84
02/20/84

LDS Account Name:
Directory Name:
Array Family:

LlA0605S
LlA0605S
CMOS5K

Current Time: 09:55:07
Time 'CNET VPAC 1

: 17:58:00
CMOS5K Library Revision:2.12

NETWORK STATISTICS BEFORE CELL DELETIONS

Number of Input Pads: 60
Number of Output Pads: 28
Number of Bidirect. Pads: 0
Min. No. Power/Ground Pads: 4
Total Array Pads Used:
Available Chip Pads:
Available Package Pins:

Cell Inputs To VDD:
Number of Signal Nets:

14~
152

58
1679

Number of Cell Types: 20
Number of Cells Used: 1747
Number of Gates Used: 3247
Array Usage (Per Cent):95.98
Minimum No. VDD Pins: 2
Minimum No. VSS Pins: 2
Package Pins Used: 92

Cell Inputs to VSS: 294
No. of Unc. Cell Outputs:258

Average Pins/Net: 3.038 Maximum Pins/Net:

NETWORK STATISTICS AFTER CELL DELETIONS

Number of Input Pads:
Number of Output Pads:
Number of Bidirect. Pads:
Min. No. Power/Ground Pads:

60
28

0
4

92

Number of Cell Types: 20
Number of Cells Used: 1413
Number of Gates Used: 2683
Array Usage (Per Cent) :77.87
Minimum No. VDD Pins: 2 Total Array Pads Used:

Available Chip Pads:
Available Package Pins:

Cell Inputs to VDD:
Number of Signal Nets:

Average Pins/Net:

148
152

50
1388

Minimum No. VSS Pins: 2
Package Pins Used: 92

Cell Inputs To VSS: 93
No. of Unc. Cell Outputs:207

3.087 Maximum Pins/Net:

DELAY VALUES ESTIMATED FOR COM'L, WORST CASE (70 DEG.O, VDD-
4. 75V)

WIREABILITY MEASURE FOR AUTOMATIC LAYOUT: 86.34

Figure 16. Verification Output.

2:1

MUX
AP A

PIPE- 8 BP LINE B

CP REG. 8 c
2:1 8

AI MUX

BI PIPELINE

ABFI REGISTER 8

-L__
CI 2:1

ADDER MUX

ov

OVB

OVA

Figure 17. Block Diagram of CALC With Output Pipeline Registers.

Functional Area

Data Data Data
1 2 3

Pipeline Register RO ~ RO of Stage Before ACP

AREAJVIUX}
DELTA
NDELTA

Pipeline Register Rl Rl

NAREA

Pipeline Register R2

CALC

Output Pipeline Register

Data Valid t 1'

Time(ns)
0 120 240 360 480

Figure 18. Time Function Diagram of ACP
With Modified CALC.

35

RJ

1'.

600

MODULE: CALC With Second Pipeline Register
MEMORY: AIR [8] ; BIR [8] ; ABFIR; APR [8] ; BPR [8] ;

CPR [8]
INPUTS : AI [8] ; BI [8] ; ABFI
OUTPUTS: A_l8] ; B [81 ; C [8]
BUSES: CI [9] ; AP [8] ; BP LBJ ; CP [8]

1. AIR ~·AI ; BIR ~BI; ABFIR ~ ABFI;
CI= ADD(¢,AIR; ¢,BIR);

AP - (AIR! BIR) * ((ABFIR.A.CI 0) , (ABFIR'\CI 0)) ;

BP - (BIR!AIR) * ((ABFIRACio),(ABFIRVCio));

CP - (Cil:S!8T¢) * (CI 0 , CI 0)

APR ~·AP ; BPR ~ BP; CPR ~ CP;
A = APR; B = BPR; C = CPR

END SEQUENCE
END

Figure 19. AHPL Description of CALC With
Additional Pipeline Register.

36

CHAPTER III

TESTING THE GATE ARRAY

No less important than the gate array design is the

task of testing the gate array. With the possible gate

count of arrays reaching as high as 10,000, the need for

built-in diagnostics becomes very important. The question

also arises if a set of test vectors should be complete or

adequate.

The test of the VPAC gate array as with any gate array

was broken into two sections. These two sections are the

tests conducted before prototype fabrication and the tests

conducted after prototype fabrication.

Testing Before Prototype Fabrication

After correct compilation of the NET File for each

sub-module, input and output test vectors were hand

calculated for that module. The input test vectors were

then input to a Sentry tester to produce output vectors.

The output vectors were compared against those calculated.

When it was determined that these were correct, BlOJ, CALC,

and finally VPAC were tested in the same manner.

The decision was made to test VPAC with adequate test

vectors instead of complete. Adequate vectors test the

37

38

gate array functionally but do not test every possible pat

tern as do complete test vectors. This choice was made be

cause the VPAC design had already been proven with TTL

technology.

The input test vectors were the same used to previ

ously test the same design in TTL technology. The input

signal SLRT was used to clear the registers of VPAC in order

to start in a known state. The input vectors could then be

used by the Sentry tester to generate output vectors. The

Sentry outputs were then compared against those taken from

the TTL implementation.

When outputs from the two implementations matched, AC

and DC tests were made. AC tests were made to check propa

gation delays and timing skews. The DC test yields a list

of parameters such as VIL, VIH, IIL, IIH, VOL, VOH, IOZ,

and IDD for the inputs and outputs of the gate array (LSI,

1983).

Testing the Gate Array Prototypes

At this point, the design phase is complete. The prop

er acceptance forms were signed by both customer and vendor.

Modifications were made to an existing special purpose com

puter to prepare for the gate array.

Testing of the prototype gate arrays was done in sev-

eral ways. The first test was a visual one. Since the out-

39

put of this gate array is eventually displayed on a video

monitor, the video was inspected for any signs that the gate

array was not functioning as expected. Several video test

patterns, such as gray scales of vertical and horizontal

bars, were viewed. No flaws were observed.

In the special purpose computer, there is an input

memory used just before the gate arrays. This memory was

loaded with the test vectors. The data was then allowed to

flow through the gate arrays. Since there are no data snap

shot points at the output of the gate arrays, a logic ana

lyzer was used to check the outputs.

The second method of testing was to apply the test

vectors used to check the gate array simulation. The out

puts of the prototype gate arrays matched completely the

outputs which were given by the simulation and special pur-

pose computer before modification.

Next, the inputs and the outputs of the gate array

were checked for any noise problems which might be caused

by crosstalk and/or reflections. Since the gate array was

placed on a printed wire board and its I/O must be trans

mitted over a wire wrapped backplane; the I/O were subject

to signal distortion as would be any other transmission

line. It was found that undershoot and noise spikes on the

gate array I/O were no greater, and in most cases less than

40

those observed on the previous TTL design. It was then con

cluded that no additional noise prevention measures, such as

shielding or twisted pair, would be required.

Finally a combination voltage level and propagation

delay test was made. The purpose of this test was to meas-

ure worst case propagation delay times for a range of volt

age levels. As should be expected, the propagation delay

times were slower for lower voltages and faster for higher

voltages. Typical timing values measured from the rising

edge of the input clock to stable outputs of the output reg

isters were in the range of 35 to 40 nanoseconds. These

values varied by minus or plus 3 nanoseconds for voltages

ranging from 4.3 to 6.0 Vdc. The expected worst case tim

ing from the simulation was 55 nanoseconds at 5.0 Vdc. The

lower range of 4.3 Vdc was used, because this is the point

at which the video began to show flaws. The upper voltage

was limited at 6.0 Vdc to avoid damage to the gate array.

The gate array specification states the operating range to

be 4.75 to 5.25 Vdc.

After completing all of these tests, the prototype was

accepted as a working gate array.

CHAPTER IV

BENEFITS OF USING A GATE ARRAY
INSTEAD OF SSI AND MSI DEVICES

As was stated in the Introduction, the use of gate

arrays involve high nonrecurring engineering costs which

take production orders of around l,000 pieces to recover

from. If it were not for these NRE costs, gate arrays would

show an almost immediate cost savings.

One reason for this savings is the reduction of inven-

tory and spare costs. For example, one VPAC integrated cir-

cuit (IC) replaces a combination of ll4 MSI and SSI devices.

The reduction in required storage space alone is substan-

tial. There is also a major savings in assembly cost and

time when placing these res on printed circuit boards.

The reduction of required printed circuit boards is

also a source of cost savings. In the proposed application

of VPAC, on a per system basis, 24 boards were replaced by

four boards. This meant a savings of 20 printed circuit

boards per system. This is significant because the cost of

printed circuit boards is a major expense in the total cost

of a system (Pitts l98l).

4l

42

The power consumption of the CMOS gate array is lower

than its TTL design counterpart. This results in reduced

power supply and cooling requirements. This is also a source

of cost savings.

A benefit, which may be hard to think of in terms of

cost, is the increase in reliability. Using a gate array

instead of MSI and SSI logic reduces the uumber of inter

connections and solder joints, and as a result reduces the

chances of incurring rework costs.

Another benefit is the reduction in physical size.

Size reduction reduces transportation and storage costs.

Size reduction also has the added intangible benefit that

smaller is better. Reduced size is also important when

there are design space limitations.

The estimated cost savings of the VPAC gate array fol

lows the basic guideline of savings beginning to occur when

1,000 production pieces are ordered.

CHAPTER V

SUIVIMARY

The first step before design was to choose a vendor.

LSI Logic Corporation was chosen because the company had a

proven working product. The design of the gate array broke

down into two major sections. The first major task was to

create the design using macrocells from the LSI Logic Li

brary. The second task was to create a NET simulation file

for the gate array. This was done by sectioning the design

into modules and first creating NET files for each module

using Tegas. Then the modules were used as building blocks

to create a NET file for the complete design.

The design was first testing with a set of test vec

tors using the NET file simulation. The simulation pointed

out the necessity for adding an additional pipeline stage.

The prototype arrays were then manufactured, tested, and

verified.

The benefits of a gate array are many, but the most

important benefits are reduction in total production costs

and increased reliability.

43

	The Gate Array Implementation of an Area Calculation Pipeline
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii

	LIST OF TABLES
	iv

	LIST OF FIGURES
	v

	INTRODUCTION
	01
	02
	03

	CHAPTER I. THE DESIGN
	Choosing a Vendor
	04

	Definition of a Pipeline
	05
	06

	The Area Calculation Pipeline to be Implemented
	07
	08

	Pipeline Section 1
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18

	Pipeline Section 2
	19
	20
	21
	22
	23
	24
	25

	Layout of the Gate Array Design
	26
	27
	28

	CHAPTER II. DESIGN SIMULATION
	Simulation Using TDL
	29
	30

	Design Verification
	31
	32
	33
	34
	35
	36

	CHAPTER III. TESTING THE GATE ARRAY
	Testing Before Prototype Fabrication
	37

	Testing the Gate Array Prototypes
	38
	39
	40

	CHAPTER IV. BENEFITS OF USING A GATE ARRAY INSTEAD OF SSI AND MSI DEVICES
	41
	42

	CHAPTER V. SUMMARY
	43

