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ABSTRACT 

A gate array is a semi-custom designed integrated cir

cuit. The integrated circuit is designed by a customer and 

then turned over to a vendor to be manufactured. A single 

gate array is capable of replacing a full board or more of 

SSI and MSI components. 

An area calculation path of a special purpose computer 

was designed into a gate array. LSI Logic Corporation was 

used as the vendor. The gate array was designed and then 

simulated with the Tegas Description Language. The simu

lation revealed a worst case timing problem which was cor

rected by adding an additional stage in the pipeline. The 

additional stage increased the time a first result is avail

able at the output of the pipeline, but did not effect the 

rate at which successive results are available. The simu

lation and actual gate array prototype were proven with a 

calculated set of test vectors. 

The benefit of using gate arrays comes from reduced 

costs and increased reliability. 
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INTRODUCTION 

Gate arrays have been around since the mid 60's. But 

because of a lack of standardization in design, simulation, 

and test in those years, gate array usage did not become 

widespread until recent years (Hartmann l980). 

A gate array is a semi-custom integrated circuit . 

Wafers are produced in large quantities as a cellular ar

rangement of logic elements. At this point, the gate array 

is 70% complete . It is the final metalizing state of the 

gate array which creates the semi-custom design. Gate ar

rays are available with densities from several hundred to 

l0 , 000 gates ; a gate being most commonly defined as the 

equivalent of a two-input NAND or NOR gate (Hartmann l980). 

The high density capabilities on a single chip enable 

a gate array to replace a full board of standard family com-

ponents . As a result, gate array usage can result in cost 

savings by lowering both inventory and spare requirements . 

Another positive aspect of gate arrays is -the increase in 

reliability by reducing component quantity (Pitts l98l). 

But on the negative side, the semi - custom design as

pect of gate arrays result in large initial non-recurring 

engineering (NRE) costs. In order for the use of a gate 



array to be practical from a cost standpoint, the customer 

must plan on purchasing a large enough quantity of gate ar

rays to offset these NRE costs. Depending upon the appli

cation, gate arrays may begin showing savings after l,000 

pieces (Pitts 1981). 

A boom in the gate array industry took place in 1978 

when IBM used gate array technology in their 4300 series 

computers. This use along with others proved gate arrays 

to be practical from a reliability standpoint. 

With proven reliability and the potential of cost 

savings, gate array use has increased. Estimates show that 

gate array use was 1% of the bipolar digital market in 1980 

and 4% in 1984 (Hartmann 1980). 

In an effort to stay on top of advancing technology 

and reduce production costs, gate arrays have become an 

important part of present day logic systems. One such 

system, a special purpose computer (SPC), which had prev

iously been designed with TTL technology, was investigated 

for possible gate array applications. The number of these 

special purpose computers to be produced was estimated at 

300. Therefore any gate array application which was to 

show a savings would have to be one of multiple use. 

2 



A calculation pipeline which is used eight times per 

system was found to be a good candidate for the gate array 

application. The purpose of this report is to describe the 

design, simulation, testing, and benefits of a pipeline 

algorithm gate array using the SPC calculation pipeline as 

an example. 

3 



CHAPTER I 

THE DESIGN 

Choosing a Vendor 

The first step in the design process was to choose a 

vendor. This step was important before beginning the de

sign, because most vendors now have their own logic li

braries of predesigned functional elements, usually called 

macrocells or macrofunctions, which are used as building 

blocks to create a design. Switching between two vendors' 

libraries may not be an easy task. 

Three vendors were considered; General Electric, 

Motorola, and LSI Logic Corporation (LSI). The first im

portant point considered was that of education in gate ar

ray design. All three vendors offered gate array design 

courses to educate the first time gate array designer. 

When the gate array pipeline design began, General Electric 

did not source a gate array containing enough gates to meet 

the expected density of the design, and was ruled out. 

Motorola and LSI both had gate arrays with enough density; 

so their macrocell libraries were considered next. 

LSI Logic Corporation has an extensive library of 

functional elements which closely resemble the TTL 7400 

series family and LSI has an impressive success rate of 

4 
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first time working designs. Motorola's library did not re

semble the 7400 series as closely as LSI. Thus, LSI Logic 

Corporation was chosen as the vendor. 

The LSI Logic Corporation gate array used, was the 

LL5240. The LL5240 is a three micron CMOS chip with a max

imum of 4,200 usable gates. The LL5240 has TTL compatible 

input and output buffers which this design required (LSI 

1983) . 

Definition of a Pipeline 

A pipeline can be described as an array or string of 

registers that contain arguments for which computations are 

in various stages of completion (Hill 1978). A pipeline is 

formed by using pipeline registers to split a system into 

smaller functional sections. This can result in increased 

system speed. For example consider the fictional system 

shown in Figure 1. 

The total time (Ttotal) through this fictional system 

is 100 nanoseconds (ns) from "data in" to "data out." Be

cause of the different time required by each function, no 

new data may be input until the present set of data has 

been completely processed. (i.e., the input operation re-

quires lOns; but if a new set of inputs were introduced at 

the end of the lOns, the first set of data being processed 

by function 1, which takes JOns, would be destroyed before 



Data Input Function Function Output Data 
In Out Operation ' 1 ' 2 ' Operation ' / / / / 

0 10 40 60 100 

Figure 1. Fictional System 

Data Pipe- Input Pipe- Ftmc- Pipe- Fune- Pipe- Output Data 
In line line line line Out 

Reg- Oper- Reg- ti on Reg- ti on Reg- Op er-
ister a ti on ister 1 ister 2 ister a ti on 

R Rl R2 R 

0 10 70 80 100 120 160 

Figure 2. Fictional System With Pipeline Registers 



its processing had finished). Therefore, "data out" is 

only valid every lOOns. Now consider the fictional system 

of Figure 2, which is the same system as shown in Figure l, 

but to which pipeline registers have been added. As can be 

seen in Figure 2, the pipeline registers act as buffers be-

tween the functional areas; therefore, if data is input 

every clock time (40ns), at the end of each clock time 

valid data is present at the output of each functional 

area, or stage. Since the slowest function (T ) of this slow 
system is the output operation, the shortest system clock 

period allowed is 40ns. If data is input every 40ns, the 

first set of data through the system takes l60ns, but every 

subsequent set of data will be valid every 40ns. The ef

fective speedup, Tt t l/T l , is four . This is shown o a s ow 
graphically in Figure 3 (Siewiorek l982). 

7 

For the fictional system described, the pipeline sys

tem clock rate was determined by the slowest functional 

area. Pipelines may also be designed to fit required clock 

rates. The clock rate of the area calculation pipeline will 

be 8.JJMHz or a period of l20ns. Since this pipeline has 

already been designed with TTL logic, the required position 

of pipeline registers is known. 

The Area Calculation Pipeline to be Implemented 

Each clock time, the SPC calculated, in parallel, four 

sequential sets of data. One area calculation pipeline (ACP) 



Functional Area 

Input Operation 

Function 1 

Function 2 

Output Operation 

Data Valid 

Time(ns) 

Data Data 
1 2 

I RO I 

Rl 

0 40 

Data 
J 

RO 

Rl Rl 

R2 R2 

RJ 

Data Data Data 
1 2 J 

80 120 160 200 240 

Figure J. Time Function Diagram of the Fictional System. 
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is part of the overall calculation pipeline for each set 

of data. The sets of data are accumulated for 250 clock 

times so that a total of lOOO sequential sets of data are 

calculated. The lOOO accumulated sets then become a lOOO 

pixel raster line for a video display. 

The purpose of the ACP is to calculate the values of 

three areas, A, B, and C, from preliminary information about 

areas A and B. The ACP is primarily a series of multiplex-

ing and addition operations based upon control inputs. The 

control inputs to each ACP depend upon which of the four 

sets of data is being calculated by that ACP. The deter

mination of these control inputs occur before the ACP and 

will not be discussed in this report. The calculation is 

done in two steps. The ACP is therefore broken into two 

sections as shown in Figure 4. The first step, or section, 

is the parallel calculation of the intermediate values AI 

and BI of areas A and B. The second section calculates the 

final values of A, B, and c. The symbols for the inputs to 

the ACP are described by Table l, and the symbols for the 

outputs are described by Table 2. 

Pipeline Section l 

As was previously stated, section l performs the par-

allel calculation of AI and BI. These two calculations are 

functionally identical; so for the present, only the calcu-

lation of AI will be discussed. The calculation of AI can 
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INPUT 

AS 

AA 

DAJ 

BS 

BA 

DBJ 

ABF 

ALUS¢ 

ALUS2 

MSA 

MSB 

MSD 

TABLE 1 

CALCULATION PIPELINE INPUTS 

DESCRIPTION 

First possible initial value of area A 

Second possible initial value of area A 

Incremental change in area A 

First possible initial value of area B 

Second possible initial value of area B 

Incremental change in area B 

Area priority flag 

Control used to calculate multiples of 
DAJ and DBJ 

Control used to calculate multiples of 
DAJ and DBJ 

Mux control used between AS, a new AA, 

11 

an old AA, or the last value of area A 

Mux control used between AS, a new AA, 
an old AA, or the last value of area A 

Mux control used to select old or new 
value of DAJ and DBJ 
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TABLE 2 

CALCULATION PIPELINE OUTPUTS 

OUTPUT DESCRIPTION 

AO The resulting area of A 

BO The resulting area of B 

co The resulting area of c 

PXAO Set to one if AO is zero, otherwise set to 
zero 

PX Al Set to one if AO is equal to .FF16' otherwise 
set to zero 

PXBO Set to one if BO is zero, otherwise set to 
zero 

PX Bl Set to one if BO is equal to .FFl6' otherwise 
set to zero 



be broken into four functional areas as shown in Figure 5. 

AHFL will be used to describe these functions (Hill l978). 

The first function, AREANIUX, is basically a four-to

one mux. One of the four values, AS, AA, registered AA 

(AAR), or SA, is selected based on the values of control 

inputs MSAR and MSBR, as shown in Table 3. An AHFL des

cription of AREANIUX is given in Figure 6. 

l3 

The second functional area, DELTA, selects a value, 

DS, from a two-to-one mux choosing between the values of 

DAJ and registered DAJ (DAJR). This selection is based on 

control input MSDR. DELTA also registers some control sig

nals used throughout the ACF. An AHFL description of DELTA 

is shown in Figure 7. 

The third functional area is NDELTA. NDELTA first 

calculates multiples of 1, 2, 3, and 4 times the value se

lected by DELTA and then performs a four-to-one mux oper

ation of these multiples based on the values of control in

puts ALUS~R and ALUS2R. The selection of the multiples de

pends upon which one of the four sequential data sets the 

particular ACF is calculating. An AHFL description of NDELTA 

is given in Figure 8. 

The final functional area of the first pipeline sec

tion is NAREA. NAREA performs a summation of the outputs of 
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TABLE 3 

SELECTION OF AREA VALUES IN THE AREAMUX SUB-MODULE 

INPUTS AREA SELECTED 

MSAR MSBR 

0 

0 

l 

l 

0 

l 

0 

l 

SA 

AA Registered 

AA 

AS 

l5 



MODULE: AREAMUX 
MEMORY: 
INPUTS: 

OUTPUTS: 

AR [5] 
AS [5J ; AA [5] 
MSAR: MSBR 

AM[8] 

SA [l~ 

1. AR~AA; 
AM= (SA!(AR,7T¢)!(AA,?T¢)!(AS,7T¢))*DCD(MSAR,MSBR) 

END SEQUENCE 
END 

Figure 6. AHPL Description of AREAMUX. 
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MODULE: DELTA 
MEMORY: MSAR; MSBR; ALUS¢R; ALUS2R; MSDR; 

DAJR (1_5] ; ABFR 
INPUTS: MSD; MSA; MSB; ALUS¢; ALUS2; DAJ[j_5]; 

ABF 

17 

OUTPUTS: MSAR; MSBR; ALUS¢R; ALUS2R; ABFS; DS ~5-J 

1. MSDR ~ MSD; MSAR ~ MSA; MSBR 4-- MSB; ALUS,0R ~ ALUS¢; 
ALUS2R~ ALUS2; ABFR ~ABF; DAJR +-DAJ; 
ABFS = (ABFR!ABF)*(MSDR, MSDR); DS = (DAJRtDAJ) * 
(MSDR, MSDR) 

END SEQUENCE 
END 

Figure 7. AHPL Description of DELTA. 



MODULE: NDELTA 
INPUTS: 
OUTPUTS: 

ALUS¢R; ALUS2R; DS [lS] 
D [l5] 

l. D = (DS!(DSl:l4 ,o)!(ADD(DS;DSl:l4 ,o))!(DS2 :l4 ,2TO))* 
DCD(ALUS¢R,ALUS2) 

END SEQUENCE 
END 

l8 

Comment: The values of DS times two and four are created by 
shifting DS one and two times respectively. The 
value of three times DS is created by adding DS to 
two times DS. 

Figure 8. AHPL Description of NDELTA. 



AREAMUX and NDELTA. If the resulting sum is negative, the 

sum is clamped to zero. If the sum is greater than one, it 

will be clamped to an eight bit binary fractional represen

tation of one (.111111112 ); if between zero and a fractional 

one value, the sum will be unchanged. Two other outputs of 

NAREA are PXA¢ and PXAl. PXA¢ is set to one if the sum is 

zero otherwise it is clamped to zero. PXAl is set to one if 

the sum is a fractional one. An AHPL description of NAREA 

is shown in Figure 9. 

A complete AHPL description of the calculation of AI is 

given in Figure lO. 

pipeline section 1. 

One pipeline register is required by 

CALC. 

Pipeline Section 2 

AI, BI, and ABFI are the inputs to pipeline section 2, 

CALC determines the values of areas A, B, and C. The 

sum of A, B, and C is required to equal an eight-bit binary 

fractional one (.llllllll2 or .FF16 ). This is because the 

three areas will be used to determine the color of the pix

els of the 1000 raster line. Each pixel has a unity value. 

The values of A, B, and C are calculated based on AI, BI, 

and the state of the control flag, ABFI, as shown in Table 

4. The block diagram of CALC in Figure 11 shows the use of 

one pipeline register stage. The AHPL code which describes 

CALC is shown in Figure 12. A time function diagram of the 

ACP is shown in Figure lJ. Notice in Figure 13, that there 



MODULE: NAREA 
MEMORY: AMR [l~ ; DR ~51 ; ABFSR 
INPUTS: AM tl?J .. ; D (i_5; ; ABFS 
OUTPUTS: AI ~J; PXA¢; PXAl; ABFI; 
BUS: SA Q_~ ; 

1. AMR +-AM; DR +-D; ABFSR +-ABFS; 
SA = ADD(AMR;DRO:ll); AI =SAO:?; PXAl =A/AI; 

PXA¢ = V/AI; ABFI = ABFSR 

END SEQUENCE 
END 

Figure 9. AHPL Description of NAREA. 
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MODULE: AI CALCULATION 
MEMORY: AR 5 ; MSAR; MSBR; ALUS¢R; ALUS2R; MSDR; 

DAJR [15] ; ABFR; AMR [12] ; DR (15] ; ABFSR 
INPUTS : AA (5] ; AS [5] ; MSD; MSA; MSB; ALUS¢, ALUS2; 

DAJ [15] ; ABF 
OUTPUTS: AI [8] ; PXA¢; PXAl; ABFI 
BUSES : AM [12] ; ABFS ; DS [15= ; D (15] ; SA [12] 

1. AR~ AA; MSDR~ MSD; MSAR~ MSA; MSBR~MSB; 
ALUS¢R ~ ALUS,¢; ALUS2R ~ ALUS2; ABFR~ ABF; DAJR~ DAJ; 
AM= (SA!(AR,7T,¢)~(AA,7T,¢)!(AS,7T¢))*DCD(MSAR,MSBR); 

ABFS = (ABFR!ABF)*(MSDR,MSDR); 

DS = (DAJR!DAJ)*(MSDR,MSDR); 

D = (DS!DS 1 : 14 ,o)~(ADD(DS;DS 1 : 14 ,o))!(DS2 : 14 ,2T¢))* 
DCD(ALUS,¢R,ALUS2R); 

AMR~AM; DR~D; ABFSR~ABFS; 

SA= ADD(AMR;DRO:ll); AI= SAO:?; PXAl =/\/AI; 
PXA,¢ ~ V/AI; ABFI ~ ABFSR 

END SEQUENCE 
END 

Figure 10. AHPL Description of AI Calculation. 
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TABLE 4 

CONDITIONS GOVERNING VALUES OF AREAS A, B, AND C 

CONDITIONS VALUE OF AREAS 

AI + BI< .FFl6 A = AI 
B - BI -
c - .FF16 (AI -+ BI) -

AI + BI 2= .FFl6' A = AI 
ABFI - 0 B = .FFl6 AI -

c = 0 

> A = .FF16 - BI AI + BI . FF l6' B = BI ABFI - l - c = 0 



2:1 A 
MUX 8 

AI 
8 

PIPELINE 2:1 B 
BI REGISTER MUX 8 

8 
8 2:1 c -ABFI GND MUX 8 

ABFI 8 

ADDER 

OVB 

ov 
OVA 

Figure 11. Block Diagram of CALC. 



MODULE: CALC 
MEMORY: AIR [8]; BI~[8]; ABFIR 
INPUTS: AI LB] ; BI [8] ; ABFI 
OUTPUTS: A [8] ; B [8j ; C [8] 
BUSES : CI [9j 

1. AIR ~AI; BIR <::--BI; ABFIR +- ABFI; 
CI= ADD(¢,AIR; ¢,BIR); A= (AIR!BIR) * ((ABFIRACI 0 ), 

(ABFIR ACI 0 )) ; 

B - (BIR!AIR) * ((_A_B_F-IR-~DI 0 ), (ABFIRvCI
0
)); 

c = (Cil:8!8T¢) * (Cia,Cio) 

END SEQUENCE 
END 

Figure 12. AHPL Description of CALC. 

24 



Functional Area 

Pipeline Register 
of Stage Before ACP 

AREAMUX } DELTA 
NDELTA 

Pipeline Register 

NAREA 

Pipeline Register 

CALC 

Data Valid to Stage 
After ACP 

Time(ns) 

Data 
1 

RO 

0 

Data 
2 

RO 

Rl 

120 

Data 
3 

RO 

Rl Rl 

240 
325 

R2 

360 
445 

480 
565 

Figure 13. Time Function Diagram of the ACP. 
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is an estimated 85ns between the output of the pipeline reg

ister of CALC to the time the data is valid for the stage 

following ACP. This time was estimated using TTL technology. 

This is the estimated time to complete CALC function. This 

time is also part of the 120ns set-up time for the following 

stage. 

Layout of the Gate Array Design 

The first step in laying out a gate array is to break 

the design into small functional areas or modules. This 

step becomes important when testing the gate array. It is 

much easier to debug a gate array test simulation if the 

overall simulation is composed of smaller functional simu

lations which can be tested independently. The ACF was 

first broken into the two major pipeline sections previ-

ously discussed. Section 1 was broken into two modules, 

called BlOJ, to calculate AI and BI. The modules which cal

culate AI and BI are functionally identical. The only dif

ference is that ABFI is not used in the BI calculation 

module. BlOJ was further broken down into the functional 

sub-modules; AREAMUX, DELTA, NDELTA, and NAREA. Section 2 

was considered basic enough and not broken into sub-modules. 

The design breakdown is shown in Figure 14. 

The next gate array design step is to design each sub

module with macrocells. As stated before, LSI was used as 
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the vendor. LSI's macrocell library, which closely resem

bles the TTL 7400 series logic family, is described by 

their CMOS Macrocell Manual (LSI 1983). 
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CHAPTER II 

DESIGN SIMULATION 

Under the LDS system of LSI Logic Corporation, the 

simulation of a gate array begins by describing the array 

using the Tegas Description Language (TDL). The design is 

then verified by a Design Verification Program before test

ing begins. 

Simulation Using TDL 

Each module of the design must be described with a 

Network Description File (NET File). A skeleton example of 

the NET File is shown in Figure 15. The NET File describes 

the module in terms of inputs, outputs, bidirectional sig

nals, wireand signals, a brief module description, and net-

work interconnection description. The input, output, bi

direct and wireand sections are just listings of the signals 

of each type. The network interconnection description is 

accomplished by using a TDL statement to describe each 

macrocell which makes up the module. The basic macrocell 

description statement is 

Macrocell Name = Macrocell Type 
(list of inputs)$ (LSI 1983). 

The macrocell name is determined by the designer. 
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COMPILE 
DIRECTORY 
OPTIONS 

MODULE 
$ 

INPUTS 
$ 

OUTPUTS 
$ 

BIDIRECT 
$ 

DESCRIPTION 
$ 

LEVEL 

USE 

,WIREDAND 

$ 

WIRED 

DEFINE 

END 
END 
END 

MASTER 
REPLACE, XREF * $ 

30 

"l: -- ENTER MODULE NAME WITH USER ID -------" 

"2: -- ENTER INPUTS, SEPARATED BY COMMAS 

"3: -- ENTER OUTPUTS, SEPARATED BY COMMAS 

"4: -- ENTER BIDIRECTS, SEPARATED BY COMMAS 

"5: -- ENTER MODULE DESCRIPTION 

FUNCTION 

"6: -- ENTER MACROCELLS, MACROFUNCTIONS USED 

=WAND (2,l ~ TRISTATE, SETZZ) 

USE WIREDAND $ 

"7: 

MODULE 
COMPILE 
TDL 

ENTER NETWORK INTERCONNECT 

Figure l5. Network Skeleton File. 

" 

" 

" 

" 

" 

" 
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NET Files are first written for each sub-module, and 

then using these sub-module NET Files much like sub-routines 

NET Files are written for the major modules. The major mod

ules are then pulled together by one final NET File which 

describes the entire gate array. In the case of the ACP, 

the final NET File was called VPAC. 

The next step is to compile the NET Files. The com

piling of the NET Files will check for any syntax or naming 

errors which might occur in the NET File. Obviously the NET 

Files for the sub-modules AREAMUX, DELTA, NDELTA, and NAREA 

must compile correctly before Bl03 will compile. Likewise, 

the NET Files for Bl03 and CALC must compile correctly be

fore the VPAC NET File will compile. 

Design Verification 

Once the complete NET File design compiles, it will be 

verified. The verification is accomplished by use of the 

LDS Design Verification Program. The verification program 

uses estimated wire lengths to check propagation delay times 

between macrocells, number of gates used, number of input/ 

output pins used, percentage of wiring which can be accom

plished by automatic layout and provides a connection cross

reference list for the gate array. The results of the VPAC 

verification showed a use of 2,683 gates for design and 588 

gates for routing, for a total of 3,271 or 78% of the maxi

mum 4,200 usable gates. LSI Logic Corporation recommends 

' 
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using no more than 75% to 85% to avoid routing difficulties. 

VPAC required 60 input, 28 output, 4 grounds, and 4 power 

(-5Vdc) pins for a total of 96. This meant that the stan

dard 101 pin grid package could be used. The verification 

output for VPAC is shown in Figure 16. 

The use of the estimated propagation delay times 

pointed out a timing problem. Because CMOS is slower than 

TTL , the outputs of VPAC were not fast enough. The outputs 

of the ACF feed several other levels of combinational logic 

in the special purpose computer before being registered. 

The slower output of the ACP gate array combined with the 

propagation delay of the logic following the ACF would not 

meet the l20ns clock period requirement. This problem was 

solved by adding another stage in the ACF. A pipeline reg

ister was added to the output of CALC. The block diagram 

changed from that shown in Figure 12 to that of Figure 17. 

The time diagram of the new ACF is shown in Figure 18 and 

the new AHPL description is given in Figure 19. The sig

nificance of adding this additional pipeline register is that 

Ttotal is now J60ns instead of J25ns, as shown in Figure 13, 

and CALC ends with a complete stage instead of in the mid-

dle of a stage. This means there is a full clock period 

set-up time between the output of CALC and the pipeline reg-

ister of the next stage. 

configuration is three. 

The effective speedup of the final 

T 
1 

is still l20ns. 
s ow 
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LDS-II DESIGN VERIFIER NETWORK SUlYIIVIARY 

Project ID: 
Array Name: 
Array Type: 

Current Date: 
Date 'CNET VPAc·: 
CMOS5K Library Date: 

LIA0605 
VPAC 
LSI5420 

03/14/84 
02/22/84 
02/20/84 

LDS Account Name: 
Directory Name: 
Array Family: 

LlA0605S 
LlA0605S 
CMOS5K 

Current Time: 09:55:07 
Time 'CNET VPAC 1

: 17:58:00 
CMOS5K Library Revision:2.12 

NETWORK STATISTICS BEFORE CELL DELETIONS 

Number of Input Pads: 60 
Number of Output Pads: 28 
Number of Bidirect. Pads: 0 
Min. No. Power/Ground Pads: 4 
Total Array Pads Used: 
Available Chip Pads: 
Available Package Pins: 

Cell Inputs To $VDD$: 
Number of Signal Nets: 

14~ 
152 

58 
1679 

Number of Cell Types: 20 
Number of Cells Used: 1747 
Number of Gates Used: 3247 
Array Usage (Per Cent):95.98 
Minimum No. $VDD$ Pins: 2 
Minimum No. $VSS$ Pins: 2 
Package Pins Used: 92 

Cell Inputs to $VSS$: 294 
No. of Unc. Cell Outputs:258 

Average Pins/Net: 3.038 Maximum Pins/Net: 

NETWORK STATISTICS AFTER CELL DELETIONS 

Number of Input Pads: 
Number of Output Pads: 
Number of Bidirect. Pads: 
Min. No. Power/Ground Pads: 

60 
28 

0 
4 

92 

Number of Cell Types: 20 
Number of Cells Used: 1413 
Number of Gates Used: 2683 
Array Usage (Per Cent) :77.87 
Minimum No. $VDD$ Pins: 2 Total Array Pads Used: 

Available Chip Pads: 
Available Package Pins: 

Cell Inputs to $VDD$: 
Number of Signal Nets: 

Average Pins/Net: 

148 
152 

50 
1388 

Minimum No. $VSS$ Pins: 2 
Package Pins Used: 92 

Cell Inputs To $VSS$: 93 
No. of Unc. Cell Outputs:207 

3.087 Maximum Pins/Net: 

DELAY VALUES ESTIMATED FOR COM'L, WORST CASE (70 DEG.O, VDD-
4. 75V) 

WIREABILITY MEASURE FOR AUTOMATIC LAYOUT: 86.34 

Figure 16. Verification Output. 



2:1 

MUX 
AP A 

PIPE- 8 BP LINE B 

CP REG. 8 c 
2:1 8 

AI MUX 

BI PIPELINE 

ABFI REGISTER 8 

-L__ 
CI 2:1 

ADDER MUX 

ov 

OVB 

OVA 

Figure 17. Block Diagram of CALC With Output Pipeline Registers. 



Functional Area 

Data Data Data 
1 2 3 

Pipeline Register RO ~ RO of Stage Before ACP 

AREAJVIUX} 
DELTA 
NDELTA 

Pipeline Register Rl Rl 

NAREA 

Pipeline Register R2 

CALC 

Output Pipeline Register 

Data Valid t 1' 

Time(ns) 
0 120 240 360 480 

Figure 18. Time Function Diagram of ACP 
With Modified CALC. 
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MODULE: CALC With Second Pipeline Register 
MEMORY: AIR [8] ; BIR [8] ; ABFIR; APR [8] ; BPR [8] ; 

CPR [8] 
INPUTS : AI [8] ; BI [8] ; ABFI 
OUTPUTS: A_l8] ; B [81 ; C [8] 
BUSES: CI [9] ; AP [8] ; BP LBJ ; CP [8] 

1. AIR ~·AI ; BIR ~BI; ABFIR ~ ABFI; 
CI= ADD(¢,AIR; ¢,BIR); 

AP - (AIR! BIR) * ( (ABFIR.A.CI 0 ) , (ABFIR'\CI 0 )) ; 

BP - (BIR!AIR) * ((ABFIRACio),(ABFIRVCio)); 

CP - (Cil:S!8T¢) * (CI 0 , CI 0 ) 

APR ~·AP ; BPR ~ BP; CPR ~ CP; 
A = APR; B = BPR; C = CPR 

END SEQUENCE 
END 

Figure 19. AHPL Description of CALC With 
Additional Pipeline Register. 
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CHAPTER III 

TESTING THE GATE ARRAY 

No less important than the gate array design is the 

task of testing the gate array. With the possible gate 

count of arrays reaching as high as 10,000, the need for 

built-in diagnostics becomes very important. The question 

also arises if a set of test vectors should be complete or 

adequate. 

The test of the VPAC gate array as with any gate array 

was broken into two sections. These two sections are the 

tests conducted before prototype fabrication and the tests 

conducted after prototype fabrication. 

Testing Before Prototype Fabrication 

After correct compilation of the NET File for each 

sub-module, input and output test vectors were hand

calculated for that module. The input test vectors were 

then input to a Sentry tester to produce output vectors. 

The output vectors were compared against those calculated. 

When it was determined that these were correct, BlOJ, CALC, 

and finally VPAC were tested in the same manner. 

The decision was made to test VPAC with adequate test 

vectors instead of complete. Adequate vectors test the 

37 
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gate array functionally but do not test every possible pat

tern as do complete test vectors. This choice was made be

cause the VPAC design had already been proven with TTL 

technology. 

The input test vectors were the same used to previ

ously test the same design in TTL technology. The input 

signal SLRT was used to clear the registers of VPAC in order 

to start in a known state. The input vectors could then be 

used by the Sentry tester to generate output vectors. The 

Sentry outputs were then compared against those taken from 

the TTL implementation. 

When outputs from the two implementations matched, AC 

and DC tests were made. AC tests were made to check propa

gation delays and timing skews. The DC test yields a list 

of parameters such as VIL, VIH, IIL, IIH, VOL, VOH, IOZ, 

and IDD for the inputs and outputs of the gate array (LSI, 

1983). 

Testing the Gate Array Prototypes 

At this point, the design phase is complete. The prop

er acceptance forms were signed by both customer and vendor. 

Modifications were made to an existing special purpose com

puter to prepare for the gate array. 

Testing of the prototype gate arrays was done in sev-

eral ways. The first test was a visual one. Since the out-
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put of this gate array is eventually displayed on a video 

monitor, the video was inspected for any signs that the gate 

array was not functioning as expected. Several video test 

patterns, such as gray scales of vertical and horizontal 

bars, were viewed. No flaws were observed. 

In the special purpose computer, there is an input 

memory used just before the gate arrays. This memory was 

loaded with the test vectors. The data was then allowed to 

flow through the gate arrays. Since there are no data snap

shot points at the output of the gate arrays, a logic ana

lyzer was used to check the outputs. 

The second method of testing was to apply the test 

vectors used to check the gate array simulation. The out

puts of the prototype gate arrays matched completely the 

outputs which were given by the simulation and special pur-

pose computer before modification. 

Next, the inputs and the outputs of the gate array 

were checked for any noise problems which might be caused 

by crosstalk and/or reflections. Since the gate array was 

placed on a printed wire board and its I/O must be trans

mitted over a wire wrapped backplane; the I/O were subject 

to signal distortion as would be any other transmission 

line. It was found that undershoot and noise spikes on the 

gate array I/O were no greater, and in most cases less than 
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those observed on the previous TTL design. It was then con

cluded that no additional noise prevention measures, such as 

shielding or twisted pair, would be required. 

Finally a combination voltage level and propagation 

delay test was made. The purpose of this test was to meas-

ure worst case propagation delay times for a range of volt

age levels. As should be expected, the propagation delay 

times were slower for lower voltages and faster for higher 

voltages. Typical timing values measured from the rising 

edge of the input clock to stable outputs of the output reg

isters were in the range of 35 to 40 nanoseconds. These 

values varied by minus or plus 3 nanoseconds for voltages 

ranging from 4.3 to 6.0 Vdc. The expected worst case tim

ing from the simulation was 55 nanoseconds at 5.0 Vdc. The 

lower range of 4.3 Vdc was used, because this is the point 

at which the video began to show flaws. The upper voltage 

was limited at 6.0 Vdc to avoid damage to the gate array. 

The gate array specification states the operating range to 

be 4.75 to 5.25 Vdc. 

After completing all of these tests, the prototype was 

accepted as a working gate array. 



CHAPTER IV 

BENEFITS OF USING A GATE ARRAY 
INSTEAD OF SSI AND MSI DEVICES 

As was stated in the Introduction, the use of gate 

arrays involve high nonrecurring engineering costs which 

take production orders of around l,000 pieces to recover 

from. If it were not for these NRE costs, gate arrays would 

show an almost immediate cost savings. 

One reason for this savings is the reduction of inven-

tory and spare costs. For example, one VPAC integrated cir-

cuit (IC) replaces a combination of ll4 MSI and SSI devices. 

The reduction in required storage space alone is substan-

tial. There is also a major savings in assembly cost and 

time when placing these res on printed circuit boards. 

The reduction of required printed circuit boards is 

also a source of cost savings. In the proposed application 

of VPAC, on a per system basis, 24 boards were replaced by 

four boards. This meant a savings of 20 printed circuit 

boards per system. This is significant because the cost of 

printed circuit boards is a major expense in the total cost 

of a system (Pitts l98l). 

4l 
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The power consumption of the CMOS gate array is lower 

than its TTL design counterpart. This results in reduced 

power supply and cooling requirements. This is also a source 

of cost savings. 

A benefit, which may be hard to think of in terms of 

cost, is the increase in reliability. Using a gate array 

instead of MSI and SSI logic reduces the uumber of inter

connections and solder joints, and as a result reduces the 

chances of incurring rework costs. 

Another benefit is the reduction in physical size. 

Size reduction reduces transportation and storage costs. 

Size reduction also has the added intangible benefit that 

smaller is better. Reduced size is also important when 

there are design space limitations. 

The estimated cost savings of the VPAC gate array fol

lows the basic guideline of savings beginning to occur when 

1,000 production pieces are ordered. 



CHAPTER V 

SUIVIMARY 

The first step before design was to choose a vendor. 

LSI Logic Corporation was chosen because the company had a 

proven working product. The design of the gate array broke 

down into two major sections. The first major task was to 

create the design using macrocells from the LSI Logic Li

brary. The second task was to create a NET simulation file 

for the gate array. This was done by sectioning the design 

into modules and first creating NET files for each module 

using Tegas. Then the modules were used as building blocks 

to create a NET file for the complete design. 

The design was first testing with a set of test vec

tors using the NET file simulation. The simulation pointed 

out the necessity for adding an additional pipeline stage. 

The prototype arrays were then manufactured, tested, and 

verified. 

The benefits of a gate array are many, but the most 

important benefits are reduction in total production costs 

and increased reliability. 
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